1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */ 2 /* 3 * Copyright 2014-2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #ifndef KFD_PRIV_H_INCLUDED 25 #define KFD_PRIV_H_INCLUDED 26 27 #include <linux/hashtable.h> 28 #include <linux/mmu_notifier.h> 29 #include <linux/memremap.h> 30 #include <linux/mutex.h> 31 #include <linux/types.h> 32 #include <linux/atomic.h> 33 #include <linux/workqueue.h> 34 #include <linux/spinlock.h> 35 #include <uapi/linux/kfd_ioctl.h> 36 #include <linux/idr.h> 37 #include <linux/kfifo.h> 38 #include <linux/seq_file.h> 39 #include <linux/kref.h> 40 #include <linux/sysfs.h> 41 #include <linux/device_cgroup.h> 42 #include <drm/drm_file.h> 43 #include <drm/drm_drv.h> 44 #include <drm/drm_device.h> 45 #include <drm/drm_ioctl.h> 46 #include <kgd_kfd_interface.h> 47 #include <linux/swap.h> 48 49 #include "amd_shared.h" 50 #include "amdgpu.h" 51 52 #define KFD_MAX_RING_ENTRY_SIZE 8 53 54 #define KFD_SYSFS_FILE_MODE 0444 55 56 /* GPU ID hash width in bits */ 57 #define KFD_GPU_ID_HASH_WIDTH 16 58 59 /* Use upper bits of mmap offset to store KFD driver specific information. 60 * BITS[63:62] - Encode MMAP type 61 * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to 62 * BITS[45:0] - MMAP offset value 63 * 64 * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these 65 * defines are w.r.t to PAGE_SIZE 66 */ 67 #define KFD_MMAP_TYPE_SHIFT 62 68 #define KFD_MMAP_TYPE_MASK (0x3ULL << KFD_MMAP_TYPE_SHIFT) 69 #define KFD_MMAP_TYPE_DOORBELL (0x3ULL << KFD_MMAP_TYPE_SHIFT) 70 #define KFD_MMAP_TYPE_EVENTS (0x2ULL << KFD_MMAP_TYPE_SHIFT) 71 #define KFD_MMAP_TYPE_RESERVED_MEM (0x1ULL << KFD_MMAP_TYPE_SHIFT) 72 #define KFD_MMAP_TYPE_MMIO (0x0ULL << KFD_MMAP_TYPE_SHIFT) 73 74 #define KFD_MMAP_GPU_ID_SHIFT 46 75 #define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \ 76 << KFD_MMAP_GPU_ID_SHIFT) 77 #define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\ 78 & KFD_MMAP_GPU_ID_MASK) 79 #define KFD_MMAP_GET_GPU_ID(offset) ((offset & KFD_MMAP_GPU_ID_MASK) \ 80 >> KFD_MMAP_GPU_ID_SHIFT) 81 82 /* 83 * When working with cp scheduler we should assign the HIQ manually or via 84 * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot 85 * definitions for Kaveri. In Kaveri only the first ME queues participates 86 * in the cp scheduling taking that in mind we set the HIQ slot in the 87 * second ME. 88 */ 89 #define KFD_CIK_HIQ_PIPE 4 90 #define KFD_CIK_HIQ_QUEUE 0 91 92 /* Macro for allocating structures */ 93 #define kfd_alloc_struct(ptr_to_struct) \ 94 ((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL)) 95 96 #define KFD_MAX_NUM_OF_PROCESSES 512 97 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024 98 99 /* 100 * Size of the per-process TBA+TMA buffer: 2 pages 101 * 102 * The first chunk is the TBA used for the CWSR ISA code. The second 103 * chunk is used as TMA for user-mode trap handler setup in daisy-chain mode. 104 */ 105 #define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2) 106 #define KFD_CWSR_TMA_OFFSET (PAGE_SIZE + 2048) 107 108 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE \ 109 (KFD_MAX_NUM_OF_PROCESSES * \ 110 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) 111 112 #define KFD_KERNEL_QUEUE_SIZE 2048 113 114 #define KFD_UNMAP_LATENCY_MS (4000) 115 116 #define KFD_MAX_SDMA_QUEUES 128 117 118 /* 119 * 512 = 0x200 120 * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the 121 * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA. 122 * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC 123 * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in 124 * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE. 125 */ 126 #define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512 127 128 /** 129 * enum kfd_ioctl_flags - KFD ioctl flags 130 * Various flags that can be set in &amdkfd_ioctl_desc.flags to control how 131 * userspace can use a given ioctl. 132 */ 133 enum kfd_ioctl_flags { 134 /* 135 * @KFD_IOC_FLAG_CHECKPOINT_RESTORE: 136 * Certain KFD ioctls such as AMDKFD_IOC_CRIU_OP can potentially 137 * perform privileged operations and load arbitrary data into MQDs and 138 * eventually HQD registers when the queue is mapped by HWS. In order to 139 * prevent this we should perform additional security checks. 140 * 141 * This is equivalent to callers with the CHECKPOINT_RESTORE capability. 142 * 143 * Note: Since earlier versions of docker do not support CHECKPOINT_RESTORE, 144 * we also allow ioctls with SYS_ADMIN capability. 145 */ 146 KFD_IOC_FLAG_CHECKPOINT_RESTORE = BIT(0), 147 }; 148 /* 149 * Kernel module parameter to specify maximum number of supported queues per 150 * device 151 */ 152 extern int max_num_of_queues_per_device; 153 154 155 /* Kernel module parameter to specify the scheduling policy */ 156 extern int sched_policy; 157 158 /* 159 * Kernel module parameter to specify the maximum process 160 * number per HW scheduler 161 */ 162 extern int hws_max_conc_proc; 163 164 extern int cwsr_enable; 165 166 /* 167 * Kernel module parameter to specify whether to send sigterm to HSA process on 168 * unhandled exception 169 */ 170 extern int send_sigterm; 171 172 /* 173 * This kernel module is used to simulate large bar machine on non-large bar 174 * enabled machines. 175 */ 176 extern int debug_largebar; 177 178 /* Set sh_mem_config.retry_disable on GFX v9 */ 179 extern int amdgpu_noretry; 180 181 /* Halt if HWS hang is detected */ 182 extern int halt_if_hws_hang; 183 184 /* Whether MEC FW support GWS barriers */ 185 extern bool hws_gws_support; 186 187 /* Queue preemption timeout in ms */ 188 extern int queue_preemption_timeout_ms; 189 190 /* 191 * Don't evict process queues on vm fault 192 */ 193 extern int amdgpu_no_queue_eviction_on_vm_fault; 194 195 /* Enable eviction debug messages */ 196 extern bool debug_evictions; 197 198 extern struct mutex kfd_processes_mutex; 199 200 enum cache_policy { 201 cache_policy_coherent, 202 cache_policy_noncoherent 203 }; 204 205 #define KFD_GC_VERSION(dev) (amdgpu_ip_version((dev)->adev, GC_HWIP, 0)) 206 #define KFD_IS_SOC15(dev) ((KFD_GC_VERSION(dev)) >= (IP_VERSION(9, 0, 1))) 207 #define KFD_SUPPORT_XNACK_PER_PROCESS(dev)\ 208 ((KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 2)) || \ 209 (KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 3)) || \ 210 (KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 4)) || \ 211 (KFD_GC_VERSION(dev) == IP_VERSION(9, 5, 0))) 212 213 struct kfd_node; 214 215 struct kfd_event_interrupt_class { 216 bool (*interrupt_isr)(struct kfd_node *dev, 217 const uint32_t *ih_ring_entry, uint32_t *patched_ihre, 218 bool *patched_flag); 219 void (*interrupt_wq)(struct kfd_node *dev, 220 const uint32_t *ih_ring_entry); 221 }; 222 223 struct kfd_device_info { 224 uint32_t gfx_target_version; 225 const struct kfd_event_interrupt_class *event_interrupt_class; 226 unsigned int max_pasid_bits; 227 unsigned int max_no_of_hqd; 228 unsigned int doorbell_size; 229 size_t ih_ring_entry_size; 230 uint8_t num_of_watch_points; 231 uint16_t mqd_size_aligned; 232 bool supports_cwsr; 233 bool needs_pci_atomics; 234 uint32_t no_atomic_fw_version; 235 unsigned int num_sdma_queues_per_engine; 236 unsigned int num_reserved_sdma_queues_per_engine; 237 DECLARE_BITMAP(reserved_sdma_queues_bitmap, KFD_MAX_SDMA_QUEUES); 238 }; 239 240 unsigned int kfd_get_num_sdma_engines(struct kfd_node *kdev); 241 unsigned int kfd_get_num_xgmi_sdma_engines(struct kfd_node *kdev); 242 243 struct kfd_mem_obj { 244 uint32_t range_start; 245 uint32_t range_end; 246 uint64_t gpu_addr; 247 uint32_t *cpu_ptr; 248 void *gtt_mem; 249 }; 250 251 struct kfd_vmid_info { 252 uint32_t first_vmid_kfd; 253 uint32_t last_vmid_kfd; 254 uint32_t vmid_num_kfd; 255 }; 256 257 #define MAX_KFD_NODES 8 258 259 struct kfd_dev; 260 261 struct kfd_node { 262 unsigned int node_id; 263 struct amdgpu_device *adev; /* Duplicated here along with keeping 264 * a copy in kfd_dev to save a hop 265 */ 266 const struct kfd2kgd_calls *kfd2kgd; /* Duplicated here along with 267 * keeping a copy in kfd_dev to 268 * save a hop 269 */ 270 struct kfd_vmid_info vm_info; 271 unsigned int id; /* topology stub index */ 272 uint32_t xcc_mask; /* Instance mask of XCCs present */ 273 struct amdgpu_xcp *xcp; 274 275 /* Interrupts */ 276 struct kfifo ih_fifo; 277 struct work_struct interrupt_work; 278 spinlock_t interrupt_lock; 279 280 /* 281 * Interrupts of interest to KFD are copied 282 * from the HW ring into a SW ring. 283 */ 284 bool interrupts_active; 285 uint32_t interrupt_bitmap; /* Only used for GFX 9.4.3 */ 286 287 /* QCM Device instance */ 288 struct device_queue_manager *dqm; 289 290 /* Global GWS resource shared between processes */ 291 void *gws; 292 293 /* Clients watching SMI events */ 294 struct list_head smi_clients; 295 spinlock_t smi_lock; 296 uint32_t reset_seq_num; 297 298 /* SRAM ECC flag */ 299 atomic_t sram_ecc_flag; 300 301 /*spm process id */ 302 unsigned int spm_pasid; 303 304 /* Maximum process number mapped to HW scheduler */ 305 unsigned int max_proc_per_quantum; 306 307 unsigned int compute_vmid_bitmap; 308 309 struct kfd_local_mem_info local_mem_info; 310 311 struct kfd_dev *kfd; 312 313 /* Track per device allocated watch points */ 314 uint32_t alloc_watch_ids; 315 spinlock_t watch_points_lock; 316 }; 317 318 struct kfd_dev { 319 struct amdgpu_device *adev; 320 321 struct kfd_device_info device_info; 322 323 u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells 324 * page used by kernel queue 325 */ 326 327 struct kgd2kfd_shared_resources shared_resources; 328 329 const struct kfd2kgd_calls *kfd2kgd; 330 struct mutex doorbell_mutex; 331 332 void *gtt_mem; 333 uint64_t gtt_start_gpu_addr; 334 void *gtt_start_cpu_ptr; 335 void *gtt_sa_bitmap; 336 struct mutex gtt_sa_lock; 337 unsigned int gtt_sa_chunk_size; 338 unsigned int gtt_sa_num_of_chunks; 339 340 bool init_complete; 341 342 /* Firmware versions */ 343 uint16_t mec_fw_version; 344 uint16_t mec2_fw_version; 345 uint16_t sdma_fw_version; 346 347 /* CWSR */ 348 bool cwsr_enabled; 349 const void *cwsr_isa; 350 unsigned int cwsr_isa_size; 351 352 /* xGMI */ 353 uint64_t hive_id; 354 355 bool pci_atomic_requested; 356 357 /* Compute Profile ref. count */ 358 atomic_t compute_profile; 359 360 struct ida doorbell_ida; 361 unsigned int max_doorbell_slices; 362 363 int noretry; 364 365 struct kfd_node *nodes[MAX_KFD_NODES]; 366 unsigned int num_nodes; 367 368 struct workqueue_struct *ih_wq; 369 370 /* Kernel doorbells for KFD device */ 371 struct amdgpu_bo *doorbells; 372 373 /* bitmap for dynamic doorbell allocation from doorbell object */ 374 unsigned long *doorbell_bitmap; 375 376 /* for dynamic partitioning */ 377 int kfd_dev_lock; 378 }; 379 380 enum kfd_mempool { 381 KFD_MEMPOOL_SYSTEM_CACHEABLE = 1, 382 KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2, 383 KFD_MEMPOOL_FRAMEBUFFER = 3, 384 }; 385 386 /* Character device interface */ 387 int kfd_chardev_init(void); 388 void kfd_chardev_exit(void); 389 390 /** 391 * enum kfd_unmap_queues_filter - Enum for queue filters. 392 * 393 * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the 394 * running queues list. 395 * 396 * @KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES: Preempts all non-static queues 397 * in the run list. 398 * 399 * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to 400 * specific process. 401 * 402 */ 403 enum kfd_unmap_queues_filter { 404 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES = 1, 405 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES = 2, 406 KFD_UNMAP_QUEUES_FILTER_BY_PASID = 3 407 }; 408 409 /** 410 * enum kfd_queue_type - Enum for various queue types. 411 * 412 * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type. 413 * 414 * @KFD_QUEUE_TYPE_SDMA: SDMA user mode queue type. 415 * 416 * @KFD_QUEUE_TYPE_HIQ: HIQ queue type. 417 * 418 * @KFD_QUEUE_TYPE_DIQ: DIQ queue type. 419 * 420 * @KFD_QUEUE_TYPE_SDMA_XGMI: Special SDMA queue for XGMI interface. 421 * 422 * @KFD_QUEUE_TYPE_SDMA_BY_ENG_ID: SDMA user mode queue with target SDMA engine ID. 423 */ 424 enum kfd_queue_type { 425 KFD_QUEUE_TYPE_COMPUTE, 426 KFD_QUEUE_TYPE_SDMA, 427 KFD_QUEUE_TYPE_HIQ, 428 KFD_QUEUE_TYPE_DIQ, 429 KFD_QUEUE_TYPE_SDMA_XGMI, 430 KFD_QUEUE_TYPE_SDMA_BY_ENG_ID 431 }; 432 433 enum kfd_queue_format { 434 KFD_QUEUE_FORMAT_PM4, 435 KFD_QUEUE_FORMAT_AQL 436 }; 437 438 enum KFD_QUEUE_PRIORITY { 439 KFD_QUEUE_PRIORITY_MINIMUM = 0, 440 KFD_QUEUE_PRIORITY_MAXIMUM = 15 441 }; 442 443 /** 444 * struct queue_properties 445 * 446 * @type: The queue type. 447 * 448 * @queue_id: Queue identifier. 449 * 450 * @queue_address: Queue ring buffer address. 451 * 452 * @queue_size: Queue ring buffer size. 453 * 454 * @priority: Defines the queue priority relative to other queues in the 455 * process. 456 * This is just an indication and HW scheduling may override the priority as 457 * necessary while keeping the relative prioritization. 458 * the priority granularity is from 0 to f which f is the highest priority. 459 * currently all queues are initialized with the highest priority. 