xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_priv.h (revision 9208c05f9fdfd927ea160b97dfef3c379049fff2)
1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #ifndef KFD_PRIV_H_INCLUDED
25 #define KFD_PRIV_H_INCLUDED
26 
27 #include <linux/hashtable.h>
28 #include <linux/mmu_notifier.h>
29 #include <linux/memremap.h>
30 #include <linux/mutex.h>
31 #include <linux/types.h>
32 #include <linux/atomic.h>
33 #include <linux/workqueue.h>
34 #include <linux/spinlock.h>
35 #include <linux/kfd_ioctl.h>
36 #include <linux/idr.h>
37 #include <linux/kfifo.h>
38 #include <linux/seq_file.h>
39 #include <linux/kref.h>
40 #include <linux/sysfs.h>
41 #include <linux/device_cgroup.h>
42 #include <drm/drm_file.h>
43 #include <drm/drm_drv.h>
44 #include <drm/drm_device.h>
45 #include <drm/drm_ioctl.h>
46 #include <kgd_kfd_interface.h>
47 #include <linux/swap.h>
48 
49 #include "amd_shared.h"
50 #include "amdgpu.h"
51 
52 #define KFD_MAX_RING_ENTRY_SIZE	8
53 
54 #define KFD_SYSFS_FILE_MODE 0444
55 
56 /* GPU ID hash width in bits */
57 #define KFD_GPU_ID_HASH_WIDTH 16
58 
59 /* Use upper bits of mmap offset to store KFD driver specific information.
60  * BITS[63:62] - Encode MMAP type
61  * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to
62  * BITS[45:0]  - MMAP offset value
63  *
64  * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
65  *  defines are w.r.t to PAGE_SIZE
66  */
67 #define KFD_MMAP_TYPE_SHIFT	62
68 #define KFD_MMAP_TYPE_MASK	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
69 #define KFD_MMAP_TYPE_DOORBELL	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
70 #define KFD_MMAP_TYPE_EVENTS	(0x2ULL << KFD_MMAP_TYPE_SHIFT)
71 #define KFD_MMAP_TYPE_RESERVED_MEM	(0x1ULL << KFD_MMAP_TYPE_SHIFT)
72 #define KFD_MMAP_TYPE_MMIO	(0x0ULL << KFD_MMAP_TYPE_SHIFT)
73 
74 #define KFD_MMAP_GPU_ID_SHIFT 46
75 #define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \
76 				<< KFD_MMAP_GPU_ID_SHIFT)
77 #define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\
78 				& KFD_MMAP_GPU_ID_MASK)
79 #define KFD_MMAP_GET_GPU_ID(offset)    ((offset & KFD_MMAP_GPU_ID_MASK) \
80 				>> KFD_MMAP_GPU_ID_SHIFT)
81 
82 /*
83  * When working with cp scheduler we should assign the HIQ manually or via
84  * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot
85  * definitions for Kaveri. In Kaveri only the first ME queues participates
86  * in the cp scheduling taking that in mind we set the HIQ slot in the
87  * second ME.
88  */
89 #define KFD_CIK_HIQ_PIPE 4
90 #define KFD_CIK_HIQ_QUEUE 0
91 
92 /* Macro for allocating structures */
93 #define kfd_alloc_struct(ptr_to_struct)	\
94 	((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL))
95 
96 #define KFD_MAX_NUM_OF_PROCESSES 512
97 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024
98 
99 /*
100  * Size of the per-process TBA+TMA buffer: 2 pages
101  *
102  * The first chunk is the TBA used for the CWSR ISA code. The second
103  * chunk is used as TMA for user-mode trap handler setup in daisy-chain mode.
104  */
105 #define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2)
106 #define KFD_CWSR_TMA_OFFSET (PAGE_SIZE + 2048)
107 
108 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE		\
109 	(KFD_MAX_NUM_OF_PROCESSES *			\
110 			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS)
111 
112 #define KFD_KERNEL_QUEUE_SIZE 2048
113 
114 #define KFD_UNMAP_LATENCY_MS	(4000)
115 
116 #define KFD_MAX_SDMA_QUEUES	128
117 
118 /*
119  * 512 = 0x200
120  * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the
121  * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA.
122  * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC
123  * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in
124  * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE.
125  */
126 #define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512
127 
128 /**
129  * enum kfd_ioctl_flags - KFD ioctl flags
130  * Various flags that can be set in &amdkfd_ioctl_desc.flags to control how
131  * userspace can use a given ioctl.
132  */
133 enum kfd_ioctl_flags {
134 	/*
135 	 * @KFD_IOC_FLAG_CHECKPOINT_RESTORE:
136 	 * Certain KFD ioctls such as AMDKFD_IOC_CRIU_OP can potentially
137 	 * perform privileged operations and load arbitrary data into MQDs and
138 	 * eventually HQD registers when the queue is mapped by HWS. In order to
139 	 * prevent this we should perform additional security checks.
140 	 *
141 	 * This is equivalent to callers with the CHECKPOINT_RESTORE capability.
142 	 *
143 	 * Note: Since earlier versions of docker do not support CHECKPOINT_RESTORE,
144 	 * we also allow ioctls with SYS_ADMIN capability.
145 	 */
146 	KFD_IOC_FLAG_CHECKPOINT_RESTORE = BIT(0),
147 };
148 /*
149  * Kernel module parameter to specify maximum number of supported queues per
150  * device
151  */
152 extern int max_num_of_queues_per_device;
153 
154 
155 /* Kernel module parameter to specify the scheduling policy */
156 extern int sched_policy;
157 
158 /*
159  * Kernel module parameter to specify the maximum process
160  * number per HW scheduler
161  */
162 extern int hws_max_conc_proc;
163 
164 extern int cwsr_enable;
165 
166 /*
167  * Kernel module parameter to specify whether to send sigterm to HSA process on
168  * unhandled exception
169  */
170 extern int send_sigterm;
171 
172 /*
173  * This kernel module is used to simulate large bar machine on non-large bar
174  * enabled machines.
