xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_priv.h (revision 746680ec6696585e30db3e18c93a63df9cbec39c)
1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #ifndef KFD_PRIV_H_INCLUDED
25 #define KFD_PRIV_H_INCLUDED
26 
27 #include <linux/hashtable.h>
28 #include <linux/mmu_notifier.h>
29 #include <linux/memremap.h>
30 #include <linux/mutex.h>
31 #include <linux/types.h>
32 #include <linux/atomic.h>
33 #include <linux/workqueue.h>
34 #include <linux/spinlock.h>
35 #include <uapi/linux/kfd_ioctl.h>
36 #include <linux/idr.h>
37 #include <linux/kfifo.h>
38 #include <linux/seq_file.h>
39 #include <linux/kref.h>
40 #include <linux/sysfs.h>
41 #include <linux/device_cgroup.h>
42 #include <drm/drm_file.h>
43 #include <drm/drm_drv.h>
44 #include <drm/drm_device.h>
45 #include <drm/drm_ioctl.h>
46 #include <kgd_kfd_interface.h>
47 #include <linux/swap.h>
48 
49 #include "amd_shared.h"
50 #include "amdgpu.h"
51 
52 #define KFD_MAX_RING_ENTRY_SIZE	8
53 
54 #define KFD_SYSFS_FILE_MODE 0444
55 
56 /* GPU ID hash width in bits */
57 #define KFD_GPU_ID_HASH_WIDTH 16
58 
59 /* Use upper bits of mmap offset to store KFD driver specific information.
60  * BITS[63:62] - Encode MMAP type
61  * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to
62  * BITS[45:0]  - MMAP offset value
63  *
64  * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
65  *  defines are w.r.t to PAGE_SIZE
66  */
67 #define KFD_MMAP_TYPE_SHIFT	62
68 #define KFD_MMAP_TYPE_MASK	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
69 #define KFD_MMAP_TYPE_DOORBELL	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
70 #define KFD_MMAP_TYPE_EVENTS	(0x2ULL << KFD_MMAP_TYPE_SHIFT)
71 #define KFD_MMAP_TYPE_RESERVED_MEM	(0x1ULL << KFD_MMAP_TYPE_SHIFT)
72 #define KFD_MMAP_TYPE_MMIO	(0x0ULL << KFD_MMAP_TYPE_SHIFT)
73 
74 #define KFD_MMAP_GPU_ID_SHIFT 46
75 #define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \
76 				<< KFD_MMAP_GPU_ID_SHIFT)
77 #define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\
78 				& KFD_MMAP_GPU_ID_MASK)
79 #define KFD_MMAP_GET_GPU_ID(offset)    ((offset & KFD_MMAP_GPU_ID_MASK) \
80 				>> KFD_MMAP_GPU_ID_SHIFT)
81 
82 /*
83  * When working with cp scheduler we should assign the HIQ manually or via
84  * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot
85  * definitions for Kaveri. In Kaveri only the first ME queues participates
86  * in the cp scheduling taking that in mind we set the HIQ slot in the
87  * second ME.
88  */
89 #define KFD_CIK_HIQ_PIPE 4
90 #define KFD_CIK_HIQ_QUEUE 0
91 
92 /* Macro for allocating structures */
93 #define kfd_alloc_struct(ptr_to_struct)	\
94 	((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL))
95 
96 #define KFD_MAX_NUM_OF_PROCESSES 512
97 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024
98 
99 /*
100  * Size of the per-process TBA+TMA buffer: 2 pages
101  *
102  * The first chunk is the TBA used for the CWSR ISA code. The second
103  * chunk is used as TMA for user-mode trap handler setup in daisy-chain mode.
104  */
105 #define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2)
106 #define KFD_CWSR_TMA_OFFSET (PAGE_SIZE + 2048)
107 
108 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE		\
109 	(KFD_MAX_NUM_OF_PROCESSES *			\
110 			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS)
111 
112 #define KFD_KERNEL_QUEUE_SIZE 2048
113 
114 #define KFD_UNMAP_LATENCY_MS	(4000)
115 
116 #define KFD_MAX_SDMA_QUEUES	128
117 
118 /*
119  * 512 = 0x200
120  * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the
121  * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA.
122  * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC
123  * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in
124  * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE.
125  */
126 #define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512
127 
128 /**
129  * enum kfd_ioctl_flags - KFD ioctl flags
130  * Various flags that can be set in &amdkfd_ioctl_desc.flags to control how
131  * userspace can use a given ioctl.
132  */
133 enum kfd_ioctl_flags {
134 	/*
135 	 * @KFD_IOC_FLAG_CHECKPOINT_RESTORE:
136 	 * Certain KFD ioctls such as AMDKFD_IOC_CRIU_OP can potentially
137 	 * perform privileged operations and load arbitrary data into MQDs and
138 	 * eventually HQD registers when the queue is mapped by HWS. In order to
139 	 * prevent this we should perform additional security checks.
140 	 *
141 	 * This is equivalent to callers with the CHECKPOINT_RESTORE capability.
142 	 *
143 	 * Note: Since earlier versions of docker do not support CHECKPOINT_RESTORE,
144 	 * we also allow ioctls with SYS_ADMIN capability.
145 	 */
146 	KFD_IOC_FLAG_CHECKPOINT_RESTORE = BIT(0),
147 };
148 /*
149  * Kernel module parameter to specify maximum number of supported queues per
150  * device
151  */
152 extern int max_num_of_queues_per_device;
153 
154 
155 /* Kernel module parameter to specify the scheduling policy */
156 extern int sched_policy;
157 
158 /*
159  * Kernel module parameter to specify the maximum process
160  * number per HW scheduler
161  */
162 extern int hws_max_conc_proc;
163 
164 extern int cwsr_enable;
165 
166 /*
167  * Kernel module parameter to specify whether to send sigterm to HSA process on
168  * unhandled exception
169  */
170 extern int send_sigterm;
171 
172 /*
173  * This kernel module is used to simulate large bar machine on non-large bar
174  * enabled machines.
