xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_mqd_manager_v9.c (revision 26fbb4c8c7c3ee9a4c3b4de555a8587b5a19154e)
1 /*
2  * Copyright 2016-2018 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/printk.h>
25 #include <linux/slab.h>
26 #include <linux/uaccess.h>
27 #include "kfd_priv.h"
28 #include "kfd_mqd_manager.h"
29 #include "v9_structs.h"
30 #include "gc/gc_9_0_offset.h"
31 #include "gc/gc_9_0_sh_mask.h"
32 #include "sdma0/sdma0_4_0_sh_mask.h"
33 #include "amdgpu_amdkfd.h"
34 
35 static inline struct v9_mqd *get_mqd(void *mqd)
36 {
37 	return (struct v9_mqd *)mqd;
38 }
39 
40 static inline struct v9_sdma_mqd *get_sdma_mqd(void *mqd)
41 {
42 	return (struct v9_sdma_mqd *)mqd;
43 }
44 
45 static void update_cu_mask(struct mqd_manager *mm, void *mqd,
46 			struct queue_properties *q)
47 {
48 	struct v9_mqd *m;
49 	uint32_t se_mask[KFD_MAX_NUM_SE] = {0};
50 
51 	if (q->cu_mask_count == 0)
52 		return;
53 
54 	mqd_symmetrically_map_cu_mask(mm,
55 		q->cu_mask, q->cu_mask_count, se_mask);
56 
57 	m = get_mqd(mqd);
58 	m->compute_static_thread_mgmt_se0 = se_mask[0];
59 	m->compute_static_thread_mgmt_se1 = se_mask[1];
60 	m->compute_static_thread_mgmt_se2 = se_mask[2];
61 	m->compute_static_thread_mgmt_se3 = se_mask[3];
62 	m->compute_static_thread_mgmt_se4 = se_mask[4];
63 	m->compute_static_thread_mgmt_se5 = se_mask[5];
64 	m->compute_static_thread_mgmt_se6 = se_mask[6];
65 	m->compute_static_thread_mgmt_se7 = se_mask[7];
66 
67 	pr_debug("update cu mask to %#x %#x %#x %#x %#x %#x %#x %#x\n",
68 		m->compute_static_thread_mgmt_se0,
69 		m->compute_static_thread_mgmt_se1,
70 		m->compute_static_thread_mgmt_se2,
71 		m->compute_static_thread_mgmt_se3,
72 		m->compute_static_thread_mgmt_se4,
73 		m->compute_static_thread_mgmt_se5,
74 		m->compute_static_thread_mgmt_se6,
75 		m->compute_static_thread_mgmt_se7);
76 }
77 
78 static void set_priority(struct v9_mqd *m, struct queue_properties *q)
79 {
80 	m->cp_hqd_pipe_priority = pipe_priority_map[q->priority];
81 	m->cp_hqd_queue_priority = q->priority;
82 }
83 
84 static struct kfd_mem_obj *allocate_mqd(struct kfd_dev *kfd,
85 		struct queue_properties *q)
86 {
87 	int retval;
88 	struct kfd_mem_obj *mqd_mem_obj = NULL;
89 
90 	/* For V9 only, due to a HW bug, the control stack of a user mode
91 	 * compute queue needs to be allocated just behind the page boundary
92 	 * of its regular MQD buffer. So we allocate an enlarged MQD buffer:
93 	 * the first page of the buffer serves as the regular MQD buffer
94 	 * purpose and the remaining is for control stack. Although the two
95 	 * parts are in the same buffer object, they need different memory
96 	 * types: MQD part needs UC (uncached) as usual, while control stack
97 	 * needs NC (non coherent), which is different from the UC type which
98 	 * is used when control stack is allocated in user space.
99 	 *
100 	 * Because of all those, we use the gtt allocation function instead
101 	 * of sub-allocation function for this enlarged MQD buffer. Moreover,
102 	 * in order to achieve two memory types in a single buffer object, we
103 	 * pass a special bo flag AMDGPU_GEM_CREATE_CP_MQD_GFX9 to instruct
104 	 * amdgpu memory functions to do so.
