1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */ 2 /* 3 * Copyright 2014-2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #ifndef KFD_PRIV_H_INCLUDED 25 #define KFD_PRIV_H_INCLUDED 26 27 #include <linux/hashtable.h> 28 #include <linux/mmu_notifier.h> 29 #include <linux/memremap.h> 30 #include <linux/mutex.h> 31 #include <linux/types.h> 32 #include <linux/atomic.h> 33 #include <linux/workqueue.h> 34 #include <linux/spinlock.h> 35 #include <linux/kfd_ioctl.h> 36 #include <linux/idr.h> 37 #include <linux/kfifo.h> 38 #include <linux/seq_file.h> 39 #include <linux/kref.h> 40 #include <linux/sysfs.h> 41 #include <linux/device_cgroup.h> 42 #include <drm/drm_file.h> 43 #include <drm/drm_drv.h> 44 #include <drm/drm_device.h> 45 #include <drm/drm_ioctl.h> 46 #include <kgd_kfd_interface.h> 47 #include <linux/swap.h> 48 49 #include "amd_shared.h" 50 #include "amdgpu.h" 51 52 #define KFD_MAX_RING_ENTRY_SIZE 8 53 54 #define KFD_SYSFS_FILE_MODE 0444 55 56 /* GPU ID hash width in bits */ 57 #define KFD_GPU_ID_HASH_WIDTH 16 58 59 /* Use upper bits of mmap offset to store KFD driver specific information. 60 * BITS[63:62] - Encode MMAP type 61 * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to 62 * BITS[45:0] - MMAP offset value 63 * 64 * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these 65 * defines are w.r.t to PAGE_SIZE 66 */ 67 #define KFD_MMAP_TYPE_SHIFT 62 68 #define KFD_MMAP_TYPE_MASK (0x3ULL << KFD_MMAP_TYPE_SHIFT) 69 #define KFD_MMAP_TYPE_DOORBELL (0x3ULL << KFD_MMAP_TYPE_SHIFT) 70 #define KFD_MMAP_TYPE_EVENTS (0x2ULL << KFD_MMAP_TYPE_SHIFT) 71 #define KFD_MMAP_TYPE_RESERVED_MEM (0x1ULL << KFD_MMAP_TYPE_SHIFT) 72 #define KFD_MMAP_TYPE_MMIO (0x0ULL << KFD_MMAP_TYPE_SHIFT) 73 74 #define KFD_MMAP_GPU_ID_SHIFT 46 75 #define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \ 76 << KFD_MMAP_GPU_ID_SHIFT) 77 #define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\ 78 & KFD_MMAP_GPU_ID_MASK) 79 #define KFD_MMAP_GET_GPU_ID(offset) ((offset & KFD_MMAP_GPU_ID_MASK) \ 80 >> KFD_MMAP_GPU_ID_SHIFT) 81 82 /* 83 * When working with cp scheduler we should assign the HIQ manually or via 84 * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot 85 * definitions for Kaveri. In Kaveri only the first ME queues participates 86 * in the cp scheduling taking that in mind we set the HIQ slot in the 87 * second ME. 88 */ 89 #define KFD_CIK_HIQ_PIPE 4 90 #define KFD_CIK_HIQ_QUEUE 0 91 92 /* Macro for allocating structures */ 93 #define kfd_alloc_struct(ptr_to_struct) \ 94 ((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL)) 95 96 #define KFD_MAX_NUM_OF_PROCESSES 512 97 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024 98 99 /* 100 * Size of the per-process TBA+TMA buffer: 2 pages 101 * 102 * The first chunk is the TBA used for the CWSR ISA code. The second 103 * chunk is used as TMA for user-mode trap handler setup in daisy-chain mode. 104 */ 105 #define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2) 106 #define KFD_CWSR_TMA_OFFSET (PAGE_SIZE + 2048) 107 108 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE \ 109 (KFD_MAX_NUM_OF_PROCESSES * \ 110 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) 111 112 #define KFD_KERNEL_QUEUE_SIZE 2048 113 114 #define KFD_UNMAP_LATENCY_MS (4000) 115 116 #define KFD_MAX_SDMA_QUEUES 128 117 118 /* 119 * 512 = 0x200 120 * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the 121 * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA. 122 * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC 123 * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in 124 * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE. 125 */ 126 #define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512 127 128 /** 129 * enum kfd_ioctl_flags - KFD ioctl flags 130 * Various flags that can be set in &amdkfd_ioctl_desc.flags to control how 131 * userspace can use a given ioctl. 132 */ 133 enum kfd_ioctl_flags { 134 /* 135 * @KFD_IOC_FLAG_CHECKPOINT_RESTORE: 136 * Certain KFD ioctls such as AMDKFD_IOC_CRIU_OP can potentially 137 * perform privileged operations and load arbitrary data into MQDs and 138 * eventually HQD registers when the queue is mapped by HWS. In order to 139 * prevent this we should perform additional security checks. 140 * 141 * This is equivalent to callers with the CHECKPOINT_RESTORE capability. 142 * 143 * Note: Since earlier versions of docker do not support CHECKPOINT_RESTORE, 144 * we also allow ioctls with SYS_ADMIN capability. 145 */ 146 KFD_IOC_FLAG_CHECKPOINT_RESTORE = BIT(0), 147 }; 148 /* 149 * Kernel module parameter to specify maximum number of supported queues per 150 * device 151 */ 152 extern int max_num_of_queues_per_device; 153 154 155 /* Kernel module parameter to specify the scheduling policy */ 156 extern int sched_policy; 157 158 /* 159 * Kernel module parameter to specify the maximum process 160 * number per HW scheduler 161 */ 162 extern int hws_max_conc_proc; 163 164 extern int cwsr_enable; 165 166 /* 167 * Kernel module parameter to specify whether to send sigterm to HSA process on 168 * unhandled exception 169 */ 170 extern int send_sigterm; 171 172 /* 173 * This kernel module is used to simulate large bar machine on non-large bar 174 * enabled machines. 175 */ 176 extern int debug_largebar; 177 178 /* Set sh_mem_config.retry_disable on GFX v9 */ 179 extern int amdgpu_noretry; 180 181 /* Halt if HWS hang is detected */ 182 extern int halt_if_hws_hang; 183 184 /* Whether MEC FW support GWS barriers */ 185 extern bool hws_gws_support; 186 187 /* Queue preemption timeout in ms */ 188 extern int queue_preemption_timeout_ms; 189 190 /* 191 * Don't evict process queues on vm fault 192 */ 193 extern int amdgpu_no_queue_eviction_on_vm_fault; 194 195 /* Enable eviction debug messages */ 196 extern bool debug_evictions; 197 198 extern struct mutex kfd_processes_mutex; 199 200 enum cache_policy { 201 cache_policy_coherent, 202 cache_policy_noncoherent 203 }; 204 205 #define KFD_GC_VERSION(dev) (amdgpu_ip_version((dev)->adev, GC_HWIP, 0)) 206 #define KFD_IS_SOC15(dev) ((KFD_GC_VERSION(dev)) >= (IP_VERSION(9, 0, 1))) 207 #define KFD_SUPPORT_XNACK_PER_PROCESS(dev)\ 208 ((KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 2)) || \ 209 (KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 3)) || \ 210 (KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 4))) 211 212 