175  */
176 extern int debug_largebar;
177 
178 /* Set sh_mem_config.retry_disable on GFX v9 */
179 extern int amdgpu_noretry;
180 
181 /* Halt if HWS hang is detected */
182 extern int halt_if_hws_hang;
183 
184 /* Whether MEC FW support GWS barriers */
185 extern bool hws_gws_support;
186 
187 /* Queue preemption timeout in ms */
188 extern int queue_preemption_timeout_ms;
189 
190 /*
191  * Don't evict process queues on vm fault
192  */
193 extern int amdgpu_no_queue_eviction_on_vm_fault;
194 
195 /* Enable eviction debug messages */
196 extern bool debug_evictions;
197 
198 extern struct mutex kfd_processes_mutex;
199 
200 enum cache_policy {
201 	cache_policy_coherent,
202 	cache_policy_noncoherent
203 };
204 
205 #define KFD_GC_VERSION(dev) (amdgpu_ip_version((dev)->adev, GC_HWIP, 0))
206 #define KFD_IS_SOC15(dev)   ((KFD_GC_VERSION(dev)) >= (IP_VERSION(9, 0, 1)))
207 #define KFD_SUPPORT_XNACK_PER_PROCESS(dev)\
208 	((KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 2)) ||	\
209 	 (KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 3)) ||	\
210 	 (KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 4)) ||	\
211 	 (KFD_GC_VERSION(dev) == IP_VERSION(9, 5, 0)))
212 
213 struct kfd_node;
214 
215 struct kfd_event_interrupt_class {
216 	bool (*interrupt_isr)(struct kfd_node *dev,
217 			const uint32_t *ih_ring_entry, uint32_t *patched_ihre,
218 			bool *patched_flag);
219 	void (*interrupt_wq)(struct kfd_node *dev,
220 			const uint32_t *ih_ring_entry);
221 };
222 
223 struct kfd_device_info {
224 	uint32_t gfx_target_version;
225 	const struct kfd_event_interrupt_class *event_interrupt_class;
226 	unsigned int max_pasid_bits;
227 	unsigned int max_no_of_hqd;
228 	unsigned int doorbell_size;
229 	size_t ih_ring_entry_size;
230 	uint8_t num_of_watch_points;
231 	uint16_t mqd_size_aligned;
232 	bool supports_cwsr;
233 	bool needs_pci_atomics;
234 	uint32_t no_atomic_fw_version;
235 	unsigned int num_sdma_queues_per_engine;
236 	unsigned int num_reserved_sdma_queues_per_engine;
237 	DECLARE_BITMAP(reserved_sdma_queues_bitmap, KFD_MAX_SDMA_QUEUES);
238 };
239 
240 unsigned int kfd_get_num_sdma_engines(struct kfd_node *kdev);
241 unsigned int kfd_get_num_xgmi_sdma_engines(struct kfd_node *kdev);
242 
243 struct kfd_mem_obj {
244 	uint32_t range_start;
245 	uint32_t range_end;
246 	uint64_t gpu_addr;
247 	uint32_t *cpu_ptr;
248 	void *gtt_mem;
249 };
250 
251 struct kfd_vmid_info {
252 	uint32_t first_vmid_kfd;
253 	uint32_t last_vmid_kfd;
254 	uint32_t vmid_num_kfd;
255 };
256 
257 #define MAX_KFD_NODES	8
258 
259 struct kfd_dev;
260 
261 struct kfd_node {
262 	unsigned int node_id;
263 	struct amdgpu_device *adev;     /* Duplicated here along with keeping
264 					 * a copy in kfd_dev to save a hop
265 					 */
266 	const struct kfd2kgd_calls *kfd2kgd; /* Duplicated here along with
267 					      * keeping a copy in kfd_dev to
268 					      * save a hop
269 					      */
270 	struct kfd_vmid_info vm_info;
271 	unsigned int id;                /* topology stub index */
272 	uint32_t xcc_mask; /* Instance mask of XCCs present */
273 	struct amdgpu_xcp *xcp;
274 
275 	/* Interrupts */
276 	struct kfifo ih_fifo;
277 	struct work_struct interrupt_work;
278 	spinlock_t interrupt_lock;
279 
280 	/*
281 	 * Interrupts of interest to KFD are copied
282 	 * from the HW ring into a SW ring.
283 	 */
284 	bool interrupts_active;
285 	uint32_t interrupt_bitmap; /* Only used for GFX 9.4.3 */
286 
287 	/* QCM Device instance */
288 	struct device_queue_manager *dqm;
289 
290 	/* Global GWS resource shared between processes */
291 	void *gws;
292 
293 	/* Clients watching SMI events */
294 	struct list_head smi_clients;
295 	spinlock_t smi_lock;
296 	uint32_t reset_seq_num;
297 
298 	/* SRAM ECC flag */
299 	atomic_t sram_ecc_flag;
300 
301 	/*spm process id */
302 	unsigned int spm_pasid;
303 
304 	/* Maximum process number mapped to HW scheduler */
305 	unsigned int max_proc_per_quantum;
306 
307 	unsigned int compute_vmid_bitmap;
308 
309 	struct kfd_local_mem_info local_mem_info;
310 
311 	struct kfd_dev *kfd;
312 
313 	/* Track per device allocated watch points */
314 	uint32_t alloc_watch_ids;
315 	spinlock_t watch_points_lock;
316 };
317 
318 struct kfd_dev {
319 	struct amdgpu_device *adev;
320 
321 	struct kfd_device_info device_info;
322 
323 	u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells
324 					   * page used by kernel queue
325 					   */
326 
327 	struct kgd2kfd_shared_resources shared_resources;
328 
329 	const struct kfd2kgd_calls *kfd2kgd;
330 	struct mutex doorbell_mutex;
331 
332 	void *gtt_mem;
333 	uint64_t gtt_start_gpu_addr;
334 	void *gtt_start_cpu_ptr;
335 	void *gtt_sa_bitmap;
336 	struct mutex gtt_sa_lock;
337 	unsigned int gtt_sa_chunk_size;
338 	unsigned int gtt_sa_num_of_chunks;
339 
340 	bool init_complete;
341 
342 	/* Firmware versions */
343 	uint16_t mec_fw_version;
344 	uint16_t mec2_fw_version;
345 	uint16_t sdma_fw_version;
346 
347 	/* CWSR */
348 	bool cwsr_enabled;
349 	const void *cwsr_isa;
350 	unsigned int cwsr_isa_size;
351 
352 	/* xGMI */
353 	uint64_t hive_id;
354 
355 	bool pci_atomic_requested;
356 
357 	/* Compute Profile ref. count */
358 	atomic_t compute_profile;
359 
360 	struct ida doorbell_ida;
361 	unsigned int max_doorbell_slices;
362 
363 	int noretry;
364 
365 	struct kfd_node *nodes[MAX_KFD_NODES];
366 	unsigned int num_nodes;
367 
368 	struct workqueue_struct *ih_wq;
369 
370 	/* Kernel doorbells for KFD device */
371 	struct amdgpu_bo *doorbells;
372 
373 	/* bitmap for dynamic doorbell allocation from doorbell object */
374 	unsigned long *doorbell_bitmap;
375 
376 	/* for dynamic partitioning */
377 	int kfd_dev_lock;
378 };
379 
380 enum kfd_mempool {
381 	KFD_MEMPOOL_SYSTEM_CACHEABLE = 1,
382 	KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2,
383 	KFD_MEMPOOL_FRAMEBUFFER = 3,
384 };
385 
386 /* Character device interface */
387 int kfd_chardev_init(void);
388 void kfd_chardev_exit(void);
389 
390 /**
391  * enum kfd_unmap_queues_filter - Enum for queue filters.
392  *
393  * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the
394  *						running queues list.
395  *
396  * @KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES: Preempts all non-static queues
397  *						in the run list.
398  *
399  * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to
400  *						specific process.
401  *
402  */
403 enum kfd_unmap_queues_filter {
404 	KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES = 1,
405 	KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES = 2,
406 	KFD_UNMAP_QUEUES_FILTER_BY_PASID = 3
407 };
408 
409 /**
410  * enum kfd_queue_type - Enum for various queue types.
411  *
412  * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type.
413  *
414  * @KFD_QUEUE_TYPE_SDMA: SDMA user mode queue type.
415  *
416  * @KFD_QUEUE_TYPE_HIQ: HIQ queue type.
417  *
418  * @KFD_QUEUE_TYPE_DIQ: DIQ queue type.
419  *
420  * @KFD_QUEUE_TYPE_SDMA_XGMI: Special SDMA queue for XGMI interface.
421  *
422  * @KFD_QUEUE_TYPE_SDMA_BY_ENG_ID:  SDMA user mode queue with target SDMA engine ID.
423  */
424 enum kfd_queue_type  {
425 	KFD_QUEUE_TYPE_COMPUTE,
426 	KFD_QUEUE_TYPE_SDMA,
427 	KFD_QUEUE_TYPE_HIQ,
428 	KFD_QUEUE_TYPE_DIQ,
429 	KFD_QUEUE_TYPE_SDMA_XGMI,
430 	KFD_QUEUE_TYPE_SDMA_BY_ENG_ID
431 };
432 
433 enum kfd_queue_format {
434 	KFD_QUEUE_FORMAT_PM4,
435 	KFD_QUEUE_FORMAT_AQL
436 };
437 
438 enum KFD_QUEUE_PRIORITY {
439 	KFD_QUEUE_PRIORITY_MINIMUM = 0,
440 	KFD_QUEUE_PRIORITY_MAXIMUM = 15
441 };
442 
443 /**
444  * struct queue_properties
445  *
446  * @type: The queue type.
447  *
448  * @queue_id: Queue identifier.
