xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_priv.h (revision 68a052239fc4b351e961f698b824f7654a346091)
1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #ifndef KFD_PRIV_H_INCLUDED
25 #define KFD_PRIV_H_INCLUDED
26 
27 #include <linux/hashtable.h>
28 #include <linux/mmu_notifier.h>
29 #include <linux/memremap.h>
30 #include <linux/mutex.h>
31 #include <linux/types.h>
32 #include <linux/atomic.h>
33 #include <linux/workqueue.h>
34 #include <linux/spinlock.h>
35 #include <uapi/linux/kfd_ioctl.h>
36 #include <linux/idr.h>
37 #include <linux/kfifo.h>
38 #include <linux/seq_file.h>
39 #include <linux/kref.h>
40 #include <linux/sysfs.h>
41 #include <linux/device_cgroup.h>
42 #include <drm/drm_file.h>
43 #include <drm/drm_drv.h>
44 #include <drm/drm_device.h>
45 #include <drm/drm_ioctl.h>
46 #include <kgd_kfd_interface.h>
47 #include <linux/swap.h>
48 
49 #include "amd_shared.h"
50 #include "amdgpu.h"
51 
52 #define KFD_MAX_RING_ENTRY_SIZE	8
53 
54 #define KFD_SYSFS_FILE_MODE 0444
55 
56 /* GPU ID hash width in bits */
57 #define KFD_GPU_ID_HASH_WIDTH 16
58 
59 /* Use upper bits of mmap offset to store KFD driver specific information.
60  * BITS[63:62] - Encode MMAP type
61  * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to
62  * BITS[45:0]  - MMAP offset value
63  *
64  * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
65  *  defines are w.r.t to PAGE_SIZE
66  */
67 #define KFD_MMAP_TYPE_SHIFT	62
68 #define KFD_MMAP_TYPE_MASK	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
69 #define KFD_MMAP_TYPE_DOORBELL	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
70 #define KFD_MMAP_TYPE_EVENTS	(0x2ULL << KFD_MMAP_TYPE_SHIFT)
71 #define KFD_MMAP_TYPE_RESERVED_MEM	(0x1ULL << KFD_MMAP_TYPE_SHIFT)
72 #define KFD_MMAP_TYPE_MMIO	(0x0ULL << KFD_MMAP_TYPE_SHIFT)
73 
74 #define KFD_MMAP_GPU_ID_SHIFT 46
75 #define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \
76 				<< KFD_MMAP_GPU_ID_SHIFT)
77 #define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\
78 				& KFD_MMAP_GPU_ID_MASK)
79 #define KFD_MMAP_GET_GPU_ID(offset)    ((offset & KFD_MMAP_GPU_ID_MASK) \
80 				>> KFD_MMAP_GPU_ID_SHIFT)
81 
82 /*
83  * When working with cp scheduler we should assign the HIQ manually or via
84  * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot
85  * definitions for Kaveri. In Kaveri only the first ME queues participates
86  * in the cp scheduling taking that in mind we set the HIQ slot in the
87  * second ME.
88  */
89 #define KFD_CIK_HIQ_PIPE 4
90 #define KFD_CIK_HIQ_QUEUE 0
91 
92 /* Macro for allocating structures */
93 #define kfd_alloc_struct(ptr_to_struct)	\
94 	((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL))
95 
96 #define KFD_MAX_NUM_OF_PROCESSES 512
97 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024
98 
99 /*
100  * Size of the per-process TBA+TMA buffer: 2 pages
101  *
102  * The first chunk is the TBA used for the CWSR ISA code. The second
103  * chunk is used as TMA for user-mode trap handler setup in daisy-chain mode.
104  */
105 #define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2)
106 #define KFD_CWSR_TMA_OFFSET (PAGE_SIZE + 2048)
107 
108 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE		\
109 	(KFD_MAX_NUM_OF_PROCESSES *			\
110 			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS)
111 
112 #define KFD_KERNEL_QUEUE_SIZE 2048
113 
114 /*  KFD_UNMAP_LATENCY_MS is the timeout CP waiting for SDMA preemption. One XCC
115  *  can be associated to 2 SDMA engines. queue_preemption_timeout_ms is the time
116  *  driver waiting for CP returning the UNMAP_QUEUE fence. Thus the math is
117  *  queue_preemption_timeout_ms = sdma_preemption_time * 2 + cp workload
118  *  The format here makes CP workload 10% of total timeout
119  */
120 #define KFD_UNMAP_LATENCY_MS	\
121 	((queue_preemption_timeout_ms - queue_preemption_timeout_ms / 10) >> 1)
122 
123 #define KFD_MAX_SDMA_QUEUES	128
124 
125 /*
126  * 512 = 0x200
127  * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the
128  * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA.
129  * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC
130  * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in
131  * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE.
132  */
133 #define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512
134 
135 /**
136  * enum kfd_ioctl_flags - KFD ioctl flags
137  * Various flags that can be set in &amdkfd_ioctl_desc.flags to control how
138  * userspace can use a given ioctl.
139  */
140 enum kfd_ioctl_flags {
141 	/*
142 	 * @KFD_IOC_FLAG_CHECKPOINT_RESTORE:
143 	 * Certain KFD ioctls such as AMDKFD_IOC_CRIU_OP can potentially
144 	 * perform privileged operations and load arbitrary data into MQDs and
145 	 * eventually HQD registers when the queue is mapped by HWS. In order to
146 	 * prevent this we should perform additional security checks.
147 	 *
148 	 * This is equivalent to callers with the CHECKPOINT_RESTORE capability.
149 	 *
150 	 * Note: Since earlier versions of docker do not support CHECKPOINT_RESTORE,
151 	 * we also allow ioctls with SYS_ADMIN capability.
152 	 */
153 	KFD_IOC_FLAG_CHECKPOINT_RESTORE = BIT(0),
154 };
155 /*
156  * Kernel module parameter to specify maximum number of supported queues per
157  * device
158  */
159 extern int max_num_of_queues_per_device;
160 
161 
162 /* Kernel module parameter to specify the scheduling policy */
163 extern int sched_policy;
164 
165 /*
166  * Kernel module parameter to specify the maximum process
167  * number per HW scheduler
168  */
169 extern int hws_max_conc_proc;
170 
171 extern int cwsr_enable;
172 
173 /*
174  * Kernel module parameter to specify whether to send sigterm to HSA process on
175  * unhandled exception
176  */
177 extern int send_sigterm;
178 
179 /*
180  * This kernel module is used to simulate large bar machine on non-large bar
181  * enabled machines.