175  */
176 extern int debug_largebar;
177 
178 /* Set sh_mem_config.retry_disable on GFX v9 */
179 extern int amdgpu_noretry;
180 
181 /* Halt if HWS hang is detected */
182 extern int halt_if_hws_hang;
183 
184 /* Whether MEC FW support GWS barriers */
185 extern bool hws_gws_support;
186 
187 /* Queue preemption timeout in ms */
188 extern int queue_preemption_timeout_ms;
189 
190 /*
191  * Don't evict process queues on vm fault
192  */
193 extern int amdgpu_no_queue_eviction_on_vm_fault;
194 
195 /* Enable eviction debug messages */
196 extern bool debug_evictions;
197 
198 extern struct mutex kfd_processes_mutex;
199 
200 enum cache_policy {
201 	cache_policy_coherent,
202 	cache_policy_noncoherent
203 };
204 
205 #define KFD_GC_VERSION(dev) (amdgpu_ip_version((dev)->adev, GC_HWIP, 0))
206 #define KFD_IS_SOC15(dev)   ((KFD_GC_VERSION(dev)) >= (IP_VERSION(9, 0, 1)))
207 #define KFD_SUPPORT_XNACK_PER_PROCESS(dev)\
208 	((KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 2)) ||	\
209 	 (KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 3)) ||	\
210 	 (KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 4)))
211 
212 struct kfd_node;
213 
214 struct kfd_event_interrupt_class {
215 	bool (*interrupt_isr)(struct kfd_node *dev,
216 			const uint32_t *ih_ring_entry, uint32_t *patched_ihre,
217 			bool *patched_flag);
218 	void (*interrupt_wq)(struct kfd_node *dev,
219 			const uint32_t *ih_ring_entry);
220 };
221 
222 struct kfd_device_info {
223 	uint32_t gfx_target_version;
224 	const struct kfd_event_interrupt_class *event_interrupt_class;
225 	unsigned int max_pasid_bits;
226 	unsigned int max_no_of_hqd;
227 	unsigned int doorbell_size;
228 	size_t ih_ring_entry_size;
229 	uint8_t num_of_watch_points;
230 	uint16_t mqd_size_aligned;
231 	bool supports_cwsr;
232 	bool needs_pci_atomics;
233 	uint32_t no_atomic_fw_version;
234 	unsigned int num_sdma_queues_per_engine;
235 	unsigned int num_reserved_sdma_queues_per_engine;
236 	DECLARE_BITMAP(reserved_sdma_queues_bitmap, KFD_MAX_SDMA_QUEUES);
237 };
238 
239 unsigned int kfd_get_num_sdma_engines(struct kfd_node *kdev);
240 unsigned int kfd_get_num_xgmi_sdma_engines(struct kfd_node *kdev);
241 
242 struct kfd_mem_obj {
243 	uint32_t range_start;
244 	uint32_t range_end;
245 	uint64_t gpu_addr;
246 	uint32_t *cpu_ptr;
247 	void *gtt_mem;
248 };
249 
250 struct kfd_vmid_info {
251 	uint32_t first_vmid_kfd;
252 	uint32_t last_vmid_kfd;
253 	uint32_t vmid_num_kfd;
254 };
255 
256 #define MAX_KFD_NODES	8
257 
258 struct kfd_dev;
259 
260 struct kfd_node {
261 	unsigned int node_id;
262 	struct amdgpu_device *adev;     /* Duplicated here along with keeping
263 					 * a copy in kfd_dev to save a hop
264 					 */
265 	const struct kfd2kgd_calls *kfd2kgd; /* Duplicated here along with
266 					      * keeping a copy in kfd_dev to
267 					      * save a hop
268 					      */
269 	struct kfd_vmid_info vm_info;
270 	unsigned int id;                /* topology stub index */
271 	uint32_t xcc_mask; /* Instance mask of XCCs present */
272 	struct amdgpu_xcp *xcp;
273 
274 	/* Interrupts */
275 	struct kfifo ih_fifo;
276 	struct workqueue_struct *ih_wq;
277 	struct work_struct interrupt_work;
278 	spinlock_t interrupt_lock;
279 
280 	/*
281 	 * Interrupts of interest to KFD are copied
282 	 * from the HW ring into a SW ring.
283 	 */
284 	bool interrupts_active;
285 	uint32_t interrupt_bitmap; /* Only used for GFX 9.4.3 */
286 
287 	/* QCM Device instance */
288 	struct device_queue_manager *dqm;
289 
290 	/* Global GWS resource shared between processes */
291 	void *gws;
292 	bool gws_debug_workaround;
293 
294 	/* Clients watching SMI events */
295 	struct list_head smi_clients;
296 	spinlock_t smi_lock;
297 	uint32_t reset_seq_num;
298 
299 	/* SRAM ECC flag */
300 	atomic_t sram_ecc_flag;
301 
302 	/*spm process id */
303 	unsigned int spm_pasid;
304 
305 	/* Maximum process number mapped to HW scheduler */
306 	unsigned int max_proc_per_quantum;
307 
308 	unsigned int compute_vmid_bitmap;
309 
310 	struct kfd_local_mem_info local_mem_info;
311 
312 	struct kfd_dev *kfd;
313 
314 	/* Track per device allocated watch points */
315 	uint32_t alloc_watch_ids;
316 	spinlock_t watch_points_lock;
317 };
318 
319 struct kfd_dev {
320 	struct amdgpu_device *adev;
321 
322 	struct kfd_device_info device_info;
323 
324 	u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells
325 					   * page used by kernel queue
326 					   */
327 
328 	struct kgd2kfd_shared_resources shared_resources;
329 
330 	const struct kfd2kgd_calls *kfd2kgd;
331 	struct mutex doorbell_mutex;
332 
333 	void *gtt_mem;
334 	uint64_t gtt_start_gpu_addr;
335 	void *gtt_start_cpu_ptr;
336 	void *gtt_sa_bitmap;
337 	struct mutex gtt_sa_lock;
338 	unsigned int gtt_sa_chunk_size;
339 	unsigned int gtt_sa_num_of_chunks;
340 
341 	bool init_complete;
342 
343 	/* Firmware versions */
344 	uint16_t mec_fw_version;
345 	uint16_t mec2_fw_version;
346 	uint16_t sdma_fw_version;
347 
348 	/* CWSR */
349 	bool cwsr_enabled;
350 	const void *cwsr_isa;
351 	unsigned int cwsr_isa_size;
352 
353 	/* xGMI */
354 	uint64_t hive_id;
355 
356 	bool pci_atomic_requested;
357 
358 	/* Compute Profile ref. count */
359 	atomic_t compute_profile;
360 
361 	struct ida doorbell_ida;
362 	unsigned int max_doorbell_slices;
363 
364 	int noretry;
365 
366 	struct kfd_node *nodes[MAX_KFD_NODES];
367 	unsigned int num_nodes;
368 
369 	/* Kernel doorbells for KFD device */
370 	struct amdgpu_bo *doorbells;
371 
372 	/* bitmap for dynamic doorbell allocation from doorbell object */
373 	unsigned long *doorbell_bitmap;
374 };
375 
376 enum kfd_mempool {
377 	KFD_MEMPOOL_SYSTEM_CACHEABLE = 1,
378 	KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2,
379 	KFD_MEMPOOL_FRAMEBUFFER = 3,
380 };
381 
382 /* Character device interface */
383 int kfd_chardev_init(void);
384 void kfd_chardev_exit(void);
385 
386 /**
387  * enum kfd_unmap_queues_filter - Enum for queue filters.
388  *
389  * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the
390  *						running queues list.
391  *
392  * @KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES: Preempts all non-static queues
393  *						in the run list.
394  *
395  * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to
396  *						specific process.
397  *
398  */
399 enum kfd_unmap_queues_filter {
400 	KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES = 1,
401 	KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES = 2,
402 	KFD_UNMAP_QUEUES_FILTER_BY_PASID = 3
403 };
404 
405 /**
406  * enum kfd_queue_type - Enum for various queue types.
407  *
408  * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type.
409  *
410  * @KFD_QUEUE_TYPE_SDMA: SDMA user mode queue type.
411  *
412  * @KFD_QUEUE_TYPE_HIQ: HIQ queue type.
413  *
414  * @KFD_QUEUE_TYPE_DIQ: DIQ queue type.
415  *
416  * @KFD_QUEUE_TYPE_SDMA_XGMI: Special SDMA queue for XGMI interface.
417  *
418  * @KFD_QUEUE_TYPE_SDMA_BY_ENG_ID:  SDMA user mode queue with target SDMA engine ID.
419  */
420 enum kfd_queue_type  {
421 	KFD_QUEUE_TYPE_COMPUTE,
422 	KFD_QUEUE_TYPE_SDMA,
423 	KFD_QUEUE_TYPE_HIQ,
424 	KFD_QUEUE_TYPE_DIQ,
425 	KFD_QUEUE_TYPE_SDMA_XGMI,
426 	KFD_QUEUE_TYPE_SDMA_BY_ENG_ID
427 };
428 
429 enum kfd_queue_format {
430 	KFD_QUEUE_FORMAT_PM4,
431 	KFD_QUEUE_FORMAT_AQL
432 };
433 
434 enum KFD_QUEUE_PRIORITY {
435 	KFD_QUEUE_PRIORITY_MINIMUM = 0,
436 	KFD_QUEUE_PRIORITY_MAXIMUM = 15
437 };
438 
439 /**
440  * struct queue_properties
441  *
442  * @type: The queue type.