449  *
450  * @queue_address: Queue ring buffer address.
451  *
452  * @queue_size: Queue ring buffer size.
453  *
454  * @priority: Defines the queue priority relative to other queues in the
455  * process.
456  * This is just an indication and HW scheduling may override the priority as
457  * necessary while keeping the relative prioritization.
458  * the priority granularity is from 0 to f which f is the highest priority.
459  * currently all queues are initialized with the highest priority.
460  *
461  * @queue_percent: This field is partially implemented and currently a zero in
462  * this field defines that the queue is non active.
463  *
464  * @read_ptr: User space address which points to the number of dwords the
465  * cp read from the ring buffer. This field updates automatically by the H/W.
466  *
467  * @write_ptr: Defines the number of dwords written to the ring buffer.
468  *
469  * @doorbell_ptr: Notifies the H/W of new packet written to the queue ring
470  * buffer. This field should be similar to write_ptr and the user should
471  * update this field after updating the write_ptr.
472  *
473  * @doorbell_off: The doorbell offset in the doorbell pci-bar.
474  *
475  * @is_interop: Defines if this is a interop queue. Interop queue means that
476  * the queue can access both graphics and compute resources.
477  *
478  * @is_evicted: Defines if the queue is evicted. Only active queues
479  * are evicted, rendering them inactive.
480  *
481  * @is_active: Defines if the queue is active or not. @is_active and
482  * @is_evicted are protected by the DQM lock.
483  *
484  * @is_gws: Defines if the queue has been updated to be GWS-capable or not.
485  * @is_gws should be protected by the DQM lock, since changing it can yield the
486  * possibility of updating DQM state on number of GWS queues.
487  *
488  * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid
489  * of the queue.
490  *
491  * This structure represents the queue properties for each queue no matter if
492  * it's user mode or kernel mode queue.
493  *
494  */
495 
496 struct queue_properties {
497 	enum kfd_queue_type type;
498 	enum kfd_queue_format format;
499 	unsigned int queue_id;
500 	uint64_t queue_address;
501 	uint64_t  queue_size;
502 	uint32_t priority;
503 	uint32_t queue_percent;
504 	void __user *read_ptr;
505 	void __user *write_ptr;
506 	void __iomem *doorbell_ptr;
507 	uint32_t doorbell_off;
508 	bool is_interop;
509 	bool is_evicted;
510 	bool is_suspended;
511 	bool is_being_destroyed;
512 	bool is_active;
513 	bool is_gws;
514 	uint32_t pm4_target_xcc;
515 	bool is_dbg_wa;
516 	bool is_user_cu_masked;
517 	/* Not relevant for user mode queues in cp scheduling */
518 	unsigned int vmid;
519 	/* Relevant only for sdma queues*/
520 	uint32_t sdma_engine_id;
521 	uint32_t sdma_queue_id;
522 	uint32_t sdma_vm_addr;
523 	/* Relevant only for VI */
524 	uint64_t eop_ring_buffer_address;
525 	uint32_t eop_ring_buffer_size;
526 	uint64_t ctx_save_restore_area_address;
527 	uint32_t ctx_save_restore_area_size;
528 	uint32_t ctl_stack_size;
529 	uint64_t tba_addr;
530 	uint64_t tma_addr;
531 	uint64_t exception_status;
532 
533 	struct amdgpu_bo *wptr_bo;
534 	struct amdgpu_bo *rptr_bo;
535 	struct amdgpu_bo *ring_bo;
536 	struct amdgpu_bo *eop_buf_bo;
537 	struct amdgpu_bo *cwsr_bo;
538 };
539 
540 #define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 &&	\
541 			    (q).queue_address != 0 &&	\
542 			    (q).queue_percent > 0 &&	\
543 			    !(q).is_evicted &&		\
544 			    !(q).is_suspended)
545 
546 enum mqd_update_flag {
547 	UPDATE_FLAG_DBG_WA_ENABLE = 1,
548 	UPDATE_FLAG_DBG_WA_DISABLE = 2,
549 	UPDATE_FLAG_IS_GWS = 4, /* quirk for gfx9 IP */
550 };
551 
552 struct mqd_update_info {
553 	union {
554 		struct {
555 			uint32_t count; /* Must be a multiple of 32 */
556 			uint32_t *ptr;
557 		} cu_mask;
558 	};
559 	enum mqd_update_flag update_flag;
560 };
561 
562 /**
563  * struct queue
564  *
565  * @list: Queue linked list.
566  *
567  * @mqd: The queue MQD (memory queue descriptor).
568  *
569  * @mqd_mem_obj: The MQD local gpu memory object.
570  *
571  * @gart_mqd_addr: The MQD gart mc address.
572  *
573  * @properties: The queue properties.
574  *
575  * @mec: Used only in no cp scheduling mode and identifies to micro engine id
576  *	 that the queue should be executed on.
577  *
578  * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe
579  *	  id.
580  *
581  * @queue: Used only in no cp scheduliong mode and identifies the queue's slot.
582  *
583  * @process: The kfd process that created this queue.
584  *
585  * @device: The kfd device that created this queue.
586  *
587  * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL
588  * otherwise.
589  *
590  * This structure represents user mode compute queues.
591  * It contains all the necessary data to handle such queues.
592  *
593  */
594 
595 struct queue {
596 	struct list_head list;
597 	void *mqd;
598 	struct kfd_mem_obj *mqd_mem_obj;
599 	uint64_t gart_mqd_addr;
600 	struct queue_properties properties;
601 
602 	uint32_t mec;
603 	uint32_t pipe;
604 	uint32_t queue;
605 
606 	unsigned int sdma_id;
607 	unsigned int doorbell_id;
608 
609 	struct kfd_process	*process;
610 	struct kfd_node		*device;
611 	void *gws;
612 
613 	/* procfs */
614 	struct kobject kobj;
615 
616 	void *gang_ctx_bo;
617 	uint64_t gang_ctx_gpu_addr;
618 	void *gang_ctx_cpu_ptr;
619 
620 	struct amdgpu_bo *wptr_bo_gart;
621 };
622 
623 enum KFD_MQD_TYPE {
624 	KFD_MQD_TYPE_HIQ = 0,		/* for hiq */
625 	KFD_MQD_TYPE_CP,		/* for cp queues and diq */
626 	KFD_MQD_TYPE_SDMA,		/* for sdma queues */
627 	KFD_MQD_TYPE_DIQ,		/* for diq */
628 	KFD_MQD_TYPE_MAX
629 };
630 
631 enum KFD_PIPE_PRIORITY {
632 	KFD_PIPE_PRIORITY_CS_LOW = 0,
633 	KFD_PIPE_PRIORITY_CS_MEDIUM,
634 	KFD_PIPE_PRIORITY_CS_HIGH
635 };
636 
637 struct scheduling_resources {
638 	unsigned int vmid_mask;
639 	enum kfd_queue_type type;
640 	uint64_t queue_mask;
641 	uint64_t gws_mask;
642 	uint32_t oac_mask;
643 	uint32_t gds_heap_base;
644 	uint32_t gds_heap_size;
645 };
646 
647 struct process_queue_manager {
648 	/* data */
649 	struct kfd_process	*process;
650 	struct list_head	queues;
651 	unsigned long		*queue_slot_bitmap;
652 };
653 
654 struct qcm_process_device {
655 	/* The Device Queue Manager that owns this data */
656 	struct device_queue_manager *dqm;
657 	struct process_queue_manager *pqm;
658 	/* Queues list */
659 	struct list_head queues_list;
660 	struct list_head priv_queue_list;
661 
662 	unsigned int queue_count;
663 	unsigned int vmid;
664 	bool is_debug;
665 	unsigned int evicted; /* eviction counter, 0=active */
666 
667 	/* This flag tells if we should reset all wavefronts on
668 	 * process termination
669 	 */
670 	bool reset_wavefronts;
671 
672 	/* This flag tells us if this process has a GWS-capable
673 	 * queue that will be mapped into the runlist. It's
674 	 * possible to request a GWS BO, but not have the queue
675 	 * currently mapped, and this changes how the MAP_PROCESS
676 	 * PM4 packet is configured.