182  */
183 extern int debug_largebar;
184 
185 /* Set sh_mem_config.retry_disable on GFX v9 */
186 extern int amdgpu_noretry;
187 
188 /* Halt if HWS hang is detected */
189 extern int halt_if_hws_hang;
190 
191 /* Whether MEC FW support GWS barriers */
192 extern bool hws_gws_support;
193 
194 /* Queue preemption timeout in ms */
195 extern int queue_preemption_timeout_ms;
196 
197 /*
198  * Don't evict process queues on vm fault
199  */
200 extern int amdgpu_no_queue_eviction_on_vm_fault;
201 
202 /* Enable eviction debug messages */
203 extern bool debug_evictions;
204 
205 extern struct mutex kfd_processes_mutex;
206 
207 enum cache_policy {
208 	cache_policy_coherent,
209 	cache_policy_noncoherent
210 };
211 
212 #define KFD_GC_VERSION(dev) (amdgpu_ip_version((dev)->adev, GC_HWIP, 0))
213 #define KFD_IS_SOC15(dev)   ((KFD_GC_VERSION(dev)) >= (IP_VERSION(9, 0, 1)))
214 #define KFD_SUPPORT_XNACK_PER_PROCESS(dev)\
215 	((KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 2)) ||	\
216 	 (KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 3)) ||	\
217 	 (KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 4)) ||	\
218 	 (KFD_GC_VERSION(dev) == IP_VERSION(9, 5, 0)))
219 
220 struct kfd_node;
221 
222 struct kfd_event_interrupt_class {
223 	bool (*interrupt_isr)(struct kfd_node *dev,
224 			const uint32_t *ih_ring_entry, uint32_t *patched_ihre,
225 			bool *patched_flag);
226 	void (*interrupt_wq)(struct kfd_node *dev,
227 			const uint32_t *ih_ring_entry);
228 };
229 
230 struct kfd_device_info {
231 	uint32_t gfx_target_version;
232 	const struct kfd_event_interrupt_class *event_interrupt_class;
233 	unsigned int max_pasid_bits;
234 	unsigned int max_no_of_hqd;
235 	unsigned int doorbell_size;
236 	size_t ih_ring_entry_size;
237 	uint8_t num_of_watch_points;
238 	uint16_t mqd_size_aligned;
239 	bool supports_cwsr;
240 	bool needs_pci_atomics;
241 	uint32_t no_atomic_fw_version;
242 	unsigned int num_sdma_queues_per_engine;
243 	unsigned int num_reserved_sdma_queues_per_engine;
244 	DECLARE_BITMAP(reserved_sdma_queues_bitmap, KFD_MAX_SDMA_QUEUES);
245 };
246 
247 unsigned int kfd_get_num_sdma_engines(struct kfd_node *kdev);
248 unsigned int kfd_get_num_xgmi_sdma_engines(struct kfd_node *kdev);
249 
250 struct kfd_mem_obj {
251 	uint32_t range_start;
252 	uint32_t range_end;
253 	uint64_t gpu_addr;
254 	uint32_t *cpu_ptr;
255 	void *gtt_mem;
256 };
257 
258 struct kfd_vmid_info {
259 	uint32_t first_vmid_kfd;
260 	uint32_t last_vmid_kfd;
261 	uint32_t vmid_num_kfd;
262 };
263 
264 #define MAX_KFD_NODES	8
265 
266 struct kfd_dev;
267 
268 struct kfd_node {
269 	unsigned int node_id;
270 	struct amdgpu_device *adev;     /* Duplicated here along with keeping
271 					 * a copy in kfd_dev to save a hop
272 					 */
273 	const struct kfd2kgd_calls *kfd2kgd; /* Duplicated here along with
274 					      * keeping a copy in kfd_dev to
275 					      * save a hop
276 					      */
277 	struct kfd_vmid_info vm_info;
278 	unsigned int id;                /* topology stub index */
279 	uint32_t xcc_mask; /* Instance mask of XCCs present */
280 	struct amdgpu_xcp *xcp;
281 
282 	/* Interrupts */
283 	struct kfifo ih_fifo;
284 	struct work_struct interrupt_work;
285 	spinlock_t interrupt_lock;
286 
287 	/*
288 	 * Interrupts of interest to KFD are copied
289 	 * from the HW ring into a SW ring.
290 	 */
291 	bool interrupts_active;
292 	uint32_t interrupt_bitmap; /* Only used for GFX 9.4.3 */
293 
294 	/* QCM Device instance */
295 	struct device_queue_manager *dqm;
296 
297 	/* Global GWS resource shared between processes */
298 	void *gws;
299 
300 	/* Clients watching SMI events */
301 	struct list_head smi_clients;
302 	spinlock_t smi_lock;
303 	uint32_t reset_seq_num;
304 
305 	/* SRAM ECC flag */
306 	atomic_t sram_ecc_flag;
307 
308 	/*spm process id */
309 	unsigned int spm_pasid;
310 
311 	/* Maximum process number mapped to HW scheduler */
312 	unsigned int max_proc_per_quantum;
313 
314 	unsigned int compute_vmid_bitmap;
315 
316 	struct kfd_local_mem_info local_mem_info;
317 
318 	struct kfd_dev *kfd;
319 
320 	/* Track per device allocated watch points */
321 	uint32_t alloc_watch_ids;
322 	spinlock_t watch_points_lock;
323 };
324 
325 struct kfd_dev {
326 	struct amdgpu_device *adev;
327 
328 	struct kfd_device_info device_info;
329 
330 	u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells
331 					   * page used by kernel queue
332 					   */
333 
334 	struct kgd2kfd_shared_resources shared_resources;
335 
336 	const struct kfd2kgd_calls *kfd2kgd;
337 	struct mutex doorbell_mutex;
338 
339 	void *gtt_mem;
340 	uint64_t gtt_start_gpu_addr;
341 	void *gtt_start_cpu_ptr;
342 	void *gtt_sa_bitmap;
343 	struct mutex gtt_sa_lock;
344 	unsigned int gtt_sa_chunk_size;
345 	unsigned int gtt_sa_num_of_chunks;
346 
347 	bool init_complete;
348 
349 	/* Firmware versions */
350 	uint16_t mec_fw_version;
351 	uint16_t mec2_fw_version;
352 	uint16_t sdma_fw_version;
353 
354 	/* CWSR */
355 	bool cwsr_enabled;
356 	const void *cwsr_isa;
357 	unsigned int cwsr_isa_size;
358 
359 	/* xGMI */
360 	uint64_t hive_id;
361 
362 	bool pci_atomic_requested;
363 
364 	/* Compute Profile ref. count */
365 	atomic_t compute_profile;
366 
367 	struct ida doorbell_ida;
368 	unsigned int max_doorbell_slices;
369 
370 	int noretry;
371 
372 	struct kfd_node *nodes[MAX_KFD_NODES];
373 	unsigned int num_nodes;
374 
375 	struct workqueue_struct *ih_wq;
376 
377 	/* Kernel doorbells for KFD device */
378 	struct amdgpu_bo *doorbells;
379 
380 	/* bitmap for dynamic doorbell allocation from doorbell object */
381 	unsigned long *doorbell_bitmap;
382 
383 	/* for dynamic partitioning */
384 	int kfd_dev_lock;
385 
386 	atomic_t kfd_processes_count;
387 };
388 
389 enum kfd_mempool {
390 	KFD_MEMPOOL_SYSTEM_CACHEABLE = 1,
391 	KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2,
392 	KFD_MEMPOOL_FRAMEBUFFER = 3,
393 };
394 
395 /* Character device interface */
396 int kfd_chardev_init(void);
397 void kfd_chardev_exit(void);
398 
399 /**
400  * enum kfd_unmap_queues_filter - Enum for queue filters.
401  *
402  * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the
403  *						running queues list.
404  *
405  * @KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES: Preempts all non-static queues
406  *						in the run list.
407  *
408  * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to
409  *						specific process.
410  *
411  */
412 enum kfd_unmap_queues_filter {
413 	KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES = 1,
414 	KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES = 2,
415 	KFD_UNMAP_QUEUES_FILTER_BY_PASID = 3
416 };
417 
418 /**
419  * enum kfd_queue_type - Enum for various queue types.
420  *
421  * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type.
422  *
423  * @KFD_QUEUE_TYPE_SDMA: SDMA user mode queue type.
424  *
425  * @KFD_QUEUE_TYPE_HIQ: HIQ queue type.
426  *
427  * @KFD_QUEUE_TYPE_DIQ: DIQ queue type.
428  *
429  * @KFD_QUEUE_TYPE_SDMA_XGMI: Special SDMA queue for XGMI interface.
430  *
431  * @KFD_QUEUE_TYPE_SDMA_BY_ENG_ID:  SDMA user mode queue with target SDMA engine ID.
432  */
433 enum kfd_queue_type  {
434 	KFD_QUEUE_TYPE_COMPUTE,
435 	KFD_QUEUE_TYPE_SDMA,
436 	KFD_QUEUE_TYPE_HIQ,
437 	KFD_QUEUE_TYPE_DIQ,
438 	KFD_QUEUE_TYPE_SDMA_XGMI,
439 	KFD_QUEUE_TYPE_SDMA_BY_ENG_ID
440 };
441 
442 enum kfd_queue_format {
443 	KFD_QUEUE_FORMAT_PM4,
444 	KFD_QUEUE_FORMAT_AQL
445 };
446 
447 enum KFD_QUEUE_PRIORITY {
448 	KFD_QUEUE_PRIORITY_MINIMUM = 0,
449 	KFD_QUEUE_PRIORITY_MAXIMUM = 15
450 };
451 
452 /**
453  * struct queue_properties
454  *
455  * @type: The queue type.
