xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_mqd_manager.c (revision 5afca7e996c42aed1b4a42d4712817601ba42aff)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  *
23  */
24 
25 #include "kfd_mqd_manager.h"
26 #include "amdgpu_amdkfd.h"
27 #include "kfd_device_queue_manager.h"
28 
29 /* Mapping queue priority to pipe priority, indexed by queue priority */
30 int pipe_priority_map[] = {
31 	KFD_PIPE_PRIORITY_CS_LOW,
32 	KFD_PIPE_PRIORITY_CS_LOW,
33 	KFD_PIPE_PRIORITY_CS_LOW,
34 	KFD_PIPE_PRIORITY_CS_LOW,
35 	KFD_PIPE_PRIORITY_CS_LOW,
36 	KFD_PIPE_PRIORITY_CS_LOW,
37 	KFD_PIPE_PRIORITY_CS_LOW,
38 	KFD_PIPE_PRIORITY_CS_MEDIUM,
39 	KFD_PIPE_PRIORITY_CS_MEDIUM,
40 	KFD_PIPE_PRIORITY_CS_MEDIUM,
41 	KFD_PIPE_PRIORITY_CS_MEDIUM,
42 	KFD_PIPE_PRIORITY_CS_HIGH,
43 	KFD_PIPE_PRIORITY_CS_HIGH,
44 	KFD_PIPE_PRIORITY_CS_HIGH,
45 	KFD_PIPE_PRIORITY_CS_HIGH,
46 	KFD_PIPE_PRIORITY_CS_HIGH
47 };
48 
49 struct kfd_mem_obj *allocate_hiq_mqd(struct kfd_node *dev, struct queue_properties *q)
50 {
51 	struct kfd_mem_obj *mqd_mem_obj;
52 
53 	mqd_mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
54 	if (!mqd_mem_obj)
55 		return NULL;
56 
57 	mqd_mem_obj->gtt_mem = dev->dqm->hiq_sdma_mqd.gtt_mem;
58 	mqd_mem_obj->gpu_addr = dev->dqm->hiq_sdma_mqd.gpu_addr;
59 	mqd_mem_obj->cpu_ptr = dev->dqm->hiq_sdma_mqd.cpu_ptr;
60 
61 	return mqd_mem_obj;
62 }
63 
64 struct kfd_mem_obj *allocate_sdma_mqd(struct kfd_node *dev,
65 					struct queue_properties *q)
66 {
67 	struct kfd_mem_obj *mqd_mem_obj;
68 	uint64_t offset;
69 
70 	mqd_mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
71 	if (!mqd_mem_obj)
72 		return NULL;
73 
74 	offset = (q->sdma_engine_id *
75 		dev->kfd->device_info.num_sdma_queues_per_engine +
76 		q->sdma_queue_id) *
77 		dev->dqm->mqd_mgrs[KFD_MQD_TYPE_SDMA]->mqd_size;
78 
79 	offset += dev->dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]->mqd_size *
80 		  NUM_XCC(dev->xcc_mask);
81 
82 	mqd_mem_obj->gtt_mem = (void *)((uint64_t)dev->dqm->hiq_sdma_mqd.gtt_mem
83 				+ offset);
84 	mqd_mem_obj->gpu_addr = dev->dqm->hiq_sdma_mqd.gpu_addr + offset;
85 	mqd_mem_obj->cpu_ptr = (uint32_t *)((uint64_t)
86 				dev->dqm->hiq_sdma_mqd.cpu_ptr + offset);
87 
88 	return mqd_mem_obj;
89 }
90 
91 void free_mqd_hiq_sdma(struct mqd_manager *mm, void *mqd,
92 			struct kfd_mem_obj *mqd_mem_obj)
93 {
94 	WARN_ON(!mqd_mem_obj->gtt_mem);
95 	kfree(mqd_mem_obj);
96 }
97 
98 void mqd_symmetrically_map_cu_mask(struct mqd_manager *mm,
99 		const uint32_t *cu_mask, uint32_t cu_mask_count,
100 		uint32_t *se_mask, uint32_t inst)
101 {
102 	struct amdgpu_cu_info *cu_info = &mm->dev->adev->gfx.cu_info;
103 	struct amdgpu_gfx_config *gfx_info = &mm->dev->adev->gfx.config;
104 	uint32_t cu_per_sh[KFD_MAX_NUM_SE][KFD_MAX_NUM_SH_PER_SE] = {0};
105 	bool wgp_mode_req = KFD_GC_VERSION(mm->dev) >= IP_VERSION(10, 0, 0);
106 	uint32_t en_mask = wgp_mode_req ? 0x3 : 0x1;
107 	int i, se, sh, cu, cu_bitmap_sh_mul, cu_inc = wgp_mode_req ? 2 : 1;
108 	uint32_t cu_active_per_node;
109 	int inc = cu_inc * NUM_XCC(mm->dev->xcc_mask);
110 	int xcc_inst = inst + ffs(mm->dev->xcc_mask) - 1;
111 
112 	cu_active_per_node = cu_info->number / mm->dev->kfd->num_nodes;
113 	if (cu_mask_count > cu_active_per_node)
114 		cu_mask_count = cu_active_per_node;
115 
116 	/* Exceeding these bounds corrupts the stack and indicates a coding error.