677 	 */
678 	bool mapped_gws_queue;
679 
680 	/* All the memory management data should be here too */
681 	uint64_t gds_context_area;
682 	/* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */
683 	uint64_t page_table_base;
684 	uint32_t sh_mem_config;
685 	uint32_t sh_mem_bases;
686 	uint32_t sh_mem_ape1_base;
687 	uint32_t sh_mem_ape1_limit;
688 	uint32_t gds_size;
689 	uint32_t num_gws;
690 	uint32_t num_oac;
691 	uint32_t sh_hidden_private_base;
692 
693 	/* CWSR memory */
694 	struct kgd_mem *cwsr_mem;
695 	void *cwsr_kaddr;
696 	uint64_t cwsr_base;
697 	uint64_t tba_addr;
698 	uint64_t tma_addr;
699 
700 	/* IB memory */
701 	struct kgd_mem *ib_mem;
702 	uint64_t ib_base;
703 	void *ib_kaddr;
704 
705 	/* doorbells for kfd process */
706 	struct amdgpu_bo *proc_doorbells;
707 
708 	/* bitmap for dynamic doorbell allocation from the bo */
709 	unsigned long *doorbell_bitmap;
710 };
711 
712 /* KFD Memory Eviction */
713 
714 /* Approx. wait time before attempting to restore evicted BOs */
715 #define PROCESS_RESTORE_TIME_MS 100
716 /* Approx. back off time if restore fails due to lack of memory */
717 #define PROCESS_BACK_OFF_TIME_MS 100
718 /* Approx. time before evicting the process again */
719 #define PROCESS_ACTIVE_TIME_MS 10
720 
721 /* 8 byte handle containing GPU ID in the most significant 4 bytes and
722  * idr_handle in the least significant 4 bytes
723  */
724 #define MAKE_HANDLE(gpu_id, idr_handle) \
725 	(((uint64_t)(gpu_id) << 32) + idr_handle)
726 #define GET_GPU_ID(handle) (handle >> 32)
727 #define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF)
728 
729 enum kfd_pdd_bound {
730 	PDD_UNBOUND = 0,
731 	PDD_BOUND,
732 	PDD_BOUND_SUSPENDED,
733 };
734 
735 #define MAX_SYSFS_FILENAME_LEN 15
736 
737 /*
738  * SDMA counter runs at 100MHz frequency.
739  * We display SDMA activity in microsecond granularity in sysfs.
740  * As a result, the divisor is 100.
741  */
742 #define SDMA_ACTIVITY_DIVISOR  100
743 
744 /* Data that is per-process-per device. */
745 struct kfd_process_device {
746 	/* The device that owns this data. */
747 	struct kfd_node *dev;
748 
749 	/* The process that owns this kfd_process_device. */
750 	struct kfd_process *process;
751 
752 	/* per-process-per device QCM data structure */
753 	struct qcm_process_device qpd;
754 
755 	/*Apertures*/
756 	uint64_t lds_base;
757 	uint64_t lds_limit;
758 	uint64_t gpuvm_base;
759 	uint64_t gpuvm_limit;
760 	uint64_t scratch_base;
761 	uint64_t scratch_limit;
762 
763 	/* VM context for GPUVM allocations */
764 	struct file *drm_file;
765 	void *drm_priv;
766 
767 	/* GPUVM allocations storage */
768 	struct idr alloc_idr;
769 
770 	/* Flag used to tell the pdd has dequeued from the dqm.
771 	 * This is used to prevent dev->dqm->ops.process_termination() from
772 	 * being called twice when it is already called in IOMMU callback
773 	 * function.
774 	 */
775 	bool already_dequeued;
776 	bool runtime_inuse;
777 
778 	/* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */
779 	enum kfd_pdd_bound bound;
780 
781 	/* VRAM usage */
782 	atomic64_t vram_usage;
783 	struct attribute attr_vram;
784 	char vram_filename[MAX_SYSFS_FILENAME_LEN];
785 
786 	/* SDMA activity tracking */
787 	uint64_t sdma_past_activity_counter;
788 	struct attribute attr_sdma;
789 	char sdma_filename[MAX_SYSFS_FILENAME_LEN];
790 
791 	/* Eviction activity tracking */
792 	uint64_t last_evict_timestamp;
793 	atomic64_t evict_duration_counter;
794 	struct attribute attr_evict;
795 
796 	struct kobject *kobj_stats;
797 
798 	/*
799 	 * @cu_occupancy: Reports occupancy of Compute Units (CU) of a process
800 	 * that is associated with device encoded by "this" struct instance. The
801 	 * value reflects CU usage by all of the waves launched by this process
802 	 * on this device. A very important property of occupancy parameter is
803 	 * that its value is a snapshot of current use.
804 	 *
805 	 * Following is to be noted regarding how this parameter is reported:
806 	 *
807 	 *  The number of waves that a CU can launch is limited by couple of
808 	 *  parameters. These are encoded by struct amdgpu_cu_info instance
809 	 *  that is part of every device definition. For GFX9 devices this
810 	 *  translates to 40 waves (simd_per_cu * max_waves_per_simd) when waves
811 	 *  do not use scratch memory and 32 waves (max_scratch_slots_per_cu)
812 	 *  when they do use scratch memory. This could change for future
813 	 *  devices and therefore this example should be considered as a guide.
814 	 *
815 	 *  All CU's of a device are available for the process. This may not be true
816 	 *  under certain conditions - e.g. CU masking.
817 	 *
818 	 *  Finally number of CU's that are occupied by a process is affected by both
819 	 *  number of CU's a device has along with number of other competing processes
820 	 */
821 	struct attribute attr_cu_occupancy;
822 
823 	/* sysfs counters for GPU retry fault and page migration tracking */
824 	struct kobject *kobj_counters;
825 	struct attribute attr_faults;
826 	struct attribute attr_page_in;
827 	struct attribute attr_page_out;
828 	uint64_t faults;
829 	uint64_t page_in;
830 	uint64_t page_out;
831 
832 	/* Exception code status*/
833 	uint64_t exception_status;
834 	void *vm_fault_exc_data;
835 	size_t vm_fault_exc_data_size;
836 
837 	/* Tracks debug per-vmid request settings */
838 	uint32_t spi_dbg_override;
839 	uint32_t spi_dbg_launch_mode;
840 	uint32_t watch_points[4];
841 	uint32_t alloc_watch_ids;
842 
843 	/*
844 	 * If this process has been checkpointed before, then the user
845 	 * application will use the original gpu_id on the
846 	 * checkpointed node to refer to this device.
847 	 */
848 	uint32_t user_gpu_id;
849 
850 	void *proc_ctx_bo;
851 	uint64_t proc_ctx_gpu_addr;
852 	void *proc_ctx_cpu_ptr;
853 
854 	/* Tracks queue reset status */
855 	bool has_reset_queue;
856 
857 	u32 pasid;
858 };
859 
860 #define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd)
861 
862 struct svm_range_list {
863 	struct mutex			lock;
864 	struct rb_root_cached		objects;
865 	struct list_head		list;
866 	struct work_struct		deferred_list_work;
867 	struct list_head		deferred_range_list;
868 	struct list_head                criu_svm_metadata_list;
869 	spinlock_t			deferred_list_lock;
870 	atomic_t			evicted_ranges;
871 	atomic_t			drain_pagefaults;
872 	struct delayed_work		restore_work;
873 	DECLARE_BITMAP(bitmap_supported, MAX_GPU_INSTANCE);
874 	struct task_struct		*faulting_task;
875 	/* check point ts decides if page fault recovery need be dropped */
876 	uint64_t			checkpoint_ts[MAX_GPU_INSTANCE];
877 
878 	/* Default granularity to use in buffer migration
879 	 * and restoration of backing memory while handling
880 	 * recoverable page faults
881 	 */
882 	uint8_t default_granularity;
883 };
884 
885 /* Process data */
886 struct kfd_process {
887 	/*
888 	 * kfd_process are stored in an mm_struct*->kfd_process*
889 	 * hash table (kfd_processes in kfd_process.c)
890 	 */
891 	struct hlist_node kfd_processes;
892 
893 	/*
894 	 * Opaque pointer to mm_struct. We don't hold a reference to
895 	 * it so it should never be dereferenced from here. This is
896 	 * only used for looking up processes by their mm.
