xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_mqd_manager_v9.c (revision 3027ce13e04eee76539ca65c2cb1028a01c8c508)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2016-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/printk.h>
26 #include <linux/slab.h>
27 #include <linux/uaccess.h>
28 #include "kfd_priv.h"
29 #include "kfd_mqd_manager.h"
30 #include "v9_structs.h"
31 #include "gc/gc_9_0_offset.h"
32 #include "gc/gc_9_0_sh_mask.h"
33 #include "sdma0/sdma0_4_0_sh_mask.h"
34 #include "amdgpu_amdkfd.h"
35 #include "kfd_device_queue_manager.h"
36 
37 static void update_mqd(struct mqd_manager *mm, void *mqd,
38 		       struct queue_properties *q,
39 		       struct mqd_update_info *minfo);
40 
41 static uint64_t mqd_stride_v9(struct mqd_manager *mm,
42 				struct queue_properties *q)
43 {
44 	if (mm->dev->kfd->cwsr_enabled &&
45 	    q->type == KFD_QUEUE_TYPE_COMPUTE)
46 		return ALIGN(q->ctl_stack_size, PAGE_SIZE) +
47 			ALIGN(sizeof(struct v9_mqd), PAGE_SIZE);
48 
49 	return mm->mqd_size;
50 }
51 
52 static inline struct v9_mqd *get_mqd(void *mqd)
53 {
54 	return (struct v9_mqd *)mqd;
55 }
56 
57 static inline struct v9_sdma_mqd *get_sdma_mqd(void *mqd)
58 {
59 	return (struct v9_sdma_mqd *)mqd;
60 }
61 
62 static void update_cu_mask(struct mqd_manager *mm, void *mqd,
63 			struct mqd_update_info *minfo, uint32_t inst)
64 {
65 	struct v9_mqd *m;
66 	uint32_t se_mask[KFD_MAX_NUM_SE] = {0};
67 
68 	if (!minfo || !minfo->cu_mask.ptr)
69 		return;
70 
71 	mqd_symmetrically_map_cu_mask(mm,
72 		minfo->cu_mask.ptr, minfo->cu_mask.count, se_mask, inst);
73 
74 	m = get_mqd(mqd);
75 
76 	m->compute_static_thread_mgmt_se0 = se_mask[0];
77 	m->compute_static_thread_mgmt_se1 = se_mask[1];
78 	m->compute_static_thread_mgmt_se2 = se_mask[2];
79 	m->compute_static_thread_mgmt_se3 = se_mask[3];
80 	if (KFD_GC_VERSION(mm->dev) != IP_VERSION(9, 4, 3) &&
81 	    KFD_GC_VERSION(mm->dev) != IP_VERSION(9, 4, 4)) {
82 		m->compute_static_thread_mgmt_se4 = se_mask[4];
83 		m->compute_static_thread_mgmt_se5 = se_mask[5];
84 		m->compute_static_thread_mgmt_se6 = se_mask[6];
85 		m->compute_static_thread_mgmt_se7 = se_mask[7];
86 
87 		pr_debug("update cu mask to %#x %#x %#x %#x %#x %#x %#x %#x\n",
88 			m->compute_static_thread_mgmt_se0,
89 			m->compute_static_thread_mgmt_se1,
90 			m->compute_static_thread_mgmt_se2,
91 			m->compute_static_thread_mgmt_se3,
92 			m->compute_static_thread_mgmt_se4,
93 			m->compute_static_thread_mgmt_se5,
94 			m->compute_static_thread_mgmt_se6,
95 			m->compute_static_thread_mgmt_se7);
96 	} else {
97 		pr_debug("inst: %u, update cu mask to %#x %#x %#x %#x\n",
98 			inst, m->compute_static_thread_mgmt_se0,
99 			m->compute_static_thread_mgmt_se1,
100 			m->compute_static_thread_mgmt_se2,
101 			m->compute_static_thread_mgmt_se3);
102 	}
103 }
104 
105 static void set_priority(struct v9_mqd *m, struct queue_properties *q)
106 {
107 	m->cp_hqd_pipe_priority = pipe_priority_map[q->priority];
108 	m->cp_hqd_queue_priority = q->priority;
109 }
110 
111 static struct kfd_mem_obj *allocate_mqd(struct kfd_node *node,
112 		struct queue_properties *q)
113 {
114 	int retval;
115 	struct kfd_mem_obj *mqd_mem_obj = NULL;
116 
117 	/* For V9 only, due to a HW bug, the control stack of a user mode
118 	 * compute queue needs to be allocated just behind the page boundary
119 	 * of its regular MQD buffer. So we allocate an enlarged MQD buffer:
120 	 * the first page of the buffer serves as the regular MQD buffer
121 	 * purpose and the remaining is for control stack. Although the two
122 	 * parts are in the same buffer object, they need different memory
123 	 * types: MQD part needs UC (uncached) as usual, while control stack
124 	 * needs NC (non coherent), which is different from the UC type which
125 	 * is used when control stack is allocated in user space.
126 	 *
127 	 * Because of all those, we use the gtt allocation function instead
128 	 * of sub-allocation function for this enlarged MQD buffer. Moreover,
129 	 * in order to achieve two memory types in a single buffer object, we
130 	 * pass a special bo flag AMDGPU_GEM_CREATE_CP_MQD_GFX9 to instruct
131 	 * amdgpu memory functions to do so.