117 	 * Returning with no CU's enabled will hang the queue, which should be
118 	 * attention grabbing.
119 	 */
120 	if (gfx_info->max_shader_engines > KFD_MAX_NUM_SE) {
121 		dev_err(mm->dev->adev->dev,
122 			"Exceeded KFD_MAX_NUM_SE, chip reports %d\n",
123 			gfx_info->max_shader_engines);
124 		return;
125 	}
126 	if (gfx_info->max_sh_per_se > KFD_MAX_NUM_SH_PER_SE) {
127 		dev_err(mm->dev->adev->dev,
128 			"Exceeded KFD_MAX_NUM_SH, chip reports %d\n",
129 			gfx_info->max_sh_per_se * gfx_info->max_shader_engines);
130 		return;
131 	}
132 
133 	cu_bitmap_sh_mul = (KFD_GC_VERSION(mm->dev) >= IP_VERSION(11, 0, 0) &&
134 			    KFD_GC_VERSION(mm->dev) < IP_VERSION(13, 0, 0)) ? 2 : 1;
135 
136 	/* Count active CUs per SH.
137 	 *
138 	 * Some CUs in an SH may be disabled.	HW expects disabled CUs to be
139 	 * represented in the high bits of each SH's enable mask (the upper and lower
140 	 * 16 bits of se_mask) and will take care of the actual distribution of
141 	 * disabled CUs within each SH automatically.
142 	 * Each half of se_mask must be filled only on bits 0-cu_per_sh[se][sh]-1.
143 	 *
144 	 * See note on Arcturus cu_bitmap layout in gfx_v9_0_get_cu_info.
145 	 * See note on GFX11 cu_bitmap layout in gfx_v11_0_get_cu_info.
146 	 */
147 	for (se = 0; se < gfx_info->max_shader_engines; se++)
148 		for (sh = 0; sh < gfx_info->max_sh_per_se; sh++)
149 			cu_per_sh[se][sh] = hweight32(
150 				cu_info->bitmap[xcc_inst][se % 4][sh + (se / 4) *
151 				cu_bitmap_sh_mul]);
152 
153 	/* Symmetrically map cu_mask to all SEs & SHs:
154 	 * se_mask programs up to 2 SH in the upper and lower 16 bits.
155 	 *
156 	 * Examples
157 	 * Assuming 1 SH/SE, 4 SEs:
158 	 * cu_mask[0] bit0 -> se_mask[0] bit0
159 	 * cu_mask[0] bit1 -> se_mask[1] bit0
160 	 * ...
161 	 * cu_mask[0] bit4 -> se_mask[0] bit1
162 	 * ...
163 	 *
164 	 * Assuming 2 SH/SE, 4 SEs
165 	 * cu_mask[0] bit0 -> se_mask[0] bit0 (SE0,SH0,CU0)
166 	 * cu_mask[0] bit1 -> se_mask[1] bit0 (SE1,SH0,CU0)
167 	 * ...
168 	 * cu_mask[0] bit4 -> se_mask[0] bit16 (SE0,SH1,CU0)
169 	 * cu_mask[0] bit5 -> se_mask[1] bit16 (SE1,SH1,CU0)
170 	 * ...
171 	 * cu_mask[0] bit8 -> se_mask[0] bit1 (SE0,SH0,CU1)
172 	 * ...
173 	 *
174 	 * For GFX 9.4.3, the following code only looks at a
175 	 * subset of the cu_mask corresponding to the inst parameter.
176 	 * If we have n XCCs under one GPU node
177 	 * cu_mask[0] bit0 -> XCC0 se_mask[0] bit0 (XCC0,SE0,SH0,CU0)
178 	 * cu_mask[0] bit1 -> XCC1 se_mask[0] bit0 (XCC1,SE0,SH0,CU0)
179 	 * ..
180 	 * cu_mask[0] bitn -> XCCn se_mask[0] bit0 (XCCn,SE0,SH0,CU0)
181 	 * cu_mask[0] bit n+1 -> XCC0 se_mask[1] bit0 (XCC0,SE1,SH0,CU0)
182 	 *
183 	 * For example, if there are 6 XCCs under 1 KFD node, this code
184 	 * running for each inst, will look at the bits as:
185 	 * inst, inst + 6, inst + 12...
186 	 *
187 	 * First ensure all CUs are disabled, then enable user specified CUs.