struct kfd_node; 213 214 struct kfd_event_interrupt_class { 215 bool (*interrupt_isr)(struct kfd_node *dev, 216 const uint32_t *ih_ring_entry, uint32_t *patched_ihre, 217 bool *patched_flag); 218 void (*interrupt_wq)(struct kfd_node *dev, 219 const uint32_t *ih_ring_entry); 220 }; 221 222 struct kfd_device_info { 223 uint32_t gfx_target_version; 224 const struct kfd_event_interrupt_class *event_interrupt_class; 225 unsigned int max_pasid_bits; 226 unsigned int max_no_of_hqd; 227 unsigned int doorbell_size; 228 size_t ih_ring_entry_size; 229 uint8_t num_of_watch_points; 230 uint16_t mqd_size_aligned; 231 bool supports_cwsr; 232 bool needs_pci_atomics; 233 uint32_t no_atomic_fw_version; 234 unsigned int num_sdma_queues_per_engine; 235 unsigned int num_reserved_sdma_queues_per_engine; 236 DECLARE_BITMAP(reserved_sdma_queues_bitmap, KFD_MAX_SDMA_QUEUES); 237 }; 238 239 unsigned int kfd_get_num_sdma_engines(struct kfd_node *kdev); 240 unsigned int kfd_get_num_xgmi_sdma_engines(struct kfd_node *kdev); 241 242 struct kfd_mem_obj { 243 uint32_t range_start; 244 uint32_t range_end; 245 uint64_t gpu_addr; 246 uint32_t *cpu_ptr; 247 void *gtt_mem; 248 }; 249 250 struct kfd_vmid_info { 251 uint32_t first_vmid_kfd; 252 uint32_t last_vmid_kfd; 253 uint32_t vmid_num_kfd; 254 }; 255 256 #define MAX_KFD_NODES 8 257 258 struct kfd_dev; 259 260 struct kfd_node { 261 unsigned int node_id; 262 struct amdgpu_device *adev; /* Duplicated here along with keeping 263 * a copy in kfd_dev to save a hop 264 */ 265 const struct kfd2kgd_calls *kfd2kgd; /* Duplicated here along with 266 * keeping a copy in kfd_dev to 267 * save a hop 268 */ 269 struct kfd_vmid_info vm_info; 270 unsigned int id; /* topology stub index */ 271 uint32_t xcc_mask; /* Instance mask of XCCs present */ 272 struct amdgpu_xcp *xcp; 273 274 /* Interrupts */ 275 struct kfifo ih_fifo; 276 struct workqueue_struct *ih_wq; 277 struct work_struct interrupt_work; 278 spinlock_t interrupt_lock; 279 280 /* 281 * Interrupts of interest to KFD are copied 282 * from the HW ring into a SW ring. 283 */ 284 bool interrupts_active; 285 uint32_t interrupt_bitmap; /* Only used for GFX 9.4.3 */ 286 287 /* QCM Device instance */ 288 struct device_queue_manager *dqm; 289 290 /* Global GWS resource shared between processes */ 291 void *gws; 292 bool gws_debug_workaround; 293 294 /* Clients watching SMI events */ 295 struct list_head smi_clients; 296 spinlock_t smi_lock; 297 uint32_t reset_seq_num; 298 299 /* SRAM ECC flag */ 300 atomic_t sram_ecc_flag; 301 302 /*spm process id */ 303 unsigned int spm_pasid; 304 305 /* Maximum process number mapped to HW scheduler */ 306 unsigned int max_proc_per_quantum; 307 308 unsigned int compute_vmid_bitmap; 309 310 struct kfd_local_mem_info local_mem_info; 311 312 struct kfd_dev *kfd; 313 314 /* Track per device allocated watch points */ 315 uint32_t alloc_watch_ids; 316 spinlock_t watch_points_lock; 317 }; 318 319 struct kfd_dev { 320 struct amdgpu_device *adev; 321 322 struct kfd_device_info device_info; 323 324 u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells 325 * page used by kernel queue 326 */ 327 328 struct kgd2kfd_shared_resources shared_resources; 329 330 const struct kfd2kgd_calls *kfd2kgd; 331 struct mutex doorbell_mutex; 332 333 void *gtt_mem; 334 uint64_t gtt_start_gpu_addr; 335 void *gtt_start_cpu_ptr; 336 void *gtt_sa_bitmap; 337 struct mutex gtt_sa_lock; 338 unsigned int gtt_sa_chunk_size; 339 unsigned int gtt_sa_num_of_chunks; 340 341 bool init_complete; 342 343 /* Firmware versions */ 344 uint16_t mec_fw_version; 345 uint16_t mec2_fw_version; 346 uint16_t sdma_fw_version; 347 348 /* CWSR */ 349 bool cwsr_enabled; 350 const void *cwsr_isa; 351 unsigned int cwsr_isa_size; 352 353 /* xGMI */ 354 uint64_t hive_id; 355 356 bool pci_atomic_requested; 357 358 /* Compute Profile ref. count */ 359 atomic_t compute_profile; 360 361 struct ida doorbell_ida; 362 unsigned int max_doorbell_slices; 363 364 int noretry; 365 366 struct kfd_node *nodes[MAX_KFD_NODES]; 367 unsigned int num_nodes; 368 369 /* Kernel doorbells for KFD device */ 370 struct amdgpu_bo *doorbells; 371 372 /* bitmap for dynamic doorbell allocation from doorbell object */ 373 unsigned long *doorbell_bitmap; 374 }; 375 376 enum kfd_mempool { 377 KFD_MEMPOOL_SYSTEM_CACHEABLE = 1, 378 KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2, 379 KFD_MEMPOOL_FRAMEBUFFER = 3, 380 }; 381 382 /* Character device interface */ 383 int kfd_chardev_init(void); 384 void kfd_chardev_exit(void); 385 386 /** 387 * enum kfd_unmap_queues_filter - Enum for queue filters. 388 * 389 * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the 390 * running queues list. 391 * 392 * @KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES: Preempts all non-static queues 393 * in the run list. 394 * 395 * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to 396 * specific process. 397 * 398 */ 399 enum kfd_unmap_queues_filter { 400 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES = 1, 401 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES = 2, 402 KFD_UNMAP_QUEUES_FILTER_BY_PASID = 3 403 }; 404 405 /** 406 * enum kfd_queue_type - Enum for various queue types. 407 * 408 * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type. 409 * 410 * @KFD_QUEUE_TYPE_SDMA: SDMA user mode queue type. 411 * 412 * @KFD_QUEUE_TYPE_HIQ: HIQ queue type. 413 * 414 * @KFD_QUEUE_TYPE_DIQ: DIQ queue type. 415 * 416 * @KFD_QUEUE_TYPE_SDMA_XGMI: Special SDMA queue for XGMI interface. 417 * 418 * @KFD_QUEUE_TYPE_SDMA_BY_ENG_ID: SDMA user mode queue with target SDMA engine ID. 419 */ 420 enum kfd_queue_type { 421 KFD_QUEUE_TYPE_COMPUTE, 422 KFD_QUEUE_TYPE_SDMA, 423 KFD_QUEUE_TYPE_HIQ, 424 KFD_QUEUE_TYPE_DIQ, 425 KFD_QUEUE_TYPE_SDMA_XGMI, 426 KFD_QUEUE_TYPE_SDMA_BY_ENG_ID 427 }; 428 429 enum kfd_queue_format { 430 KFD_QUEUE_FORMAT_PM4, 431 KFD_QUEUE_FORMAT_AQL 432 }; 433 434 enum KFD_QUEUE_PRIORITY { 435 KFD_QUEUE_PRIORITY_MINIMUM = 0, 436 KFD_QUEUE_PRIORITY_MAXIMUM = 15 437 }; 438 439 /** 440 * struct queue_properties 441 * 442 * @type: The queue type. 443 * 444 * @queue_id: Queue identifier. 445 * 446 * @queue_address: Queue ring buffer address. 447 * 448 * @queue_size: Queue ring buffer size. 449 * 450 * @priority: Defines the queue priority relative to other queues in the 451 * process. 