132 	 */
133 	if (node->kfd->cwsr_enabled && (q->type == KFD_QUEUE_TYPE_COMPUTE)) {
134 		mqd_mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
135 		if (!mqd_mem_obj)
136 			return NULL;
137 		retval = amdgpu_amdkfd_alloc_gtt_mem(node->adev,
138 			(ALIGN(q->ctl_stack_size, PAGE_SIZE) +
139 			ALIGN(sizeof(struct v9_mqd), PAGE_SIZE)) *
140 			NUM_XCC(node->xcc_mask),
141 			&(mqd_mem_obj->gtt_mem),
142 			&(mqd_mem_obj->gpu_addr),
143 			(void *)&(mqd_mem_obj->cpu_ptr), true);
144 
145 		if (retval) {
146 			kfree(mqd_mem_obj);
147 			return NULL;
148 		}
149 	} else {
150 		retval = kfd_gtt_sa_allocate(node, sizeof(struct v9_mqd),
151 				&mqd_mem_obj);
152 		if (retval)
153 			return NULL;
154 	}
155 
156 	return mqd_mem_obj;
157 }
158 
159 static void init_mqd(struct mqd_manager *mm, void **mqd,
160 			struct kfd_mem_obj *mqd_mem_obj, uint64_t *gart_addr,
161 			struct queue_properties *q)
162 {
163 	uint64_t addr;
164 	struct v9_mqd *m;
165 
166 	m = (struct v9_mqd *) mqd_mem_obj->cpu_ptr;
167 	addr = mqd_mem_obj->gpu_addr;
168 
169 	memset(m, 0, sizeof(struct v9_mqd));
170 
171 	m->header = 0xC0310800;
172 	m->compute_pipelinestat_enable = 1;
173 	m->compute_static_thread_mgmt_se0 = 0xFFFFFFFF;
174 	m->compute_static_thread_mgmt_se1 = 0xFFFFFFFF;
175 	m->compute_static_thread_mgmt_se2 = 0xFFFFFFFF;
176 	m->compute_static_thread_mgmt_se3 = 0xFFFFFFFF;
177 	m->compute_static_thread_mgmt_se4 = 0xFFFFFFFF;
178 	m->compute_static_thread_mgmt_se5 = 0xFFFFFFFF;
179 	m->compute_static_thread_mgmt_se6 = 0xFFFFFFFF;
180 	m->compute_static_thread_mgmt_se7 = 0xFFFFFFFF;
181 
182 	m->cp_hqd_persistent_state = CP_HQD_PERSISTENT_STATE__PRELOAD_REQ_MASK |
183 			0x53 << CP_HQD_PERSISTENT_STATE__PRELOAD_SIZE__SHIFT;
184 
185 	m->cp_mqd_control = 1 << CP_MQD_CONTROL__PRIV_STATE__SHIFT;
186 
187 	m->cp_mqd_base_addr_lo        = lower_32_bits(addr);
188 	m->cp_mqd_base_addr_hi        = upper_32_bits(addr);
189 
190 	m->cp_hqd_quantum = 1 << CP_HQD_QUANTUM__QUANTUM_EN__SHIFT |
191 			1 << CP_HQD_QUANTUM__QUANTUM_SCALE__SHIFT |
192 			1 << CP_HQD_QUANTUM__QUANTUM_DURATION__SHIFT;
193 
194 	/* Set cp_hqd_hq_scheduler0 bit 14 to 1 to have the CP set up the
195 	 * DISPATCH_PTR.  This is required for the kfd debugger
196 	 */
197 	m->cp_hqd_hq_status0 = 1 << 14;
198 
199 	if (q->format == KFD_QUEUE_FORMAT_AQL)
200 		m->cp_hqd_aql_control =
201 			1 << CP_HQD_AQL_CONTROL__CONTROL0__SHIFT;
202 
203 	if (q->tba_addr) {
204 		m->compute_pgm_rsrc2 |=
205 			(1 << COMPUTE_PGM_RSRC2__TRAP_PRESENT__SHIFT);
206 	}
207 
208 	if (mm->dev->kfd->cwsr_enabled && q->ctx_save_restore_area_address) {
209 		m->cp_hqd_persistent_state |=
210 			(1 << CP_HQD_PERSISTENT_STATE__QSWITCH_MODE__SHIFT);
211 		m->cp_hqd_ctx_save_base_addr_lo =
212 			lower_32_bits(q->ctx_save_restore_area_address);
213 		m->cp_hqd_ctx_save_base_addr_hi =
214 			upper_32_bits(q->ctx_save_restore_area_address);
215 		m->cp_hqd_ctx_save_size = q->ctx_save_restore_area_size;
216 		m->cp_hqd_cntl_stack_size = q->ctl_stack_size;
217 		m->cp_hqd_cntl_stack_offset = q->ctl_stack_size;
218 		m->cp_hqd_wg_state_offset = q->ctl_stack_size;
219 	}
220 
221 	*mqd = m;
222 	if (gart_addr)
223 		*gart_addr = addr;
224 	update_mqd(mm, m, q, NULL);
225 }
226 
227 static int load_mqd(struct mqd_manager *mm, void *mqd,
228 			uint32_t pipe_id, uint32_t queue_id,
229 			struct queue_properties *p, struct mm_struct *mms)
230 {
231 	/* AQL write pointer counts in 64B packets, PM4/CP counts in dwords. */
232 	uint32_t wptr_shift = (p->format == KFD_QUEUE_FORMAT_AQL ? 4 : 0);
233 
234 	return mm->dev->kfd2kgd->hqd_load(mm->dev->adev, mqd, pipe_id, queue_id,
235 					  (uint32_t __user *)p->write_ptr,
236 					  wptr_shift, 0, mms, 0);
237 }
238 
239 static void update_mqd(struct mqd_manager *mm, void *mqd,