460 * 461 * @queue_percent: This field is partially implemented and currently a zero in 462 * this field defines that the queue is non active. 463 * 464 * @read_ptr: User space address which points to the number of dwords the 465 * cp read from the ring buffer. This field updates automatically by the H/W. 466 * 467 * @write_ptr: Defines the number of dwords written to the ring buffer. 468 * 469 * @doorbell_ptr: Notifies the H/W of new packet written to the queue ring 470 * buffer. This field should be similar to write_ptr and the user should 471 * update this field after updating the write_ptr. 472 * 473 * @doorbell_off: The doorbell offset in the doorbell pci-bar. 474 * 475 * @is_interop: Defines if this is a interop queue. Interop queue means that 476 * the queue can access both graphics and compute resources. 477 * 478 * @is_evicted: Defines if the queue is evicted. Only active queues 479 * are evicted, rendering them inactive. 480 * 481 * @is_active: Defines if the queue is active or not. @is_active and 482 * @is_evicted are protected by the DQM lock. 483 * 484 * @is_gws: Defines if the queue has been updated to be GWS-capable or not. 485 * @is_gws should be protected by the DQM lock, since changing it can yield the 486 * possibility of updating DQM state on number of GWS queues. 487 * 488 * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid 489 * of the queue. 490 * 491 * This structure represents the queue properties for each queue no matter if 492 * it's user mode or kernel mode queue. 493 * 494 */ 495 496 struct queue_properties { 497 enum kfd_queue_type type; 498 enum kfd_queue_format format; 499 unsigned int queue_id; 500 uint64_t queue_address; 501 uint64_t queue_size; 502 uint32_t priority; 503 uint32_t queue_percent; 504 void __user *read_ptr; 505 void __user *write_ptr; 506 void __iomem *doorbell_ptr; 507 uint32_t doorbell_off; 508 bool is_interop; 509 bool is_evicted; 510 bool is_suspended; 511 bool is_being_destroyed; 512 bool is_active; 513 bool is_gws; 514 uint32_t pm4_target_xcc; 515 bool is_dbg_wa; 516 bool is_user_cu_masked; 517 /* Not relevant for user mode queues in cp scheduling */ 518 unsigned int vmid; 519 /* Relevant only for sdma queues*/ 520 uint32_t sdma_engine_id; 521 uint32_t sdma_queue_id; 522 uint32_t sdma_vm_addr; 523 /* Relevant only for VI */ 524 uint64_t eop_ring_buffer_address; 525 uint32_t eop_ring_buffer_size; 526 uint64_t ctx_save_restore_area_address; 527 uint32_t ctx_save_restore_area_size; 528 uint32_t ctl_stack_size; 529 uint64_t tba_addr; 530 uint64_t tma_addr; 531 uint64_t exception_status; 532 533 struct amdgpu_bo *wptr_bo; 534 struct amdgpu_bo *rptr_bo; 535 struct amdgpu_bo *ring_bo; 536 struct amdgpu_bo *eop_buf_bo; 537 struct amdgpu_bo *cwsr_bo; 538 }; 539 540 #define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 && \ 541 (q).queue_address != 0 && \ 542 (q).queue_percent > 0 && \ 543 !(q).is_evicted && \ 544 !(q).is_suspended) 545 546 enum mqd_update_flag { 547 UPDATE_FLAG_DBG_WA_ENABLE = 1, 548 UPDATE_FLAG_DBG_WA_DISABLE = 2, 549 UPDATE_FLAG_IS_GWS = 4, /* quirk for gfx9 IP */ 550 }; 551 552 struct mqd_update_info { 553 union { 554 struct { 555 uint32_t count; /* Must be a multiple of 32 */ 556 uint32_t *ptr; 557 } cu_mask; 558 }; 559 enum mqd_update_flag update_flag; 560 }; 561 562 /** 563 * struct queue 564 * 565 * @list: Queue linked list. 566 * 567 * @mqd: The queue MQD (memory queue descriptor). 568 * 569 * @mqd_mem_obj: The MQD local gpu memory object. 570 * 571 * @gart_mqd_addr: The MQD gart mc address. 572 * 573 * @properties: The queue properties. 574 * 575 * @mec: Used only in no cp scheduling mode and identifies to micro engine id 576 * that the queue should be executed on. 577 * 578 * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe 579 * id. 580 * 581 * @queue: Used only in no cp scheduliong mode and identifies the queue's slot. 582 * 583 * @process: The kfd process that created this queue. 584 * 585 * @device: The kfd device that created this queue. 586 * 587 * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL 588 * otherwise. 589 * 590 * This structure represents user mode compute queues. 591 * It contains all the necessary data to handle such queues. 592 * 593 */ 594 595 struct queue { 596 struct list_head list; 597 void *mqd; 598 struct kfd_mem_obj *mqd_mem_obj; 599 uint64_t gart_mqd_addr; 600 struct queue_properties properties; 601 602 uint32_t mec; 603 uint32_t pipe; 604 uint32_t queue; 605 606 unsigned int sdma_id; 607 unsigned int doorbell_id; 608 609 struct kfd_process *process; 610 struct kfd_node *device; 611 void *gws; 612 613 /* procfs */ 614 struct kobject kobj; 615 616 void *gang_ctx_bo; 617 uint64_t gang_ctx_gpu_addr; 618 void *gang_ctx_cpu_ptr; 619 620 struct amdgpu_bo *wptr_bo_gart; 621 }; 622 623 enum KFD_MQD_TYPE { 624 KFD_MQD_TYPE_HIQ = 0, /* for hiq */ 625 KFD_MQD_TYPE_CP, /* for cp queues and diq */ 626 KFD_MQD_TYPE_SDMA, /* for sdma queues */ 627 KFD_MQD_TYPE_DIQ, /* for diq */ 628 KFD_MQD_TYPE_MAX 629 }; 630 631 enum KFD_PIPE_PRIORITY { 632 KFD_PIPE_PRIORITY_CS_LOW = 0, 633 KFD_PIPE_PRIORITY_CS_MEDIUM, 634 KFD_PIPE_PRIORITY_CS_HIGH 635 }; 636 637 struct scheduling_resources { 638 unsigned int vmid_mask; 639 enum kfd_queue_type type; 640 uint64_t queue_mask; 641 uint64_t gws_mask; 642 uint32_t oac_mask; 643 uint32_t gds_heap_base; 644 uint32_t gds_heap_size; 645 }; 646 647 struct process_queue_manager { 648 /* data */ 649 struct kfd_process *process; 650 struct list_head queues; 651 unsigned long *queue_slot_bitmap; 652 }; 653 654 struct qcm_process_device { 655 /* The Device Queue Manager that owns this data */ 656 struct device_queue_manager *dqm; 657 struct process_queue_manager *pqm; 658 /* Queues list */ 659 struct list_head queues_list; 660 struct list_head priv_queue_list; 661 662 unsigned int queue_count; 663 unsigned int vmid; 664 bool is_debug; 665 unsigned int evicted; /* eviction counter, 0=active */ 666 667 /* This flag tells if we should reset all wavefronts on 668 * process termination 669 */ 670 bool reset_wavefronts; 671 672 /* This flag tells us if this process has a GWS-capable 673 * queue that will be mapped into the runlist. It's 674 * possible to request a GWS BO, but not have the queue 675 * currently mapped, and this changes how the MAP_PROCESS 676 * PM4 packet is configured. 