456  *
457  * @queue_id: Queue identifier.
458  *
459  * @queue_address: Queue ring buffer address.
460  *
461  * @queue_size: Queue ring buffer size.
462  *
463  * @priority: Defines the queue priority relative to other queues in the
464  * process.
465  * This is just an indication and HW scheduling may override the priority as
466  * necessary while keeping the relative prioritization.
467  * the priority granularity is from 0 to f which f is the highest priority.
468  * currently all queues are initialized with the highest priority.
469  *
470  * @queue_percent: This field is partially implemented and currently a zero in
471  * this field defines that the queue is non active.
472  *
473  * @read_ptr: User space address which points to the number of dwords the
474  * cp read from the ring buffer. This field updates automatically by the H/W.
475  *
476  * @write_ptr: Defines the number of dwords written to the ring buffer.
477  *
478  * @doorbell_ptr: Notifies the H/W of new packet written to the queue ring
479  * buffer. This field should be similar to write_ptr and the user should
480  * update this field after updating the write_ptr.
481  *
482  * @doorbell_off: The doorbell offset in the doorbell pci-bar.
483  *
484  * @is_interop: Defines if this is a interop queue. Interop queue means that
485  * the queue can access both graphics and compute resources.
486  *
487  * @is_evicted: Defines if the queue is evicted. Only active queues
488  * are evicted, rendering them inactive.
489  *
490  * @is_active: Defines if the queue is active or not. @is_active and
491  * @is_evicted are protected by the DQM lock.
492  *
493  * @is_gws: Defines if the queue has been updated to be GWS-capable or not.
494  * @is_gws should be protected by the DQM lock, since changing it can yield the
495  * possibility of updating DQM state on number of GWS queues.
496  *
497  * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid
498  * of the queue.
499  *
500  * This structure represents the queue properties for each queue no matter if
501  * it's user mode or kernel mode queue.
502  *
503  */
504 
505 struct queue_properties {
506 	enum kfd_queue_type type;
507 	enum kfd_queue_format format;
508 	unsigned int queue_id;
509 	uint64_t queue_address;
510 	uint64_t  queue_size;
511 	uint32_t priority;
512 	uint32_t queue_percent;
513 	void __user *read_ptr;
514 	void __user *write_ptr;
515 	void __iomem *doorbell_ptr;
516 	uint32_t doorbell_off;
517 	bool is_interop;
518 	bool is_evicted;
519 	bool is_suspended;
520 	bool is_being_destroyed;
521 	bool is_active;
522 	bool is_gws;
523 	uint32_t pm4_target_xcc;
524 	bool is_dbg_wa;
525 	bool is_user_cu_masked;
526 	/* Not relevant for user mode queues in cp scheduling */
527 	unsigned int vmid;
528 	/* Relevant only for sdma queues*/
529 	uint32_t sdma_engine_id;
530 	uint32_t sdma_queue_id;
531 	uint32_t sdma_vm_addr;
532 	/* Relevant only for VI */
533 	uint64_t eop_ring_buffer_address;
534 	uint32_t eop_ring_buffer_size;
535 	uint64_t ctx_save_restore_area_address;
536 	uint32_t ctx_save_restore_area_size;
537 	uint32_t ctl_stack_size;
538 	uint64_t tba_addr;
539 	uint64_t tma_addr;
540 	uint64_t exception_status;
541 
542 	struct amdgpu_bo *wptr_bo;
543 	struct amdgpu_bo *rptr_bo;
544 	struct amdgpu_bo *ring_bo;
545 	struct amdgpu_bo *eop_buf_bo;
546 	struct amdgpu_bo *cwsr_bo;
547 };
548 
549 #define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 &&	\
550 			    (q).queue_address != 0 &&	\
551 			    (q).queue_percent > 0 &&	\
552 			    !(q).is_evicted &&		\
553 			    !(q).is_suspended)
554 
555 enum mqd_update_flag {
556 	UPDATE_FLAG_DBG_WA_ENABLE = 1,
557 	UPDATE_FLAG_DBG_WA_DISABLE = 2,
558 	UPDATE_FLAG_IS_GWS = 4, /* quirk for gfx9 IP */
559 };
560 
561 struct mqd_update_info {
562 	union {
563 		struct {
564 			uint32_t count; /* Must be a multiple of 32 */
565 			uint32_t *ptr;
566 		} cu_mask;
567 	};
568 	enum mqd_update_flag update_flag;
569 };
570 
571 /**
572  * struct queue
573  *
574  * @list: Queue linked list.
575  *
576  * @mqd: The queue MQD (memory queue descriptor).
577  *
578  * @mqd_mem_obj: The MQD local gpu memory object.
579  *
580  * @gart_mqd_addr: The MQD gart mc address.
581  *
582  * @properties: The queue properties.
583  *
584  * @mec: Used only in no cp scheduling mode and identifies to micro engine id
585  *	 that the queue should be executed on.
586  *
587  * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe
588  *	  id.
589  *
590  * @queue: Used only in no cp scheduliong mode and identifies the queue's slot.
591  *
592  * @process: The kfd process that created this queue.
593  *
594  * @device: The kfd device that created this queue.
595  *
596  * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL
597  * otherwise.
598  *
599  * This structure represents user mode compute queues.
600  * It contains all the necessary data to handle such queues.
601  *
602  */
603 
604 struct queue {
605 	struct list_head list;
606 	void *mqd;
607 	struct kfd_mem_obj *mqd_mem_obj;
608 	uint64_t gart_mqd_addr;
609 	struct queue_properties properties;
610 
611 	uint32_t mec;
612 	uint32_t pipe;
613 	uint32_t queue;
614 
615 	unsigned int sdma_id;
616 	unsigned int doorbell_id;
617 
618 	struct kfd_process	*process;
619 	struct kfd_node		*device;
620 	void *gws;
621 
622 	/* procfs */
623 	struct kobject kobj;
624 
625 	void *gang_ctx_bo;
626 	uint64_t gang_ctx_gpu_addr;
627 	void *gang_ctx_cpu_ptr;
628 
629 	struct amdgpu_bo *wptr_bo_gart;
630 };
631 
632 enum KFD_MQD_TYPE {
633 	KFD_MQD_TYPE_HIQ = 0,		/* for hiq */
634 	KFD_MQD_TYPE_CP,		/* for cp queues and diq */
635 	KFD_MQD_TYPE_SDMA,		/* for sdma queues */
636 	KFD_MQD_TYPE_DIQ,		/* for diq */
637 	KFD_MQD_TYPE_MAX
638 };
639 
640 enum KFD_PIPE_PRIORITY {
641 	KFD_PIPE_PRIORITY_CS_LOW = 0,
642 	KFD_PIPE_PRIORITY_CS_MEDIUM,
643 	KFD_PIPE_PRIORITY_CS_HIGH
644 };
645 
646 struct scheduling_resources {
647 	unsigned int vmid_mask;
648 	enum kfd_queue_type type;
649 	uint64_t queue_mask;
650 	uint64_t gws_mask;
651 	uint32_t oac_mask;
652 	uint32_t gds_heap_base;
653 	uint32_t gds_heap_size;
654 };
655 
656 struct process_queue_manager {
657 	/* data */
658 	struct kfd_process	*process;
659 	struct list_head	queues;
660 	unsigned long		*queue_slot_bitmap;
661 };
662 
663 struct qcm_process_device {
664 	/* The Device Queue Manager that owns this data */
665 	struct device_queue_manager *dqm;
666 	struct process_queue_manager *pqm;
667 	/* Queues list */
668 	struct list_head queues_list;
669 	struct list_head priv_queue_list;
670 
671 	unsigned int queue_count;
672 	unsigned int vmid;
673 	bool is_debug;
674 	unsigned int evicted; /* eviction counter, 0=active */
675 
676 	/* This flag tells if we should reset all wavefronts on
677 	 * process termination
678 	 */
679 	bool reset_wavefronts;
680 
681 	/* This flag tells us if this process has a GWS-capable
682 	 * queue that will be mapped into the runlist. It's
683 	 * possible to request a GWS BO, but not have the queue
684 	 * currently mapped, and this changes how the MAP_PROCESS
685 	 * PM4 packet is configured.