897 	 */
898 	void *mm;
899 
900 	struct kref ref;
901 	struct work_struct release_work;
902 
903 	struct mutex mutex;
904 
905 	/*
906 	 * In any process, the thread that started main() is the lead
907 	 * thread and outlives the rest.
908 	 * It is here because amd_iommu_bind_pasid wants a task_struct.
909 	 * It can also be used for safely getting a reference to the
910 	 * mm_struct of the process.
911 	 */
912 	struct task_struct *lead_thread;
913 
914 	/* We want to receive a notification when the mm_struct is destroyed */
915 	struct mmu_notifier mmu_notifier;
916 
917 	/*
918 	 * Array of kfd_process_device pointers,
919 	 * one for each device the process is using.
920 	 */
921 	struct kfd_process_device *pdds[MAX_GPU_INSTANCE];
922 	uint32_t n_pdds;
923 
924 	struct process_queue_manager pqm;
925 
926 	/*Is the user space process 32 bit?*/
927 	bool is_32bit_user_mode;
928 
929 	/* Event-related data */
930 	struct mutex event_mutex;
931 	/* Event ID allocator and lookup */
932 	struct idr event_idr;
933 	/* Event page */
934 	u64 signal_handle;
935 	struct kfd_signal_page *signal_page;
936 	size_t signal_mapped_size;
937 	size_t signal_event_count;
938 	bool signal_event_limit_reached;
939 
940 	/* Information used for memory eviction */
941 	void *kgd_process_info;
942 	/* Eviction fence that is attached to all the BOs of this process. The
943 	 * fence will be triggered during eviction and new one will be created
944 	 * during restore
945 	 */
946 	struct dma_fence __rcu *ef;
947 
948 	/* Work items for evicting and restoring BOs */
949 	struct delayed_work eviction_work;
950 	struct delayed_work restore_work;
951 	/* seqno of the last scheduled eviction */
952 	unsigned int last_eviction_seqno;
953 	/* Approx. the last timestamp (in jiffies) when the process was
954 	 * restored after an eviction
955 	 */
956 	unsigned long last_restore_timestamp;
957 
958 	/* Indicates device process is debug attached with reserved vmid. */
959 	bool debug_trap_enabled;
960 
961 	/* per-process-per device debug event fd file */
962 	struct file *dbg_ev_file;
963 
964 	/* If the process is a kfd debugger, we need to know so we can clean
965 	 * up at exit time.  If a process enables debugging on itself, it does
966 	 * its own clean-up, so we don't set the flag here.  We track this by
967 	 * counting the number of processes this process is debugging.
968 	 */
969 	atomic_t debugged_process_count;
970 
971 	/* If the process is a debugged, this is the debugger process */
972 	struct kfd_process *debugger_process;
973 
974 	/* Kobj for our procfs */
975 	struct kobject *kobj;
976 	struct kobject *kobj_queues;
977 	struct attribute attr_pasid;
978 
979 	/* Keep track cwsr init */
980 	bool has_cwsr;
981 
982 	/* Exception code enable mask and status */
983 	uint64_t exception_enable_mask;
984 	uint64_t exception_status;
985 
986 	/* Used to drain stale interrupts */
987 	wait_queue_head_t wait_irq_drain;
988 	bool irq_drain_is_open;
989 
990 	/* shared virtual memory registered by this process */
991 	struct svm_range_list svms;
992 
993 	bool xnack_enabled;
994 
995 	/* Work area for debugger event writer worker. */
996 	struct work_struct debug_event_workarea;
997 
998 	/* Tracks debug per-vmid request for debug flags */
999 	u32 dbg_flags;
1000 
1001 	atomic_t poison;
1002 	/* Queues are in paused stated because we are in the process of doing a CRIU checkpoint */
1003 	bool queues_paused;
1004 
1005 	/* Tracks runtime enable status */
1006 	struct semaphore runtime_enable_sema;
1007 	bool is_runtime_retry;
1008 	struct kfd_runtime_info runtime_info;
1009 
1010 	/* if gpu page fault sent to KFD */
1011 	bool gpu_page_fault;
1012 };
1013 
1014 #define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */
1015 extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
1016 extern struct srcu_struct kfd_processes_srcu;
1017 
1018 /**
1019  * typedef amdkfd_ioctl_t - typedef for ioctl function pointer.
1020  *
1021  * @filep: pointer to file structure.
1022  * @p: amdkfd process pointer.
1023  * @data: pointer to arg that was copied from user.
1024  *
1025  * Return: returns ioctl completion code.
1026  */
1027 typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p,
1028 				void *data);
1029 
1030 struct amdkfd_ioctl_desc {
1031 	unsigned int cmd;
1032 	int flags;
1033 	amdkfd_ioctl_t *func;
1034 	unsigned int cmd_drv;
1035 	const char *name;
1036 };
1037 bool kfd_dev_is_large_bar(struct kfd_node *dev);
1038 
1039 int kfd_process_create_wq(void);
1040 void kfd_process_destroy_wq(void);
1041 void kfd_cleanup_processes(void);
1042 struct kfd_process *kfd_create_process(struct task_struct *thread);
1043 struct kfd_process *kfd_get_process(const struct task_struct *task);
1044 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid,
1045 						 struct kfd_process_device **pdd);
1046 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm);
1047 
1048 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id);
1049 int kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node,
1050 				uint32_t *gpuid, uint32_t *gpuidx);
1051 static inline int kfd_process_gpuid_from_gpuidx(struct kfd_process *p,
1052 				uint32_t gpuidx, uint32_t *gpuid) {
1053 	return gpuidx < p->n_pdds ? p->pdds[gpuidx]->dev->id : -EINVAL;
1054 }
1055 static inline struct kfd_process_device *kfd_process_device_from_gpuidx(
1056 				struct kfd_process *p, uint32_t gpuidx) {
1057 	return gpuidx < p->n_pdds ? p->pdds[gpuidx] : NULL;
1058 }
1059 
1060 void kfd_unref_process(struct kfd_process *p);
1061 int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger);
1062 int kfd_process_restore_queues(struct kfd_process *p);
1063 void kfd_suspend_all_processes(void);
1064 int kfd_resume_all_processes(void);
1065 
1066 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *process,
1067 							 uint32_t gpu_id);
1068 
1069 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id);
1070 
1071 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1072 			       struct file *drm_file);
1073 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev,
1074 						struct kfd_process *p);
1075 struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev,
1076 							struct kfd_process *p);