105 	 */
106 	if (kfd->cwsr_enabled && (q->type == KFD_QUEUE_TYPE_COMPUTE)) {
107 		mqd_mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
108 		if (!mqd_mem_obj)
109 			return NULL;
110 		retval = amdgpu_amdkfd_alloc_gtt_mem(kfd->kgd,
111 			ALIGN(q->ctl_stack_size, PAGE_SIZE) +
112 				ALIGN(sizeof(struct v9_mqd), PAGE_SIZE),
113 			&(mqd_mem_obj->gtt_mem),
114 			&(mqd_mem_obj->gpu_addr),
115 			(void *)&(mqd_mem_obj->cpu_ptr), true);
116 	} else {
117 		retval = kfd_gtt_sa_allocate(kfd, sizeof(struct v9_mqd),
118 				&mqd_mem_obj);
119 	}
120 
121 	if (retval) {
122 		kfree(mqd_mem_obj);
123 		return NULL;
124 	}
125 
126 	return mqd_mem_obj;
127 
128 }
129 
130 static void init_mqd(struct mqd_manager *mm, void **mqd,
131 			struct kfd_mem_obj *mqd_mem_obj, uint64_t *gart_addr,
132 			struct queue_properties *q)
133 {
134 	uint64_t addr;
135 	struct v9_mqd *m;
136 
137 	m = (struct v9_mqd *) mqd_mem_obj->cpu_ptr;
138 	addr = mqd_mem_obj->gpu_addr;
139 
140 	memset(m, 0, sizeof(struct v9_mqd));
141 
142 	m->header = 0xC0310800;
143 	m->compute_pipelinestat_enable = 1;
144 	m->compute_static_thread_mgmt_se0 = 0xFFFFFFFF;
145 	m->compute_static_thread_mgmt_se1 = 0xFFFFFFFF;
146 	m->compute_static_thread_mgmt_se2 = 0xFFFFFFFF;
147 	m->compute_static_thread_mgmt_se3 = 0xFFFFFFFF;
148 	m->compute_static_thread_mgmt_se4 = 0xFFFFFFFF;
149 	m->compute_static_thread_mgmt_se5 = 0xFFFFFFFF;
150 	m->compute_static_thread_mgmt_se6 = 0xFFFFFFFF;
151 	m->compute_static_thread_mgmt_se7 = 0xFFFFFFFF;
152 
153 	m->cp_hqd_persistent_state = CP_HQD_PERSISTENT_STATE__PRELOAD_REQ_MASK |
154 			0x53 << CP_HQD_PERSISTENT_STATE__PRELOAD_SIZE__SHIFT;
155 
156 	m->cp_mqd_control = 1 << CP_MQD_CONTROL__PRIV_STATE__SHIFT;
157 
158 	m->cp_mqd_base_addr_lo        = lower_32_bits(addr);
159 	m->cp_mqd_base_addr_hi        = upper_32_bits(addr);
160 
161 	m->cp_hqd_quantum = 1 << CP_HQD_QUANTUM__QUANTUM_EN__SHIFT |
162 			1 << CP_HQD_QUANTUM__QUANTUM_SCALE__SHIFT |
163 			1 << CP_HQD_QUANTUM__QUANTUM_DURATION__SHIFT;
164 
165 	if (q->format == KFD_QUEUE_FORMAT_AQL) {
166 		m->cp_hqd_aql_control =
167 			1 << CP_HQD_AQL_CONTROL__CONTROL0__SHIFT;
168 	}
169 
170 	if (q->tba_addr) {
171 		m->compute_pgm_rsrc2 |=
172 			(1 << COMPUTE_PGM_RSRC2__TRAP_PRESENT__SHIFT);
173 	}
174 
175 	if (mm->dev->cwsr_enabled && q->ctx_save_restore_area_address) {
176 		m->cp_hqd_persistent_state |=
177 			(1 << CP_HQD_PERSISTENT_STATE__QSWITCH_MODE__SHIFT);
178 		m->cp_hqd_ctx_save_base_addr_lo =
179 			lower_32_bits(q->ctx_save_restore_area_address);
180 		m->cp_hqd_ctx_save_base_addr_hi =
181 			upper_32_bits(q->ctx_save_restore_area_address);