443  *
444  * @queue_id: Queue identifier.
445  *
446  * @queue_address: Queue ring buffer address.
447  *
448  * @queue_size: Queue ring buffer size.
449  *
450  * @priority: Defines the queue priority relative to other queues in the
451  * process.
452  * This is just an indication and HW scheduling may override the priority as
453  * necessary while keeping the relative prioritization.
454  * the priority granularity is from 0 to f which f is the highest priority.
455  * currently all queues are initialized with the highest priority.
456  *
457  * @queue_percent: This field is partially implemented and currently a zero in
458  * this field defines that the queue is non active.
459  *
460  * @read_ptr: User space address which points to the number of dwords the
461  * cp read from the ring buffer. This field updates automatically by the H/W.
462  *
463  * @write_ptr: Defines the number of dwords written to the ring buffer.
464  *
465  * @doorbell_ptr: Notifies the H/W of new packet written to the queue ring
466  * buffer. This field should be similar to write_ptr and the user should
467  * update this field after updating the write_ptr.
468  *
469  * @doorbell_off: The doorbell offset in the doorbell pci-bar.
470  *
471  * @is_interop: Defines if this is a interop queue. Interop queue means that
472  * the queue can access both graphics and compute resources.
473  *
474  * @is_evicted: Defines if the queue is evicted. Only active queues
475  * are evicted, rendering them inactive.
476  *
477  * @is_active: Defines if the queue is active or not. @is_active and
478  * @is_evicted are protected by the DQM lock.
479  *
480  * @is_gws: Defines if the queue has been updated to be GWS-capable or not.
481  * @is_gws should be protected by the DQM lock, since changing it can yield the
482  * possibility of updating DQM state on number of GWS queues.
483  *
484  * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid
485  * of the queue.
486  *
487  * This structure represents the queue properties for each queue no matter if
488  * it's user mode or kernel mode queue.
489  *
490  */
491 
492 struct queue_properties {
493 	enum kfd_queue_type type;
494 	enum kfd_queue_format format;
495 	unsigned int queue_id;
496 	uint64_t queue_address;
497 	uint64_t  queue_size;
498 	uint32_t priority;
499 	uint32_t queue_percent;
500 	void __user *read_ptr;
501 	void __user *write_ptr;
502 	void __iomem *doorbell_ptr;
503 	uint32_t doorbell_off;
504 	bool is_interop;
505 	bool is_evicted;
506 	bool is_suspended;
507 	bool is_being_destroyed;
508 	bool is_active;
509 	bool is_gws;
510 	uint32_t pm4_target_xcc;
511 	bool is_dbg_wa;
512 	bool is_user_cu_masked;
513 	/* Not relevant for user mode queues in cp scheduling */
514 	unsigned int vmid;
515 	/* Relevant only for sdma queues*/
516 	uint32_t sdma_engine_id;
517 	uint32_t sdma_queue_id;
518 	uint32_t sdma_vm_addr;
519 	/* Relevant only for VI */
520 	uint64_t eop_ring_buffer_address;
521 	uint32_t eop_ring_buffer_size;
522 	uint64_t ctx_save_restore_area_address;
523 	uint32_t ctx_save_restore_area_size;
524 	uint32_t ctl_stack_size;
525 	uint64_t tba_addr;
526 	uint64_t tma_addr;
527 	uint64_t exception_status;
528 
529 	struct amdgpu_bo *wptr_bo;
530 	struct amdgpu_bo *rptr_bo;
531 	struct amdgpu_bo *ring_bo;
532 	struct amdgpu_bo *eop_buf_bo;
533 	struct amdgpu_bo *cwsr_bo;
534 };
535 
536 #define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 &&	\
537 			    (q).queue_address != 0 &&	\
538 			    (q).queue_percent > 0 &&	\
539 			    !(q).is_evicted &&		\
540 			    !(q).is_suspended)
541 
542 enum mqd_update_flag {
543 	UPDATE_FLAG_DBG_WA_ENABLE = 1,
544 	UPDATE_FLAG_DBG_WA_DISABLE = 2,
545 	UPDATE_FLAG_IS_GWS = 4, /* quirk for gfx9 IP */
546 };
547 
548 struct mqd_update_info {
549 	union {
550 		struct {
551 			uint32_t count; /* Must be a multiple of 32 */
552 			uint32_t *ptr;
553 		} cu_mask;
554 	};
555 	enum mqd_update_flag update_flag;
556 };
557 
558 /**
559  * struct queue
560  *
561  * @list: Queue linked list.
562  *
563  * @mqd: The queue MQD (memory queue descriptor).
564  *
565  * @mqd_mem_obj: The MQD local gpu memory object.
566  *
567  * @gart_mqd_addr: The MQD gart mc address.
568  *
569  * @properties: The queue properties.
570  *
571  * @mec: Used only in no cp scheduling mode and identifies to micro engine id
572  *	 that the queue should be executed on.
573  *
574  * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe
575  *	  id.
576  *
577  * @queue: Used only in no cp scheduliong mode and identifies the queue's slot.
578  *
579  * @process: The kfd process that created this queue.
580  *
581  * @device: The kfd device that created this queue.
582  *
583  * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL
584  * otherwise.
585  *
586  * This structure represents user mode compute queues.
587  * It contains all the necessary data to handle such queues.
588  *
589  */
590 
591 struct queue {
592 	struct list_head list;
593 	void *mqd;
594 	struct kfd_mem_obj *mqd_mem_obj;
595 	uint64_t gart_mqd_addr;
596 	struct queue_properties properties;
597 
598 	uint32_t mec;
599 	uint32_t pipe;
600 	uint32_t queue;
601 
602 	unsigned int sdma_id;
603 	unsigned int doorbell_id;
604 
605 	struct kfd_process	*process;
606 	struct kfd_node		*device;
607 	void *gws;
608 
609 	/* procfs */
610 	struct kobject kobj;
611 
612 	void *gang_ctx_bo;
613 	uint64_t gang_ctx_gpu_addr;
614 	void *gang_ctx_cpu_ptr;
615 
616 	struct amdgpu_bo *wptr_bo_gart;
617 };
618 
619 enum KFD_MQD_TYPE {
620 	KFD_MQD_TYPE_HIQ = 0,		/* for hiq */
621 	KFD_MQD_TYPE_CP,		/* for cp queues and diq */
622 	KFD_MQD_TYPE_SDMA,		/* for sdma queues */
623 	KFD_MQD_TYPE_DIQ,		/* for diq */
624 	KFD_MQD_TYPE_MAX
625 };
626 
627 enum KFD_PIPE_PRIORITY {
628 	KFD_PIPE_PRIORITY_CS_LOW = 0,
629 	KFD_PIPE_PRIORITY_CS_MEDIUM,
630 	KFD_PIPE_PRIORITY_CS_HIGH
631 };
632 
633 struct scheduling_resources {
634 	unsigned int vmid_mask;
635 	enum kfd_queue_type type;
636 	uint64_t queue_mask;
637 	uint64_t gws_mask;
638 	uint32_t oac_mask;
639 	uint32_t gds_heap_base;
640 	uint32_t gds_heap_size;
641 };
642 
643 struct process_queue_manager {
644 	/* data */
645 	struct kfd_process	*process;
646 	struct list_head	queues;
647 	unsigned long		*queue_slot_bitmap;
648 };
649 
650 struct qcm_process_device {
651 	/* The Device Queue Manager that owns this data */
652 	struct device_queue_manager *dqm;
653 	struct process_queue_manager *pqm;
654 	/* Queues list */
655 	struct list_head queues_list;
656 	struct list_head priv_queue_list;
657 
658 	unsigned int queue_count;
659 	unsigned int vmid;
660 	bool is_debug;
661 	unsigned int evicted; /* eviction counter, 0=active */
662 
663 	/* This flag tells if we should reset all wavefronts on
664 	 * process termination
665 	 */
666 	bool reset_wavefronts;
667 
668 	/* This flag tells us if this process has a GWS-capable
669 	 * queue that will be mapped into the runlist. It's
670 	 * possible to request a GWS BO, but not have the queue
671 	 * currently mapped, and this changes how the MAP_PROCESS
672 	 * PM4 packet is configured.