240 			struct queue_properties *q,
241 			struct mqd_update_info *minfo)
242 {
243 	struct v9_mqd *m;
244 
245 	m = get_mqd(mqd);
246 
247 	m->cp_hqd_pq_control = 5 << CP_HQD_PQ_CONTROL__RPTR_BLOCK_SIZE__SHIFT;
248 	m->cp_hqd_pq_control |= order_base_2(q->queue_size / 4) - 1;
249 	pr_debug("cp_hqd_pq_control 0x%x\n", m->cp_hqd_pq_control);
250 
251 	m->cp_hqd_pq_base_lo = lower_32_bits((uint64_t)q->queue_address >> 8);
252 	m->cp_hqd_pq_base_hi = upper_32_bits((uint64_t)q->queue_address >> 8);
253 
254 	m->cp_hqd_pq_rptr_report_addr_lo = lower_32_bits((uint64_t)q->read_ptr);
255 	m->cp_hqd_pq_rptr_report_addr_hi = upper_32_bits((uint64_t)q->read_ptr);
256 	m->cp_hqd_pq_wptr_poll_addr_lo = lower_32_bits((uint64_t)q->write_ptr);
257 	m->cp_hqd_pq_wptr_poll_addr_hi = upper_32_bits((uint64_t)q->write_ptr);
258 
259 	m->cp_hqd_pq_doorbell_control =
260 		q->doorbell_off <<
261 			CP_HQD_PQ_DOORBELL_CONTROL__DOORBELL_OFFSET__SHIFT;
262 	pr_debug("cp_hqd_pq_doorbell_control 0x%x\n",
263 			m->cp_hqd_pq_doorbell_control);
264 
265 	m->cp_hqd_ib_control =
266 		3 << CP_HQD_IB_CONTROL__MIN_IB_AVAIL_SIZE__SHIFT |
267 		1 << CP_HQD_IB_CONTROL__IB_EXE_DISABLE__SHIFT;
268 
269 	/*
270 	 * HW does not clamp this field correctly. Maximum EOP queue size
271 	 * is constrained by per-SE EOP done signal count, which is 8-bit.
272 	 * Limit is 0xFF EOP entries (= 0x7F8 dwords). CP will not submit
273 	 * more than (EOP entry count - 1) so a queue size of 0x800 dwords
274 	 * is safe, giving a maximum field value of 0xA.
275 	 *
276 	 * Also, do calculation only if EOP is used (size > 0), otherwise
277 	 * the order_base_2 calculation provides incorrect result.
278 	 *
279 	 */
280 	m->cp_hqd_eop_control = q->eop_ring_buffer_size ?
281 		min(0xA, order_base_2(q->eop_ring_buffer_size / 4) - 1) : 0;
282 
283 	m->cp_hqd_eop_base_addr_lo =
284 			lower_32_bits(q->eop_ring_buffer_address >> 8);
285 	m->cp_hqd_eop_base_addr_hi =
286 			upper_32_bits(q->eop_ring_buffer_address >> 8);
287 
288 	m->cp_hqd_iq_timer = 0;
289 
290 	m->cp_hqd_vmid = q->vmid;
291 
292 	if (q->format == KFD_QUEUE_FORMAT_AQL) {
293 		m->cp_hqd_pq_control |= CP_HQD_PQ_CONTROL__NO_UPDATE_RPTR_MASK |
294 				2 << CP_HQD_PQ_CONTROL__SLOT_BASED_WPTR__SHIFT |
295 				1 << CP_HQD_PQ_CONTROL__QUEUE_FULL_EN__SHIFT |
296 				1 << CP_HQD_PQ_CONTROL__WPP_CLAMP_EN__SHIFT;
297 		m->cp_hqd_pq_doorbell_control |= 1 <<
298 			CP_HQD_PQ_DOORBELL_CONTROL__DOORBELL_BIF_DROP__SHIFT;
299 	}
300 	if (mm->dev->kfd->cwsr_enabled && q->ctx_save_restore_area_address)
301 		m->cp_hqd_ctx_save_control = 0;
302 
303 	if (KFD_GC_VERSION(mm->dev) != IP_VERSION(9, 4, 3) &&
304 	    KFD_GC_VERSION(mm->dev) != IP_VERSION(9, 4, 4))
305 		update_cu_mask(mm, mqd, minfo, 0);
306 	set_priority(m, q);
307 
308 	if (minfo && KFD_GC_VERSION(mm->dev) >= IP_VERSION(9, 4, 2)) {
309 		if (minfo->update_flag & UPDATE_FLAG_IS_GWS)
310 			m->compute_resource_limits |=
311 				COMPUTE_RESOURCE_LIMITS__FORCE_SIMD_DIST_MASK;
312 		else
313 			m->compute_resource_limits &=
314 				~COMPUTE_RESOURCE_LIMITS__FORCE_SIMD_DIST_MASK;
315 	}
316 
317 	q->is_active = QUEUE_IS_ACTIVE(*q);
318 }
319 
320 
321 static bool check_preemption_failed(struct mqd_manager *mm, void *mqd)
322 {
323 	struct v9_mqd *m = (struct v9_mqd *)mqd;
324 
325 	return kfd_check_hiq_mqd_doorbell_id(mm->dev, m->queue_doorbell_id0, 0);
326 }
327 
328 static int get_wave_state(struct mqd_manager *mm, void *mqd,
329 			  struct queue_properties *q,
330 			  void __user *ctl_stack,
331 			  u32 *ctl_stack_used_size,
332 			  u32 *save_area_used_size)
333 {
334 	struct v9_mqd *m;
335 	struct kfd_context_save_area_header header;
336 
337 	/* Control stack is located one page after MQD. */
338 	void *mqd_ctl_stack = (void *)((uintptr_t)mqd + PAGE_SIZE);
339 