182 		m->cp_hqd_ctx_save_size = q->ctx_save_restore_area_size;
183 		m->cp_hqd_cntl_stack_size = q->ctl_stack_size;
184 		m->cp_hqd_cntl_stack_offset = q->ctl_stack_size;
185 		m->cp_hqd_wg_state_offset = q->ctl_stack_size;
186 	}
187 
188 	*mqd = m;
189 	if (gart_addr)
190 		*gart_addr = addr;
191 	mm->update_mqd(mm, m, q);
192 }
193 
194 static int load_mqd(struct mqd_manager *mm, void *mqd,
195 			uint32_t pipe_id, uint32_t queue_id,
196 			struct queue_properties *p, struct mm_struct *mms)
197 {
198 	/* AQL write pointer counts in 64B packets, PM4/CP counts in dwords. */
199 	uint32_t wptr_shift = (p->format == KFD_QUEUE_FORMAT_AQL ? 4 : 0);
200 
201 	return mm->dev->kfd2kgd->hqd_load(mm->dev->kgd, mqd, pipe_id, queue_id,
202 					  (uint32_t __user *)p->write_ptr,
203 					  wptr_shift, 0, mms);
204 }
205 
206 static int hiq_load_mqd_kiq(struct mqd_manager *mm, void *mqd,
207 			    uint32_t pipe_id, uint32_t queue_id,
208 			    struct queue_properties *p, struct mm_struct *mms)
209 {
210 	return mm->dev->kfd2kgd->hiq_mqd_load(mm->dev->kgd, mqd, pipe_id,
211 					      queue_id, p->doorbell_off);
212 }
213 
214 static void update_mqd(struct mqd_manager *mm, void *mqd,
215 		      struct queue_properties *q)
216 {
217 	struct v9_mqd *m;
218 
219 	m = get_mqd(mqd);
220 
221 	m->cp_hqd_pq_control = 5 << CP_HQD_PQ_CONTROL__RPTR_BLOCK_SIZE__SHIFT;
222 	m->cp_hqd_pq_control |= order_base_2(q->queue_size / 4) - 1;
223 	pr_debug("cp_hqd_pq_control 0x%x\n", m->cp_hqd_pq_control);
224 
225 	m->cp_hqd_pq_base_lo = lower_32_bits((uint64_t)q->queue_address >> 8);
226 	m->cp_hqd_pq_base_hi = upper_32_bits((uint64_t)q->queue_address >> 8);
227 
228 	m->cp_hqd_pq_rptr_report_addr_lo = lower_32_bits((uint64_t)q->read_ptr);
229 	m->cp_hqd_pq_rptr_report_addr_hi = upper_32_bits((uint64_t)q->read_ptr);
230 	m->cp_hqd_pq_wptr_poll_addr_lo = lower_32_bits((uint64_t)q->write_ptr);
231 	m->cp_hqd_pq_wptr_poll_addr_hi = upper_32_bits((uint64_t)q->write_ptr);
232 
233 	m->cp_hqd_pq_doorbell_control =
234 		q->doorbell_off <<
235 			CP_HQD_PQ_DOORBELL_CONTROL__DOORBELL_OFFSET__SHIFT;
236 	pr_debug("cp_hqd_pq_doorbell_control 0x%x\n",
237 			m->cp_hqd_pq_doorbell_control);
238 
239 	m->cp_hqd_ib_control =
240 		3 << CP_HQD_IB_CONTROL__MIN_IB_AVAIL_SIZE__SHIFT |
241 		1 << CP_HQD_IB_CONTROL__IB_EXE_DISABLE__SHIFT;
242 
243 	/*
244 	 * HW does not clamp this field correctly. Maximum EOP queue size
245 	 * is constrained by per-SE EOP done signal count, which is 8-bit.
246 	 * Limit is 0xFF EOP entries (= 0x7F8 dwords). CP will not submit
247 	 * more than (EOP entry count - 1) so a queue size of 0x800 dwords
248 	 * is safe, giving a maximum field value of 0xA.