452 * This is just an indication and HW scheduling may override the priority as 453 * necessary while keeping the relative prioritization. 454 * the priority granularity is from 0 to f which f is the highest priority. 455 * currently all queues are initialized with the highest priority. 456 * 457 * @queue_percent: This field is partially implemented and currently a zero in 458 * this field defines that the queue is non active. 459 * 460 * @read_ptr: User space address which points to the number of dwords the 461 * cp read from the ring buffer. This field updates automatically by the H/W. 462 * 463 * @write_ptr: Defines the number of dwords written to the ring buffer. 464 * 465 * @doorbell_ptr: Notifies the H/W of new packet written to the queue ring 466 * buffer. This field should be similar to write_ptr and the user should 467 * update this field after updating the write_ptr. 468 * 469 * @doorbell_off: The doorbell offset in the doorbell pci-bar. 470 * 471 * @is_interop: Defines if this is a interop queue. Interop queue means that 472 * the queue can access both graphics and compute resources. 473 * 474 * @is_evicted: Defines if the queue is evicted. Only active queues 475 * are evicted, rendering them inactive. 476 * 477 * @is_active: Defines if the queue is active or not. @is_active and 478 * @is_evicted are protected by the DQM lock. 479 * 480 * @is_gws: Defines if the queue has been updated to be GWS-capable or not. 481 * @is_gws should be protected by the DQM lock, since changing it can yield the 482 * possibility of updating DQM state on number of GWS queues. 483 * 484 * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid 485 * of the queue. 486 * 487 * This structure represents the queue properties for each queue no matter if 488 * it's user mode or kernel mode queue. 489 * 490 */ 491 492 struct queue_properties { 493 enum kfd_queue_type type; 494 enum kfd_queue_format format; 495 unsigned int queue_id; 496 uint64_t queue_address; 497 uint64_t queue_size; 498 uint32_t priority; 499 uint32_t queue_percent; 500 void __user *read_ptr; 501 void __user *write_ptr; 502 void __iomem *doorbell_ptr; 503 uint32_t doorbell_off; 504 bool is_interop; 505 bool is_evicted; 506 bool is_suspended; 507 bool is_being_destroyed; 508 bool is_active; 509 bool is_gws; 510 uint32_t pm4_target_xcc; 511 bool is_dbg_wa; 512 bool is_user_cu_masked; 513 /* Not relevant for user mode queues in cp scheduling */ 514 unsigned int vmid; 515 /* Relevant only for sdma queues*/ 516 uint32_t sdma_engine_id; 517 uint32_t sdma_queue_id; 518 uint32_t sdma_vm_addr; 519 /* Relevant only for VI */ 520 uint64_t eop_ring_buffer_address; 521 uint32_t eop_ring_buffer_size; 522 uint64_t ctx_save_restore_area_address; 523 uint32_t ctx_save_restore_area_size; 524 uint32_t ctl_stack_size; 525 uint64_t tba_addr; 526 uint64_t tma_addr; 527 uint64_t exception_status; 528 529 struct amdgpu_bo *wptr_bo; 530 struct amdgpu_bo *rptr_bo; 531 struct amdgpu_bo *ring_bo; 532 struct amdgpu_bo *eop_buf_bo; 533 struct amdgpu_bo *cwsr_bo; 534 }; 535 536 #define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 && \ 537 (q).queue_address != 0 && \ 538 (q).queue_percent > 0 && \ 539 !(q).is_evicted && \ 540 !(q).is_suspended) 541 542 enum mqd_update_flag { 543 UPDATE_FLAG_DBG_WA_ENABLE = 1, 544 UPDATE_FLAG_DBG_WA_DISABLE = 2, 545 UPDATE_FLAG_IS_GWS = 4, /* quirk for gfx9 IP */ 546 }; 547 548 struct mqd_update_info { 549 union { 550 struct { 551 uint32_t count; /* Must be a multiple of 32 */ 552 uint32_t *ptr; 553 } cu_mask; 554 }; 555 enum mqd_update_flag update_flag; 556 }; 557 558 /** 559 * struct queue 560 * 561 * @list: Queue linked list. 562 * 563 * @mqd: The queue MQD (memory queue descriptor). 564 * 565 * @mqd_mem_obj: The MQD local gpu memory object. 566 * 567 * @gart_mqd_addr: The MQD gart mc address. 568 * 569 * @properties: The queue properties. 570 * 571 * @mec: Used only in no cp scheduling mode and identifies to micro engine id 572 * that the queue should be executed on. 573 * 574 * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe 575 * id. 576 * 577 * @queue: Used only in no cp scheduliong mode and identifies the queue's slot. 578 * 579 * @process: The kfd process that created this queue. 580 * 581 * @device: The kfd device that created this queue. 582 * 583 * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL 584 * otherwise. 585 * 586 * This structure represents user mode compute queues. 587 * It contains all the necessary data to handle such queues. 588 * 589 */ 590 591 struct queue { 592 struct list_head list; 593 void *mqd; 594 struct kfd_mem_obj *mqd_mem_obj; 595 uint64_t gart_mqd_addr; 596 struct queue_properties properties; 597 598 uint32_t mec; 599 uint32_t pipe; 600 uint32_t queue; 601 602 unsigned int sdma_id; 603 unsigned int doorbell_id; 604 605 struct kfd_process *process; 606 struct kfd_node *device; 607 void *gws; 608 609 /* procfs */ 610 struct kobject kobj; 611 612 void *gang_ctx_bo; 613 uint64_t gang_ctx_gpu_addr; 614 void *gang_ctx_cpu_ptr; 615 616 struct amdgpu_bo *wptr_bo_gart; 617 }; 618 619 enum KFD_MQD_TYPE { 620 KFD_MQD_TYPE_HIQ = 0, /* for hiq */ 621 KFD_MQD_TYPE_CP, /* for cp queues and diq */ 622 KFD_MQD_TYPE_SDMA, /* for sdma queues */ 623 KFD_MQD_TYPE_DIQ, /* for diq */ 624 KFD_MQD_TYPE_MAX 625 }; 626 627 enum KFD_PIPE_PRIORITY { 628 KFD_PIPE_PRIORITY_CS_LOW = 0, 629 KFD_PIPE_PRIORITY_CS_MEDIUM, 630 KFD_PIPE_PRIORITY_CS_HIGH 631 }; 632 633 struct scheduling_resources { 634 unsigned int vmid_mask; 635 enum kfd_queue_type type; 636 uint64_t queue_mask; 637 uint64_t gws_mask; 638 uint32_t oac_mask; 639 uint32_t gds_heap_base; 640 uint32_t gds_heap_size; 641 }; 642 643 struct process_queue_manager { 644 /* data */ 645 struct kfd_process *process; 646 struct list_head queues; 647 unsigned long *queue_slot_bitmap; 648 }; 649 650 struct qcm_process_device { 651 /* The Device Queue Manager that owns this data */ 652 struct device_queue_manager *dqm; 653 struct process_queue_manager *pqm; 654 /* Queues list */ 655 struct list_head queues_list; 656 struct list_head priv_queue_list; 657 658 unsigned int queue_count; 659 unsigned int vmid; 660 bool is_debug; 661 unsigned int evicted; /* eviction counter, 0=active */ 662 663 /* This flag tells if we should reset all wavefronts on 664 * process termination 665 */ 666 bool reset_wavefronts; 667 668 /* This flag tells us if this process has a GWS-capable 669 * queue that will be mapped into the runlist. It's 670 * possible to request a GWS BO, but not have the queue 671 * currently mapped, and this changes how the MAP_PROCESS 672 * PM4 packet is configured. 