340 	m = get_mqd(mqd);
341 
342 	*ctl_stack_used_size = m->cp_hqd_cntl_stack_size -
343 		m->cp_hqd_cntl_stack_offset;
344 	*save_area_used_size = m->cp_hqd_wg_state_offset -
345 		m->cp_hqd_cntl_stack_size;
346 
347 	header.wave_state.control_stack_size = *ctl_stack_used_size;
348 	header.wave_state.wave_state_size = *save_area_used_size;
349 
350 	header.wave_state.wave_state_offset = m->cp_hqd_wg_state_offset;
351 	header.wave_state.control_stack_offset = m->cp_hqd_cntl_stack_offset;
352 
353 	if (copy_to_user(ctl_stack, &header, sizeof(header.wave_state)))
354 		return -EFAULT;
355 
356 	if (copy_to_user(ctl_stack + m->cp_hqd_cntl_stack_offset,
357 				mqd_ctl_stack + m->cp_hqd_cntl_stack_offset,
358 				*ctl_stack_used_size))
359 		return -EFAULT;
360 
361 	return 0;
362 }
363 
364 static void get_checkpoint_info(struct mqd_manager *mm, void *mqd, u32 *ctl_stack_size)
365 {
366 	struct v9_mqd *m = get_mqd(mqd);
367 
368 	*ctl_stack_size = m->cp_hqd_cntl_stack_size;
369 }
370 
371 static void checkpoint_mqd(struct mqd_manager *mm, void *mqd, void *mqd_dst, void *ctl_stack_dst)
372 {
373 	struct v9_mqd *m;
374 	/* Control stack is located one page after MQD. */
375 	void *ctl_stack = (void *)((uintptr_t)mqd + PAGE_SIZE);
376 
377 	m = get_mqd(mqd);
378 
379 	memcpy(mqd_dst, m, sizeof(struct v9_mqd));
380 	memcpy(ctl_stack_dst, ctl_stack, m->cp_hqd_cntl_stack_size);
381 }
382 
383 static void restore_mqd(struct mqd_manager *mm, void **mqd,
384 			struct kfd_mem_obj *mqd_mem_obj, uint64_t *gart_addr,
385 			struct queue_properties *qp,
386 			const void *mqd_src,
387 			const void *ctl_stack_src, u32 ctl_stack_size)
388 {
389 	uint64_t addr;
390 	struct v9_mqd *m;
391 	void *ctl_stack;
392 
393 	m = (struct v9_mqd *) mqd_mem_obj->cpu_ptr;
394 	addr = mqd_mem_obj->gpu_addr;
395 
396 	memcpy(m, mqd_src, sizeof(*m));
397 
398 	*mqd = m;
399 	if (gart_addr)
400 		*gart_addr = addr;
401 
402 	/* Control stack is located one page after MQD. */
403 	ctl_stack = (void *)((uintptr_t)*mqd + PAGE_SIZE);
404 	memcpy(ctl_stack, ctl_stack_src, ctl_stack_size);
405 
406 	m->cp_hqd_pq_doorbell_control =
407 		qp->doorbell_off <<
408 			CP_HQD_PQ_DOORBELL_CONTROL__DOORBELL_OFFSET__SHIFT;
409 	pr_debug("cp_hqd_pq_doorbell_control 0x%x\n",
410 				m->cp_hqd_pq_doorbell_control);
411 
412 	qp->is_active = 0;
413 }
414 
415 static void init_mqd_hiq(struct mqd_manager *mm, void **mqd,
416 			struct kfd_mem_obj *mqd_mem_obj, uint64_t *gart_addr,
417 			struct queue_properties *q)
418 {
419 	struct v9_mqd *m;
420 
421 	init_mqd(mm, mqd, mqd_mem_obj, gart_addr, q);
422 
423 	m = get_mqd(*mqd);
424 
425 	m->cp_hqd_pq_control |= 1 << CP_HQD_PQ_CONTROL__PRIV_STATE__SHIFT |
426 			1 << CP_HQD_PQ_CONTROL__KMD_QUEUE__SHIFT;
427 }
428 
429 static int destroy_hiq_mqd(struct mqd_manager *mm, void *mqd,
430 			enum kfd_preempt_type type, unsigned int timeout,
431 			uint32_t pipe_id, uint32_t queue_id)
432 {
433 	int err;
434 	struct v9_mqd *m;
435 	u32 doorbell_off;
436 
437 	m = get_mqd(mqd);
438 
439 	doorbell_off = m->cp_hqd_pq_doorbell_control >>
440 			CP_HQD_PQ_DOORBELL_CONTROL__DOORBELL_OFFSET__SHIFT;
441 	err = amdgpu_amdkfd_unmap_hiq(mm->dev->adev, doorbell_off, 0);
442 	if (err)
443 		pr_debug("Destroy HIQ MQD failed: %d\n", err);
444 
445 	return err;
446 }
447 
448 static void init_mqd_sdma(struct mqd_manager *mm, void **mqd,
449 		struct kfd_mem_obj *mqd_mem_obj, uint64_t *gart_addr,
450 		struct queue_properties *q)
451 {
452 	struct v9_sdma_mqd *m;
453 
454 	m = (struct v9_sdma_mqd *) mqd_mem_obj->cpu_ptr;
455 
456 	memset(m, 0, sizeof(struct v9_sdma_mqd));
457 
458 	*mqd = m;
459 	if (gart_addr)
460 		*gart_addr = mqd_mem_obj->gpu_addr;
461 
462 	mm->update_mqd(mm, m, q, NULL);
463 }
464 
465 #define SDMA_RLC_DUMMY_DEFAULT 0xf
466 