673 	 */
674 	bool mapped_gws_queue;
675 
676 	/* All the memory management data should be here too */
677 	uint64_t gds_context_area;
678 	/* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */
679 	uint64_t page_table_base;
680 	uint32_t sh_mem_config;
681 	uint32_t sh_mem_bases;
682 	uint32_t sh_mem_ape1_base;
683 	uint32_t sh_mem_ape1_limit;
684 	uint32_t gds_size;
685 	uint32_t num_gws;
686 	uint32_t num_oac;
687 	uint32_t sh_hidden_private_base;
688 
689 	/* CWSR memory */
690 	struct kgd_mem *cwsr_mem;
691 	void *cwsr_kaddr;
692 	uint64_t cwsr_base;
693 	uint64_t tba_addr;
694 	uint64_t tma_addr;
695 
696 	/* IB memory */
697 	struct kgd_mem *ib_mem;
698 	uint64_t ib_base;
699 	void *ib_kaddr;
700 
701 	/* doorbells for kfd process */
702 	struct amdgpu_bo *proc_doorbells;
703 
704 	/* bitmap for dynamic doorbell allocation from the bo */
705 	unsigned long *doorbell_bitmap;
706 };
707 
708 /* KFD Memory Eviction */
709 
710 /* Approx. wait time before attempting to restore evicted BOs */
711 #define PROCESS_RESTORE_TIME_MS 100
712 /* Approx. back off time if restore fails due to lack of memory */
713 #define PROCESS_BACK_OFF_TIME_MS 100
714 /* Approx. time before evicting the process again */
715 #define PROCESS_ACTIVE_TIME_MS 10
716 
717 /* 8 byte handle containing GPU ID in the most significant 4 bytes and
718  * idr_handle in the least significant 4 bytes
719  */
720 #define MAKE_HANDLE(gpu_id, idr_handle) \
721 	(((uint64_t)(gpu_id) << 32) + idr_handle)
722 #define GET_GPU_ID(handle) (handle >> 32)
723 #define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF)
724 
725 enum kfd_pdd_bound {
726 	PDD_UNBOUND = 0,
727 	PDD_BOUND,
728 	PDD_BOUND_SUSPENDED,
729 };
730 
731 #define MAX_SYSFS_FILENAME_LEN 15
732 
733 /*
734  * SDMA counter runs at 100MHz frequency.
735  * We display SDMA activity in microsecond granularity in sysfs.
736  * As a result, the divisor is 100.
737  */
738 #define SDMA_ACTIVITY_DIVISOR  100
739 
740 /* Data that is per-process-per device. */
741 struct kfd_process_device {
742 	/* The device that owns this data. */
743 	struct kfd_node *dev;
744 
745 	/* The process that owns this kfd_process_device. */
746 	struct kfd_process *process;
747 
748 	/* per-process-per device QCM data structure */
749 	struct qcm_process_device qpd;
750 
751 	/*Apertures*/
752 	uint64_t lds_base;
753 	uint64_t lds_limit;
754 	uint64_t gpuvm_base;
755 	uint64_t gpuvm_limit;
756 	uint64_t scratch_base;
757 	uint64_t scratch_limit;
758 
759 	/* VM context for GPUVM allocations */
760 	struct file *drm_file;
761 	void *drm_priv;
762 
763 	/* GPUVM allocations storage */
764 	struct idr alloc_idr;
765 
766 	/* Flag used to tell the pdd has dequeued from the dqm.
767 	 * This is used to prevent dev->dqm->ops.process_termination() from
768 	 * being called twice when it is already called in IOMMU callback
769 	 * function.
770 	 */
771 	bool already_dequeued;
772 	bool runtime_inuse;
773 
774 	/* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */
775 	enum kfd_pdd_bound bound;
776 
777 	/* VRAM usage */
778 	atomic64_t vram_usage;
779 	struct attribute attr_vram;
780 	char vram_filename[MAX_SYSFS_FILENAME_LEN];
781 
782 	/* SDMA activity tracking */
783 	uint64_t sdma_past_activity_counter;
784 	struct attribute attr_sdma;
785 	char sdma_filename[MAX_SYSFS_FILENAME_LEN];
786 
787 	/* Eviction activity tracking */
788 	uint64_t last_evict_timestamp;
789 	atomic64_t evict_duration_counter;
790 	struct attribute attr_evict;
791 
792 	struct kobject *kobj_stats;
793 
794 	/*
795 	 * @cu_occupancy: Reports occupancy of Compute Units (CU) of a process
796 	 * that is associated with device encoded by "this" struct instance. The
797 	 * value reflects CU usage by all of the waves launched by this process
798 	 * on this device. A very important property of occupancy parameter is
799 	 * that its value is a snapshot of current use.
800 	 *
801 	 * Following is to be noted regarding how this parameter is reported:
802 	 *
803 	 *  The number of waves that a CU can launch is limited by couple of
804 	 *  parameters. These are encoded by struct amdgpu_cu_info instance
805 	 *  that is part of every device definition. For GFX9 devices this
806 	 *  translates to 40 waves (simd_per_cu * max_waves_per_simd) when waves
807 	 *  do not use scratch memory and 32 waves (max_scratch_slots_per_cu)
808 	 *  when they do use scratch memory. This could change for future
809 	 *  devices and therefore this example should be considered as a guide.
810 	 *
811 	 *  All CU's of a device are available for the process. This may not be true
812 	 *  under certain conditions - e.g. CU masking.
813 	 *
814 	 *  Finally number of CU's that are occupied by a process is affected by both
815 	 *  number of CU's a device has along with number of other competing processes
816 	 */
817 	struct attribute attr_cu_occupancy;
818 
819 	/* sysfs counters for GPU retry fault and page migration tracking */
820 	struct kobject *kobj_counters;
821 	struct attribute attr_faults;
822 	struct attribute attr_page_in;
823 	struct attribute attr_page_out;
824 	uint64_t faults;
825 	uint64_t page_in;
826 	uint64_t page_out;
827 
828 	/* Exception code status*/
829 	uint64_t exception_status;
830 	void *vm_fault_exc_data;
831 	size_t vm_fault_exc_data_size;
832 
833 	/* Tracks debug per-vmid request settings */
834 	uint32_t spi_dbg_override;
835 	uint32_t spi_dbg_launch_mode;
836 	uint32_t watch_points[4];
837 	uint32_t alloc_watch_ids;
838 
839 	/*
840 	 * If this process has been checkpointed before, then the user
841 	 * application will use the original gpu_id on the
842 	 * checkpointed node to refer to this device.