1077 struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev,
1078 							struct kfd_process *p);
1079 
1080 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported);
1081 
1082 int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process,
1083 			  struct vm_area_struct *vma);
1084 
1085 /* KFD process API for creating and translating handles */
1086 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1087 					void *mem);
1088 void *kfd_process_device_translate_handle(struct kfd_process_device *p,
1089 					int handle);
1090 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1091 					int handle);
1092 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid);
1093 
1094 /* PASIDs */
1095 int kfd_pasid_init(void);
1096 void kfd_pasid_exit(void);
1097 u32 kfd_pasid_alloc(void);
1098 void kfd_pasid_free(u32 pasid);
1099 
1100 /* Doorbells */
1101 size_t kfd_doorbell_process_slice(struct kfd_dev *kfd);
1102 int kfd_doorbell_init(struct kfd_dev *kfd);
1103 void kfd_doorbell_fini(struct kfd_dev *kfd);
1104 int kfd_doorbell_mmap(struct kfd_node *dev, struct kfd_process *process,
1105 		      struct vm_area_struct *vma);
1106 void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd,
1107 					unsigned int *doorbell_off);
1108 void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr);
1109 u32 read_kernel_doorbell(u32 __iomem *db);
1110 void write_kernel_doorbell(void __iomem *db, u32 value);
1111 void write_kernel_doorbell64(void __iomem *db, u64 value);
1112 unsigned int kfd_get_doorbell_dw_offset_in_bar(struct kfd_dev *kfd,
1113 					struct kfd_process_device *pdd,
1114 					unsigned int doorbell_id);
1115 phys_addr_t kfd_get_process_doorbells(struct kfd_process_device *pdd);
1116 int kfd_alloc_process_doorbells(struct kfd_dev *kfd,
1117 				struct kfd_process_device *pdd);
1118 void kfd_free_process_doorbells(struct kfd_dev *kfd,
1119 				struct kfd_process_device *pdd);
1120 /* GTT Sub-Allocator */
1121 
1122 int kfd_gtt_sa_allocate(struct kfd_node *node, unsigned int size,
1123 			struct kfd_mem_obj **mem_obj);
1124 
1125 int kfd_gtt_sa_free(struct kfd_node *node, struct kfd_mem_obj *mem_obj);
1126 
1127 extern struct device *kfd_device;
1128 
1129 /* KFD's procfs */
1130 void kfd_procfs_init(void);
1131 void kfd_procfs_shutdown(void);
1132 int kfd_procfs_add_queue(struct queue *q);
1133 void kfd_procfs_del_queue(struct queue *q);
1134 
1135 /* Topology */
1136 int kfd_topology_init(void);
1137 void kfd_topology_shutdown(void);
1138 int kfd_topology_add_device(struct kfd_node *gpu);
1139 int kfd_topology_remove_device(struct kfd_node *gpu);
1140 struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
1141 						uint32_t proximity_domain);
1142 struct kfd_topology_device *kfd_topology_device_by_proximity_domain_no_lock(
1143 						uint32_t proximity_domain);
1144 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id);
1145 struct kfd_node *kfd_device_by_id(uint32_t gpu_id);
1146 static inline bool kfd_irq_is_from_node(struct kfd_node *node, uint32_t node_id,
1147 					uint32_t vmid)
1148 {
1149 	return (node->interrupt_bitmap & (1 << node_id)) != 0 &&
1150 	       (node->compute_vmid_bitmap & (1 << vmid)) != 0;
1151 }
1152 static inline struct kfd_node *kfd_node_by_irq_ids(struct amdgpu_device *adev,
1153 					uint32_t node_id, uint32_t vmid) {
1154 	struct kfd_dev *dev = adev->kfd.dev;
1155 	uint32_t i;
1156 
1157 	if (KFD_GC_VERSION(dev) != IP_VERSION(9, 4, 3) &&
1158 	    KFD_GC_VERSION(dev) != IP_VERSION(9, 4, 4) &&
1159 	    KFD_GC_VERSION(dev) != IP_VERSION(9, 5, 0))
1160 		return dev->nodes[0];
1161 
1162 	for (i = 0; i < dev->num_nodes; i++)
1163 		if (kfd_irq_is_from_node(dev->nodes[i], node_id, vmid))
1164 			return dev->nodes[i];
1165 
1166 	return NULL;
1167 }
1168 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_node **kdev);
1169 int kfd_numa_node_to_apic_id(int numa_node_id);
1170 
1171 /* Interrupts */
1172 #define	KFD_IRQ_FENCE_CLIENTID	0xff
1173 #define	KFD_IRQ_FENCE_SOURCEID	0xff
1174 #define	KFD_IRQ_IS_FENCE(client, source)				\
1175 				((client) == KFD_IRQ_FENCE_CLIENTID &&	\
1176 				(source) == KFD_IRQ_FENCE_SOURCEID)
1177 int kfd_interrupt_init(struct kfd_node *dev);
1178 void kfd_interrupt_exit(struct kfd_node *dev);
1179 bool enqueue_ih_ring_entry(struct kfd_node *kfd, const void *ih_ring_entry);
1180 bool interrupt_is_wanted(struct kfd_node *dev,
1181 				const uint32_t *ih_ring_entry,
1182 				uint32_t *patched_ihre, bool *flag);
1183 int kfd_process_drain_interrupts(struct kfd_process_device *pdd);
1184 void kfd_process_close_interrupt_drain(unsigned int pasid);
1185 
1186 /* amdkfd Apertures */
1187 int kfd_init_apertures(struct kfd_process *process);
1188 
1189 void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1190 				  uint64_t tba_addr,
1191 				  uint64_t tma_addr);
1192 void kfd_process_set_trap_debug_flag(struct qcm_process_device *qpd,
1193 				     bool enabled);
1194 
1195 /* CWSR initialization */
1196 int kfd_process_init_cwsr_apu(struct kfd_process *process, struct file *filep);
1197 
1198 /* CRIU */
1199 /*
1200  * Need to increment KFD_CRIU_PRIV_VERSION each time a change is made to any of the CRIU private
1201  * structures:
1202  * kfd_criu_process_priv_data
1203  * kfd_criu_device_priv_data
1204  * kfd_criu_bo_priv_data
1205  * kfd_criu_queue_priv_data
1206  * kfd_criu_event_priv_data
1207  * kfd_criu_svm_range_priv_data
1208  */
1209 
1210 #define KFD_CRIU_PRIV_VERSION 1
1211 
1212 struct kfd_criu_process_priv_data {
1213 	uint32_t version;
1214 	uint32_t xnack_mode;
1215 };
1216 
1217 struct kfd_criu_device_priv_data {
1218 	/* For future use */
1219 	uint64_t reserved;
1220 };
1221 
1222 struct kfd_criu_bo_priv_data {
1223 	uint64_t user_addr;
1224 	uint32_t idr_handle;
1225 	uint32_t mapped_gpuids[MAX_GPU_INSTANCE];
1226 };
1227 
1228 /*
1229  * The first 4 bytes of kfd_criu_queue_priv_data, kfd_criu_event_priv_data,
1230  * kfd_criu_svm_range_priv_data is the object type
1231  */
1232 enum kfd_criu_object_type {
1233 	KFD_CRIU_OBJECT_TYPE_QUEUE,
1234 	KFD_CRIU_OBJECT_TYPE_EVENT,
1235 	KFD_CRIU_OBJECT_TYPE_SVM_RANGE,
1236 };
1237 
1238 struct kfd_criu_svm_range_priv_data {
1239 	uint32_t object_type;
1240 	uint64_t start_addr;
1241 	uint64_t size;