686 	 */
687 	bool mapped_gws_queue;
688 
689 	/* All the memory management data should be here too */
690 	uint64_t gds_context_area;
691 	/* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */
692 	uint64_t page_table_base;
693 	uint32_t sh_mem_config;
694 	uint32_t sh_mem_bases;
695 	uint32_t sh_mem_ape1_base;
696 	uint32_t sh_mem_ape1_limit;
697 	uint32_t gds_size;
698 	uint32_t num_gws;
699 	uint32_t num_oac;
700 	uint32_t sh_hidden_private_base;
701 
702 	/* CWSR memory */
703 	struct kgd_mem *cwsr_mem;
704 	void *cwsr_kaddr;
705 	uint64_t cwsr_base;
706 	uint64_t tba_addr;
707 	uint64_t tma_addr;
708 
709 	/* IB memory */
710 	struct kgd_mem *ib_mem;
711 	uint64_t ib_base;
712 	void *ib_kaddr;
713 
714 	/* doorbells for kfd process */
715 	struct amdgpu_bo *proc_doorbells;
716 
717 	/* bitmap for dynamic doorbell allocation from the bo */
718 	unsigned long *doorbell_bitmap;
719 };
720 
721 /* KFD Memory Eviction */
722 
723 /* Approx. wait time before attempting to restore evicted BOs */
724 #define PROCESS_RESTORE_TIME_MS 100
725 /* Approx. back off time if restore fails due to lack of memory */
726 #define PROCESS_BACK_OFF_TIME_MS 100
727 /* Approx. time before evicting the process again */
728 #define PROCESS_ACTIVE_TIME_MS 10
729 
730 /* 8 byte handle containing GPU ID in the most significant 4 bytes and
731  * idr_handle in the least significant 4 bytes
732  */
733 #define MAKE_HANDLE(gpu_id, idr_handle) \
734 	(((uint64_t)(gpu_id) << 32) + idr_handle)
735 #define GET_GPU_ID(handle) (handle >> 32)
736 #define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF)
737 
738 enum kfd_pdd_bound {
739 	PDD_UNBOUND = 0,
740 	PDD_BOUND,
741 	PDD_BOUND_SUSPENDED,
742 };
743 
744 #define MAX_SYSFS_FILENAME_LEN 15
745 
746 /*
747  * SDMA counter runs at 100MHz frequency.
748  * We display SDMA activity in microsecond granularity in sysfs.
749  * As a result, the divisor is 100.
750  */
751 #define SDMA_ACTIVITY_DIVISOR  100
752 
753 /* Data that is per-process-per device. */
754 struct kfd_process_device {
755 	/* The device that owns this data. */
756 	struct kfd_node *dev;
757 
758 	/* The process that owns this kfd_process_device. */
759 	struct kfd_process *process;
760 
761 	/* per-process-per device QCM data structure */
762 	struct qcm_process_device qpd;
763 
764 	/*Apertures*/
765 	uint64_t lds_base;
766 	uint64_t lds_limit;
767 	uint64_t gpuvm_base;
768 	uint64_t gpuvm_limit;
769 	uint64_t scratch_base;
770 	uint64_t scratch_limit;
771 
772 	/* VM context for GPUVM allocations */
773 	struct file *drm_file;
774 	void *drm_priv;
775 
776 	/* GPUVM allocations storage */
777 	struct idr alloc_idr;
778 
779 	/* Flag used to tell the pdd has dequeued from the dqm.
780 	 * This is used to prevent dev->dqm->ops.process_termination() from
781 	 * being called twice when it is already called in IOMMU callback
782 	 * function.
783 	 */
784 	bool already_dequeued;
785 	bool runtime_inuse;
786 
787 	/* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */
788 	enum kfd_pdd_bound bound;
789 
790 	/* VRAM usage */
791 	atomic64_t vram_usage;
792 	struct attribute attr_vram;
793 	char vram_filename[MAX_SYSFS_FILENAME_LEN];
794 
795 	/* SDMA activity tracking */
796 	uint64_t sdma_past_activity_counter;
797 	struct attribute attr_sdma;
798 	char sdma_filename[MAX_SYSFS_FILENAME_LEN];
799 
800 	/* Eviction activity tracking */
801 	uint64_t last_evict_timestamp;
802 	atomic64_t evict_duration_counter;
803 	struct attribute attr_evict;
804 
805 	struct kobject *kobj_stats;
806 
807 	/*
808 	 * @cu_occupancy: Reports occupancy of Compute Units (CU) of a process
809 	 * that is associated with device encoded by "this" struct instance. The
810 	 * value reflects CU usage by all of the waves launched by this process
811 	 * on this device. A very important property of occupancy parameter is
812 	 * that its value is a snapshot of current use.
813 	 *
814 	 * Following is to be noted regarding how this parameter is reported:
815 	 *
816 	 *  The number of waves that a CU can launch is limited by couple of
817 	 *  parameters. These are encoded by struct amdgpu_cu_info instance
818 	 *  that is part of every device definition. For GFX9 devices this
819 	 *  translates to 40 waves (simd_per_cu * max_waves_per_simd) when waves
820 	 *  do not use scratch memory and 32 waves (max_scratch_slots_per_cu)
821 	 *  when they do use scratch memory. This could change for future
822 	 *  devices and therefore this example should be considered as a guide.
823 	 *
824 	 *  All CU's of a device are available for the process. This may not be true
825 	 *  under certain conditions - e.g. CU masking.
826 	 *
827 	 *  Finally number of CU's that are occupied by a process is affected by both
828 	 *  number of CU's a device has along with number of other competing processes
829 	 */
830 	struct attribute attr_cu_occupancy;
831 
832 	/* sysfs counters for GPU retry fault and page migration tracking */
833 	struct kobject *kobj_counters;
834 	struct attribute attr_faults;
835 	struct attribute attr_page_in;
836 	struct attribute attr_page_out;
837 	uint64_t faults;
838 	uint64_t page_in;
839 	uint64_t page_out;
840 
841 	/* Exception code status*/
842 	uint64_t exception_status;
843 	void *vm_fault_exc_data;
844 	size_t vm_fault_exc_data_size;
845 
846 	/* Tracks debug per-vmid request settings */
847 	uint32_t spi_dbg_override;
848 	uint32_t spi_dbg_launch_mode;
849 	uint32_t watch_points[4];
850 	uint32_t alloc_watch_ids;
851 
852 	/*
853 	 * If this process has been checkpointed before, then the user
854 	 * application will use the original gpu_id on the
855 	 * checkpointed node to refer to this device.