843 	 */
844 	uint32_t user_gpu_id;
845 
846 	void *proc_ctx_bo;
847 	uint64_t proc_ctx_gpu_addr;
848 	void *proc_ctx_cpu_ptr;
849 
850 	/* Tracks queue reset status */
851 	bool has_reset_queue;
852 };
853 
854 #define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd)
855 
856 struct svm_range_list {
857 	struct mutex			lock;
858 	struct rb_root_cached		objects;
859 	struct list_head		list;
860 	struct work_struct		deferred_list_work;
861 	struct list_head		deferred_range_list;
862 	struct list_head                criu_svm_metadata_list;
863 	spinlock_t			deferred_list_lock;
864 	atomic_t			evicted_ranges;
865 	atomic_t			drain_pagefaults;
866 	struct delayed_work		restore_work;
867 	DECLARE_BITMAP(bitmap_supported, MAX_GPU_INSTANCE);
868 	struct task_struct		*faulting_task;
869 	/* check point ts decides if page fault recovery need be dropped */
870 	uint64_t			checkpoint_ts[MAX_GPU_INSTANCE];
871 
872 	/* Default granularity to use in buffer migration
873 	 * and restoration of backing memory while handling
874 	 * recoverable page faults
875 	 */
876 	uint8_t default_granularity;
877 };
878 
879 /* Process data */
880 struct kfd_process {
881 	/*
882 	 * kfd_process are stored in an mm_struct*->kfd_process*
883 	 * hash table (kfd_processes in kfd_process.c)
884 	 */
885 	struct hlist_node kfd_processes;
886 
887 	/*
888 	 * Opaque pointer to mm_struct. We don't hold a reference to
889 	 * it so it should never be dereferenced from here. This is
890 	 * only used for looking up processes by their mm.
891 	 */
892 	void *mm;
893 
894 	struct kref ref;
895 	struct work_struct release_work;
896 
897 	struct mutex mutex;
898 
899 	/*
900 	 * In any process, the thread that started main() is the lead
901 	 * thread and outlives the rest.
902 	 * It is here because amd_iommu_bind_pasid wants a task_struct.
903 	 * It can also be used for safely getting a reference to the
904 	 * mm_struct of the process.
905 	 */
906 	struct task_struct *lead_thread;
907 
908 	/* We want to receive a notification when the mm_struct is destroyed */
909 	struct mmu_notifier mmu_notifier;
910 
911 	u32 pasid;
912 
913 	/*
914 	 * Array of kfd_process_device pointers,
915 	 * one for each device the process is using.
916 	 */
917 	struct kfd_process_device *pdds[MAX_GPU_INSTANCE];
918 	uint32_t n_pdds;
919 
920 	struct process_queue_manager pqm;
921 
922 	/*Is the user space process 32 bit?*/
923 	bool is_32bit_user_mode;
924 
925 	/* Event-related data */
926 	struct mutex event_mutex;
927 	/* Event ID allocator and lookup */
928 	struct idr event_idr;
929 	/* Event page */
930 	u64 signal_handle;
931 	struct kfd_signal_page *signal_page;
932 	size_t signal_mapped_size;
933 	size_t signal_event_count;
934 	bool signal_event_limit_reached;
935 
936 	/* Information used for memory eviction */
937 	void *kgd_process_info;
938 	/* Eviction fence that is attached to all the BOs of this process. The
939 	 * fence will be triggered during eviction and new one will be created
940 	 * during restore
941 	 */
942 	struct dma_fence __rcu *ef;
943 
944 	/* Work items for evicting and restoring BOs */
945 	struct delayed_work eviction_work;
946 	struct delayed_work restore_work;
947 	/* seqno of the last scheduled eviction */
948 	unsigned int last_eviction_seqno;
949 	/* Approx. the last timestamp (in jiffies) when the process was
950 	 * restored after an eviction
951 	 */
952 	unsigned long last_restore_timestamp;
953 
954 	/* Indicates device process is debug attached with reserved vmid. */
955 	bool debug_trap_enabled;
956 
957 	/* per-process-per device debug event fd file */
958 	struct file *dbg_ev_file;
959 
960 	/* If the process is a kfd debugger, we need to know so we can clean
961 	 * up at exit time.  If a process enables debugging on itself, it does
962 	 * its own clean-up, so we don't set the flag here.  We track this by
963 	 * counting the number of processes this process is debugging.
964 	 */
965 	atomic_t debugged_process_count;
966 
967 	/* If the process is a debugged, this is the debugger process */
968 	struct kfd_process *debugger_process;
969 
970 	/* Kobj for our procfs */
971 	struct kobject *kobj;
972 	struct kobject *kobj_queues;
973 	struct attribute attr_pasid;
974 
975 	/* Keep track cwsr init */
976 	bool has_cwsr;
977 
978 	/* Exception code enable mask and status */
979 	uint64_t exception_enable_mask;
980 	uint64_t exception_status;
981 
982 	/* Used to drain stale interrupts */
983 	wait_queue_head_t wait_irq_drain;
984 	bool irq_drain_is_open;
985 
986 	/* shared virtual memory registered by this process */
987 	struct svm_range_list svms;
988 
989 	bool xnack_enabled;
990 
991 	/* Work area for debugger event writer worker. */
992 	struct work_struct debug_event_workarea;
993 
994 	/* Tracks debug per-vmid request for debug flags */
995 	u32 dbg_flags;
996 
997 	atomic_t poison;
998 	/* Queues are in paused stated because we are in the process of doing a CRIU checkpoint */
999 	bool queues_paused;
1000 
1001 	/* Tracks runtime enable status */
1002 	struct semaphore runtime_enable_sema;
1003 	bool is_runtime_retry;
1004 	struct kfd_runtime_info runtime_info;
1005 };
1006 
1007 #define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */
1008 extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
1009 extern struct srcu_struct kfd_processes_srcu;
1010 
1011 /**
1012  * typedef amdkfd_ioctl_t - typedef for ioctl function pointer.
1013  *
1014  * @filep: pointer to file structure.
1015  * @p: amdkfd process pointer.
1016  * @data: pointer to arg that was copied from user.
1017  *
1018  * Return: returns ioctl completion code.