1242 	/* Variable length array of attributes */
1243 	struct kfd_ioctl_svm_attribute attrs[];
1244 };
1245 
1246 struct kfd_criu_queue_priv_data {
1247 	uint32_t object_type;
1248 	uint64_t q_address;
1249 	uint64_t q_size;
1250 	uint64_t read_ptr_addr;
1251 	uint64_t write_ptr_addr;
1252 	uint64_t doorbell_off;
1253 	uint64_t eop_ring_buffer_address;
1254 	uint64_t ctx_save_restore_area_address;
1255 	uint32_t gpu_id;
1256 	uint32_t type;
1257 	uint32_t format;
1258 	uint32_t q_id;
1259 	uint32_t priority;
1260 	uint32_t q_percent;
1261 	uint32_t doorbell_id;
1262 	uint32_t gws;
1263 	uint32_t sdma_id;
1264 	uint32_t eop_ring_buffer_size;
1265 	uint32_t ctx_save_restore_area_size;
1266 	uint32_t ctl_stack_size;
1267 	uint32_t mqd_size;
1268 };
1269 
1270 struct kfd_criu_event_priv_data {
1271 	uint32_t object_type;
1272 	uint64_t user_handle;
1273 	uint32_t event_id;
1274 	uint32_t auto_reset;
1275 	uint32_t type;
1276 	uint32_t signaled;
1277 
1278 	union {
1279 		struct kfd_hsa_memory_exception_data memory_exception_data;
1280 		struct kfd_hsa_hw_exception_data hw_exception_data;
1281 	};
1282 };
1283 
1284 int kfd_process_get_queue_info(struct kfd_process *p,
1285 			       uint32_t *num_queues,
1286 			       uint64_t *priv_data_sizes);
1287 
1288 int kfd_criu_checkpoint_queues(struct kfd_process *p,
1289 			 uint8_t __user *user_priv_data,
1290 			 uint64_t *priv_data_offset);
1291 
1292 int kfd_criu_restore_queue(struct kfd_process *p,
1293 			   uint8_t __user *user_priv_data,
1294 			   uint64_t *priv_data_offset,
1295 			   uint64_t max_priv_data_size);
1296 
1297 int kfd_criu_checkpoint_events(struct kfd_process *p,
1298 			 uint8_t __user *user_priv_data,
1299 			 uint64_t *priv_data_offset);
1300 
1301 int kfd_criu_restore_event(struct file *devkfd,
1302 			   struct kfd_process *p,
1303 			   uint8_t __user *user_priv_data,
1304 			   uint64_t *priv_data_offset,
1305 			   uint64_t max_priv_data_size);
1306 /* CRIU - End */
1307 
1308 /* Queue Context Management */
1309 int init_queue(struct queue **q, const struct queue_properties *properties);
1310 void uninit_queue(struct queue *q);
1311 void print_queue_properties(struct queue_properties *q);
1312 void print_queue(struct queue *q);
1313 int kfd_queue_buffer_get(struct amdgpu_vm *vm, void __user *addr, struct amdgpu_bo **pbo,
1314 			 u64 expected_size);
1315 void kfd_queue_buffer_put(struct amdgpu_bo **bo);
1316 int kfd_queue_acquire_buffers(struct kfd_process_device *pdd, struct queue_properties *properties);
1317 int kfd_queue_release_buffers(struct kfd_process_device *pdd, struct queue_properties *properties);
1318 void kfd_queue_unref_bo_va(struct amdgpu_vm *vm, struct amdgpu_bo **bo);
1319 int kfd_queue_unref_bo_vas(struct kfd_process_device *pdd,
1320 			   struct queue_properties *properties);
1321 void kfd_queue_ctx_save_restore_size(struct kfd_topology_device *dev);
1322 
1323 struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
1324 		struct kfd_node *dev);
1325 struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type,
1326 		struct kfd_node *dev);
1327 struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type,
1328 		struct kfd_node *dev);
1329 struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type,
1330 		struct kfd_node *dev);
1331 struct mqd_manager *mqd_manager_init_v11(enum KFD_MQD_TYPE type,
1332 		struct kfd_node *dev);
1333 struct mqd_manager *mqd_manager_init_v12(enum KFD_MQD_TYPE type,
1334 		struct kfd_node *dev);
1335 struct device_queue_manager *device_queue_manager_init(struct kfd_node *dev);
1336 void device_queue_manager_uninit(struct device_queue_manager *dqm);
1337 struct kernel_queue *kernel_queue_init(struct kfd_node *dev,
1338 					enum kfd_queue_type type);
1339 void kernel_queue_uninit(struct kernel_queue *kq);
1340 int kfd_evict_process_device(struct kfd_process_device *pdd);
1341 int kfd_dqm_suspend_bad_queue_mes(struct kfd_node *knode, u32 pasid, u32 doorbell_id);
1342 
1343 /* Process Queue Manager */
1344 struct process_queue_node {
1345 	struct queue *q;
1346 	struct kernel_queue *kq;
1347 	struct list_head process_queue_list;
1348 };
1349 
1350 void kfd_process_dequeue_from_device(struct kfd_process_device *pdd);
1351 void kfd_process_dequeue_from_all_devices(struct kfd_process *p);
1352 int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p);
1353 void pqm_uninit(struct process_queue_manager *pqm);
1354 int pqm_create_queue(struct process_queue_manager *pqm,
1355 			    struct kfd_node *dev,
1356 			    struct queue_properties *properties,
1357 			    unsigned int *qid,
1358 			    const struct kfd_criu_queue_priv_data *q_data,
1359 			    const void *restore_mqd,
1360 			    const void *restore_ctl_stack,
1361 			    uint32_t *p_doorbell_offset_in_process);
1362 int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid);
1363 int pqm_update_queue_properties(struct process_queue_manager *pqm, unsigned int qid,
1364 			struct queue_properties *p);
1365 int pqm_update_mqd(struct process_queue_manager *pqm, unsigned int qid,
1366 			struct mqd_update_info *minfo);
1367 int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid,
1368 			void *gws);
1369 struct queue *pqm_get_user_queue(struct process_queue_manager *pqm,
1370 						unsigned int qid);
1371 int pqm_get_wave_state(struct process_queue_manager *pqm,
1372 		       unsigned int qid,
1373 		       void __user *ctl_stack,
1374 		       u32 *ctl_stack_used_size,
1375 		       u32 *save_area_used_size);
1376 int pqm_get_queue_snapshot(struct process_queue_manager *pqm,
1377 			   uint64_t exception_clear_mask,
1378 			   void __user *buf,
1379 			   int *num_qss_entries,
1380 			   uint32_t *entry_size);
1381 
1382 int amdkfd_fence_wait_timeout(struct device_queue_manager *dqm,
1383 			      uint64_t fence_value,
1384 			      unsigned int timeout_ms);
1385 
1386 int pqm_get_queue_checkpoint_info(struct process_queue_manager *pqm,
1387 				  unsigned int qid,
1388 				  u32 *mqd_size,
1389 				  u32 *ctl_stack_size);
1390 /* Packet Manager */
1391 
1392 #define KFD_FENCE_COMPLETED (100)
1393 #define KFD_FENCE_INIT   (10)
1394 
1395 /**
1396  * enum kfd_config_dequeue_wait_counts_cmd - Command for configuring
1397  *  dequeue wait counts.