673 */ 674 bool mapped_gws_queue; 675 676 /* All the memory management data should be here too */ 677 uint64_t gds_context_area; 678 /* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */ 679 uint64_t page_table_base; 680 uint32_t sh_mem_config; 681 uint32_t sh_mem_bases; 682 uint32_t sh_mem_ape1_base; 683 uint32_t sh_mem_ape1_limit; 684 uint32_t gds_size; 685 uint32_t num_gws; 686 uint32_t num_oac; 687 uint32_t sh_hidden_private_base; 688 689 /* CWSR memory */ 690 struct kgd_mem *cwsr_mem; 691 void *cwsr_kaddr; 692 uint64_t cwsr_base; 693 uint64_t tba_addr; 694 uint64_t tma_addr; 695 696 /* IB memory */ 697 struct kgd_mem *ib_mem; 698 uint64_t ib_base; 699 void *ib_kaddr; 700 701 /* doorbells for kfd process */ 702 struct amdgpu_bo *proc_doorbells; 703 704 /* bitmap for dynamic doorbell allocation from the bo */ 705 unsigned long *doorbell_bitmap; 706 }; 707 708 /* KFD Memory Eviction */ 709 710 /* Approx. wait time before attempting to restore evicted BOs */ 711 #define PROCESS_RESTORE_TIME_MS 100 712 /* Approx. back off time if restore fails due to lack of memory */ 713 #define PROCESS_BACK_OFF_TIME_MS 100 714 /* Approx. time before evicting the process again */ 715 #define PROCESS_ACTIVE_TIME_MS 10 716 717 /* 8 byte handle containing GPU ID in the most significant 4 bytes and 718 * idr_handle in the least significant 4 bytes 719 */ 720 #define MAKE_HANDLE(gpu_id, idr_handle) \ 721 (((uint64_t)(gpu_id) << 32) + idr_handle) 722 #define GET_GPU_ID(handle) (handle >> 32) 723 #define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF) 724 725 enum kfd_pdd_bound { 726 PDD_UNBOUND = 0, 727 PDD_BOUND, 728 PDD_BOUND_SUSPENDED, 729 }; 730 731 #define MAX_SYSFS_FILENAME_LEN 15 732 733 /* 734 * SDMA counter runs at 100MHz frequency. 735 * We display SDMA activity in microsecond granularity in sysfs. 736 * As a result, the divisor is 100. 737 */ 738 #define SDMA_ACTIVITY_DIVISOR 100 739 740 /* Data that is per-process-per device. */ 741 struct kfd_process_device { 742 /* The device that owns this data. */ 743 struct kfd_node *dev; 744 745 /* The process that owns this kfd_process_device. */ 746 struct kfd_process *process; 747 748 /* per-process-per device QCM data structure */ 749 struct qcm_process_device qpd; 750 751 /*Apertures*/ 752 uint64_t lds_base; 753 uint64_t lds_limit; 754 uint64_t gpuvm_base; 755 uint64_t gpuvm_limit; 756 uint64_t scratch_base; 757 uint64_t scratch_limit; 758 759 /* VM context for GPUVM allocations */ 760 struct file *drm_file; 761 void *drm_priv; 762 763 /* GPUVM allocations storage */ 764 struct idr alloc_idr; 765 766 /* Flag used to tell the pdd has dequeued from the dqm. 767 * This is used to prevent dev->dqm->ops.process_termination() from 768 * being called twice when it is already called in IOMMU callback 769 * function. 770 */ 771 bool already_dequeued; 772 bool runtime_inuse; 773 774 /* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */ 775 enum kfd_pdd_bound bound; 776 777 /* VRAM usage */ 778 uint64_t vram_usage; 779 struct attribute attr_vram; 780 char vram_filename[MAX_SYSFS_FILENAME_LEN]; 781 782 /* SDMA activity tracking */ 783 uint64_t sdma_past_activity_counter; 784 struct attribute attr_sdma; 785 char sdma_filename[MAX_SYSFS_FILENAME_LEN]; 786 787 /* Eviction activity tracking */ 788 uint64_t last_evict_timestamp; 789 atomic64_t evict_duration_counter; 790 struct attribute attr_evict; 791 792 struct kobject *kobj_stats; 793 794 /* 795 * @cu_occupancy: Reports occupancy of Compute Units (CU) of a process 796 * that is associated with device encoded by "this" struct instance. The 797 * value reflects CU usage by all of the waves launched by this process 798 * on this device. A very important property of occupancy parameter is 799 * that its value is a snapshot of current use. 800 * 801 * Following is to be noted regarding how this parameter is reported: 802 * 803 * The number of waves that a CU can launch is limited by couple of 804 * parameters. These are encoded by struct amdgpu_cu_info instance 805 * that is part of every device definition. For GFX9 devices this 806 * translates to 40 waves (simd_per_cu * max_waves_per_simd) when waves 807 * do not use scratch memory and 32 waves (max_scratch_slots_per_cu) 808 * when they do use scratch memory. This could change for future 809 * devices and therefore this example should be considered as a guide. 810 * 811 * All CU's of a device are available for the process. This may not be true 812 * under certain conditions - e.g. CU masking. 813 * 814 * Finally number of CU's that are occupied by a process is affected by both 815 * number of CU's a device has along with number of other competing processes 816 */ 817 struct attribute attr_cu_occupancy; 818 819 /* sysfs counters for GPU retry fault and page migration tracking */ 820 struct kobject *kobj_counters; 821 struct attribute attr_faults; 822 struct attribute attr_page_in; 823 struct attribute attr_page_out; 824 uint64_t faults; 825 uint64_t page_in; 826 uint64_t page_out; 827 828 /* Exception code status*/ 829 uint64_t exception_status; 830 void *vm_fault_exc_data; 831 size_t vm_fault_exc_data_size; 832 833 /* Tracks debug per-vmid request settings */ 834 uint32_t spi_dbg_override; 835 uint32_t spi_dbg_launch_mode; 836 uint32_t watch_points[4]; 837 uint32_t alloc_watch_ids; 838 839 /* 840 * If this process has been checkpointed before, then the user 841 * application will use the original gpu_id on the 842 * checkpointed node to refer to this device. 