467 static void update_mqd_sdma(struct mqd_manager *mm, void *mqd,
468 			struct queue_properties *q,
469 			struct mqd_update_info *minfo)
470 {
471 	struct v9_sdma_mqd *m;
472 
473 	m = get_sdma_mqd(mqd);
474 	m->sdmax_rlcx_rb_cntl = order_base_2(q->queue_size / 4)
475 		<< SDMA0_RLC0_RB_CNTL__RB_SIZE__SHIFT |
476 		q->vmid << SDMA0_RLC0_RB_CNTL__RB_VMID__SHIFT |
477 		1 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_ENABLE__SHIFT |
478 		6 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_TIMER__SHIFT;
479 
480 	m->sdmax_rlcx_rb_base = lower_32_bits(q->queue_address >> 8);
481 	m->sdmax_rlcx_rb_base_hi = upper_32_bits(q->queue_address >> 8);
482 	m->sdmax_rlcx_rb_rptr_addr_lo = lower_32_bits((uint64_t)q->read_ptr);
483 	m->sdmax_rlcx_rb_rptr_addr_hi = upper_32_bits((uint64_t)q->read_ptr);
484 	m->sdmax_rlcx_doorbell_offset =
485 		q->doorbell_off << SDMA0_RLC0_DOORBELL_OFFSET__OFFSET__SHIFT;
486 
487 	m->sdma_engine_id = q->sdma_engine_id;
488 	m->sdma_queue_id = q->sdma_queue_id;
489 	m->sdmax_rlcx_dummy_reg = SDMA_RLC_DUMMY_DEFAULT;
490 
491 	q->is_active = QUEUE_IS_ACTIVE(*q);
492 }
493 
494 static void checkpoint_mqd_sdma(struct mqd_manager *mm,
495 				void *mqd,
496 				void *mqd_dst,
497 				void *ctl_stack_dst)
498 {
499 	struct v9_sdma_mqd *m;
500 
501 	m = get_sdma_mqd(mqd);
502 
503 	memcpy(mqd_dst, m, sizeof(struct v9_sdma_mqd));
504 }
505 
506 static void restore_mqd_sdma(struct mqd_manager *mm, void **mqd,
507 			     struct kfd_mem_obj *mqd_mem_obj, uint64_t *gart_addr,
508 			     struct queue_properties *qp,
509 			     const void *mqd_src,
510 			     const void *ctl_stack_src, const u32 ctl_stack_size)
511 {
512 	uint64_t addr;
513 	struct v9_sdma_mqd *m;
514 
515 	m = (struct v9_sdma_mqd *) mqd_mem_obj->cpu_ptr;
516 	addr = mqd_mem_obj->gpu_addr;
517 
518 	memcpy(m, mqd_src, sizeof(*m));
519 
520 	m->sdmax_rlcx_doorbell_offset =
521 		qp->doorbell_off << SDMA0_RLC0_DOORBELL_OFFSET__OFFSET__SHIFT;
522 
523 	*mqd = m;
524 	if (gart_addr)
525 		*gart_addr = addr;
526 
527 	qp->is_active = 0;
528 }
529 
530 static void init_mqd_hiq_v9_4_3(struct mqd_manager *mm, void **mqd,
531 			struct kfd_mem_obj *mqd_mem_obj, uint64_t *gart_addr,
532 			struct queue_properties *q)
533 {
534 	struct v9_mqd *m;
535 	int xcc = 0;
536 	struct kfd_mem_obj xcc_mqd_mem_obj;
537 	uint64_t xcc_gart_addr = 0;
538 
539 	memset(&xcc_mqd_mem_obj, 0x0, sizeof(struct kfd_mem_obj));
540 
541 	for (xcc = 0; xcc < NUM_XCC(mm->dev->xcc_mask); xcc++) {
542 		kfd_get_hiq_xcc_mqd(mm->dev, &xcc_mqd_mem_obj, xcc);
543 
544 		init_mqd(mm, (void **)&m, &xcc_mqd_mem_obj, &xcc_gart_addr, q);
545 
546 		m->cp_hqd_pq_control |= CP_HQD_PQ_CONTROL__NO_UPDATE_RPTR_MASK |
547 					1 << CP_HQD_PQ_CONTROL__PRIV_STATE__SHIFT |
548 					1 << CP_HQD_PQ_CONTROL__KMD_QUEUE__SHIFT;
549 		m->cp_mqd_stride_size = kfd_hiq_mqd_stride(mm->dev);
550 		if (xcc == 0) {
551 			/* Set no_update_rptr = 0 in Master XCC */
552 			m->cp_hqd_pq_control &= ~CP_HQD_PQ_CONTROL__NO_UPDATE_RPTR_MASK;
553 
554 			/* Set the MQD pointer and gart address to XCC0 MQD */
555 			*mqd = m;
556 			*gart_addr = xcc_gart_addr;
557 		}
558 	}
559 }
560 
561 static int hiq_load_mqd_kiq_v9_4_3(struct mqd_manager *mm, void *mqd,
562 			uint32_t pipe_id, uint32_t queue_id,
563 			struct queue_properties *p, struct mm_struct *mms)
564 {
565 	uint32_t xcc_mask = mm->dev->xcc_mask;
566 	int xcc_id, err, inst = 0;
567 	void *xcc_mqd;
568 	uint64_t hiq_mqd_size = kfd_hiq_mqd_stride(mm->dev);
569 
570 	for_each_inst(xcc_id, xcc_mask) {
571 		xcc_mqd = mqd + hiq_mqd_size * inst;
572 		err = mm->dev->kfd2kgd->hiq_mqd_load(mm->dev->adev, xcc_mqd,
573 						     pipe_id, queue_id,
574 						     p->doorbell_off, xcc_id);
575 		if (err) {
576 			pr_debug("Failed to load HIQ MQD for XCC: %d\n", inst);