677 */ 678 bool mapped_gws_queue; 679 680 /* All the memory management data should be here too */ 681 uint64_t gds_context_area; 682 /* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */ 683 uint64_t page_table_base; 684 uint32_t sh_mem_config; 685 uint32_t sh_mem_bases; 686 uint32_t sh_mem_ape1_base; 687 uint32_t sh_mem_ape1_limit; 688 uint32_t gds_size; 689 uint32_t num_gws; 690 uint32_t num_oac; 691 uint32_t sh_hidden_private_base; 692 693 /* CWSR memory */ 694 struct kgd_mem *cwsr_mem; 695 void *cwsr_kaddr; 696 uint64_t cwsr_base; 697 uint64_t tba_addr; 698 uint64_t tma_addr; 699 700 /* IB memory */ 701 struct kgd_mem *ib_mem; 702 uint64_t ib_base; 703 void *ib_kaddr; 704 705 /* doorbells for kfd process */ 706 struct amdgpu_bo *proc_doorbells; 707 708 /* bitmap for dynamic doorbell allocation from the bo */ 709 unsigned long *doorbell_bitmap; 710 }; 711 712 /* KFD Memory Eviction */ 713 714 /* Approx. wait time before attempting to restore evicted BOs */ 715 #define PROCESS_RESTORE_TIME_MS 100 716 /* Approx. back off time if restore fails due to lack of memory */ 717 #define PROCESS_BACK_OFF_TIME_MS 100 718 /* Approx. time before evicting the process again */ 719 #define PROCESS_ACTIVE_TIME_MS 10 720 721 /* 8 byte handle containing GPU ID in the most significant 4 bytes and 722 * idr_handle in the least significant 4 bytes 723 */ 724 #define MAKE_HANDLE(gpu_id, idr_handle) \ 725 (((uint64_t)(gpu_id) << 32) + idr_handle) 726 #define GET_GPU_ID(handle) (handle >> 32) 727 #define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF) 728 729 enum kfd_pdd_bound { 730 PDD_UNBOUND = 0, 731 PDD_BOUND, 732 PDD_BOUND_SUSPENDED, 733 }; 734 735 #define MAX_SYSFS_FILENAME_LEN 15 736 737 /* 738 * SDMA counter runs at 100MHz frequency. 739 * We display SDMA activity in microsecond granularity in sysfs. 740 * As a result, the divisor is 100. 741 */ 742 #define SDMA_ACTIVITY_DIVISOR 100 743 744 /* Data that is per-process-per device. */ 745 struct kfd_process_device { 746 /* The device that owns this data. */ 747 struct kfd_node *dev; 748 749 /* The process that owns this kfd_process_device. */ 750 struct kfd_process *process; 751 752 /* per-process-per device QCM data structure */ 753 struct qcm_process_device qpd; 754 755 /*Apertures*/ 756 uint64_t lds_base; 757 uint64_t lds_limit; 758 uint64_t gpuvm_base; 759 uint64_t gpuvm_limit; 760 uint64_t scratch_base; 761 uint64_t scratch_limit; 762 763 /* VM context for GPUVM allocations */ 764 struct file *drm_file; 765 void *drm_priv; 766 767 /* GPUVM allocations storage */ 768 struct idr alloc_idr; 769 770 /* Flag used to tell the pdd has dequeued from the dqm. 771 * This is used to prevent dev->dqm->ops.process_termination() from 772 * being called twice when it is already called in IOMMU callback 773 * function. 774 */ 775 bool already_dequeued; 776 bool runtime_inuse; 777 778 /* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */ 779 enum kfd_pdd_bound bound; 780 781 /* VRAM usage */ 782 atomic64_t vram_usage; 783 struct attribute attr_vram; 784 char vram_filename[MAX_SYSFS_FILENAME_LEN]; 785 786 /* SDMA activity tracking */ 787 uint64_t sdma_past_activity_counter; 788 struct attribute attr_sdma; 789 char sdma_filename[MAX_SYSFS_FILENAME_LEN]; 790 791 /* Eviction activity tracking */ 792 uint64_t last_evict_timestamp; 793 atomic64_t evict_duration_counter; 794 struct attribute attr_evict; 795 796 struct kobject *kobj_stats; 797 798 /* 799 * @cu_occupancy: Reports occupancy of Compute Units (CU) of a process 800 * that is associated with device encoded by "this" struct instance. The 801 * value reflects CU usage by all of the waves launched by this process 802 * on this device. A very important property of occupancy parameter is 803 * that its value is a snapshot of current use. 804 * 805 * Following is to be noted regarding how this parameter is reported: 806 * 807 * The number of waves that a CU can launch is limited by couple of 808 * parameters. These are encoded by struct amdgpu_cu_info instance 809 * that is part of every device definition. For GFX9 devices this 810 * translates to 40 waves (simd_per_cu * max_waves_per_simd) when waves 811 * do not use scratch memory and 32 waves (max_scratch_slots_per_cu) 812 * when they do use scratch memory. This could change for future 813 * devices and therefore this example should be considered as a guide. 814 * 815 * All CU's of a device are available for the process. This may not be true 816 * under certain conditions - e.g. CU masking. 817 * 818 * Finally number of CU's that are occupied by a process is affected by both 819 * number of CU's a device has along with number of other competing processes 820 */ 821 struct attribute attr_cu_occupancy; 822 823 /* sysfs counters for GPU retry fault and page migration tracking */ 824 struct kobject *kobj_counters; 825 struct attribute attr_faults; 826 struct attribute attr_page_in; 827 struct attribute attr_page_out; 828 uint64_t faults; 829 uint64_t page_in; 830 uint64_t page_out; 831 832 /* Exception code status*/ 833 uint64_t exception_status; 834 void *vm_fault_exc_data; 835 size_t vm_fault_exc_data_size; 836 837 /* Tracks debug per-vmid request settings */ 838 uint32_t spi_dbg_override; 839 uint32_t spi_dbg_launch_mode; 840 uint32_t watch_points[4]; 841 uint32_t alloc_watch_ids; 842 843 /* 844 * If this process has been checkpointed before, then the user 845 * application will use the original gpu_id on the 846 * checkpointed node to refer to this device. 847 */ 848 uint32_t user_gpu_id; 849 850 void *proc_ctx_bo; 851 uint64_t proc_ctx_gpu_addr; 852 void *proc_ctx_cpu_ptr; 853 854 /* Tracks queue reset status */ 855 bool has_reset_queue; 856 857 u32 pasid; 858 }; 859 860 #define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd) 861 862 struct svm_range_list { 863 struct mutex lock; 864 struct rb_root_cached objects; 865 struct list_head list; 866 struct work_struct deferred_list_work; 867 struct list_head deferred_range_list; 868 struct list_head criu_svm_metadata_list; 869 spinlock_t deferred_list_lock; 870 atomic_t evicted_ranges; 871 atomic_t drain_pagefaults; 872 struct delayed_work restore_work; 873 DECLARE_BITMAP(bitmap_supported, MAX_GPU_INSTANCE); 874 struct task_struct *faulting_task; 875 /* check point ts decides if page fault recovery need be dropped */ 876 uint64_t checkpoint_ts[MAX_GPU_INSTANCE]; 877 878 /* Default granularity to use in buffer migration 879 * and restoration of backing memory while handling 880 * recoverable page faults 881 */ 882 uint8_t default_granularity; 883 }; 884 885 /* Process data */ 886 struct kfd_process { 887 /* 888 * kfd_process are stored in an mm_struct*->kfd_process* 889 * hash table (kfd_processes in kfd_process.c) 890 */ 891 struct hlist_node kfd_processes; 892 893 /* 894 * Opaque pointer to mm_struct. We don't hold a reference to 895 * it so it should never be dereferenced from here. This is 896 * only used for looking up processes by their mm. 897 */ 898 void *mm; 899 900 struct kref ref; 901 struct work_struct release_work; 902 903 struct mutex mutex; 904 905 /* 906 * In any process, the thread that started main() is the lead 907 * thread and outlives the rest. 908 * It is here because amd_iommu_bind_pasid wants a task_struct. 