1019  */
1020 typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p,
1021 				void *data);
1022 
1023 struct amdkfd_ioctl_desc {
1024 	unsigned int cmd;
1025 	int flags;
1026 	amdkfd_ioctl_t *func;
1027 	unsigned int cmd_drv;
1028 	const char *name;
1029 };
1030 bool kfd_dev_is_large_bar(struct kfd_node *dev);
1031 
1032 int kfd_process_create_wq(void);
1033 void kfd_process_destroy_wq(void);
1034 void kfd_cleanup_processes(void);
1035 struct kfd_process *kfd_create_process(struct task_struct *thread);
1036 struct kfd_process *kfd_get_process(const struct task_struct *task);
1037 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid);
1038 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm);
1039 
1040 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id);
1041 int kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node,
1042 				uint32_t *gpuid, uint32_t *gpuidx);
1043 static inline int kfd_process_gpuid_from_gpuidx(struct kfd_process *p,
1044 				uint32_t gpuidx, uint32_t *gpuid) {
1045 	return gpuidx < p->n_pdds ? p->pdds[gpuidx]->dev->id : -EINVAL;
1046 }
1047 static inline struct kfd_process_device *kfd_process_device_from_gpuidx(
1048 				struct kfd_process *p, uint32_t gpuidx) {
1049 	return gpuidx < p->n_pdds ? p->pdds[gpuidx] : NULL;
1050 }
1051 
1052 void kfd_unref_process(struct kfd_process *p);
1053 int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger);
1054 int kfd_process_restore_queues(struct kfd_process *p);
1055 void kfd_suspend_all_processes(void);
1056 int kfd_resume_all_processes(void);
1057 
1058 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *process,
1059 							 uint32_t gpu_id);
1060 
1061 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id);
1062 
1063 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1064 			       struct file *drm_file);
1065 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev,
1066 						struct kfd_process *p);
1067 struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev,
1068 							struct kfd_process *p);
1069 struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev,
1070 							struct kfd_process *p);
1071 
1072 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported);
1073 
1074 int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process,
1075 			  struct vm_area_struct *vma);
1076 
1077 /* KFD process API for creating and translating handles */
1078 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1079 					void *mem);
1080 void *kfd_process_device_translate_handle(struct kfd_process_device *p,
1081 					int handle);
1082 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1083 					int handle);
1084 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid);
1085 
1086 /* PASIDs */
1087 int kfd_pasid_init(void);
1088 void kfd_pasid_exit(void);
1089 bool kfd_set_pasid_limit(unsigned int new_limit);
1090 unsigned int kfd_get_pasid_limit(void);
1091 u32 kfd_pasid_alloc(void);
1092 void kfd_pasid_free(u32 pasid);
1093 
1094 /* Doorbells */
1095 size_t kfd_doorbell_process_slice(struct kfd_dev *kfd);
1096 int kfd_doorbell_init(struct kfd_dev *kfd);
1097 void kfd_doorbell_fini(struct kfd_dev *kfd);
1098 int kfd_doorbell_mmap(struct kfd_node *dev, struct kfd_process *process,
1099 		      struct vm_area_struct *vma);
1100 void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd,
1101 					unsigned int *doorbell_off);
1102 void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr);
1103 u32 read_kernel_doorbell(u32 __iomem *db);
1104 void write_kernel_doorbell(void __iomem *db, u32 value);
1105 void write_kernel_doorbell64(void __iomem *db, u64 value);
1106 unsigned int kfd_get_doorbell_dw_offset_in_bar(struct kfd_dev *kfd,
1107 					struct kfd_process_device *pdd,
1108 					unsigned int doorbell_id);
1109 phys_addr_t kfd_get_process_doorbells(struct kfd_process_device *pdd);
1110 int kfd_alloc_process_doorbells(struct kfd_dev *kfd,
1111 				struct kfd_process_device *pdd);
1112 void kfd_free_process_doorbells(struct kfd_dev *kfd,
1113 				struct kfd_process_device *pdd);
1114 /* GTT Sub-Allocator */
1115 
1116 int kfd_gtt_sa_allocate(struct kfd_node *node, unsigned int size,
1117 			struct kfd_mem_obj **mem_obj);
1118 
1119 int kfd_gtt_sa_free(struct kfd_node *node, struct kfd_mem_obj *mem_obj);
1120 
1121 extern struct device *kfd_device;
1122 
1123 /* KFD's procfs */
1124 void kfd_procfs_init(void);
1125 void kfd_procfs_shutdown(void);
1126 int kfd_procfs_add_queue(struct queue *q);
1127 void kfd_procfs_del_queue(struct queue *q);
1128 
1129 /* Topology */
1130 int kfd_topology_init(void);
1131 void kfd_topology_shutdown(void);
1132 int kfd_topology_add_device(struct kfd_node *gpu);
1133 int kfd_topology_remove_device(struct kfd_node *gpu);
1134 struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
1135 						uint32_t proximity_domain);
1136 struct kfd_topology_device *kfd_topology_device_by_proximity_domain_no_lock(
1137 						uint32_t proximity_domain);
1138 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id);
1139 struct kfd_node *kfd_device_by_id(uint32_t gpu_id);
1140 struct kfd_node *kfd_device_by_pci_dev(const struct pci_dev *pdev);
1141 static inline bool kfd_irq_is_from_node(struct kfd_node *node, uint32_t node_id,
1142 					uint32_t vmid)
1143 {
1144 	return (node->interrupt_bitmap & (1 << node_id)) != 0 &&
1145 	       (node->compute_vmid_bitmap & (1 << vmid)) != 0;
1146 }
1147 static inline struct kfd_node *kfd_node_by_irq_ids(struct amdgpu_device *adev,
1148 					uint32_t node_id, uint32_t vmid) {
1149 	struct kfd_dev *dev = adev->kfd.dev;
1150 	uint32_t i;
1151 
1152 	if (KFD_GC_VERSION(dev) != IP_VERSION(9, 4, 3) &&
1153 	    KFD_GC_VERSION(dev) != IP_VERSION(9, 4, 4))
1154 		return dev->nodes[0];
1155 
1156 	for (i = 0; i < dev->num_nodes; i++)
1157 		if (kfd_irq_is_from_node(dev->nodes[i], node_id, vmid))
1158 			return dev->nodes[i];
1159 
1160 	return NULL;
1161 }
1162 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_node **kdev);
1163 int kfd_numa_node_to_apic_id(int numa_node_id);
1164 
1165 /* Interrupts */
1166 #define	KFD_IRQ_FENCE_CLIENTID	0xff
1167 #define	KFD_IRQ_FENCE_SOURCEID	0xff
1168 #define	KFD_IRQ_IS_FENCE(client, source)				\
1169 				((client) == KFD_IRQ_FENCE_CLIENTID &&	\
1170 				(source) == KFD_IRQ_FENCE_SOURCEID)
1171 int kfd_interrupt_init(struct kfd_node *dev);
1172 void kfd_interrupt_exit(struct kfd_node *dev);
1173 bool enqueue_ih_ring_entry(struct kfd_node *kfd, const void *ih_ring_entry);
1174 bool interrupt_is_wanted(struct kfd_node *dev,
1175 				const uint32_t *ih_ring_entry,
1176 				uint32_t *patched_ihre, bool *flag);
1177 int kfd_process_drain_interrupts(struct kfd_process_device *pdd);
1178 void kfd_process_close_interrupt_drain(unsigned int pasid);
1179 
1180 /* amdkfd Apertures */
1181 int kfd_init_apertures(struct kfd_process *process);
1182 
1183 void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1184 				  uint64_t tba_addr,
1185 				  uint64_t tma_addr);
1186 void kfd_process_set_trap_debug_flag(struct qcm_process_device *qpd,
1187 				     bool enabled);
1188 
1189 /* CWSR initialization */
1190 int kfd_process_init_cwsr_apu(struct kfd_process *process, struct file *filep);
1191 
1192 /* CRIU */
1193 /*