843 */ 844 uint32_t user_gpu_id; 845 846 void *proc_ctx_bo; 847 uint64_t proc_ctx_gpu_addr; 848 void *proc_ctx_cpu_ptr; 849 850 /* Tracks queue reset status */ 851 bool has_reset_queue; 852 }; 853 854 #define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd) 855 856 struct svm_range_list { 857 struct mutex lock; 858 struct rb_root_cached objects; 859 struct list_head list; 860 struct work_struct deferred_list_work; 861 struct list_head deferred_range_list; 862 struct list_head criu_svm_metadata_list; 863 spinlock_t deferred_list_lock; 864 atomic_t evicted_ranges; 865 atomic_t drain_pagefaults; 866 struct delayed_work restore_work; 867 DECLARE_BITMAP(bitmap_supported, MAX_GPU_INSTANCE); 868 struct task_struct *faulting_task; 869 }; 870 871 /* Process data */ 872 struct kfd_process { 873 /* 874 * kfd_process are stored in an mm_struct*->kfd_process* 875 * hash table (kfd_processes in kfd_process.c) 876 */ 877 struct hlist_node kfd_processes; 878 879 /* 880 * Opaque pointer to mm_struct. We don't hold a reference to 881 * it so it should never be dereferenced from here. This is 882 * only used for looking up processes by their mm. 883 */ 884 void *mm; 885 886 struct kref ref; 887 struct work_struct release_work; 888 889 struct mutex mutex; 890 891 /* 892 * In any process, the thread that started main() is the lead 893 * thread and outlives the rest. 894 * It is here because amd_iommu_bind_pasid wants a task_struct. 895 * It can also be used for safely getting a reference to the 896 * mm_struct of the process. 897 */ 898 struct task_struct *lead_thread; 899 900 /* We want to receive a notification when the mm_struct is destroyed */ 901 struct mmu_notifier mmu_notifier; 902 903 u32 pasid; 904 905 /* 906 * Array of kfd_process_device pointers, 907 * one for each device the process is using. 908 */ 909 struct kfd_process_device *pdds[MAX_GPU_INSTANCE]; 910 uint32_t n_pdds; 911 912 struct process_queue_manager pqm; 913 914 /*Is the user space process 32 bit?*/ 915 bool is_32bit_user_mode; 916 917 /* Event-related data */ 918 struct mutex event_mutex; 919 /* Event ID allocator and lookup */ 920 struct idr event_idr; 921 /* Event page */ 922 u64 signal_handle; 923 struct kfd_signal_page *signal_page; 924 size_t signal_mapped_size; 925 size_t signal_event_count; 926 bool signal_event_limit_reached; 927 928 /* Information used for memory eviction */ 929 void *kgd_process_info; 930 /* Eviction fence that is attached to all the BOs of this process. The 931 * fence will be triggered during eviction and new one will be created 932 * during restore 933 */ 934 struct dma_fence __rcu *ef; 935 936 /* Work items for evicting and restoring BOs */ 937 struct delayed_work eviction_work; 938 struct delayed_work restore_work; 939 /* seqno of the last scheduled eviction */ 940 unsigned int last_eviction_seqno; 941 /* Approx. the last timestamp (in jiffies) when the process was 942 * restored after an eviction 943 */ 944 unsigned long last_restore_timestamp; 945 946 /* Indicates device process is debug attached with reserved vmid. */ 947 bool debug_trap_enabled; 948 949 /* per-process-per device debug event fd file */ 950 struct file *dbg_ev_file; 951 952 /* If the process is a kfd debugger, we need to know so we can clean 953 * up at exit time. If a process enables debugging on itself, it does 954 * its own clean-up, so we don't set the flag here. We track this by 955 * counting the number of processes this process is debugging. 956 */ 957 atomic_t debugged_process_count; 958 959 /* If the process is a debugged, this is the debugger process */ 960 struct kfd_process *debugger_process; 961 962 /* Kobj for our procfs */ 963 struct kobject *kobj; 964 struct kobject *kobj_queues; 965 struct attribute attr_pasid; 966 967 /* Keep track cwsr init */ 968 bool has_cwsr; 969 970 /* Exception code enable mask and status */ 971 uint64_t exception_enable_mask; 972 uint64_t exception_status; 973 974 /* Used to drain stale interrupts */ 975 wait_queue_head_t wait_irq_drain; 976 bool irq_drain_is_open; 977 978 /* shared virtual memory registered by this process */ 979 struct svm_range_list svms; 980 981 bool xnack_enabled; 982 983 /* Work area for debugger event writer worker. */ 984 struct work_struct debug_event_workarea; 985 986 /* Tracks debug per-vmid request for debug flags */ 987 u32 dbg_flags; 988 989 atomic_t poison; 990 /* Queues are in paused stated because we are in the process of doing a CRIU checkpoint */ 991 bool queues_paused; 992 993 /* Tracks runtime enable status */ 994 struct semaphore runtime_enable_sema; 995 bool is_runtime_retry; 996 struct kfd_runtime_info runtime_info; 997 }; 998 999 #define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */ 1000 extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE); 1001 extern struct srcu_struct kfd_processes_srcu; 1002 1003 /** 1004 * typedef amdkfd_ioctl_t - typedef for ioctl function pointer. 1005 * 1006 * @filep: pointer to file structure. 1007 * @p: amdkfd process pointer. 1008 * @data: pointer to arg that was copied from user. 1009 * 1010 * Return: returns ioctl completion code. 1011 */ 1012 typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p, 1013 void *data); 1014 1015 struct amdkfd_ioctl_desc { 1016 unsigned int cmd; 1017 int flags; 1018 amdkfd_ioctl_t *func; 1019 unsigned int cmd_drv; 1020 const char *name; 1021 }; 1022 bool kfd_dev_is_large_bar(struct kfd_node *dev); 1023 1024 int kfd_process_create_wq(void); 1025 void kfd_process_destroy_wq(void); 1026 void kfd_cleanup_processes(void); 1027 struct kfd_process *kfd_create_process(struct task_struct *thread); 1028 struct kfd_process *kfd_get_process(const struct task_struct *task); 1029 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid); 1030 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm); 1031 1032 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id); 1033 int kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node, 1034 uint32_t *gpuid, uint32_t *gpuidx); 1035 static inline int kfd_process_gpuid_from_gpuidx(struct kfd_process *p, 1036 uint32_t gpuidx, uint32_t *gpuid) { 1037 return gpuidx < p->n_pdds ? p->pdds[gpuidx]->dev->id : -EINVAL; 1038 } 1039 static inline struct kfd_process_device *kfd_process_device_from_gpuidx( 1040 struct kfd_process *p, uint32_t gpuidx) { 1041 return gpuidx < p->n_pdds ? p->pdds[gpuidx] : NULL; 1042 } 1043 1044 void kfd_unref_process(struct kfd_process *p); 1045 int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger); 1046 int kfd_process_restore_queues(struct kfd_process *p); 1047 void kfd_suspend_all_processes(void); 1048 int kfd_resume_all_processes(void); 1049 1050 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *process, 1051 uint32_t gpu_id); 1052 1053 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id); 1054 1055 int kfd_process_device_init_vm(struct kfd_process_device *pdd, 1056 struct file *drm_file); 1057 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev, 1058 struct kfd_process *p); 1059 struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev, 1060 