909 * It can also be used for safely getting a reference to the 910 * mm_struct of the process. 911 */ 912 struct task_struct *lead_thread; 913 914 /* We want to receive a notification when the mm_struct is destroyed */ 915 struct mmu_notifier mmu_notifier; 916 917 /* 918 * Array of kfd_process_device pointers, 919 * one for each device the process is using. 920 */ 921 struct kfd_process_device *pdds[MAX_GPU_INSTANCE]; 922 uint32_t n_pdds; 923 924 struct process_queue_manager pqm; 925 926 /*Is the user space process 32 bit?*/ 927 bool is_32bit_user_mode; 928 929 /* Event-related data */ 930 struct mutex event_mutex; 931 /* Event ID allocator and lookup */ 932 struct idr event_idr; 933 /* Event page */ 934 u64 signal_handle; 935 struct kfd_signal_page *signal_page; 936 size_t signal_mapped_size; 937 size_t signal_event_count; 938 bool signal_event_limit_reached; 939 940 /* Information used for memory eviction */ 941 void *kgd_process_info; 942 /* Eviction fence that is attached to all the BOs of this process. The 943 * fence will be triggered during eviction and new one will be created 944 * during restore 945 */ 946 struct dma_fence __rcu *ef; 947 948 /* Work items for evicting and restoring BOs */ 949 struct delayed_work eviction_work; 950 struct delayed_work restore_work; 951 /* seqno of the last scheduled eviction */ 952 unsigned int last_eviction_seqno; 953 /* Approx. the last timestamp (in jiffies) when the process was 954 * restored after an eviction 955 */ 956 unsigned long last_restore_timestamp; 957 958 /* Indicates device process is debug attached with reserved vmid. */ 959 bool debug_trap_enabled; 960 961 /* per-process-per device debug event fd file */ 962 struct file *dbg_ev_file; 963 964 /* If the process is a kfd debugger, we need to know so we can clean 965 * up at exit time. If a process enables debugging on itself, it does 966 * its own clean-up, so we don't set the flag here. We track this by 967 * counting the number of processes this process is debugging. 968 */ 969 atomic_t debugged_process_count; 970 971 /* If the process is a debugged, this is the debugger process */ 972 struct kfd_process *debugger_process; 973 974 /* Kobj for our procfs */ 975 struct kobject *kobj; 976 struct kobject *kobj_queues; 977 struct attribute attr_pasid; 978 979 /* Keep track cwsr init */ 980 bool has_cwsr; 981 982 /* Exception code enable mask and status */ 983 uint64_t exception_enable_mask; 984 uint64_t exception_status; 985 986 /* Used to drain stale interrupts */ 987 wait_queue_head_t wait_irq_drain; 988 bool irq_drain_is_open; 989 990 /* shared virtual memory registered by this process */ 991 struct svm_range_list svms; 992 993 bool xnack_enabled; 994 995 /* Work area for debugger event writer worker. */ 996 struct work_struct debug_event_workarea; 997 998 /* Tracks debug per-vmid request for debug flags */ 999 u32 dbg_flags; 1000 1001 atomic_t poison; 1002 /* Queues are in paused stated because we are in the process of doing a CRIU checkpoint */ 1003 bool queues_paused; 1004 1005 /* Tracks runtime enable status */ 1006 struct semaphore runtime_enable_sema; 1007 bool is_runtime_retry; 1008 struct kfd_runtime_info runtime_info; 1009 1010 /* if gpu page fault sent to KFD */ 1011 bool gpu_page_fault; 1012 }; 1013 1014 #define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */ 1015 extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE); 1016 extern struct srcu_struct kfd_processes_srcu; 1017 1018 /** 1019 * typedef amdkfd_ioctl_t - typedef for ioctl function pointer. 1020 * 1021 * @filep: pointer to file structure. 1022 * @p: amdkfd process pointer. 1023 * @data: pointer to arg that was copied from user. 1024 * 1025 * Return: returns ioctl completion code. 1026 */ 1027 typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p, 1028 void *data); 1029 1030 struct amdkfd_ioctl_desc { 1031 unsigned int cmd; 1032 int flags; 1033 amdkfd_ioctl_t *func; 1034 unsigned int cmd_drv; 1035 const char *name; 1036 }; 1037 bool kfd_dev_is_large_bar(struct kfd_node *dev); 1038 1039 int kfd_process_create_wq(void); 1040 void kfd_process_destroy_wq(void); 1041 void kfd_cleanup_processes(void); 1042 struct kfd_process *kfd_create_process(struct task_struct *thread); 1043 struct kfd_process *kfd_get_process(const struct task_struct *task); 1044 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid, 1045 struct kfd_process_device **pdd); 1046 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm); 1047 1048 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id); 1049 int kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node, 1050 uint32_t *gpuid, uint32_t *gpuidx); 1051 static inline int kfd_process_gpuid_from_gpuidx(struct kfd_process *p, 1052 uint32_t gpuidx, uint32_t *gpuid) { 1053 return gpuidx < p->n_pdds ? p->pdds[gpuidx]->dev->id : -EINVAL; 1054 } 1055 static inline struct kfd_process_device *kfd_process_device_from_gpuidx( 1056 struct kfd_process *p, uint32_t gpuidx) { 1057 return gpuidx < p->n_pdds ? p->pdds[gpuidx] : NULL; 1058 } 1059 1060 void kfd_unref_process(struct kfd_process *p); 1061 int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger); 1062 int kfd_process_restore_queues(struct kfd_process *p); 1063 void kfd_suspend_all_processes(void); 1064 int kfd_resume_all_processes(void); 1065 1066 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *process, 1067 uint32_t gpu_id); 1068 1069 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id); 1070 1071 int kfd_process_device_init_vm(struct kfd_process_device *pdd, 1072 struct file *drm_file); 1073 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev, 1074 struct kfd_process *p); 1075 struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev, 1076 struct kfd_process *p); 1077 struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev, 1078 struct kfd_process *p); 1079 1080 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported); 1081 1082 int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process, 1083 struct vm_area_struct *vma); 1084 1085 /* KFD process API for creating and translating handles */ 1086 