1194  * Need to increment KFD_CRIU_PRIV_VERSION each time a change is made to any of the CRIU private
1195  * structures:
1196  * kfd_criu_process_priv_data
1197  * kfd_criu_device_priv_data
1198  * kfd_criu_bo_priv_data
1199  * kfd_criu_queue_priv_data
1200  * kfd_criu_event_priv_data
1201  * kfd_criu_svm_range_priv_data
1202  */
1203 
1204 #define KFD_CRIU_PRIV_VERSION 1
1205 
1206 struct kfd_criu_process_priv_data {
1207 	uint32_t version;
1208 	uint32_t xnack_mode;
1209 };
1210 
1211 struct kfd_criu_device_priv_data {
1212 	/* For future use */
1213 	uint64_t reserved;
1214 };
1215 
1216 struct kfd_criu_bo_priv_data {
1217 	uint64_t user_addr;
1218 	uint32_t idr_handle;
1219 	uint32_t mapped_gpuids[MAX_GPU_INSTANCE];
1220 };
1221 
1222 /*
1223  * The first 4 bytes of kfd_criu_queue_priv_data, kfd_criu_event_priv_data,
1224  * kfd_criu_svm_range_priv_data is the object type
1225  */
1226 enum kfd_criu_object_type {
1227 	KFD_CRIU_OBJECT_TYPE_QUEUE,
1228 	KFD_CRIU_OBJECT_TYPE_EVENT,
1229 	KFD_CRIU_OBJECT_TYPE_SVM_RANGE,
1230 };
1231 
1232 struct kfd_criu_svm_range_priv_data {
1233 	uint32_t object_type;
1234 	uint64_t start_addr;
1235 	uint64_t size;
1236 	/* Variable length array of attributes */
1237 	struct kfd_ioctl_svm_attribute attrs[];
1238 };
1239 
1240 struct kfd_criu_queue_priv_data {
1241 	uint32_t object_type;
1242 	uint64_t q_address;
1243 	uint64_t q_size;
1244 	uint64_t read_ptr_addr;
1245 	uint64_t write_ptr_addr;
1246 	uint64_t doorbell_off;
1247 	uint64_t eop_ring_buffer_address;
1248 	uint64_t ctx_save_restore_area_address;
1249 	uint32_t gpu_id;
1250 	uint32_t type;
1251 	uint32_t format;
1252 	uint32_t q_id;
1253 	uint32_t priority;
1254 	uint32_t q_percent;
1255 	uint32_t doorbell_id;
1256 	uint32_t gws;
1257 	uint32_t sdma_id;
1258 	uint32_t eop_ring_buffer_size;
1259 	uint32_t ctx_save_restore_area_size;
1260 	uint32_t ctl_stack_size;
1261 	uint32_t mqd_size;
1262 };
1263 
1264 struct kfd_criu_event_priv_data {
1265 	uint32_t object_type;
1266 	uint64_t user_handle;
1267 	uint32_t event_id;
1268 	uint32_t auto_reset;
1269 	uint32_t type;
1270 	uint32_t signaled;
1271 
1272 	union {
1273 		struct kfd_hsa_memory_exception_data memory_exception_data;
1274 		struct kfd_hsa_hw_exception_data hw_exception_data;
1275 	};
1276 };
1277 
1278 int kfd_process_get_queue_info(struct kfd_process *p,
1279 			       uint32_t *num_queues,
1280 			       uint64_t *priv_data_sizes);
1281 
1282 int kfd_criu_checkpoint_queues(struct kfd_process *p,
1283 			 uint8_t __user *user_priv_data,
1284 			 uint64_t *priv_data_offset);
1285 
1286 int kfd_criu_restore_queue(struct kfd_process *p,
1287 			   uint8_t __user *user_priv_data,
1288 			   uint64_t *priv_data_offset,
1289 			   uint64_t max_priv_data_size);
1290 
1291 int kfd_criu_checkpoint_events(struct kfd_process *p,
1292 			 uint8_t __user *user_priv_data,
1293 			 uint64_t *priv_data_offset);
1294 
1295 int kfd_criu_restore_event(struct file *devkfd,
1296 			   struct kfd_process *p,
1297 			   uint8_t __user *user_priv_data,
1298 			   uint64_t *priv_data_offset,
1299 			   uint64_t max_priv_data_size);
1300 /* CRIU - End */
1301 
1302 /* Queue Context Management */
1303 int init_queue(struct queue **q, const struct queue_properties *properties);
1304 void uninit_queue(struct queue *q);
1305 void print_queue_properties(struct queue_properties *q);
1306 void print_queue(struct queue *q);
1307 int kfd_queue_buffer_get(struct amdgpu_vm *vm, void __user *addr, struct amdgpu_bo **pbo,
1308 			 u64 expected_size);
1309 void kfd_queue_buffer_put(struct amdgpu_bo **bo);
1310 int kfd_queue_acquire_buffers(struct kfd_process_device *pdd, struct queue_properties *properties);
1311 int kfd_queue_release_buffers(struct kfd_process_device *pdd, struct queue_properties *properties);
1312 void kfd_queue_unref_bo_va(struct amdgpu_vm *vm, struct amdgpu_bo **bo);
1313 int kfd_queue_unref_bo_vas(struct kfd_process_device *pdd,
1314 			   struct queue_properties *properties);
1315 void kfd_queue_ctx_save_restore_size(struct kfd_topology_device *dev);
1316 
1317 struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
1318 		struct kfd_node *dev);
1319 struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type,
1320 		struct kfd_node *dev);
1321 struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type,
1322 		struct kfd_node *dev);
1323 struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type,
1324 		struct kfd_node *dev);
1325 struct mqd_manager *mqd_manager_init_v11(enum KFD_MQD_TYPE type,
1326 		struct kfd_node *dev);
1327 struct mqd_manager *mqd_manager_init_v12(enum KFD_MQD_TYPE type,
1328 		struct kfd_node *dev);
1329 struct device_queue_manager *device_queue_manager_init(struct kfd_node *dev);
1330 void device_queue_manager_uninit(struct device_queue_manager *dqm);
1331 struct kernel_queue *kernel_queue_init(struct kfd_node *dev,
1332 					enum kfd_queue_type type);
1333 void kernel_queue_uninit(struct kernel_queue *kq);
1334 int kfd_dqm_evict_pasid(struct device_queue_manager *dqm, u32 pasid);
1335 int kfd_dqm_suspend_bad_queue_mes(struct kfd_node *knode, u32 pasid, u32 doorbell_id);
1336 
1337 /* Process Queue Manager */
1338 struct process_queue_node {
1339 	struct queue *q;
1340 	struct kernel_queue *kq;
1341 	struct list_head process_queue_list;
1342 };
1343 
1344 void kfd_process_dequeue_from_device(struct kfd_process_device *pdd);
1345 void kfd_process_dequeue_from_all_devices(struct kfd_process *p);
1346 int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p);
1347 void pqm_uninit(struct process_queue_manager *pqm);
1348 int pqm_create_queue(struct process_queue_manager *pqm,
1349 			    struct kfd_node *dev,
1350 			    struct queue_properties *properties,
1351 			    unsigned int *qid,
1352 			    const struct kfd_criu_queue_priv_data *q_data,
1353 			    const void *restore_mqd,
1354 			    const void *restore_ctl_stack,
1355 			    uint32_t *p_doorbell_offset_in_process);
1356 int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid);
1357 int pqm_update_queue_properties(struct process_queue_manager *pqm, unsigned int qid,
1358 			struct queue_properties *p);
1359 int pqm_update_mqd(struct process_queue_manager *pqm, unsigned int qid,
1360 			struct mqd_update_info *minfo);
1361 int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid,
1362 			void *gws);
1363 struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm,
1364 						unsigned int qid);
1365 struct queue *pqm_get_user_queue(struct process_queue_manager *pqm,
1366 						unsigned int qid);
1367 int pqm_get_wave_state(struct process_queue_manager *pqm,
1368 		       unsigned int qid,
1369 		       void __user *ctl_stack,
1370 		       u32 *ctl_stack_used_size,
1371 		       u32 *save_area_used_size);
1372 int pqm_get_queue_snapshot(struct process_queue_manager *pqm,
1373 			   uint64_t exception_clear_mask,
1374 			   void __user *buf,
1375 			   int *num_qss_entries,
1376 			   uint32_t *entry_size);
1377 
1378 int amdkfd_fence_wait_timeout(struct device_queue_manager *dqm,
1379 			      uint64_t fence_value,
1380 			      unsigned int timeout_ms);
1381 
1382 int pqm_get_queue_checkpoint_info(struct process_queue_manager *pqm,
1383 				  unsigned int qid,
1384 				  u32 *mqd_size,
1385 				  u32 *ctl_stack_size);
1386 /* Packet Manager */