struct kfd_process *p); 1061 struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev, 1062 struct kfd_process *p); 1063 1064 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported); 1065 1066 int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process, 1067 struct vm_area_struct *vma); 1068 1069 /* KFD process API for creating and translating handles */ 1070 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd, 1071 void *mem); 1072 void *kfd_process_device_translate_handle(struct kfd_process_device *p, 1073 int handle); 1074 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd, 1075 int handle); 1076 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid); 1077 1078 /* PASIDs */ 1079 int kfd_pasid_init(void); 1080 void kfd_pasid_exit(void); 1081 bool kfd_set_pasid_limit(unsigned int new_limit); 1082 unsigned int kfd_get_pasid_limit(void); 1083 u32 kfd_pasid_alloc(void); 1084 void kfd_pasid_free(u32 pasid); 1085 1086 /* Doorbells */ 1087 size_t kfd_doorbell_process_slice(struct kfd_dev *kfd); 1088 int kfd_doorbell_init(struct kfd_dev *kfd); 1089 void kfd_doorbell_fini(struct kfd_dev *kfd); 1090 int kfd_doorbell_mmap(struct kfd_node *dev, struct kfd_process *process, 1091 struct vm_area_struct *vma); 1092 void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd, 1093 unsigned int *doorbell_off); 1094 void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr); 1095 u32 read_kernel_doorbell(u32 __iomem *db); 1096 void write_kernel_doorbell(void __iomem *db, u32 value); 1097 void write_kernel_doorbell64(void __iomem *db, u64 value); 1098 unsigned int kfd_get_doorbell_dw_offset_in_bar(struct kfd_dev *kfd, 1099 struct kfd_process_device *pdd, 1100 unsigned int doorbell_id); 1101 phys_addr_t kfd_get_process_doorbells(struct kfd_process_device *pdd); 1102 int kfd_alloc_process_doorbells(struct kfd_dev *kfd, 1103 struct kfd_process_device *pdd); 1104 void kfd_free_process_doorbells(struct kfd_dev *kfd, 1105 struct kfd_process_device *pdd); 1106 /* GTT Sub-Allocator */ 1107 1108 int kfd_gtt_sa_allocate(struct kfd_node *node, unsigned int size, 1109 struct kfd_mem_obj **mem_obj); 1110 1111 int kfd_gtt_sa_free(struct kfd_node *node, struct kfd_mem_obj *mem_obj); 1112 1113 extern struct device *kfd_device; 1114 1115 /* KFD's procfs */ 1116 void kfd_procfs_init(void); 1117 void kfd_procfs_shutdown(void); 1118 int kfd_procfs_add_queue(struct queue *q); 1119 void kfd_procfs_del_queue(struct queue *q); 1120 1121 /* Topology */ 1122 int kfd_topology_init(void); 1123 void kfd_topology_shutdown(void); 1124 int kfd_topology_add_device(struct kfd_node *gpu); 1125 int kfd_topology_remove_device(struct kfd_node *gpu); 1126 struct kfd_topology_device *kfd_topology_device_by_proximity_domain( 1127 uint32_t proximity_domain); 1128 struct kfd_topology_device *kfd_topology_device_by_proximity_domain_no_lock( 1129 uint32_t proximity_domain); 1130 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id); 1131 struct kfd_node *kfd_device_by_id(uint32_t gpu_id); 1132 struct kfd_node *kfd_device_by_pci_dev(const struct pci_dev *pdev); 1133 static inline bool kfd_irq_is_from_node(struct kfd_node *node, uint32_t node_id, 1134 uint32_t vmid) 1135 { 1136 return (node->interrupt_bitmap & (1 << node_id)) != 0 && 1137 (node->compute_vmid_bitmap & (1 << vmid)) != 0; 1138 } 1139 static inline struct kfd_node *kfd_node_by_irq_ids(struct amdgpu_device *adev, 1140 uint32_t node_id, uint32_t vmid) { 1141 struct kfd_dev *dev = adev->kfd.dev; 1142 uint32_t i; 1143 1144 if (KFD_GC_VERSION(dev) != IP_VERSION(9, 4, 3) && 1145 KFD_GC_VERSION(dev) != IP_VERSION(9, 4, 4)) 1146 return dev->nodes[0]; 1147 1148 for (i = 0; i < dev->num_nodes; i++) 1149 if (kfd_irq_is_from_node(dev->nodes[i], node_id, vmid)) 1150 return dev->nodes[i]; 1151 1152 return NULL; 1153 } 1154 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_node **kdev); 1155 int kfd_numa_node_to_apic_id(int numa_node_id); 1156 1157 /* Interrupts */ 1158 #define KFD_IRQ_FENCE_CLIENTID 0xff 1159 #define KFD_IRQ_FENCE_SOURCEID 0xff 1160 #define KFD_IRQ_IS_FENCE(client, source) \ 1161 ((client) == KFD_IRQ_FENCE_CLIENTID && \ 1162 (source) == KFD_IRQ_FENCE_SOURCEID) 1163 int kfd_interrupt_init(struct kfd_node *dev); 1164 void kfd_interrupt_exit(struct kfd_node *dev); 1165 bool enqueue_ih_ring_entry(struct kfd_node *kfd, const void *ih_ring_entry); 1166 bool interrupt_is_wanted(struct kfd_node *dev, 1167 const uint32_t *ih_ring_entry, 1168 uint32_t *patched_ihre, bool *flag); 1169 int kfd_process_drain_interrupts(struct kfd_process_device *pdd); 1170 void kfd_process_close_interrupt_drain(unsigned int pasid); 1171 1172 /* amdkfd Apertures */ 1173 int kfd_init_apertures(struct kfd_process *process); 1174 1175 void kfd_process_set_trap_handler(struct qcm_process_device *qpd, 1176 uint64_t tba_addr, 1177 uint64_t tma_addr); 1178 void kfd_process_set_trap_debug_flag(struct qcm_process_device *qpd, 1179 bool enabled); 1180 1181 /* CWSR initialization */ 1182 int kfd_process_init_cwsr_apu(struct kfd_process *process, struct file *filep); 1183 1184 /* CRIU */ 1185 /* 1186 * Need to increment KFD_CRIU_PRIV_VERSION each time a change is made to any of the CRIU private 1187 * structures: 1188 * kfd_criu_process_priv_data 1189 * kfd_criu_device_priv_data 1190 * kfd_criu_bo_priv_data 1191 * kfd_criu_queue_priv_data 1192 * kfd_criu_event_priv_data 1193 * kfd_criu_svm_range_priv_data 1194 */ 1195 1196 #define KFD_CRIU_PRIV_VERSION 1 1197 1198 struct kfd_criu_process_priv_data { 1199 uint32_t version; 1200 uint32_t xnack_mode; 1201 }; 1202 1203 struct kfd_criu_device_priv_data { 1204 /* For future use */ 1205 uint64_t reserved; 1206 }; 1207 1208 struct kfd_criu_bo_priv_data { 1209 uint64_t user_addr; 1210 uint32_t idr_handle; 1211 uint32_t mapped_gpuids[MAX_GPU_INSTANCE]; 1212 }; 1213 1214 /* 1215 * The first 4 bytes of kfd_criu_queue_priv_data, kfd_criu_event_priv_data, 1216 * kfd_criu_svm_range_priv_data is the object type 1217 */ 1218 enum kfd_criu_object_type { 1219 KFD_CRIU_OBJECT_TYPE_QUEUE, 1220 KFD_CRIU_OBJECT_TYPE_EVENT, 1221 KFD_CRIU_OBJECT_TYPE_SVM_RANGE, 1222 }; 1223 1224 struct kfd_criu_svm_range_priv_data { 1225 uint32_t object_type; 1226 uint64_t start_addr; 1227 uint64_t size; 1228 /* Variable length array of attributes */ 1229 struct kfd_ioctl_svm_attribute attrs[]; 1230 }; 1231 1232 struct kfd_criu_queue_priv_data { 1233 uint32_t