249 	 */
250 	m->cp_hqd_eop_control = min(0xA,
251 		order_base_2(q->eop_ring_buffer_size / 4) - 1);
252 	m->cp_hqd_eop_base_addr_lo =
253 			lower_32_bits(q->eop_ring_buffer_address >> 8);
254 	m->cp_hqd_eop_base_addr_hi =
255 			upper_32_bits(q->eop_ring_buffer_address >> 8);
256 
257 	m->cp_hqd_iq_timer = 0;
258 
259 	m->cp_hqd_vmid = q->vmid;
260 
261 	if (q->format == KFD_QUEUE_FORMAT_AQL) {
262 		m->cp_hqd_pq_control |= CP_HQD_PQ_CONTROL__NO_UPDATE_RPTR_MASK |
263 				2 << CP_HQD_PQ_CONTROL__SLOT_BASED_WPTR__SHIFT |
264 				1 << CP_HQD_PQ_CONTROL__QUEUE_FULL_EN__SHIFT |
265 				1 << CP_HQD_PQ_CONTROL__WPP_CLAMP_EN__SHIFT;
266 		m->cp_hqd_pq_doorbell_control |= 1 <<
267 			CP_HQD_PQ_DOORBELL_CONTROL__DOORBELL_BIF_DROP__SHIFT;
268 	}
269 	if (mm->dev->cwsr_enabled && q->ctx_save_restore_area_address)
270 		m->cp_hqd_ctx_save_control = 0;
271 
272 	update_cu_mask(mm, mqd, q);
273 	set_priority(m, q);
274 
275 	q->is_active = QUEUE_IS_ACTIVE(*q);
276 }
277 
278 
279 static int destroy_mqd(struct mqd_manager *mm, void *mqd,
280 			enum kfd_preempt_type type,
281 			unsigned int timeout, uint32_t pipe_id,
282 			uint32_t queue_id)
283 {
284 	return mm->dev->kfd2kgd->hqd_destroy
285 		(mm->dev->kgd, mqd, type, timeout,
286 		pipe_id, queue_id);
287 }
288 
289 static void free_mqd(struct mqd_manager *mm, void *mqd,
290 			struct kfd_mem_obj *mqd_mem_obj)
291 {
292 	struct kfd_dev *kfd = mm->dev;
293 
294 	if (mqd_mem_obj->gtt_mem) {
295 		amdgpu_amdkfd_free_gtt_mem(kfd->kgd, mqd_mem_obj->gtt_mem);
296 		kfree(mqd_mem_obj);
297 	} else {
298 		kfd_gtt_sa_free(mm->dev, mqd_mem_obj);
299 	}
300 }
301 
302 static bool is_occupied(struct mqd_manager *mm, void *mqd,
303 			uint64_t queue_address,	uint32_t pipe_id,
304 			uint32_t queue_id)
305 {
306 	return mm->dev->kfd2kgd->hqd_is_occupied(
307 		mm->dev->kgd, queue_address,
308 		pipe_id, queue_id);
309 }
310 
311 static int get_wave_state(struct mqd_manager *mm, void *mqd,
312 			  void __user *ctl_stack,
313 			  u32 *ctl_stack_used_size,
314 			  u32 *save_area_used_size)
315 {
316 	struct v9_mqd *m;
317 
318 	/* Control stack is located one page after MQD. */
319 	void *mqd_ctl_stack = (void *)((uintptr_t)mqd + PAGE_SIZE);
320 
321 	m = get_mqd(mqd);
322 
323 	*ctl_stack_used_size = m->cp_hqd_cntl_stack_size -
324 		m->cp_hqd_cntl_stack_offset;
325 	*save_area_used_size = m->cp_hqd_wg_state_offset -
326 		m->cp_hqd_cntl_stack_size;
327 
328 	if (copy_to_user(ctl_stack, mqd_ctl_stack, m->cp_hqd_cntl_stack_size))
329 		return -EFAULT;
330 
331 	return 0;
332 }
333 
334 static void init_mqd_hiq(struct mqd_manager *mm, void **mqd,
335 			struct kfd_mem_obj *mqd_mem_obj, uint64_t *gart_addr,
336 			struct queue_properties *q)
337 {