577 			break;
578 		}
579 		++inst;
580 	}
581 
582 	return err;
583 }
584 
585 static int destroy_hiq_mqd_v9_4_3(struct mqd_manager *mm, void *mqd,
586 			enum kfd_preempt_type type, unsigned int timeout,
587 			uint32_t pipe_id, uint32_t queue_id)
588 {
589 	uint32_t xcc_mask = mm->dev->xcc_mask;
590 	int xcc_id, err, inst = 0;
591 	uint64_t hiq_mqd_size = kfd_hiq_mqd_stride(mm->dev);
592 	struct v9_mqd *m;
593 	u32 doorbell_off;
594 
595 	for_each_inst(xcc_id, xcc_mask) {
596 		m = get_mqd(mqd + hiq_mqd_size * inst);
597 
598 		doorbell_off = m->cp_hqd_pq_doorbell_control >>
599 				CP_HQD_PQ_DOORBELL_CONTROL__DOORBELL_OFFSET__SHIFT;
600 
601 		err = amdgpu_amdkfd_unmap_hiq(mm->dev->adev, doorbell_off, xcc_id);
602 		if (err) {
603 			pr_debug("Destroy HIQ MQD failed for xcc: %d\n", inst);
604 			break;
605 		}
606 		++inst;
607 	}
608 
609 	return err;
610 }
611 
612 static bool check_preemption_failed_v9_4_3(struct mqd_manager *mm, void *mqd)
613 {
614 	uint64_t hiq_mqd_size = kfd_hiq_mqd_stride(mm->dev);
615 	uint32_t xcc_mask = mm->dev->xcc_mask;
616 	int inst = 0, xcc_id;
617 	struct v9_mqd *m;
618 	bool ret = false;
619 
620 	for_each_inst(xcc_id, xcc_mask) {
621 		m = get_mqd(mqd + hiq_mqd_size * inst);
622 		ret |= kfd_check_hiq_mqd_doorbell_id(mm->dev,
623 					m->queue_doorbell_id0, inst);
624 		++inst;
625 	}
626 
627 	return ret;
628 }
629 
630 static void get_xcc_mqd(struct kfd_mem_obj *mqd_mem_obj,
631 			       struct kfd_mem_obj *xcc_mqd_mem_obj,
632 			       uint64_t offset)
633 {
634 	xcc_mqd_mem_obj->gtt_mem = (offset == 0) ?
635 					mqd_mem_obj->gtt_mem : NULL;
636 	xcc_mqd_mem_obj->gpu_addr = mqd_mem_obj->gpu_addr + offset;
637 	xcc_mqd_mem_obj->cpu_ptr = (uint32_t *)((uintptr_t)mqd_mem_obj->cpu_ptr
638 						+ offset);
639 }
640 
641 static void init_mqd_v9_4_3(struct mqd_manager *mm, void **mqd,
642 			struct kfd_mem_obj *mqd_mem_obj, uint64_t *gart_addr,
643 			struct queue_properties *q)
644 {
645 	struct v9_mqd *m;
646 	int xcc = 0;
647 	struct kfd_mem_obj xcc_mqd_mem_obj;
648 	uint64_t xcc_gart_addr = 0;
649 	uint64_t xcc_ctx_save_restore_area_address;
650 	uint64_t offset = mm->mqd_stride(mm, q);
651 	uint32_t local_xcc_start = mm->dev->dqm->current_logical_xcc_start++;
652 
653 	memset(&xcc_mqd_mem_obj, 0x0, sizeof(struct kfd_mem_obj));
654 	for (xcc = 0; xcc < NUM_XCC(mm->dev->xcc_mask); xcc++) {
655 		get_xcc_mqd(mqd_mem_obj, &xcc_mqd_mem_obj, offset*xcc);
656 
657 		init_mqd(mm, (void **)&m, &xcc_mqd_mem_obj, &xcc_gart_addr, q);
658 
659 		m->cp_mqd_stride_size = offset;
660 
661 		/*
662 		 * Update the CWSR address for each XCC if CWSR is enabled
663 		 * and CWSR area is allocated in thunk
664 		 */
665 		if (mm->dev->kfd->cwsr_enabled &&
666 		    q->ctx_save_restore_area_address) {
667 			xcc_ctx_save_restore_area_address =
668 				q->ctx_save_restore_area_address +
669 				(xcc * q->ctx_save_restore_area_size);
670 
671 			m->cp_hqd_ctx_save_base_addr_lo =
672 				lower_32_bits(xcc_ctx_save_restore_area_address);
673 			m->cp_hqd_ctx_save_base_addr_hi =
674 				upper_32_bits(xcc_ctx_save_restore_area_address);
675 		}
676 
677 		if (q->format == KFD_QUEUE_FORMAT_AQL) {
678 			m->compute_tg_chunk_size = 1;
679 			m->compute_current_logic_xcc_id =
680 					(local_xcc_start + xcc) %
681 					NUM_XCC(mm->dev->xcc_mask);
682 
683 			switch (xcc) {
684 			case 0:
685 				/* Master XCC */
686 				m->cp_hqd_pq_control &=
687 					~CP_HQD_PQ_CONTROL__NO_UPDATE_RPTR_MASK;
688 				break;
689 			default:
690 				break;
691 			}
692 		} else {
693 			/* PM4 Queue */
694 			m->compute_current_logic_xcc_id = 0;
695 			m->compute_tg_chunk_size = 0;
696 			m->pm4_target_xcc_in_xcp = q->pm4_target_xcc;
697 		}
698 
699 		if (xcc == 0) {
700 			/* Set the MQD pointer and gart address to XCC0 MQD */