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd, 1087 void *mem); 1088 void *kfd_process_device_translate_handle(struct kfd_process_device *p, 1089 int handle); 1090 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd, 1091 int handle); 1092 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid); 1093 1094 /* PASIDs */ 1095 int kfd_pasid_init(void); 1096 void kfd_pasid_exit(void); 1097 u32 kfd_pasid_alloc(void); 1098 void kfd_pasid_free(u32 pasid); 1099 1100 /* Doorbells */ 1101 size_t kfd_doorbell_process_slice(struct kfd_dev *kfd); 1102 int kfd_doorbell_init(struct kfd_dev *kfd); 1103 void kfd_doorbell_fini(struct kfd_dev *kfd); 1104 int kfd_doorbell_mmap(struct kfd_node *dev, struct kfd_process *process, 1105 struct vm_area_struct *vma); 1106 void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd, 1107 unsigned int *doorbell_off); 1108 void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr); 1109 u32 read_kernel_doorbell(u32 __iomem *db); 1110 void write_kernel_doorbell(void __iomem *db, u32 value); 1111 void write_kernel_doorbell64(void __iomem *db, u64 value); 1112 unsigned int kfd_get_doorbell_dw_offset_in_bar(struct kfd_dev *kfd, 1113 struct kfd_process_device *pdd, 1114 unsigned int doorbell_id); 1115 phys_addr_t kfd_get_process_doorbells(struct kfd_process_device *pdd); 1116 int kfd_alloc_process_doorbells(struct kfd_dev *kfd, 1117 struct kfd_process_device *pdd); 1118 void kfd_free_process_doorbells(struct kfd_dev *kfd, 1119 struct kfd_process_device *pdd); 1120 /* GTT Sub-Allocator */ 1121 1122 int kfd_gtt_sa_allocate(struct kfd_node *node, unsigned int size, 1123 struct kfd_mem_obj **mem_obj); 1124 1125 int kfd_gtt_sa_free(struct kfd_node *node, struct kfd_mem_obj *mem_obj); 1126 1127 extern struct device *kfd_device; 1128 1129 /* KFD's procfs */ 1130 void kfd_procfs_init(void); 1131 void kfd_procfs_shutdown(void); 1132 int kfd_procfs_add_queue(struct queue *q); 1133 void kfd_procfs_del_queue(struct queue *q); 1134 1135 /* Topology */ 1136 int kfd_topology_init(void); 1137 void kfd_topology_shutdown(void); 1138 int kfd_topology_add_device(struct kfd_node *gpu); 1139 int kfd_topology_remove_device(struct kfd_node *gpu); 1140 struct kfd_topology_device *kfd_topology_device_by_proximity_domain( 1141 uint32_t proximity_domain); 1142 struct kfd_topology_device *kfd_topology_device_by_proximity_domain_no_lock( 1143 uint32_t proximity_domain); 1144 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id); 1145 struct kfd_node *kfd_device_by_id(uint32_t gpu_id); 1146 static inline bool kfd_irq_is_from_node(struct kfd_node *node, uint32_t node_id, 1147 uint32_t vmid) 1148 { 1149 return (node->interrupt_bitmap & (1 << node_id)) != 0 && 1150 (node->compute_vmid_bitmap & (1 << vmid)) != 0; 1151 } 1152 static inline struct kfd_node *kfd_node_by_irq_ids(struct amdgpu_device *adev, 1153 uint32_t node_id, uint32_t vmid) { 1154 struct kfd_dev *dev = adev->kfd.dev; 1155 uint32_t i; 1156 1157 if (KFD_GC_VERSION(dev) != IP_VERSION(9, 4, 3) && 1158 KFD_GC_VERSION(dev) != IP_VERSION(9, 4, 4) && 1159 KFD_GC_VERSION(dev) != IP_VERSION(9, 5, 0)) 1160 return dev->nodes[0]; 1161 1162 for (i = 0; i < dev->num_nodes; i++) 1163 if (kfd_irq_is_from_node(dev->nodes[i], node_id, vmid)) 1164 return dev->nodes[i]; 1165 1166 return NULL; 1167 } 1168 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_node **kdev); 1169 int kfd_numa_node_to_apic_id(int numa_node_id); 1170 1171 /* Interrupts */ 1172 #define KFD_IRQ_FENCE_CLIENTID 0xff 1173 #define KFD_IRQ_FENCE_SOURCEID 0xff 1174 #define KFD_IRQ_IS_FENCE(client, source) \ 1175 ((client) == KFD_IRQ_FENCE_CLIENTID && \ 1176 (source) == KFD_IRQ_FENCE_SOURCEID) 1177 int kfd_interrupt_init(struct kfd_node *dev); 1178 void kfd_interrupt_exit(struct kfd_node *dev); 1179 bool enqueue_ih_ring_entry(struct kfd_node *kfd, const void *ih_ring_entry); 1180 bool interrupt_is_wanted(struct kfd_node *dev, 1181 const uint32_t *ih_ring_entry, 1182 uint32_t *patched_ihre, bool *flag); 1183 int kfd_process_drain_interrupts(struct kfd_process_device *pdd); 1184 void kfd_process_close_interrupt_drain(unsigned int pasid); 1185 1186 /* amdkfd Apertures */ 1187 int kfd_init_apertures(struct kfd_process *process); 1188 1189 void kfd_process_set_trap_handler(struct qcm_process_device *qpd, 1190 uint64_t tba_addr, 1191 uint64_t tma_addr); 1192 void kfd_process_set_trap_debug_flag(struct qcm_process_device *qpd, 1193 bool enabled); 1194 1195 /* CWSR initialization */ 1196 int kfd_process_init_cwsr_apu(struct kfd_process *process, struct file *filep); 1197 1198 /* CRIU */ 1199 /* 1200 * Need to increment KFD_CRIU_PRIV_VERSION each time a change is made to any of the CRIU private 1201 * structures: 1202 * kfd_criu_process_priv_data 1203 * kfd_criu_device_priv_data 1204 * kfd_criu_bo_priv_data 1205 * kfd_criu_queue_priv_data 1206 * kfd_criu_event_priv_data 1207 * kfd_criu_svm_range_priv_data 1208 */ 1209 1210 #define KFD_CRIU_PRIV_VERSION 1 1211 1212 struct kfd_criu_process_priv_data { 1213 uint32_t version; 1214 uint32_t xnack_mode; 1215 }; 1216 1217 struct kfd_criu_device_priv_data { 1218 /* For future use */ 1219 uint64_t reserved; 1220 }; 1221 1222 struct kfd_criu_bo_priv_data { 1223 uint64_t user_addr; 1224 uint32_t idr_handle; 1225 uint32_t mapped_gpuids[MAX_GPU_INSTANCE]; 1226 }; 1227 1228 /* 1229 * The first 4 bytes of kfd_criu_queue_priv_data, kfd_criu_event_priv_data, 1230 * kfd_criu_svm_range_priv_data is the object type 1231 */ 1232 enum kfd_criu_object_type { 1233 KFD_CRIU_OBJECT_TYPE_QUEUE, 1234 KFD_CRIU_OBJECT_TYPE_EVENT, 1235 KFD_CRIU_OBJECT_TYPE_SVM_RANGE, 1236 }; 1237 1238 struct kfd_criu_svm_range_priv_data { 1239 uint32_t object_type; 1240 uint64_t start_addr; 1241 uint64_t size; 1242 /* Variable length array of attributes */ 1243 struct kfd_ioctl_svm_attribute attrs[]; 1244 }; 1245 1246 struct kfd_criu_queue_priv_data { 1247 uint32_t object_type; 1248 uint64_t q_address; 1249 uint64_t q_size; 1250 uint64_t read_ptr_addr; 1251 uint64_t write_ptr_addr; 1252 uint64_t doorbell_off; 1253 uint64_t eop_ring_buffer_address; 1254 uint64_t ctx_save_restore_area_address; 1255 uint32_t gpu_id; 1256 uint32_t type; 1257 uint32_t format; 1258 uint32_t q_id; 1259 uint32_t priority; 1260 uint32_t q_percent; 1261 uint32_t doorbell_id; 1262 uint32_t gws; 1263 uint32_t sdma_id; 1264 uint32_t eop_ring_buffer_size; 1265 uint32_t ctx_save_restore_area_size; 1266 uint32_t ctl_stack_size; 1267 uint32_t mqd_size; 1268 }; 1269 1270 struct kfd_criu_event_priv_data { 1271 uint32_t object_type; 1272 uint64_t user_handle; 1273 uint32_t event_id; 