1398  *
1399  * @KFD_DEQUEUE_WAIT_INIT: Set optimized dequeue wait counts for a
1400  *	certain ASICs. For these ASICs, this is default value used by RESET
1401  * @KFD_DEQUEUE_WAIT_RESET: Reset dequeue wait counts to the optimized value
1402  *	for certain ASICs. For others set it to default hardware reset value
1403  * @KFD_DEQUEUE_WAIT_SET_SCH_WAVE: Set context switch latency wait
1404  *
1405  */
1406 enum kfd_config_dequeue_wait_counts_cmd {
1407 	KFD_DEQUEUE_WAIT_INIT = 1,
1408 	KFD_DEQUEUE_WAIT_RESET = 2,
1409 	KFD_DEQUEUE_WAIT_SET_SCH_WAVE = 3
1410 };
1411 
1412 
1413 struct packet_manager {
1414 	struct device_queue_manager *dqm;
1415 	struct kernel_queue *priv_queue;
1416 	struct mutex lock;
1417 	bool allocated;
1418 	struct kfd_mem_obj *ib_buffer_obj;
1419 	unsigned int ib_size_bytes;
1420 	bool is_over_subscription;
1421 
1422 	const struct packet_manager_funcs *pmf;
1423 };
1424 
1425 struct packet_manager_funcs {
1426 	/* Support ASIC-specific packet formats for PM4 packets */
1427 	int (*map_process)(struct packet_manager *pm, uint32_t *buffer,
1428 			struct qcm_process_device *qpd);
1429 	int (*runlist)(struct packet_manager *pm, uint32_t *buffer,
1430 			uint64_t ib, size_t ib_size_in_dwords, bool chain);
1431 	int (*set_resources)(struct packet_manager *pm, uint32_t *buffer,
1432 			struct scheduling_resources *res);
1433 	int (*map_queues)(struct packet_manager *pm, uint32_t *buffer,
1434 			struct queue *q, bool is_static);
1435 	int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer,
1436 			enum kfd_unmap_queues_filter mode,
1437 			uint32_t filter_param, bool reset);
1438 	int (*config_dequeue_wait_counts)(struct packet_manager *pm, uint32_t *buffer,
1439 			enum kfd_config_dequeue_wait_counts_cmd cmd, uint32_t value);
1440 	int (*query_status)(struct packet_manager *pm, uint32_t *buffer,
1441 			uint64_t fence_address,	uint64_t fence_value);
1442 	int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer);
1443 
1444 	/* Packet sizes */
1445 	int map_process_size;
1446 	int runlist_size;
1447 	int set_resources_size;
1448 	int map_queues_size;
1449 	int unmap_queues_size;
1450 	int config_dequeue_wait_counts_size;
1451 	int query_status_size;
1452 	int release_mem_size;
1453 };
1454 
1455 extern const struct packet_manager_funcs kfd_vi_pm_funcs;
1456 extern const struct packet_manager_funcs kfd_v9_pm_funcs;
1457 extern const struct packet_manager_funcs kfd_aldebaran_pm_funcs;
1458 
1459 int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm);
1460 void pm_uninit(struct packet_manager *pm);
1461 int pm_send_set_resources(struct packet_manager *pm,
1462 				struct scheduling_resources *res);
1463 int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues);
1464 int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address,
1465 				uint64_t fence_value);
1466 
1467 int pm_send_unmap_queue(struct packet_manager *pm,
1468 			enum kfd_unmap_queues_filter mode,
1469 			uint32_t filter_param, bool reset);
1470 
1471 void pm_release_ib(struct packet_manager *pm);
1472 
1473 int pm_config_dequeue_wait_counts(struct packet_manager *pm,
1474 			enum kfd_config_dequeue_wait_counts_cmd cmd,
1475 			uint32_t wait_counts_config);
1476 
1477 /* Following PM funcs can be shared among VI and AI */
1478 unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size);
1479 
1480 uint64_t kfd_get_number_elems(struct kfd_dev *kfd);
1481 
1482 /* Events */
1483 extern const struct kfd_event_interrupt_class event_interrupt_class_cik;
1484 extern const struct kfd_event_interrupt_class event_interrupt_class_v9;
1485 extern const struct kfd_event_interrupt_class event_interrupt_class_v9_4_3;
1486 extern const struct kfd_event_interrupt_class event_interrupt_class_v10;
1487 extern const struct kfd_event_interrupt_class event_interrupt_class_v11;
1488 
1489 extern const struct kfd_device_global_init_class device_global_init_class_cik;
1490 
1491 int kfd_event_init_process(struct kfd_process *p);
1492 void kfd_event_free_process(struct kfd_process *p);
1493 int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma);
1494 int kfd_wait_on_events(struct kfd_process *p,
1495 		       uint32_t num_events, void __user *data,
1496 		       bool all, uint32_t *user_timeout_ms,
1497 		       uint32_t *wait_result);
1498 void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id,
1499 				uint32_t valid_id_bits);
1500 void kfd_signal_hw_exception_event(u32 pasid);
1501 int kfd_set_event(struct kfd_process *p, uint32_t event_id);
1502 int kfd_reset_event(struct kfd_process *p, uint32_t event_id);
1503 int kfd_kmap_event_page(struct kfd_process *p, uint64_t event_page_offset);
1504 
1505 int kfd_event_create(struct file *devkfd, struct kfd_process *p,
1506 		     uint32_t event_type, bool auto_reset, uint32_t node_id,
1507 		     uint32_t *event_id, uint32_t *event_trigger_data,
1508 		     uint64_t *event_page_offset, uint32_t *event_slot_index);
1509 
1510 int kfd_get_num_events(struct kfd_process *p);
1511 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id);
1512 
1513 void kfd_signal_vm_fault_event_with_userptr(struct kfd_process *p, uint64_t gpu_va);
1514 
1515 void kfd_signal_vm_fault_event(struct kfd_process_device *pdd,
1516 				struct kfd_vm_fault_info *info,
1517 				struct kfd_hsa_memory_exception_data *data);
1518 
1519 void kfd_signal_reset_event(struct kfd_node *dev);
1520 
1521 void kfd_signal_poison_consumed_event(struct kfd_node *dev, u32 pasid);
1522 
1523 static inline void kfd_flush_tlb(struct kfd_process_device *pdd,
1524 				 enum TLB_FLUSH_TYPE type)
1525 {
1526 	struct amdgpu_device *adev = pdd->dev->adev;
1527 	struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv);
1528 
1529 	amdgpu_vm_flush_compute_tlb(adev, vm, type, pdd->dev->xcc_mask);
1530 }
1531 
1532 static inline bool kfd_flush_tlb_after_unmap(struct kfd_dev *dev)
1533 {
1534 	return KFD_GC_VERSION(dev) >= IP_VERSION(9, 4, 2) ||
1535 	       (KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 1) && dev->sdma_fw_version >= 18) ||
1536 	       KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 0);
1537 }
1538 
1539 int kfd_send_exception_to_runtime(struct kfd_process *p,
1540 				unsigned int queue_id,
1541 				uint64_t error_reason);
1542 bool kfd_is_locked(struct kfd_dev *kfd);
1543 
1544 /* Compute profile */
1545 void kfd_inc_compute_active(struct kfd_node *dev);
1546 void kfd_dec_compute_active(struct kfd_node *dev);
1547 
1548 /* Cgroup Support */
1549 /* Check with device cgroup if @kfd device is accessible */
1550 static inline int kfd_devcgroup_check_permission(struct kfd_node *node)
1551 {
1552 #if defined(CONFIG_CGROUP_DEVICE) || defined(CONFIG_CGROUP_BPF)
1553 	struct drm_device *ddev;
1554 
1555 	if (node->xcp)
1556 		ddev = node->xcp->ddev;
1557 	else
1558 		ddev = adev_to_drm(node->adev);
1559 
1560 	return devcgroup_check_permission(DEVCG_DEV_CHAR, DRM_MAJOR,
1561 					  ddev->render->index,
1562 					  DEVCG_ACC_WRITE | DEVCG_ACC_READ);
1563 #else
1564 	return 0;
1565 #endif
1566 }
1567 
1568 static inline bool kfd_is_first_node(struct kfd_node *node)
1569 {
1570 	return (node == node->kfd->nodes[0]);
1571 }
1572 
1573 /* Debugfs */
1574 #if defined(CONFIG_DEBUG_FS)
1575 
1576 void kfd_debugfs_init(void);
1577 void kfd_debugfs_fini(void);
1578 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data);
1579 int pqm_debugfs_mqds(struct seq_file *m, void *data);
1580 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data);
1581 int dqm_debugfs_hqds(struct seq_file *m, void *data);
1582 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data);
1583 int pm_debugfs_runlist(struct seq_file *m, void *data);
1584 
1585 int kfd_debugfs_hang_hws(struct kfd_node *dev);
1586 int pm_debugfs_hang_hws(struct packet_manager *pm);
1587 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm);
1588 
1589 void kfd_debugfs_add_process(struct kfd_process *p);
1590 void kfd_debugfs_remove_process(struct kfd_process *p);
1591 
1592 #else
1593 
1594 static inline void kfd_debugfs_init(void) {}
1595 static inline void kfd_debugfs_fini(void) {}
1596 static inline void kfd_debugfs_add_process(struct kfd_process *p) {}
1597 static inline void kfd_debugfs_remove_process(struct kfd_process *p) {}
1598 
1599 #endif
1600 
1601 #endif
1602