701 			*mqd = m;
702 			*gart_addr = xcc_gart_addr;
703 		}
704 	}
705 }
706 
707 static void update_mqd_v9_4_3(struct mqd_manager *mm, void *mqd,
708 		      struct queue_properties *q, struct mqd_update_info *minfo)
709 {
710 	struct v9_mqd *m;
711 	int xcc = 0;
712 	uint64_t size = mm->mqd_stride(mm, q);
713 
714 	for (xcc = 0; xcc < NUM_XCC(mm->dev->xcc_mask); xcc++) {
715 		m = get_mqd(mqd + size * xcc);
716 		update_mqd(mm, m, q, minfo);
717 
718 		update_cu_mask(mm, m, minfo, xcc);
719 
720 		if (q->format == KFD_QUEUE_FORMAT_AQL) {
721 			switch (xcc) {
722 			case 0:
723 				/* Master XCC */
724 				m->cp_hqd_pq_control &=
725 					~CP_HQD_PQ_CONTROL__NO_UPDATE_RPTR_MASK;
726 				break;
727 			default:
728 				break;
729 			}
730 			m->compute_tg_chunk_size = 1;
731 		} else {
732 			/* PM4 Queue */
733 			m->compute_current_logic_xcc_id = 0;
734 			m->compute_tg_chunk_size = 0;
735 			m->pm4_target_xcc_in_xcp = q->pm4_target_xcc;
736 		}
737 	}
738 }
739 
740 static int destroy_mqd_v9_4_3(struct mqd_manager *mm, void *mqd,
741 		   enum kfd_preempt_type type, unsigned int timeout,
742 		   uint32_t pipe_id, uint32_t queue_id)
743 {
744 	uint32_t xcc_mask = mm->dev->xcc_mask;
745 	int xcc_id, err, inst = 0;
746 	void *xcc_mqd;
747 	struct v9_mqd *m;
748 	uint64_t mqd_offset;
749 
750 	m = get_mqd(mqd);
751 	mqd_offset = m->cp_mqd_stride_size;
752 
753 	for_each_inst(xcc_id, xcc_mask) {
754 		xcc_mqd = mqd + mqd_offset * inst;
755 		err = mm->dev->kfd2kgd->hqd_destroy(mm->dev->adev, xcc_mqd,
756 						    type, timeout, pipe_id,
757 						    queue_id, xcc_id);
758 		if (err) {
759 			pr_debug("Destroy MQD failed for xcc: %d\n", inst);
760 			break;
761 		}
762 		++inst;
763 	}
764 
765 	return err;
766 }
767 
768 static int load_mqd_v9_4_3(struct mqd_manager *mm, void *mqd,
769 			uint32_t pipe_id, uint32_t queue_id,
770 			struct queue_properties *p, struct mm_struct *mms)
771 {
772 	/* AQL write pointer counts in 64B packets, PM4/CP counts in dwords. */
773 	uint32_t wptr_shift = (p->format == KFD_QUEUE_FORMAT_AQL ? 4 : 0);
774 	uint32_t xcc_mask = mm->dev->xcc_mask;
775 	int xcc_id, err, inst = 0;
776 	void *xcc_mqd;
777 	uint64_t mqd_stride_size = mm->mqd_stride(mm, p);
778 
779 	for_each_inst(xcc_id, xcc_mask) {
780 		xcc_mqd = mqd + mqd_stride_size * inst;
781 		err = mm->dev->kfd2kgd->hqd_load(
782 			mm->dev->adev, xcc_mqd, pipe_id, queue_id,
783 			(uint32_t __user *)p->write_ptr, wptr_shift, 0, mms,
784 			xcc_id);
785 		if (err) {
786 			pr_debug("Load MQD failed for xcc: %d\n", inst);
787 			break;
788 		}
789 		++inst;
790 	}
791 
792 	return err;
793 }
794 
795 static int get_wave_state_v9_4_3(struct mqd_manager *mm, void *mqd,
796 				 struct queue_properties *q,
797 				 void __user *ctl_stack,
798 				 u32 *ctl_stack_used_size,
799 				 u32 *save_area_used_size)
800 {
801 	int xcc, err = 0;
802 	void *xcc_mqd;
803 	void __user *xcc_ctl_stack;
804 	uint64_t mqd_stride_size = mm->mqd_stride(mm, q);
805 	u32 tmp_ctl_stack_used_size = 0, tmp_save_area_used_size = 0;
806 
807 	for (xcc = 0; xcc < NUM_XCC(mm->dev->xcc_mask); xcc++) {
808 		xcc_mqd = mqd + mqd_stride_size * xcc;
809 		xcc_ctl_stack = (void __user *)((uintptr_t)ctl_stack +
810 					q->ctx_save_restore_area_size * xcc);
811 
812 		err = get_wave_state(mm, xcc_mqd, q, xcc_ctl_stack,
813 				     &tmp_ctl_stack_used_size,
814 				     &tmp_save_area_used_size);
815 		if (err)
816 			break;
817 
818 		/*
819 		 * Set the ctl_stack_used_size and save_area_used_size to
820 		 * ctl_stack_used_size and save_area_used_size of XCC 0 when
821 		 * passing the info the user-space.
822 		 * For multi XCC, user-space would have to look at the header
823 		 * info of each Control stack area to determine the control
824 		 * stack size and save area used.