856 	 */
857 	uint32_t user_gpu_id;
858 
859 	void *proc_ctx_bo;
860 	uint64_t proc_ctx_gpu_addr;
861 	void *proc_ctx_cpu_ptr;
862 
863 	/* Tracks queue reset status */
864 	bool has_reset_queue;
865 
866 	u32 pasid;
867 };
868 
869 #define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd)
870 
871 struct svm_range_list {
872 	struct mutex			lock;
873 	struct rb_root_cached		objects;
874 	struct list_head		list;
875 	struct work_struct		deferred_list_work;
876 	struct list_head		deferred_range_list;
877 	struct list_head                criu_svm_metadata_list;
878 	spinlock_t			deferred_list_lock;
879 	atomic_t			evicted_ranges;
880 	atomic_t			drain_pagefaults;
881 	struct delayed_work		restore_work;
882 	DECLARE_BITMAP(bitmap_supported, MAX_GPU_INSTANCE);
883 	struct task_struct		*faulting_task;
884 	/* check point ts decides if page fault recovery need be dropped */
885 	uint64_t			checkpoint_ts[MAX_GPU_INSTANCE];
886 
887 	/* Default granularity to use in buffer migration
888 	 * and restoration of backing memory while handling
889 	 * recoverable page faults
890 	 */
891 	uint8_t default_granularity;
892 };
893 
894 /* Process data */
895 struct kfd_process {
896 	/*
897 	 * kfd_process are stored in an mm_struct*->kfd_process*
898 	 * hash table (kfd_processes in kfd_process.c)
899 	 */
900 	struct hlist_node kfd_processes;
901 
902 	/*
903 	 * Opaque pointer to mm_struct. We don't hold a reference to
904 	 * it so it should never be dereferenced from here. This is
905 	 * only used for looking up processes by their mm.
906 	 */
907 	void *mm;
908 
909 	struct kref ref;
910 	struct work_struct release_work;
911 
912 	struct mutex mutex;
913 
914 	/*
915 	 * In any process, the thread that started main() is the lead
916 	 * thread and outlives the rest.
917 	 * It is here because amd_iommu_bind_pasid wants a task_struct.
918 	 * It can also be used for safely getting a reference to the
919 	 * mm_struct of the process.
920 	 */
921 	struct task_struct *lead_thread;
922 
923 	/* We want to receive a notification when the mm_struct is destroyed */
924 	struct mmu_notifier mmu_notifier;
925 
926 	/*
927 	 * Array of kfd_process_device pointers,
928 	 * one for each device the process is using.
929 	 */
930 	struct kfd_process_device *pdds[MAX_GPU_INSTANCE];
931 	uint32_t n_pdds;
932 
933 	struct process_queue_manager pqm;
934 
935 	/*Is the user space process 32 bit?*/
936 	bool is_32bit_user_mode;
937 
938 	/* Event-related data */
939 	struct mutex event_mutex;
940 	/* Event ID allocator and lookup */
941 	struct idr event_idr;
942 	/* Event page */
943 	u64 signal_handle;
944 	struct kfd_signal_page *signal_page;
945 	size_t signal_mapped_size;
946 	size_t signal_event_count;
947 	bool signal_event_limit_reached;
948 
949 	/* Information used for memory eviction */
950 	void *kgd_process_info;
951 	/* Eviction fence that is attached to all the BOs of this process. The
952 	 * fence will be triggered during eviction and new one will be created
953 	 * during restore
954 	 */
955 	struct dma_fence __rcu *ef;
956 
957 	/* Work items for evicting and restoring BOs */
958 	struct delayed_work eviction_work;
959 	struct delayed_work restore_work;
960 	/* seqno of the last scheduled eviction */
961 	unsigned int last_eviction_seqno;
962 	/* Approx. the last timestamp (in jiffies) when the process was
963 	 * restored after an eviction
964 	 */
965 	unsigned long last_restore_timestamp;
966 
967 	/* Indicates device process is debug attached with reserved vmid. */
968 	bool debug_trap_enabled;
969 
970 	/* per-process-per device debug event fd file */
971 	struct file *dbg_ev_file;
972 
973 	/* If the process is a kfd debugger, we need to know so we can clean
974 	 * up at exit time.  If a process enables debugging on itself, it does
975 	 * its own clean-up, so we don't set the flag here.  We track this by
976 	 * counting the number of processes this process is debugging.
977 	 */
978 	atomic_t debugged_process_count;
979 
980 	/* If the process is a debugged, this is the debugger process */
981 	struct kfd_process *debugger_process;
982 
983 	/* Kobj for our procfs */
984 	struct kobject *kobj;
985 	struct kobject *kobj_queues;
986 	struct attribute attr_pasid;
987 
988 	/* Keep track cwsr init */
989 	bool has_cwsr;
990 
991 	/* Exception code enable mask and status */
992 	uint64_t exception_enable_mask;
993 	uint64_t exception_status;
994 
995 	/* Used to drain stale interrupts */
996 	wait_queue_head_t wait_irq_drain;
997 	bool irq_drain_is_open;
998 
999 	/* shared virtual memory registered by this process */
1000 	struct svm_range_list svms;
1001 
1002 	bool xnack_enabled;
1003 
1004 	/* Work area for debugger event writer worker. */
1005 	struct work_struct debug_event_workarea;
1006 
1007 	/* Tracks debug per-vmid request for debug flags */
1008 	u32 dbg_flags;
1009 
1010 	atomic_t poison;
1011 	/* Queues are in paused stated because we are in the process of doing a CRIU checkpoint */
1012 	bool queues_paused;
1013 
1014 	/* Tracks runtime enable status */
1015 	struct semaphore runtime_enable_sema;
1016 	bool is_runtime_retry;
1017 	struct kfd_runtime_info runtime_info;
1018 
1019 	/* if gpu page fault sent to KFD */
1020 	bool gpu_page_fault;
1021 };
1022 
1023 #define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */
1024 extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
1025 extern struct srcu_struct kfd_processes_srcu;
1026 
1027 /**
1028  * typedef amdkfd_ioctl_t - typedef for ioctl function pointer.
1029  *
1030  * @filep: pointer to file structure.
1031  * @p: amdkfd process pointer.
1032  * @data: pointer to arg that was copied from user.
1033  *
1034  * Return: returns ioctl completion code.
1035  */
1036 typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p,
1037 				void *data);
1038 
1039 struct amdkfd_ioctl_desc {
1040 	unsigned int cmd;
1041 	int flags;
1042 	amdkfd_ioctl_t *func;
1043 	unsigned int cmd_drv;
1044 	const char *name;
1045 };
1046 bool kfd_dev_is_large_bar(struct kfd_node *dev);
1047 
1048 int kfd_process_create_wq(void);
1049 void kfd_process_destroy_wq(void);
1050 void kfd_cleanup_processes(void);
1051 struct kfd_process *kfd_create_process(struct task_struct *thread);
1052 struct kfd_process *kfd_get_process(const struct task_struct *task);
1053 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid,
1054 						 struct kfd_process_device **pdd);
1055 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm);
1056 
1057 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id);
1058 int kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node,
1059 				uint32_t *gpuid, uint32_t *gpuidx);
1060 static inline int kfd_process_gpuid_from_gpuidx(struct kfd_process *p,