1387 
1388 #define KFD_FENCE_COMPLETED (100)
1389 #define KFD_FENCE_INIT   (10)
1390 
1391 struct packet_manager {
1392 	struct device_queue_manager *dqm;
1393 	struct kernel_queue *priv_queue;
1394 	struct mutex lock;
1395 	bool allocated;
1396 	struct kfd_mem_obj *ib_buffer_obj;
1397 	unsigned int ib_size_bytes;
1398 	bool is_over_subscription;
1399 
1400 	const struct packet_manager_funcs *pmf;
1401 };
1402 
1403 struct packet_manager_funcs {
1404 	/* Support ASIC-specific packet formats for PM4 packets */
1405 	int (*map_process)(struct packet_manager *pm, uint32_t *buffer,
1406 			struct qcm_process_device *qpd);
1407 	int (*runlist)(struct packet_manager *pm, uint32_t *buffer,
1408 			uint64_t ib, size_t ib_size_in_dwords, bool chain);
1409 	int (*set_resources)(struct packet_manager *pm, uint32_t *buffer,
1410 			struct scheduling_resources *res);
1411 	int (*map_queues)(struct packet_manager *pm, uint32_t *buffer,
1412 			struct queue *q, bool is_static);
1413 	int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer,
1414 			enum kfd_unmap_queues_filter mode,
1415 			uint32_t filter_param, bool reset);
1416 	int (*set_grace_period)(struct packet_manager *pm, uint32_t *buffer,
1417 			uint32_t grace_period);
1418 	int (*query_status)(struct packet_manager *pm, uint32_t *buffer,
1419 			uint64_t fence_address,	uint64_t fence_value);
1420 	int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer);
1421 
1422 	/* Packet sizes */
1423 	int map_process_size;
1424 	int runlist_size;
1425 	int set_resources_size;
1426 	int map_queues_size;
1427 	int unmap_queues_size;
1428 	int set_grace_period_size;
1429 	int query_status_size;
1430 	int release_mem_size;
1431 };
1432 
1433 extern const struct packet_manager_funcs kfd_vi_pm_funcs;
1434 extern const struct packet_manager_funcs kfd_v9_pm_funcs;
1435 extern const struct packet_manager_funcs kfd_aldebaran_pm_funcs;
1436 
1437 int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm);
1438 void pm_uninit(struct packet_manager *pm);
1439 int pm_send_set_resources(struct packet_manager *pm,
1440 				struct scheduling_resources *res);
1441 int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues);
1442 int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address,
1443 				uint64_t fence_value);
1444 
1445 int pm_send_unmap_queue(struct packet_manager *pm,
1446 			enum kfd_unmap_queues_filter mode,
1447 			uint32_t filter_param, bool reset);
1448 
1449 void pm_release_ib(struct packet_manager *pm);
1450 
1451 int pm_update_grace_period(struct packet_manager *pm, uint32_t grace_period);
1452 
1453 /* Following PM funcs can be shared among VI and AI */
1454 unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size);
1455 
1456 uint64_t kfd_get_number_elems(struct kfd_dev *kfd);
1457 
1458 /* Events */
1459 extern const struct kfd_event_interrupt_class event_interrupt_class_cik;
1460 extern const struct kfd_event_interrupt_class event_interrupt_class_v9;
1461 extern const struct kfd_event_interrupt_class event_interrupt_class_v9_4_3;
1462 extern const struct kfd_event_interrupt_class event_interrupt_class_v10;
1463 extern const struct kfd_event_interrupt_class event_interrupt_class_v11;
1464 
1465 extern const struct kfd_device_global_init_class device_global_init_class_cik;
1466 
1467 int kfd_event_init_process(struct kfd_process *p);
1468 void kfd_event_free_process(struct kfd_process *p);
1469 int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma);
1470 int kfd_wait_on_events(struct kfd_process *p,
1471 		       uint32_t num_events, void __user *data,
1472 		       bool all, uint32_t *user_timeout_ms,
1473 		       uint32_t *wait_result);
1474 void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id,
1475 				uint32_t valid_id_bits);
1476 void kfd_signal_hw_exception_event(u32 pasid);
1477 int kfd_set_event(struct kfd_process *p, uint32_t event_id);
1478 int kfd_reset_event(struct kfd_process *p, uint32_t event_id);
1479 int kfd_kmap_event_page(struct kfd_process *p, uint64_t event_page_offset);
1480 
1481 int kfd_event_create(struct file *devkfd, struct kfd_process *p,
1482 		     uint32_t event_type, bool auto_reset, uint32_t node_id,
1483 		     uint32_t *event_id, uint32_t *event_trigger_data,
1484 		     uint64_t *event_page_offset, uint32_t *event_slot_index);
1485 
1486 int kfd_get_num_events(struct kfd_process *p);
1487 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id);
1488 
1489 void kfd_signal_vm_fault_event(struct kfd_node *dev, u32 pasid,
1490 				struct kfd_vm_fault_info *info,
1491 				struct kfd_hsa_memory_exception_data *data);
1492 
1493 void kfd_signal_reset_event(struct kfd_node *dev);
1494 
1495 void kfd_signal_poison_consumed_event(struct kfd_node *dev, u32 pasid);
1496 
1497 static inline void kfd_flush_tlb(struct kfd_process_device *pdd,
1498 				 enum TLB_FLUSH_TYPE type)
1499 {
1500 	struct amdgpu_device *adev = pdd->dev->adev;
1501 	struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv);
1502 
1503 	amdgpu_vm_flush_compute_tlb(adev, vm, type, pdd->dev->xcc_mask);
1504 }
1505 
1506 static inline bool kfd_flush_tlb_after_unmap(struct kfd_dev *dev)
1507 {
1508 	return KFD_GC_VERSION(dev) >= IP_VERSION(9, 4, 2) ||
1509 	       (KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 1) && dev->sdma_fw_version >= 18) ||
1510 	       KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 0);
1511 }
1512 
1513 int kfd_send_exception_to_runtime(struct kfd_process *p,
1514 				unsigned int queue_id,
1515 				uint64_t error_reason);
1516 bool kfd_is_locked(void);
1517 
1518 /* Compute profile */
1519 void kfd_inc_compute_active(struct kfd_node *dev);
1520 void kfd_dec_compute_active(struct kfd_node *dev);
1521 
1522 /* Cgroup Support */
1523 /* Check with device cgroup if @kfd device is accessible */
1524 static inline int kfd_devcgroup_check_permission(struct kfd_node *node)
1525 {
1526 #if defined(CONFIG_CGROUP_DEVICE) || defined(CONFIG_CGROUP_BPF)
1527 	struct drm_device *ddev;
1528 
1529 	if (node->xcp)
1530 		ddev = node->xcp->ddev;
1531 	else
1532 		ddev = adev_to_drm(node->adev);
1533 
1534 	return devcgroup_check_permission(DEVCG_DEV_CHAR, DRM_MAJOR,
1535 					  ddev->render->index,
1536 					  DEVCG_ACC_WRITE | DEVCG_ACC_READ);
1537 #else
1538 	return 0;
1539 #endif
1540 }
1541 
1542 static inline bool kfd_is_first_node(struct kfd_node *node)
1543 {
1544 	return (node == node->kfd->nodes[0]);
1545 }
1546 
1547 /* Debugfs */
1548 #if defined(CONFIG_DEBUG_FS)
1549 
1550 void kfd_debugfs_init(void);
1551 void kfd_debugfs_fini(void);
1552 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data);
1553 int pqm_debugfs_mqds(struct seq_file *m, void *data);
1554 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data);
1555 int dqm_debugfs_hqds(struct seq_file *m, void *data);
1556 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data);
1557 int pm_debugfs_runlist(struct seq_file *m, void *data);
1558 
1559 int kfd_debugfs_hang_hws(struct kfd_node *dev);
1560 int pm_debugfs_hang_hws(struct packet_manager *pm);
1561 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm);
1562 
1563 #else
1564 
1565 static inline void kfd_debugfs_init(void) {}
1566 static inline void kfd_debugfs_fini(void) {}
1567 
1568 #endif
1569 
1570 #endif
1571