338 	struct v9_mqd *m;
339 
340 	init_mqd(mm, mqd, mqd_mem_obj, gart_addr, q);
341 
342 	m = get_mqd(*mqd);
343 
344 	m->cp_hqd_pq_control |= 1 << CP_HQD_PQ_CONTROL__PRIV_STATE__SHIFT |
345 			1 << CP_HQD_PQ_CONTROL__KMD_QUEUE__SHIFT;
346 }
347 
348 static void init_mqd_sdma(struct mqd_manager *mm, void **mqd,
349 		struct kfd_mem_obj *mqd_mem_obj, uint64_t *gart_addr,
350 		struct queue_properties *q)
351 {
352 	struct v9_sdma_mqd *m;
353 
354 	m = (struct v9_sdma_mqd *) mqd_mem_obj->cpu_ptr;
355 
356 	memset(m, 0, sizeof(struct v9_sdma_mqd));
357 
358 	*mqd = m;
359 	if (gart_addr)
360 		*gart_addr = mqd_mem_obj->gpu_addr;
361 
362 	mm->update_mqd(mm, m, q);
363 }
364 
365 static int load_mqd_sdma(struct mqd_manager *mm, void *mqd,
366 		uint32_t pipe_id, uint32_t queue_id,
367 		struct queue_properties *p, struct mm_struct *mms)
368 {
369 	return mm->dev->kfd2kgd->hqd_sdma_load(mm->dev->kgd, mqd,
370 					       (uint32_t __user *)p->write_ptr,
371 					       mms);
372 }
373 
374 #define SDMA_RLC_DUMMY_DEFAULT 0xf
375 
376 static void update_mqd_sdma(struct mqd_manager *mm, void *mqd,
377 		struct queue_properties *q)
378 {
379 	struct v9_sdma_mqd *m;
380 
381 	m = get_sdma_mqd(mqd);
382 	m->sdmax_rlcx_rb_cntl = order_base_2(q->queue_size / 4)
383 		<< SDMA0_RLC0_RB_CNTL__RB_SIZE__SHIFT |
384 		q->vmid << SDMA0_RLC0_RB_CNTL__RB_VMID__SHIFT |
385 		1 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_ENABLE__SHIFT |
386 		6 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_TIMER__SHIFT;
387 
388 	m->sdmax_rlcx_rb_base = lower_32_bits(q->queue_address >> 8);
389 	m->sdmax_rlcx_rb_base_hi = upper_32_bits(q->queue_address >> 8);
390 	m->sdmax_rlcx_rb_rptr_addr_lo = lower_32_bits((uint64_t)q->read_ptr);
391 	m->sdmax_rlcx_rb_rptr_addr_hi = upper_32_bits((uint64_t)q->read_ptr);
392 	m->sdmax_rlcx_doorbell_offset =
393 		q->doorbell_off << SDMA0_RLC0_DOORBELL_OFFSET__OFFSET__SHIFT;
394 
395 	m->sdma_engine_id = q->sdma_engine_id;
396 	m->sdma_queue_id = q->sdma_queue_id;
397 	m->sdmax_rlcx_dummy_reg = SDMA_RLC_DUMMY_DEFAULT;
398 
399 	q->is_active = QUEUE_IS_ACTIVE(*q);
400 }
401 
402 /*
403  *  * preempt type here is ignored because there is only one way
404  *  * to preempt sdma queue
405  */
406 static int destroy_mqd_sdma(struct mqd_manager *mm, void *mqd,
407 		enum kfd_preempt_type type,
408 		unsigned int timeout, uint32_t pipe_id,
409 		uint32_t queue_id)
410 {
411 	return mm->dev->kfd2kgd->hqd_sdma_destroy(mm->dev->kgd, mqd, timeout);
412 }
413 
414 static bool is_occupied_sdma(struct mqd_manager *mm, void *mqd,
415 		uint64_t queue_address, uint32_t pipe_id,
416 		uint32_t queue_id)
417 {
418 	return mm->dev->kfd2kgd->hqd_sdma_is_occupied(mm->dev->kgd, mqd);