1061 				uint32_t gpuidx, uint32_t *gpuid) {
1062 	return gpuidx < p->n_pdds ? p->pdds[gpuidx]->dev->id : -EINVAL;
1063 }
1064 static inline struct kfd_process_device *kfd_process_device_from_gpuidx(
1065 				struct kfd_process *p, uint32_t gpuidx) {
1066 	return gpuidx < p->n_pdds ? p->pdds[gpuidx] : NULL;
1067 }
1068 
1069 void kfd_unref_process(struct kfd_process *p);
1070 int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger);
1071 int kfd_process_restore_queues(struct kfd_process *p);
1072 void kfd_suspend_all_processes(void);
1073 int kfd_resume_all_processes(void);
1074 
1075 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *process,
1076 							 uint32_t gpu_id);
1077 
1078 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id);
1079 
1080 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1081 			       struct file *drm_file);
1082 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev,
1083 						struct kfd_process *p);
1084 struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev,
1085 							struct kfd_process *p);
1086 struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev,
1087 							struct kfd_process *p);
1088 
1089 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported);
1090 
1091 int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process,
1092 			  struct vm_area_struct *vma);
1093 
1094 /* KFD process API for creating and translating handles */
1095 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1096 					void *mem);
1097 void *kfd_process_device_translate_handle(struct kfd_process_device *p,
1098 					int handle);
1099 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1100 					int handle);
1101 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid);
1102 
1103 /* PASIDs */
1104 int kfd_pasid_init(void);
1105 void kfd_pasid_exit(void);
1106 u32 kfd_pasid_alloc(void);
1107 void kfd_pasid_free(u32 pasid);
1108 
1109 /* Doorbells */
1110 size_t kfd_doorbell_process_slice(struct kfd_dev *kfd);
1111 int kfd_doorbell_init(struct kfd_dev *kfd);
1112 void kfd_doorbell_fini(struct kfd_dev *kfd);
1113 int kfd_doorbell_mmap(struct kfd_node *dev, struct kfd_process *process,
1114 		      struct vm_area_struct *vma);
1115 void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd,
1116 					unsigned int *doorbell_off);
1117 void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr);
1118 u32 read_kernel_doorbell(u32 __iomem *db);
1119 void write_kernel_doorbell(void __iomem *db, u32 value);
1120 void write_kernel_doorbell64(void __iomem *db, u64 value);
1121 unsigned int kfd_get_doorbell_dw_offset_in_bar(struct kfd_dev *kfd,
1122 					struct kfd_process_device *pdd,
1123 					unsigned int doorbell_id);
1124 phys_addr_t kfd_get_process_doorbells(struct kfd_process_device *pdd);
1125 int kfd_alloc_process_doorbells(struct kfd_dev *kfd,
1126 				struct kfd_process_device *pdd);
1127 void kfd_free_process_doorbells(struct kfd_dev *kfd,
1128 				struct kfd_process_device *pdd);
1129 /* GTT Sub-Allocator */
1130 
1131 int kfd_gtt_sa_allocate(struct kfd_node *node, unsigned int size,
1132 			struct kfd_mem_obj **mem_obj);
1133 
1134 int kfd_gtt_sa_free(struct kfd_node *node, struct kfd_mem_obj *mem_obj);
1135 
1136 extern struct device *kfd_device;
1137 
1138 /* KFD's procfs */
1139 void kfd_procfs_init(void);
1140 void kfd_procfs_shutdown(void);
1141 int kfd_procfs_add_queue(struct queue *q);
1142 void kfd_procfs_del_queue(struct queue *q);
1143 
1144 /* Topology */
1145 int kfd_topology_init(void);
1146 void kfd_topology_shutdown(void);
1147 int kfd_topology_add_device(struct kfd_node *gpu);
1148 int kfd_topology_remove_device(struct kfd_node *gpu);
1149 struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
1150 						uint32_t proximity_domain);
1151 struct kfd_topology_device *kfd_topology_device_by_proximity_domain_no_lock(
1152 						uint32_t proximity_domain);
1153 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id);
1154 struct kfd_node *kfd_device_by_id(uint32_t gpu_id);
1155 static inline bool kfd_irq_is_from_node(struct kfd_node *node, uint32_t node_id,
1156 					uint32_t vmid)
1157 {
1158 	return (node->interrupt_bitmap & (1 << node_id)) != 0 &&
1159 	       (node->compute_vmid_bitmap & (1 << vmid)) != 0;
1160 }
1161 static inline struct kfd_node *kfd_node_by_irq_ids(struct amdgpu_device *adev,
1162 					uint32_t node_id, uint32_t vmid) {
1163 	struct kfd_dev *dev = adev->kfd.dev;
1164 	uint32_t i;
1165 
1166 	if (KFD_GC_VERSION(dev) != IP_VERSION(9, 4, 3) &&
1167 	    KFD_GC_VERSION(dev) != IP_VERSION(9, 4, 4) &&
1168 	    KFD_GC_VERSION(dev) != IP_VERSION(9, 5, 0))
1169 		return dev->nodes[0];
1170 
1171 	for (i = 0; i < dev->num_nodes; i++)
1172 		if (kfd_irq_is_from_node(dev->nodes[i], node_id, vmid))
1173 			return dev->nodes[i];
1174 
1175 	return NULL;
1176 }
1177 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_node **kdev);
1178 int kfd_numa_node_to_apic_id(int numa_node_id);
1179 
1180 /* Interrupts */
1181 #define	KFD_IRQ_FENCE_CLIENTID	0xff
1182 #define	KFD_IRQ_FENCE_SOURCEID	0xff
1183 #define	KFD_IRQ_IS_FENCE(client, source)				\
1184 				((client) == KFD_IRQ_FENCE_CLIENTID &&	\
1185 				(source) == KFD_IRQ_FENCE_SOURCEID)
1186 int kfd_interrupt_init(struct kfd_node *dev);
1187 void kfd_interrupt_exit(struct kfd_node *dev);
1188 bool enqueue_ih_ring_entry(struct kfd_node *kfd, const void *ih_ring_entry);
1189 bool interrupt_is_wanted(struct kfd_node *dev,
1190 				const uint32_t *ih_ring_entry,
1191 				uint32_t *patched_ihre, bool *flag);
1192 int kfd_process_drain_interrupts(struct kfd_process_device *pdd);
1193 void kfd_process_close_interrupt_drain(unsigned int pasid);
1194 
1195 /* amdkfd Apertures */
1196 int kfd_init_apertures(struct kfd_process *process);
1197 
1198 void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1199 				  uint64_t tba_addr,
1200 				  uint64_t tma_addr);
1201 void kfd_process_set_trap_debug_flag(struct qcm_process_device *qpd,
1202 				     bool enabled);
1203 
1204 /* CWSR initialization */
1205 int kfd_process_init_cwsr_apu(struct kfd_process *process, struct file *filep);
1206 
1207 /* CRIU */
1208 /*
1209  * Need to increment KFD_CRIU_PRIV_VERSION each time a change is made to any of the CRIU private
1210  * structures:
1211  * kfd_criu_process_priv_data
1212  * kfd_criu_device_priv_data
1213  * kfd_criu_bo_priv_data
1214  * kfd_criu_queue_priv_data
1215  * kfd_criu_event_priv_data
1216  * kfd_criu_svm_range_priv_data
1217  */
1218 
1219 #define KFD_CRIU_PRIV_VERSION 1
1220 
1221 struct kfd_criu_process_priv_data {
1222 	uint32_t version;
1223 	uint32_t xnack_mode;
1224 };
1225 
1226 struct kfd_criu_device_priv_data {
1227 	/* For future use */
1228 	uint64_t reserved;
1229 };
1230 
1231 struct kfd_criu_bo_priv_data {
1232 	uint64_t user_addr;