object_type; 1234 uint64_t q_address; 1235 uint64_t q_size; 1236 uint64_t read_ptr_addr; 1237 uint64_t write_ptr_addr; 1238 uint64_t doorbell_off; 1239 uint64_t eop_ring_buffer_address; 1240 uint64_t ctx_save_restore_area_address; 1241 uint32_t gpu_id; 1242 uint32_t type; 1243 uint32_t format; 1244 uint32_t q_id; 1245 uint32_t priority; 1246 uint32_t q_percent; 1247 uint32_t doorbell_id; 1248 uint32_t gws; 1249 uint32_t sdma_id; 1250 uint32_t eop_ring_buffer_size; 1251 uint32_t ctx_save_restore_area_size; 1252 uint32_t ctl_stack_size; 1253 uint32_t mqd_size; 1254 }; 1255 1256 struct kfd_criu_event_priv_data { 1257 uint32_t object_type; 1258 uint64_t user_handle; 1259 uint32_t event_id; 1260 uint32_t auto_reset; 1261 uint32_t type; 1262 uint32_t signaled; 1263 1264 union { 1265 struct kfd_hsa_memory_exception_data memory_exception_data; 1266 struct kfd_hsa_hw_exception_data hw_exception_data; 1267 }; 1268 }; 1269 1270 int kfd_process_get_queue_info(struct kfd_process *p, 1271 uint32_t *num_queues, 1272 uint64_t *priv_data_sizes); 1273 1274 int kfd_criu_checkpoint_queues(struct kfd_process *p, 1275 uint8_t __user *user_priv_data, 1276 uint64_t *priv_data_offset); 1277 1278 int kfd_criu_restore_queue(struct kfd_process *p, 1279 uint8_t __user *user_priv_data, 1280 uint64_t *priv_data_offset, 1281 uint64_t max_priv_data_size); 1282 1283 int kfd_criu_checkpoint_events(struct kfd_process *p, 1284 uint8_t __user *user_priv_data, 1285 uint64_t *priv_data_offset); 1286 1287 int kfd_criu_restore_event(struct file *devkfd, 1288 struct kfd_process *p, 1289 uint8_t __user *user_priv_data, 1290 uint64_t *priv_data_offset, 1291 uint64_t max_priv_data_size); 1292 /* CRIU - End */ 1293 1294 /* Queue Context Management */ 1295 int init_queue(struct queue **q, const struct queue_properties *properties); 1296 void uninit_queue(struct queue *q); 1297 void print_queue_properties(struct queue_properties *q); 1298 void print_queue(struct queue *q); 1299 int kfd_queue_buffer_get(struct amdgpu_vm *vm, void __user *addr, struct amdgpu_bo **pbo, 1300 u64 expected_size); 1301 void kfd_queue_buffer_put(struct amdgpu_bo **bo); 1302 int kfd_queue_acquire_buffers(struct kfd_process_device *pdd, struct queue_properties *properties); 1303 int kfd_queue_release_buffers(struct kfd_process_device *pdd, struct queue_properties *properties); 1304 void kfd_queue_unref_bo_va(struct amdgpu_vm *vm, struct amdgpu_bo **bo); 1305 int kfd_queue_unref_bo_vas(struct kfd_process_device *pdd, 1306 struct queue_properties *properties); 1307 void kfd_queue_ctx_save_restore_size(struct kfd_topology_device *dev); 1308 1309 struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type, 1310 struct kfd_node *dev); 1311 struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type, 1312 struct kfd_node *dev); 1313 struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type, 1314 struct kfd_node *dev); 1315 struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type, 1316 struct kfd_node *dev); 1317 struct mqd_manager *mqd_manager_init_v11(enum KFD_MQD_TYPE type, 1318 struct kfd_node *dev); 1319 struct mqd_manager *mqd_manager_init_v12(enum KFD_MQD_TYPE type, 1320 struct kfd_node *dev); 1321 struct device_queue_manager *device_queue_manager_init(struct kfd_node *dev); 1322 void device_queue_manager_uninit(struct device_queue_manager *dqm); 1323 struct kernel_queue *kernel_queue_init(struct kfd_node *dev, 1324 enum kfd_queue_type type); 1325 void kernel_queue_uninit(struct kernel_queue *kq); 1326 int kfd_dqm_evict_pasid(struct device_queue_manager *dqm, u32 pasid); 1327 int kfd_dqm_suspend_bad_queue_mes(struct kfd_node *knode, u32 pasid, u32 doorbell_id); 1328 1329 /* Process Queue Manager */ 1330 struct process_queue_node { 1331 struct queue *q; 1332 struct kernel_queue *kq; 1333 struct list_head process_queue_list; 1334 }; 1335 1336 void kfd_process_dequeue_from_device(struct kfd_process_device *pdd); 1337 void kfd_process_dequeue_from_all_devices(struct kfd_process *p); 1338 int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p); 1339 void pqm_uninit(struct process_queue_manager *pqm); 1340 int pqm_create_queue(struct process_queue_manager *pqm, 1341 struct kfd_node *dev, 1342 struct file *f, 1343 struct queue_properties *properties, 1344 unsigned int *qid, 1345 const struct kfd_criu_queue_priv_data *q_data, 1346 const void *restore_mqd, 1347 const void *restore_ctl_stack, 1348 uint32_t *p_doorbell_offset_in_process); 1349 int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid); 1350 int pqm_update_queue_properties(struct process_queue_manager *pqm, unsigned int qid, 1351 struct queue_properties *p); 1352 int pqm_update_mqd(struct process_queue_manager *pqm, unsigned int qid, 1353 struct mqd_update_info *minfo); 1354 int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid, 1355 void *gws); 1356 struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm, 1357 unsigned int qid); 1358 struct queue *pqm_get_user_queue(struct process_queue_manager *pqm, 1359 unsigned int qid); 1360 int pqm_get_wave_state(struct process_queue_manager *pqm, 1361 unsigned int qid, 1362 void __user *ctl_stack, 1363 u32 *ctl_stack_used_size, 1364 u32 *save_area_used_size); 1365 int pqm_get_queue_snapshot(struct process_queue_manager *pqm, 1366 uint64_t exception_clear_mask, 1367 void __user *buf, 1368 int *num_qss_entries, 1369 uint32_t *entry_size); 1370 1371 int amdkfd_fence_wait_timeout(struct device_queue_manager *dqm, 1372 uint64_t fence_value, 1373 unsigned int timeout_ms); 1374 1375 int pqm_get_queue_checkpoint_info(struct process_queue_manager *pqm, 1376 unsigned int qid, 1377 u32 *mqd_size, 1378 u32 *ctl_stack_size); 1379 /* Packet Manager */ 1380 1381 #define KFD_FENCE_COMPLETED (100) 1382 #define KFD_FENCE_INIT (10) 1383 1384 struct packet_manager { 1385 struct device_queue_manager *dqm; 1386 struct kernel_queue *priv_queue; 1387 struct mutex lock; 1388 bool allocated; 1389 struct kfd_mem_obj *ib_buffer_obj; 1390 unsigned int ib_size_bytes; 1391 bool is_over_subscription; 1392 1393 const struct packet_manager_funcs *pmf; 1394 }; 1395 1396 struct packet_manager_funcs { 1397 /* Support ASIC-specific packet formats for PM4 packets */ 1398 int (*map_process)(struct packet_manager *pm, uint32_t *buffer, 1399 struct qcm_process_device *qpd); 1400 int (*runlist)(struct packet_manager *pm, uint32_t *buffer, 1401 