825 		 */
826 		if (xcc == 0) {
827 			*ctl_stack_used_size = tmp_ctl_stack_used_size;
828 			*save_area_used_size = tmp_save_area_used_size;
829 		}
830 	}
831 
832 	return err;
833 }
834 
835 #if defined(CONFIG_DEBUG_FS)
836 
837 static int debugfs_show_mqd(struct seq_file *m, void *data)
838 {
839 	seq_hex_dump(m, "    ", DUMP_PREFIX_OFFSET, 32, 4,
840 		     data, sizeof(struct v9_mqd), false);
841 	return 0;
842 }
843 
844 static int debugfs_show_mqd_sdma(struct seq_file *m, void *data)
845 {
846 	seq_hex_dump(m, "    ", DUMP_PREFIX_OFFSET, 32, 4,
847 		     data, sizeof(struct v9_sdma_mqd), false);
848 	return 0;
849 }
850 
851 #endif
852 
853 struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type,
854 		struct kfd_node *dev)
855 {
856 	struct mqd_manager *mqd;
857 
858 	if (WARN_ON(type >= KFD_MQD_TYPE_MAX))
859 		return NULL;
860 
861 	mqd = kzalloc(sizeof(*mqd), GFP_KERNEL);
862 	if (!mqd)
863 		return NULL;
864 
865 	mqd->dev = dev;
866 
867 	switch (type) {
868 	case KFD_MQD_TYPE_CP:
869 		mqd->allocate_mqd = allocate_mqd;
870 		mqd->free_mqd = kfd_free_mqd_cp;
871 		mqd->is_occupied = kfd_is_occupied_cp;
872 		mqd->get_checkpoint_info = get_checkpoint_info;
873 		mqd->checkpoint_mqd = checkpoint_mqd;
874 		mqd->restore_mqd = restore_mqd;
875 		mqd->mqd_size = sizeof(struct v9_mqd);
876 		mqd->mqd_stride = mqd_stride_v9;
877 #if defined(CONFIG_DEBUG_FS)
878 		mqd->debugfs_show_mqd = debugfs_show_mqd;
879 #endif
880 		if (KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 3) ||
881 		    KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 4)) {
882 			mqd->init_mqd = init_mqd_v9_4_3;
883 			mqd->load_mqd = load_mqd_v9_4_3;
884 			mqd->update_mqd = update_mqd_v9_4_3;
885 			mqd->destroy_mqd = destroy_mqd_v9_4_3;
886 			mqd->get_wave_state = get_wave_state_v9_4_3;
887 		} else {
888 			mqd->init_mqd = init_mqd;
889 			mqd->load_mqd = load_mqd;
890 			mqd->update_mqd = update_mqd;
891 			mqd->destroy_mqd = kfd_destroy_mqd_cp;
892 			mqd->get_wave_state = get_wave_state;
893 		}
894 		break;
895 	case KFD_MQD_TYPE_HIQ:
896 		mqd->allocate_mqd = allocate_hiq_mqd;
897 		mqd->free_mqd = free_mqd_hiq_sdma;
898 		mqd->update_mqd = update_mqd;
899 		mqd->is_occupied = kfd_is_occupied_cp;
900 		mqd->mqd_size = sizeof(struct v9_mqd);
901 		mqd->mqd_stride = kfd_mqd_stride;
902 #if defined(CONFIG_DEBUG_FS)
903 		mqd->debugfs_show_mqd = debugfs_show_mqd;
904 #endif
905 		if (KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 3) ||
906 		    KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 4)) {
907 			mqd->init_mqd = init_mqd_hiq_v9_4_3;
908 			mqd->load_mqd = hiq_load_mqd_kiq_v9_4_3;
909 			mqd->destroy_mqd = destroy_hiq_mqd_v9_4_3;
910 			mqd->check_preemption_failed = check_preemption_failed_v9_4_3;
911 		} else {
912 			mqd->init_mqd = init_mqd_hiq;
913 			mqd->load_mqd = kfd_hiq_load_mqd_kiq;
914 			mqd->destroy_mqd = destroy_hiq_mqd;
915 			mqd->check_preemption_failed = check_preemption_failed;
916 		}
917 		break;
918 	case KFD_MQD_TYPE_DIQ:
919 		mqd->allocate_mqd = allocate_mqd;
920 		mqd->init_mqd = init_mqd_hiq;
921 		mqd->free_mqd = kfd_free_mqd_cp;
922 		mqd->load_mqd = load_mqd;
923 		mqd->update_mqd = update_mqd;
924 		mqd->destroy_mqd = kfd_destroy_mqd_cp;
925 		mqd->is_occupied = kfd_is_occupied_cp;
926 		mqd->mqd_size = sizeof(struct v9_mqd);
927 #if defined(CONFIG_DEBUG_FS)
928 		mqd->debugfs_show_mqd = debugfs_show_mqd;
929 #endif
930 		break;
931 	case KFD_MQD_TYPE_SDMA:
932 		mqd->allocate_mqd = allocate_sdma_mqd;
933 		mqd->init_mqd = init_mqd_sdma;
934 		mqd->free_mqd = free_mqd_hiq_sdma;
935 		mqd->load_mqd = kfd_load_mqd_sdma;
936 		mqd->update_mqd = update_mqd_sdma;
937 		mqd->destroy_mqd = kfd_destroy_mqd_sdma;
938 		mqd->is_occupied = kfd_is_occupied_sdma;
939 		mqd->checkpoint_mqd = checkpoint_mqd_sdma;
940 		mqd->restore_mqd = restore_mqd_sdma;
941 		mqd->mqd_size = sizeof(struct v9_sdma_mqd);
942 		mqd->mqd_stride = kfd_mqd_stride;
943 #if defined(CONFIG_DEBUG_FS)
944 		mqd->debugfs_show_mqd = debugfs_show_mqd_sdma;
945 #endif
946 		break;
947 	default:
948 		kfree(mqd);
949 		return NULL;
950 	}
951 
952 	return mqd;
953 }
954