1233 	uint32_t idr_handle;
1234 	uint32_t mapped_gpuids[MAX_GPU_INSTANCE];
1235 };
1236 
1237 /*
1238  * The first 4 bytes of kfd_criu_queue_priv_data, kfd_criu_event_priv_data,
1239  * kfd_criu_svm_range_priv_data is the object type
1240  */
1241 enum kfd_criu_object_type {
1242 	KFD_CRIU_OBJECT_TYPE_QUEUE,
1243 	KFD_CRIU_OBJECT_TYPE_EVENT,
1244 	KFD_CRIU_OBJECT_TYPE_SVM_RANGE,
1245 };
1246 
1247 struct kfd_criu_svm_range_priv_data {
1248 	uint32_t object_type;
1249 	uint64_t start_addr;
1250 	uint64_t size;
1251 	/* Variable length array of attributes */
1252 	struct kfd_ioctl_svm_attribute attrs[];
1253 };
1254 
1255 struct kfd_criu_queue_priv_data {
1256 	uint32_t object_type;
1257 	uint64_t q_address;
1258 	uint64_t q_size;
1259 	uint64_t read_ptr_addr;
1260 	uint64_t write_ptr_addr;
1261 	uint64_t doorbell_off;
1262 	uint64_t eop_ring_buffer_address;
1263 	uint64_t ctx_save_restore_area_address;
1264 	uint32_t gpu_id;
1265 	uint32_t type;
1266 	uint32_t format;
1267 	uint32_t q_id;
1268 	uint32_t priority;
1269 	uint32_t q_percent;
1270 	uint32_t doorbell_id;
1271 	uint32_t gws;
1272 	uint32_t sdma_id;
1273 	uint32_t eop_ring_buffer_size;
1274 	uint32_t ctx_save_restore_area_size;
1275 	uint32_t ctl_stack_size;
1276 	uint32_t mqd_size;
1277 };
1278 
1279 struct kfd_criu_event_priv_data {
1280 	uint32_t object_type;
1281 	uint64_t user_handle;
1282 	uint32_t event_id;
1283 	uint32_t auto_reset;
1284 	uint32_t type;
1285 	uint32_t signaled;
1286 
1287 	union {
1288 		struct kfd_hsa_memory_exception_data memory_exception_data;
1289 		struct kfd_hsa_hw_exception_data hw_exception_data;
1290 	};
1291 };
1292 
1293 int kfd_process_get_queue_info(struct kfd_process *p,
1294 			       uint32_t *num_queues,
1295 			       uint64_t *priv_data_sizes);
1296 
1297 int kfd_criu_checkpoint_queues(struct kfd_process *p,
1298 			 uint8_t __user *user_priv_data,
1299 			 uint64_t *priv_data_offset);
1300 
1301 int kfd_criu_restore_queue(struct kfd_process *p,
1302 			   uint8_t __user *user_priv_data,
1303 			   uint64_t *priv_data_offset,
1304 			   uint64_t max_priv_data_size);
1305 
1306 int kfd_criu_checkpoint_events(struct kfd_process *p,
1307 			 uint8_t __user *user_priv_data,
1308 			 uint64_t *priv_data_offset);
1309 
1310 int kfd_criu_restore_event(struct file *devkfd,
1311 			   struct kfd_process *p,
1312 			   uint8_t __user *user_priv_data,
1313 			   uint64_t *priv_data_offset,
1314 			   uint64_t max_priv_data_size);
1315 /* CRIU - End */
1316 
1317 /* Queue Context Management */
1318 int init_queue(struct queue **q, const struct queue_properties *properties);
1319 void uninit_queue(struct queue *q);
1320 void print_queue_properties(struct queue_properties *q);
1321 void print_queue(struct queue *q);
1322 int kfd_queue_buffer_get(struct amdgpu_vm *vm, void __user *addr, struct amdgpu_bo **pbo,
1323 			 u64 expected_size);
1324 void kfd_queue_buffer_put(struct amdgpu_bo **bo);
1325 int kfd_queue_acquire_buffers(struct kfd_process_device *pdd, struct queue_properties *properties);
1326 int kfd_queue_release_buffers(struct kfd_process_device *pdd, struct queue_properties *properties);
1327 void kfd_queue_unref_bo_va(struct amdgpu_vm *vm, struct amdgpu_bo **bo);
1328 int kfd_queue_unref_bo_vas(struct kfd_process_device *pdd,
1329 			   struct queue_properties *properties);
1330 void kfd_queue_ctx_save_restore_size(struct kfd_topology_device *dev);
1331 
1332 struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
1333 		struct kfd_node *dev);
1334 struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type,
1335 		struct kfd_node *dev);
1336 struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type,
1337 		struct kfd_node *dev);
1338 struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type,
1339 		struct kfd_node *dev);
1340 struct mqd_manager *mqd_manager_init_v11(enum KFD_MQD_TYPE type,
1341 		struct kfd_node *dev);
1342 struct mqd_manager *mqd_manager_init_v12(enum KFD_MQD_TYPE type,
1343 		struct kfd_node *dev);
1344 struct device_queue_manager *device_queue_manager_init(struct kfd_node *dev);
1345 void device_queue_manager_uninit(struct device_queue_manager *dqm);
1346 struct kernel_queue *kernel_queue_init(struct kfd_node *dev,
1347 					enum kfd_queue_type type);
1348 void kernel_queue_uninit(struct kernel_queue *kq);
1349 int kfd_evict_process_device(struct kfd_process_device *pdd);
1350 int kfd_dqm_suspend_bad_queue_mes(struct kfd_node *knode, u32 pasid, u32 doorbell_id);
1351 
1352 /* Process Queue Manager */
1353 struct process_queue_node {
1354 	struct queue *q;
1355 	struct kernel_queue *kq;
1356 	struct list_head process_queue_list;
1357 };
1358 
1359 void kfd_process_dequeue_from_device(struct kfd_process_device *pdd);
1360 void kfd_process_dequeue_from_all_devices(struct kfd_process *p);
1361 int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p);
1362 void pqm_uninit(struct process_queue_manager *pqm);
1363 int pqm_create_queue(struct process_queue_manager *pqm,
1364 			    struct kfd_node *dev,
1365 			    struct queue_properties *properties,
1366 			    unsigned int *qid,
1367 			    const struct kfd_criu_queue_priv_data *q_data,
1368 			    const void *restore_mqd,
1369 			    const void *restore_ctl_stack,
1370 			    uint32_t *p_doorbell_offset_in_process);
1371 int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid);
1372 int pqm_update_queue_properties(struct process_queue_manager *pqm, unsigned int qid,
1373 			struct queue_properties *p);
1374 int pqm_update_mqd(struct process_queue_manager *pqm, unsigned int qid,
1375 			struct mqd_update_info *minfo);
1376 int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid,
1377 			void *gws);
1378 struct queue *pqm_get_user_queue(struct process_queue_manager *pqm,
1379 						unsigned int qid);
1380 int pqm_get_wave_state(struct process_queue_manager *pqm,
1381 		       unsigned int qid,
1382 		       void __user *ctl_stack,
1383 		       u32 *ctl_stack_used_size,
1384 		       u32 *save_area_used_size);
1385 int pqm_get_queue_snapshot(struct process_queue_manager *pqm,
1386 			   uint64_t exception_clear_mask,
1387 			   void __user *buf,
1388 			   int *num_qss_entries,
1389 			   uint32_t *entry_size);
1390 
1391 int amdkfd_fence_wait_timeout(struct device_queue_manager *dqm,
1392 			      uint64_t fence_value,
1393 			      unsigned int timeout_ms);
1394 
1395 int pqm_get_queue_checkpoint_info(struct process_queue_manager *pqm,
1396 				  unsigned int qid,
1397 				  u32 *mqd_size,
1398 				  u32 *ctl_stack_size);
1399 /* Packet Manager */
1400 
1401 #define KFD_FENCE_COMPLETED (100)
1402 #define KFD_FENCE_INIT   (10)
1403 
1404 /**
1405  * enum kfd_config_dequeue_wait_counts_cmd - Command for configuring
1406  *  dequeue wait counts.