188 	 */
189 	for (i = 0; i < gfx_info->max_shader_engines; i++)
190 		se_mask[i] = 0;
191 
192 	i = inst;
193 	for (cu = 0; cu < 16; cu += cu_inc) {
194 		for (sh = 0; sh < gfx_info->max_sh_per_se; sh++) {
195 			for (se = 0; se < gfx_info->max_shader_engines; se++) {
196 				if (cu_per_sh[se][sh] > cu) {
197 					if (cu_mask[i / 32] & (en_mask << (i % 32)))
198 						se_mask[se] |= en_mask << (cu + sh * 16);
199 					i += inc;
200 					if (i >= cu_mask_count)
201 						return;
202 				}
203 			}
204 		}
205 	}
206 }
207 
208 int kfd_hiq_load_mqd_kiq(struct mqd_manager *mm, void *mqd,
209 		     uint32_t pipe_id, uint32_t queue_id,
210 		     struct queue_properties *p, struct mm_struct *mms)
211 {
212 	return mm->dev->kfd2kgd->hiq_mqd_load(mm->dev->adev, mqd, pipe_id,
213 					      queue_id, p->doorbell_off, 0);
214 }
215 
216 int kfd_destroy_mqd_cp(struct mqd_manager *mm, void *mqd,
217 		enum kfd_preempt_type type, unsigned int timeout,
218 		uint32_t pipe_id, uint32_t queue_id)
219 {
220 	return mm->dev->kfd2kgd->hqd_destroy(mm->dev->adev, mqd, type, timeout,
221 						pipe_id, queue_id, 0);
222 }
223 
224 void kfd_free_mqd_cp(struct mqd_manager *mm, void *mqd,
225 	      struct kfd_mem_obj *mqd_mem_obj)
226 {
227 	if (mqd_mem_obj->gtt_mem) {
228 		amdgpu_amdkfd_free_gtt_mem(mm->dev->adev, &mqd_mem_obj->gtt_mem);
229 		kfree(mqd_mem_obj);
230 	} else {
231 		kfd_gtt_sa_free(mm->dev, mqd_mem_obj);
232 	}
233 }
234 
235 bool kfd_is_occupied_cp(struct mqd_manager *mm, void *mqd,
236 		 uint64_t queue_address, uint32_t pipe_id,
237 		 uint32_t queue_id)
238 {
239 	return mm->dev->kfd2kgd->hqd_is_occupied(mm->dev->adev, queue_address,
240 						pipe_id, queue_id, 0);
241 }
242 
243 int kfd_load_mqd_sdma(struct mqd_manager *mm, void *mqd,
244 		  uint32_t pipe_id, uint32_t queue_id,
245 		  struct queue_properties *p, struct mm_struct *mms)
246 {
247 	return mm->dev->kfd2kgd->hqd_sdma_load(mm->dev->adev, mqd,
248 						(uint32_t __user *)p->write_ptr,
249 						mms);
250 }
251 
252 /*
253  * preempt type here is ignored because there is only one way
254  * to preempt sdma queue
255  */
256 int kfd_destroy_mqd_sdma(struct mqd_manager *mm, void *mqd,
257 		     enum kfd_preempt_type type,
258 		     unsigned int timeout, uint32_t pipe_id,
259 		     uint32_t queue_id)
260 {
261 	return mm->dev->kfd2kgd->hqd_sdma_destroy(mm->dev->adev, mqd, timeout);
262 }
263 
264 bool kfd_is_occupied_sdma(struct mqd_manager *mm, void *mqd,
265 		      uint64_t queue_address, uint32_t pipe_id,
266 		      uint32_t queue_id)
267 {
268 	return mm->dev->kfd2kgd->hqd_sdma_is_occupied(mm->dev->adev, mqd);
269 }
270 
271 uint64_t kfd_hiq_mqd_stride(struct kfd_node *dev)
272 {
273 	return dev->dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]->mqd_size;
274 }
275 
276 void kfd_get_hiq_xcc_mqd(struct kfd_node *dev, struct kfd_mem_obj *mqd_mem_obj,
277 		     uint32_t virtual_xcc_id)
278 {
279 	uint64_t offset;
280 
281 	offset = kfd_hiq_mqd_stride(dev) * virtual_xcc_id;
282 
283 	mqd_mem_obj->gtt_mem = (virtual_xcc_id == 0) ?
284 			dev->dqm->hiq_sdma_mqd.gtt_mem : NULL;
285 	mqd_mem_obj->gpu_addr = dev->dqm->hiq_sdma_mqd.gpu_addr + offset;
286 	mqd_mem_obj->cpu_ptr = (uint32_t *)((uintptr_t)
287 				dev->dqm->hiq_sdma_mqd.cpu_ptr + offset);
288 }
289 
290 uint64_t kfd_mqd_stride(struct mqd_manager *mm,
291 			struct queue_properties *q)
292 {
293 	return mm->mqd_size;
294 }
295 
296 bool kfd_check_hiq_mqd_doorbell_id(struct kfd_node *node, uint32_t doorbell_id,
297 				   uint32_t inst)
298 {
299 	if (doorbell_id) {
300 		struct device *dev = node->adev->dev;
301 
302 		if (node->adev->xcp_mgr && node->adev->xcp_mgr->num_xcps > 0)
303 			dev_err(dev, "XCC %d: Queue preemption failed for queue with doorbell_id: %x\n",
304 							inst, doorbell_id);
305 		else
306 			dev_err(dev, "Queue preemption failed for queue with doorbell_id: %x\n",
307 							doorbell_id);
308 		return true;
309 	}
310 
311 	return false;
312 }
313