uint64_t ib, size_t ib_size_in_dwords, bool chain); 1402 int (*set_resources)(struct packet_manager *pm, uint32_t *buffer, 1403 struct scheduling_resources *res); 1404 int (*map_queues)(struct packet_manager *pm, uint32_t *buffer, 1405 struct queue *q, bool is_static); 1406 int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer, 1407 enum kfd_unmap_queues_filter mode, 1408 uint32_t filter_param, bool reset); 1409 int (*set_grace_period)(struct packet_manager *pm, uint32_t *buffer, 1410 uint32_t grace_period); 1411 int (*query_status)(struct packet_manager *pm, uint32_t *buffer, 1412 uint64_t fence_address, uint64_t fence_value); 1413 int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer); 1414 1415 /* Packet sizes */ 1416 int map_process_size; 1417 int runlist_size; 1418 int set_resources_size; 1419 int map_queues_size; 1420 int unmap_queues_size; 1421 int set_grace_period_size; 1422 int query_status_size; 1423 int release_mem_size; 1424 }; 1425 1426 extern const struct packet_manager_funcs kfd_vi_pm_funcs; 1427 extern const struct packet_manager_funcs kfd_v9_pm_funcs; 1428 extern const struct packet_manager_funcs kfd_aldebaran_pm_funcs; 1429 1430 int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm); 1431 void pm_uninit(struct packet_manager *pm); 1432 int pm_send_set_resources(struct packet_manager *pm, 1433 struct scheduling_resources *res); 1434 int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues); 1435 int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address, 1436 uint64_t fence_value); 1437 1438 int pm_send_unmap_queue(struct packet_manager *pm, 1439 enum kfd_unmap_queues_filter mode, 1440 uint32_t filter_param, bool reset); 1441 1442 void pm_release_ib(struct packet_manager *pm); 1443 1444 int pm_update_grace_period(struct packet_manager *pm, uint32_t grace_period); 1445 1446 /* Following PM funcs can be shared among VI and AI */ 1447 unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size); 1448 1449 uint64_t kfd_get_number_elems(struct kfd_dev *kfd); 1450 1451 /* Events */ 1452 extern const struct kfd_event_interrupt_class event_interrupt_class_cik; 1453 extern const struct kfd_event_interrupt_class event_interrupt_class_v9; 1454 extern const struct kfd_event_interrupt_class event_interrupt_class_v9_4_3; 1455 extern const struct kfd_event_interrupt_class event_interrupt_class_v10; 1456 extern const struct kfd_event_interrupt_class event_interrupt_class_v11; 1457 1458 extern const struct kfd_device_global_init_class device_global_init_class_cik; 1459 1460 int kfd_event_init_process(struct kfd_process *p); 1461 void kfd_event_free_process(struct kfd_process *p); 1462 int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma); 1463 int kfd_wait_on_events(struct kfd_process *p, 1464 uint32_t num_events, void __user *data, 1465 bool all, uint32_t *user_timeout_ms, 1466 uint32_t *wait_result); 1467 void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id, 1468 uint32_t valid_id_bits); 1469 void kfd_signal_hw_exception_event(u32 pasid); 1470 int kfd_set_event(struct kfd_process *p, uint32_t event_id); 1471 int kfd_reset_event(struct kfd_process *p, uint32_t event_id); 1472 int kfd_kmap_event_page(struct kfd_process *p, uint64_t event_page_offset); 1473 1474 int kfd_event_create(struct file *devkfd, struct kfd_process *p, 1475 uint32_t event_type, bool auto_reset, uint32_t node_id, 1476 uint32_t *event_id, uint32_t *event_trigger_data, 1477 uint64_t *event_page_offset, uint32_t *event_slot_index); 1478 1479 int kfd_get_num_events(struct kfd_process *p); 1480 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id); 1481 1482 void kfd_signal_vm_fault_event(struct kfd_node *dev, u32 pasid, 1483 struct kfd_vm_fault_info *info, 1484 struct kfd_hsa_memory_exception_data *data); 1485 1486 void kfd_signal_reset_event(struct kfd_node *dev); 1487 1488 void kfd_signal_poison_consumed_event(struct kfd_node *dev, u32 pasid); 1489 1490 static inline void kfd_flush_tlb(struct kfd_process_device *pdd, 1491 enum TLB_FLUSH_TYPE type) 1492 { 1493 struct amdgpu_device *adev = pdd->dev->adev; 1494 struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv); 1495 1496 amdgpu_vm_flush_compute_tlb(adev, vm, type, pdd->dev->xcc_mask); 1497 } 1498 1499 static inline bool kfd_flush_tlb_after_unmap(struct kfd_dev *dev) 1500 { 1501 return KFD_GC_VERSION(dev) >= IP_VERSION(9, 4, 2) || 1502 (KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 1) && dev->sdma_fw_version >= 18) || 1503 KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 0); 1504 } 1505 1506 int kfd_send_exception_to_runtime(struct kfd_process *p, 1507 unsigned int queue_id, 1508 uint64_t error_reason); 1509 bool kfd_is_locked(void); 1510 1511 /* Compute profile */ 1512 void kfd_inc_compute_active(struct kfd_node *dev); 1513 void kfd_dec_compute_active(struct kfd_node *dev); 1514 1515 /* Cgroup Support */ 1516 /* Check with device cgroup if @kfd device is accessible */ 1517 static inline int kfd_devcgroup_check_permission(struct kfd_node *node) 1518 { 1519 #if defined(CONFIG_CGROUP_DEVICE) || defined(CONFIG_CGROUP_BPF) 1520 struct drm_device *ddev; 1521 1522 if (node->xcp) 1523 ddev = node->xcp->ddev; 1524 else 1525 ddev = adev_to_drm(node->adev); 1526 1527 return devcgroup_check_permission(DEVCG_DEV_CHAR, DRM_MAJOR, 1528 ddev->render->index, 1529 DEVCG_ACC_WRITE | DEVCG_ACC_READ); 1530 #else 1531 return 0; 1532 #endif 1533 } 1534 1535 static inline bool kfd_is_first_node(struct kfd_node *node) 1536 { 1537 return (node == node->kfd->nodes[0]); 1538 } 1539 1540 /* Debugfs */ 1541 #if defined(CONFIG_DEBUG_FS) 1542 1543 void kfd_debugfs_init(void); 1544 void kfd_debugfs_fini(void); 1545 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data); 1546 int pqm_debugfs_mqds(struct seq_file *m, void *data); 1547 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data); 1548 int dqm_debugfs_hqds(struct seq_file *m, void *data); 1549 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data); 1550 int pm_debugfs_runlist(struct seq_file *m, void *data); 1551 1552 int kfd_debugfs_hang_hws(struct kfd_node *dev); 1553 int pm_debugfs_hang_hws(struct packet_manager *pm); 1554 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm); 1555 1556 #else 1557 1558 static inline void kfd_debugfs_init(void) {} 1559 static inline void kfd_debugfs_fini(void) {} 1560 1561 #endif 1562 1563 #endif 1564