1407  *
1408  * @KFD_DEQUEUE_WAIT_INIT: Set optimized dequeue wait counts for a
1409  *	certain ASICs. For these ASICs, this is default value used by RESET
1410  * @KFD_DEQUEUE_WAIT_RESET: Reset dequeue wait counts to the optimized value
1411  *	for certain ASICs. For others set it to default hardware reset value
1412  * @KFD_DEQUEUE_WAIT_SET_SCH_WAVE: Set context switch latency wait
1413  *
1414  */
1415 enum kfd_config_dequeue_wait_counts_cmd {
1416 	KFD_DEQUEUE_WAIT_INIT = 1,
1417 	KFD_DEQUEUE_WAIT_RESET = 2,
1418 	KFD_DEQUEUE_WAIT_SET_SCH_WAVE = 3
1419 };
1420 
1421 
1422 struct packet_manager {
1423 	struct device_queue_manager *dqm;
1424 	struct kernel_queue *priv_queue;
1425 	struct mutex lock;
1426 	bool allocated;
1427 	struct kfd_mem_obj *ib_buffer_obj;
1428 	unsigned int ib_size_bytes;
1429 	bool is_over_subscription;
1430 
1431 	const struct packet_manager_funcs *pmf;
1432 };
1433 
1434 struct packet_manager_funcs {
1435 	/* Support ASIC-specific packet formats for PM4 packets */
1436 	int (*map_process)(struct packet_manager *pm, uint32_t *buffer,
1437 			struct qcm_process_device *qpd);
1438 	int (*runlist)(struct packet_manager *pm, uint32_t *buffer,
1439 			uint64_t ib, size_t ib_size_in_dwords, bool chain);
1440 	int (*set_resources)(struct packet_manager *pm, uint32_t *buffer,
1441 			struct scheduling_resources *res);
1442 	int (*map_queues)(struct packet_manager *pm, uint32_t *buffer,
1443 			struct queue *q, bool is_static);
1444 	int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer,
1445 			enum kfd_unmap_queues_filter mode,
1446 			uint32_t filter_param, bool reset);
1447 	int (*config_dequeue_wait_counts)(struct packet_manager *pm, uint32_t *buffer,
1448 			enum kfd_config_dequeue_wait_counts_cmd cmd, uint32_t value);
1449 	int (*query_status)(struct packet_manager *pm, uint32_t *buffer,
1450 			uint64_t fence_address,	uint64_t fence_value);
1451 	int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer);
1452 
1453 	/* Packet sizes */
1454 	int map_process_size;
1455 	int runlist_size;
1456 	int set_resources_size;
1457 	int map_queues_size;
1458 	int unmap_queues_size;
1459 	int config_dequeue_wait_counts_size;
1460 	int query_status_size;
1461 	int release_mem_size;
1462 };
1463 
1464 extern const struct packet_manager_funcs kfd_vi_pm_funcs;
1465 extern const struct packet_manager_funcs kfd_v9_pm_funcs;
1466 extern const struct packet_manager_funcs kfd_aldebaran_pm_funcs;
1467 
1468 int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm);
1469 void pm_uninit(struct packet_manager *pm);
1470 int pm_send_set_resources(struct packet_manager *pm,
1471 				struct scheduling_resources *res);
1472 int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues);
1473 int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address,
1474 				uint64_t fence_value);
1475 
1476 int pm_send_unmap_queue(struct packet_manager *pm,
1477 			enum kfd_unmap_queues_filter mode,
1478 			uint32_t filter_param, bool reset);
1479 
1480 void pm_release_ib(struct packet_manager *pm);
1481 
1482 int pm_config_dequeue_wait_counts(struct packet_manager *pm,
1483 			enum kfd_config_dequeue_wait_counts_cmd cmd,
1484 			uint32_t wait_counts_config);
1485 
1486 /* Following PM funcs can be shared among VI and AI */
1487 unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size);
1488 
1489 uint64_t kfd_get_number_elems(struct kfd_dev *kfd);
1490 
1491 /* Events */
1492 extern const struct kfd_event_interrupt_class event_interrupt_class_cik;
1493 extern const struct kfd_event_interrupt_class event_interrupt_class_v9;
1494 extern const struct kfd_event_interrupt_class event_interrupt_class_v9_4_3;
1495 extern const struct kfd_event_interrupt_class event_interrupt_class_v10;
1496 extern const struct kfd_event_interrupt_class event_interrupt_class_v11;
1497 
1498 extern const struct kfd_device_global_init_class device_global_init_class_cik;
1499 
1500 int kfd_event_init_process(struct kfd_process *p);
1501 void kfd_event_free_process(struct kfd_process *p);
1502 int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma);
1503 int kfd_wait_on_events(struct kfd_process *p,
1504 		       uint32_t num_events, void __user *data,
1505 		       bool all, uint32_t *user_timeout_ms,
1506 		       uint32_t *wait_result);
1507 void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id,
1508 				uint32_t valid_id_bits);
1509 void kfd_signal_hw_exception_event(u32 pasid);
1510 int kfd_set_event(struct kfd_process *p, uint32_t event_id);
1511 int kfd_reset_event(struct kfd_process *p, uint32_t event_id);
1512 int kfd_kmap_event_page(struct kfd_process *p, uint64_t event_page_offset);
1513 
1514 int kfd_event_create(struct file *devkfd, struct kfd_process *p,
1515 		     uint32_t event_type, bool auto_reset, uint32_t node_id,
1516 		     uint32_t *event_id, uint32_t *event_trigger_data,
1517 		     uint64_t *event_page_offset, uint32_t *event_slot_index);
1518 
1519 int kfd_get_num_events(struct kfd_process *p);
1520 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id);
1521 
1522 void kfd_signal_vm_fault_event_with_userptr(struct kfd_process *p, uint64_t gpu_va);
1523 
1524 void kfd_signal_vm_fault_event(struct kfd_process_device *pdd,
1525 				struct kfd_vm_fault_info *info,
1526 				struct kfd_hsa_memory_exception_data *data);
1527 
1528 void kfd_signal_reset_event(struct kfd_node *dev);
1529 
1530 void kfd_signal_poison_consumed_event(struct kfd_node *dev, u32 pasid);
1531 
1532 static inline void kfd_flush_tlb(struct kfd_process_device *pdd,
1533 				 enum TLB_FLUSH_TYPE type)
1534 {
1535 	struct amdgpu_device *adev = pdd->dev->adev;
1536 	struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv);
1537 
1538 	amdgpu_vm_flush_compute_tlb(adev, vm, type, pdd->dev->xcc_mask);
1539 }
1540 
1541 static inline bool kfd_flush_tlb_after_unmap(struct kfd_dev *dev)
1542 {
1543 	return KFD_GC_VERSION(dev) >= IP_VERSION(9, 4, 2) ||
1544 	       (KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 1) && dev->sdma_fw_version >= 18) ||
1545 	       KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 0);
1546 }
1547 
1548 int kfd_send_exception_to_runtime(struct kfd_process *p,
1549 				unsigned int queue_id,
1550 				uint64_t error_reason);
1551 bool kfd_is_locked(struct kfd_dev *kfd);
1552 
1553 /* Compute profile */
1554 void kfd_inc_compute_active(struct kfd_node *dev);
1555 void kfd_dec_compute_active(struct kfd_node *dev);
1556 
1557 /* Cgroup Support */
1558 /* Check with device cgroup if @kfd device is accessible */
1559 static inline int kfd_devcgroup_check_permission(struct kfd_node *node)
1560 {
1561 #if defined(CONFIG_CGROUP_DEVICE) || defined(CONFIG_CGROUP_BPF)
1562 	struct drm_device *ddev;
1563 
1564 	if (node->xcp)
1565 		ddev = node->xcp->ddev;
1566 	else
1567 		ddev = adev_to_drm(node->adev);
1568 
1569 	return devcgroup_check_permission(DEVCG_DEV_CHAR, DRM_MAJOR,
1570 					  ddev->render->index,
1571 					  DEVCG_ACC_WRITE | DEVCG_ACC_READ);
1572 #else
1573 	return 0;
1574 #endif
1575 }
1576 
1577 static inline bool kfd_is_first_node(struct kfd_node *node)
1578 {
1579 	return (node == node->kfd->nodes[0]);
1580 }
1581 
1582 /* Debugfs */
1583 #if defined(CONFIG_DEBUG_FS)
1584 
1585 void kfd_debugfs_init(void);
1586 void kfd_debugfs_fini(void);
1587 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data);
1588 int pqm_debugfs_mqds(struct seq_file *m, void *data);
1589 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data);
1590 int dqm_debugfs_hqds(struct seq_file *m, void *data);
1591 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data);
1592 int pm_debugfs_runlist(struct seq_file *m, void *data);
1593 
1594 int kfd_debugfs_hang_hws(struct kfd_node *dev);
1595 int pm_debugfs_hang_hws(struct packet_manager *pm);
1596 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm);
1597 
1598 void kfd_debugfs_add_process(struct kfd_process *p);
1599 void kfd_debugfs_remove_process(struct kfd_process *p);
1600 
1601 #else
1602 
1603 static inline void kfd_debugfs_init(void) {}
1604 static inline void kfd_debugfs_fini(void) {}
1605 static inline void kfd_debugfs_add_process(struct kfd_process *p) {}
1606 static inline void kfd_debugfs_remove_process(struct kfd_process *p) {}
1607 
1608 #endif
1609 
1610 #endif
1611