419 }
420 
421 #if defined(CONFIG_DEBUG_FS)
422 
423 static int debugfs_show_mqd(struct seq_file *m, void *data)
424 {
425 	seq_hex_dump(m, "    ", DUMP_PREFIX_OFFSET, 32, 4,
426 		     data, sizeof(struct v9_mqd), false);
427 	return 0;
428 }
429 
430 static int debugfs_show_mqd_sdma(struct seq_file *m, void *data)
431 {
432 	seq_hex_dump(m, "    ", DUMP_PREFIX_OFFSET, 32, 4,
433 		     data, sizeof(struct v9_sdma_mqd), false);
434 	return 0;
435 }
436 
437 #endif
438 
439 struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type,
440 		struct kfd_dev *dev)
441 {
442 	struct mqd_manager *mqd;
443 
444 	if (WARN_ON(type >= KFD_MQD_TYPE_MAX))
445 		return NULL;
446 
447 	mqd = kzalloc(sizeof(*mqd), GFP_KERNEL);
448 	if (!mqd)
449 		return NULL;
450 
451 	mqd->dev = dev;
452 
453 	switch (type) {
454 	case KFD_MQD_TYPE_CP:
455 		mqd->allocate_mqd = allocate_mqd;
456 		mqd->init_mqd = init_mqd;
457 		mqd->free_mqd = free_mqd;
458 		mqd->load_mqd = load_mqd;
459 		mqd->update_mqd = update_mqd;
460 		mqd->destroy_mqd = destroy_mqd;
461 		mqd->is_occupied = is_occupied;
462 		mqd->get_wave_state = get_wave_state;
463 		mqd->mqd_size = sizeof(struct v9_mqd);
464 #if defined(CONFIG_DEBUG_FS)
465 		mqd->debugfs_show_mqd = debugfs_show_mqd;
466 #endif
467 		break;
468 	case KFD_MQD_TYPE_HIQ:
469 		mqd->allocate_mqd = allocate_hiq_mqd;
470 		mqd->init_mqd = init_mqd_hiq;
471 		mqd->free_mqd = free_mqd_hiq_sdma;
472 		mqd->load_mqd = hiq_load_mqd_kiq;
473 		mqd->update_mqd = update_mqd;
474 		mqd->destroy_mqd = destroy_mqd;
475 		mqd->is_occupied = is_occupied;
476 		mqd->mqd_size = sizeof(struct v9_mqd);
477 #if defined(CONFIG_DEBUG_FS)
478 		mqd->debugfs_show_mqd = debugfs_show_mqd;
479 #endif
480 		break;
481 	case KFD_MQD_TYPE_DIQ:
482 		mqd->allocate_mqd = allocate_mqd;
483 		mqd->init_mqd = init_mqd_hiq;
484 		mqd->free_mqd = free_mqd;
485 		mqd->load_mqd = load_mqd;
486 		mqd->update_mqd = update_mqd;
487 		mqd->destroy_mqd = destroy_mqd;
488 		mqd->is_occupied = is_occupied;
489 		mqd->mqd_size = sizeof(struct v9_mqd);
490 #if defined(CONFIG_DEBUG_FS)
491 		mqd->debugfs_show_mqd = debugfs_show_mqd;
492 #endif
493 		break;
494 	case KFD_MQD_TYPE_SDMA:
495 		mqd->allocate_mqd = allocate_sdma_mqd;
496 		mqd->init_mqd = init_mqd_sdma;
497 		mqd->free_mqd = free_mqd_hiq_sdma;
498 		mqd->load_mqd = load_mqd_sdma;
499 		mqd->update_mqd = update_mqd_sdma;
500 		mqd->destroy_mqd = destroy_mqd_sdma;
501 		mqd->is_occupied = is_occupied_sdma;
502 		mqd->mqd_size = sizeof(struct v9_sdma_mqd);
503 #if defined(CONFIG_DEBUG_FS)
504 		mqd->debugfs_show_mqd = debugfs_show_mqd_sdma;
505 #endif
506 		break;
507 	default:
508 		kfree(mqd);
509 		return NULL;
510 	}
511 
512 	return mqd;
513 }
514