1274 uint32_t auto_reset; 1275 uint32_t type; 1276 uint32_t signaled; 1277 1278 union { 1279 struct kfd_hsa_memory_exception_data memory_exception_data; 1280 struct kfd_hsa_hw_exception_data hw_exception_data; 1281 }; 1282 }; 1283 1284 int kfd_process_get_queue_info(struct kfd_process *p, 1285 uint32_t *num_queues, 1286 uint64_t *priv_data_sizes); 1287 1288 int kfd_criu_checkpoint_queues(struct kfd_process *p, 1289 uint8_t __user *user_priv_data, 1290 uint64_t *priv_data_offset); 1291 1292 int kfd_criu_restore_queue(struct kfd_process *p, 1293 uint8_t __user *user_priv_data, 1294 uint64_t *priv_data_offset, 1295 uint64_t max_priv_data_size); 1296 1297 int kfd_criu_checkpoint_events(struct kfd_process *p, 1298 uint8_t __user *user_priv_data, 1299 uint64_t *priv_data_offset); 1300 1301 int kfd_criu_restore_event(struct file *devkfd, 1302 struct kfd_process *p, 1303 uint8_t __user *user_priv_data, 1304 uint64_t *priv_data_offset, 1305 uint64_t max_priv_data_size); 1306 /* CRIU - End */ 1307 1308 /* Queue Context Management */ 1309 int init_queue(struct queue **q, const struct queue_properties *properties); 1310 void uninit_queue(struct queue *q); 1311 void print_queue_properties(struct queue_properties *q); 1312 void print_queue(struct queue *q); 1313 int kfd_queue_buffer_get(struct amdgpu_vm *vm, void __user *addr, struct amdgpu_bo **pbo, 1314 u64 expected_size); 1315 void kfd_queue_buffer_put(struct amdgpu_bo **bo); 1316 int kfd_queue_acquire_buffers(struct kfd_process_device *pdd, struct queue_properties *properties); 1317 int kfd_queue_release_buffers(struct kfd_process_device *pdd, struct queue_properties *properties); 1318 void kfd_queue_unref_bo_va(struct amdgpu_vm *vm, struct amdgpu_bo **bo); 1319 int kfd_queue_unref_bo_vas(struct kfd_process_device *pdd, 1320 struct queue_properties *properties); 1321 void kfd_queue_ctx_save_restore_size(struct kfd_topology_device *dev); 1322 1323 struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type, 1324 struct kfd_node *dev); 1325 struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type, 1326 struct kfd_node *dev); 1327 struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type, 1328 struct kfd_node *dev); 1329 struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type, 1330 struct kfd_node *dev); 1331 struct mqd_manager *mqd_manager_init_v11(enum KFD_MQD_TYPE type, 1332 struct kfd_node *dev); 1333 struct mqd_manager *mqd_manager_init_v12(enum KFD_MQD_TYPE type, 1334 struct kfd_node *dev); 1335 struct device_queue_manager *device_queue_manager_init(struct kfd_node *dev); 1336 void device_queue_manager_uninit(struct device_queue_manager *dqm); 1337 struct kernel_queue *kernel_queue_init(struct kfd_node *dev, 1338 enum kfd_queue_type type); 1339 void kernel_queue_uninit(struct kernel_queue *kq); 1340 int kfd_evict_process_device(struct kfd_process_device *pdd); 1341 int kfd_dqm_suspend_bad_queue_mes(struct kfd_node *knode, u32 pasid, u32 doorbell_id); 1342 1343 /* Process Queue Manager */ 1344 struct process_queue_node { 1345 struct queue *q; 1346 struct kernel_queue *kq; 1347 struct list_head process_queue_list; 1348 }; 1349 1350 void kfd_process_dequeue_from_device(struct kfd_process_device *pdd); 1351 void kfd_process_dequeue_from_all_devices(struct kfd_process *p); 1352 int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p); 1353 void pqm_uninit(struct process_queue_manager *pqm); 1354 int pqm_create_queue(struct process_queue_manager *pqm, 1355 struct kfd_node *dev, 1356 struct queue_properties *properties, 1357 unsigned int *qid, 1358 const struct kfd_criu_queue_priv_data *q_data, 1359 const void *restore_mqd, 1360 const void *restore_ctl_stack, 1361 uint32_t *p_doorbell_offset_in_process); 1362 int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid); 1363 int pqm_update_queue_properties(struct process_queue_manager *pqm, unsigned int qid, 1364 struct queue_properties *p); 1365 int pqm_update_mqd(struct process_queue_manager *pqm, unsigned int qid, 1366 struct mqd_update_info *minfo); 1367 int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid, 1368 void *gws); 1369 struct queue *pqm_get_user_queue(struct process_queue_manager *pqm, 1370 unsigned int qid); 1371 int pqm_get_wave_state(struct process_queue_manager *pqm, 1372 unsigned int qid, 1373 void __user *ctl_stack, 1374 u32 *ctl_stack_used_size, 1375 u32 *save_area_used_size); 1376 int pqm_get_queue_snapshot(struct process_queue_manager *pqm, 1377 uint64_t exception_clear_mask, 1378 void __user *buf, 1379 int *num_qss_entries, 1380 uint32_t *entry_size); 1381 1382 int amdkfd_fence_wait_timeout(struct device_queue_manager *dqm, 1383 uint64_t fence_value, 1384 unsigned int timeout_ms); 1385 1386 int pqm_get_queue_checkpoint_info(struct process_queue_manager *pqm, 1387 unsigned int qid, 1388 u32 *mqd_size, 1389 u32 *ctl_stack_size); 1390 /* Packet Manager */ 1391 1392 #define KFD_FENCE_COMPLETED (100) 1393 #define KFD_FENCE_INIT (10) 1394 1395 /** 1396 * enum kfd_config_dequeue_wait_counts_cmd - Command for configuring 1397 * dequeue wait counts. 1398 * 1399 * @KFD_DEQUEUE_WAIT_INIT: Set optimized dequeue wait counts for a 1400 * certain ASICs. For these ASICs, this is default value used by RESET 1401 * @KFD_DEQUEUE_WAIT_RESET: Reset dequeue wait counts to the optimized value 1402 * for certain ASICs. For others set it to default hardware reset value 1403 * @KFD_DEQUEUE_WAIT_SET_SCH_WAVE: Set context switch latency wait 1404 * 1405 */ 1406 enum kfd_config_dequeue_wait_counts_cmd { 1407 KFD_DEQUEUE_WAIT_INIT = 1, 1408 KFD_DEQUEUE_WAIT_RESET = 2, 1409 KFD_DEQUEUE_WAIT_SET_SCH_WAVE = 3 1410 }; 1411 1412 1413 struct packet_manager { 1414 struct device_queue_manager *dqm; 1415 struct kernel_queue *priv_queue; 1416 struct mutex lock; 1417 bool allocated; 1418 struct kfd_mem_obj *ib_buffer_obj; 1419 unsigned int ib_size_bytes; 1420 bool is_over_subscription; 1421 1422 const struct packet_manager_funcs *pmf; 1423 }; 1424 1425 struct packet_manager_funcs { 1426 /* Support ASIC-specific packet formats for PM4 packets */ 1427 int (*map_process)(struct packet_manager *pm, uint32_t *buffer, 1428 struct qcm_process_device *qpd); 1429 int (*runlist)(struct packet_manager *pm, uint32_t *buffer, 1430 uint64_t ib, size_t ib_size_in_dwords, bool chain); 1431 int (*set_resources)(struct packet_manager *pm, uint32_t *buffer, 1432 struct scheduling_resources *res); 1433 int (*map_queues)(struct packet_manager *pm, uint32_t *buffer, 1434 struct queue *q, bool is_static); 1435 int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer, 1436 enum kfd_unmap_queues_filter mode, 1437 uint32_t filter_param, bool reset); 1438 int (*config_dequeue_wait_counts)(struct packet_manager *pm, uint32_t *buffer, 1439 enum kfd_config_dequeue_wait_counts_cmd cmd, uint32_t value); 1440 int (*query_status)(struct packet_manager *pm, uint32_t *buffer, 1441 uint64_t fence_address, uint64_t fence_value); 1442 int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer); 1443 1444 /* Packet sizes */ 1445 int map_process_size; 1446 int runlist_size; 1447 int set_resources_size; 1448 int map_queues_size; 1449 int unmap_queues_size; 1450 int config_dequeue_wait_counts_size; 1451 int query_status_size; 1452 int release_mem_size; 1453 }; 1454 1455 extern const struct packet_manager_funcs kfd_vi_pm_funcs; 1456 extern const struct packet_manager_funcs kfd_v9_pm_funcs; 1457 extern const struct packet_manager_funcs kfd_aldebaran_pm_funcs; 1458 1459 int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm); 1460 void pm_uninit(struct packet_manager *pm); 1461 int pm_send_set_resources(struct packet_manager *pm, 1462 struct scheduling_resources *res); 1463 int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues); 1464 int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address, 1465 uint64_t fence_value); 1466 1467 int pm_send_unmap_queue(struct packet_manager *pm, 1468 enum kfd_unmap_queues_filter mode, 1469 uint32_t filter_param, bool reset); 1470 1471 void pm_release_ib(struct packet_manager *pm); 1472 1473 int pm_config_dequeue_wait_counts(struct packet_manager *pm, 1474 enum kfd_config_dequeue_wait_counts_cmd cmd, 1475 uint32_t wait_counts_config); 1476 1477 /* Following PM funcs can be shared among VI and AI */ 1478 unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size); 1479 1480 uint64_t kfd_get_number_elems(struct kfd_dev *kfd); 1481 1482 /* Events */ 1483 extern const struct kfd_event_interrupt_class event_interrupt_class_cik; 1484 extern const struct kfd_event_interrupt_class event_interrupt_class_v9; 1485 extern const struct kfd_event_interrupt_class event_interrupt_class_v9_4_3; 1486 extern const struct kfd_event_interrupt_class event_interrupt_class_v10; 1487 extern const struct kfd_event_interrupt_class event_interrupt_class_v11; 1488 1489 extern const struct kfd_device_global_init_class device_global_init_class_cik; 1490 1491 int kfd_event_init_process(struct kfd_process *p); 1492 void kfd_event_free_process(struct kfd_process *p); 1493 int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma); 1494 int kfd_wait_on_events(struct kfd_process *p, 1495 uint32_t num_events, void __user *data, 1496 bool all, uint32_t *user_timeout_ms, 1497 uint32_t *wait_result); 1498 void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id, 1499 uint32_t valid_id_bits); 1500 void kfd_signal_hw_exception_event(u32 pasid); 1501 int kfd_set_event(struct kfd_process *p, uint32_t event_id); 1502 int kfd_reset_event(struct kfd_process *p, uint32_t event_id); 1503 int kfd_kmap_event_page(struct kfd_process *p, uint64_t event_page_offset); 1504 1505 int kfd_event_create(struct file *devkfd, struct kfd_process *p, 1506 uint32_t event_type, bool auto_reset, uint32_t node_id, 1507 uint32_t *event_id, uint32_t *event_trigger_data, 1508 uint64_t *event_page_offset, uint32_t *event_slot_index); 1509 1510 int kfd_get_num_events(struct kfd_process *p); 1511 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id); 1512 1513 void kfd_signal_vm_fault_event_with_userptr(struct kfd_process *p, uint64_t gpu_va); 1514 1515 void kfd_signal_vm_fault_event(struct kfd_process_device *pdd, 1516 struct kfd_vm_fault_info *info, 1517 struct kfd_hsa_memory_exception_data *data); 1518 1519 void kfd_signal_reset_event(struct kfd_node *dev); 1520 1521 void kfd_signal_poison_consumed_event(struct kfd_node *dev, u32 pasid); 1522 1523 static inline void kfd_flush_tlb(struct kfd_process_device *pdd, 1524 enum TLB_FLUSH_TYPE type) 1525 { 1526 struct amdgpu_device *adev = pdd->dev->adev; 1527 struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv); 1528 1529 amdgpu_vm_flush_compute_tlb(adev, vm, type, pdd->dev->xcc_mask); 1530 } 1531 1532 static inline bool kfd_flush_tlb_after_unmap(struct kfd_dev *dev) 1533 { 1534 return KFD_GC_VERSION(dev) >= IP_VERSION(9, 4, 2) || 1535 (KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 1) && dev->sdma_fw_version >= 18) || 1536 KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 0); 1537 } 1538 1539 int kfd_send_exception_to_runtime(struct kfd_process *p, 1540 unsigned int queue_id, 1541 uint64_t error_reason); 1542 bool kfd_is_locked(struct kfd_dev *kfd); 1543 1544 /* Compute profile */ 1545 void kfd_inc_compute_active(struct kfd_node *dev); 1546 void kfd_dec_compute_active(struct kfd_node *dev); 1547 1548 /* Cgroup Support */ 1549 /* Check with device cgroup if @kfd device is accessible */ 1550 static inline int kfd_devcgroup_check_permission(struct kfd_node *node) 1551 { 1552 #if defined(CONFIG_CGROUP_DEVICE) || defined(CONFIG_CGROUP_BPF) 1553 struct drm_device *ddev; 1554 1555 if (node->xcp) 1556 ddev = node->xcp->ddev; 1557 else 1558 ddev = adev_to_drm(node->adev); 1559 1560 return devcgroup_check_permission(DEVCG_DEV_CHAR, DRM_MAJOR, 1561 ddev->render->index, 1562 DEVCG_ACC_WRITE | DEVCG_ACC_READ); 1563 #else 1564 return 0; 1565 #endif 1566 } 1567 1568 static inline bool kfd_is_first_node(struct kfd_node *node) 1569 { 1570 return (node == node->kfd->nodes[0]); 1571 } 1572 1573 /* Debugfs */ 1574 #if defined(CONFIG_DEBUG_FS) 1575 1576 void kfd_debugfs_init(void); 1577 void kfd_debugfs_fini(void); 1578 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data); 1579 int pqm_debugfs_mqds(struct seq_file *m, void *data); 1580 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data); 1581 int dqm_debugfs_hqds(struct seq_file *m, void *data); 1582 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data); 1583 int pm_debugfs_runlist(struct seq_file *m, void *data); 1584 1585 int kfd_debugfs_hang_hws(struct kfd_node *dev); 1586 int pm_debugfs_hang_hws(struct packet_manager *pm); 1587 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm); 1588 1589 void kfd_debugfs_add_process(struct kfd_process *p); 1590 void kfd_debugfs_remove_process(struct kfd_process *p); 1591 1592 #else 1593 1594 static inline void kfd_debugfs_init(void) {} 1595 static inline void kfd_debugfs_fini(void) {} 1596 static inline void kfd_debugfs_add_process(struct kfd_process *p) {} 1597 static inline void kfd_debugfs_remove_process(struct kfd_process *p) {} 1598 1599 #endif 1600 1601 #endif 1602