1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2014-2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 * 23 */ 24 25 #include "kfd_mqd_manager.h" 26 #include "amdgpu_amdkfd.h" 27 #include "kfd_device_queue_manager.h" 28 29 /* Mapping queue priority to pipe priority, indexed by queue priority */ 30 int pipe_priority_map[] = { 31 KFD_PIPE_PRIORITY_CS_LOW, 32 KFD_PIPE_PRIORITY_CS_LOW, 33 KFD_PIPE_PRIORITY_CS_LOW, 34 KFD_PIPE_PRIORITY_CS_LOW, 35 KFD_PIPE_PRIORITY_CS_LOW, 36 KFD_PIPE_PRIORITY_CS_LOW, 37 KFD_PIPE_PRIORITY_CS_LOW, 38 KFD_PIPE_PRIORITY_CS_MEDIUM, 39 KFD_PIPE_PRIORITY_CS_MEDIUM, 40 KFD_PIPE_PRIORITY_CS_MEDIUM, 41 KFD_PIPE_PRIORITY_CS_MEDIUM, 42 KFD_PIPE_PRIORITY_CS_HIGH, 43 KFD_PIPE_PRIORITY_CS_HIGH, 44 KFD_PIPE_PRIORITY_CS_HIGH, 45 KFD_PIPE_PRIORITY_CS_HIGH, 46 KFD_PIPE_PRIORITY_CS_HIGH 47 }; 48 49 struct kfd_mem_obj *allocate_hiq_mqd(struct kfd_node *dev, struct queue_properties *q) 50 { 51 struct kfd_mem_obj *mqd_mem_obj; 52 53 mqd_mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL); 54 if (!mqd_mem_obj) 55 return NULL; 56 57 mqd_mem_obj->gtt_mem = dev->dqm->hiq_sdma_mqd.gtt_mem; 58 mqd_mem_obj->gpu_addr = dev->dqm->hiq_sdma_mqd.gpu_addr; 59 mqd_mem_obj->cpu_ptr = dev->dqm->hiq_sdma_mqd.cpu_ptr; 60 61 return mqd_mem_obj; 62 } 63 64 struct kfd_mem_obj *allocate_sdma_mqd(struct kfd_node *dev, 65 struct queue_properties *q) 66 { 67 struct kfd_mem_obj *mqd_mem_obj; 68 uint64_t offset; 69 70 mqd_mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL); 71 if (!mqd_mem_obj) 72 return NULL; 73 74 offset = (q->sdma_engine_id * 75 dev->kfd->device_info.num_sdma_queues_per_engine + 76 q->sdma_queue_id) * 77 dev->dqm->mqd_mgrs[KFD_MQD_TYPE_SDMA]->mqd_size; 78 79 offset += dev->dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]->mqd_size * 80 NUM_XCC(dev->xcc_mask); 81 82 mqd_mem_obj->gtt_mem = (void *)((uint64_t)dev->dqm->hiq_sdma_mqd.gtt_mem 83 + offset); 84 mqd_mem_obj->gpu_addr = dev->dqm->hiq_sdma_mqd.gpu_addr + offset; 85 mqd_mem_obj->cpu_ptr = (uint32_t *)((uint64_t) 86 dev->dqm->hiq_sdma_mqd.cpu_ptr + offset); 87 88 return mqd_mem_obj; 89 } 90 91 void free_mqd_hiq_sdma(struct mqd_manager *mm, void *mqd, 92 struct kfd_mem_obj *mqd_mem_obj) 93 { 94 WARN_ON(!mqd_mem_obj->gtt_mem); 95 kfree(mqd_mem_obj); 96 } 97 98 void mqd_symmetrically_map_cu_mask(struct mqd_manager *mm, 99 const uint32_t *cu_mask, uint32_t cu_mask_count, 100 uint32_t *se_mask, uint32_t inst) 101 { 102 struct amdgpu_cu_info *cu_info = &mm->dev->adev->gfx.cu_info; 103 struct amdgpu_gfx_config *gfx_info = &mm->dev->adev->gfx.config; 104 uint32_t cu_per_sh[KFD_MAX_NUM_SE][KFD_MAX_NUM_SH_PER_SE] = {0}; 105 bool wgp_mode_req = KFD_GC_VERSION(mm->dev) >= IP_VERSION(10, 0, 0); 106 uint32_t en_mask = wgp_mode_req ? 0x3 : 0x1; 107 int i, se, sh, cu, cu_bitmap_sh_mul, cu_inc = wgp_mode_req ? 2 : 1; 108 uint32_t cu_active_per_node; 109 int inc = cu_inc * NUM_XCC(mm->dev->xcc_mask); 110 int xcc_inst = inst + ffs(mm->dev->xcc_mask) - 1; 111 112 cu_active_per_node = cu_info->number / mm->dev->kfd->num_nodes; 113 if (cu_mask_count > cu_active_per_node) 114 cu_mask_count = cu_active_per_node; 115 116 /* Exceeding these bounds corrupts the stack and indicates a coding error. 117 * Returning with no CU's enabled will hang the queue, which should be 118 * attention grabbing. 119 */ 120 if (gfx_info->max_shader_engines > KFD_MAX_NUM_SE) { 121 pr_err("Exceeded KFD_MAX_NUM_SE, chip reports %d\n", 122 gfx_info->max_shader_engines); 123 return; 124 } 125 if (gfx_info->max_sh_per_se > KFD_MAX_NUM_SH_PER_SE) { 126 pr_err("Exceeded KFD_MAX_NUM_SH, chip reports %d\n", 127 gfx_info->max_sh_per_se * gfx_info->max_shader_engines); 128 return; 129 } 130 131 cu_bitmap_sh_mul = (KFD_GC_VERSION(mm->dev) >= IP_VERSION(11, 0, 0) && 132 KFD_GC_VERSION(mm->dev) < IP_VERSION(12, 0, 0)) ? 2 : 1; 133 134 /* Count active CUs per SH. 135 * 136 * Some CUs in an SH may be disabled. HW expects disabled CUs to be 137 * represented in the high bits of each SH's enable mask (the upper and lower 138 * 16 bits of se_mask) and will take care of the actual distribution of 139 * disabled CUs within each SH automatically. 140 * Each half of se_mask must be filled only on bits 0-cu_per_sh[se][sh]-1. 141 * 142 * See note on Arcturus cu_bitmap layout in gfx_v9_0_get_cu_info. 143 * See note on GFX11 cu_bitmap layout in gfx_v11_0_get_cu_info. 144 */ 145 for (se = 0; se < gfx_info->max_shader_engines; se++) 146 for (sh = 0; sh < gfx_info->max_sh_per_se; sh++) 147 cu_per_sh[se][sh] = hweight32( 148 cu_info->bitmap[xcc_inst][se % 4][sh + (se / 4) * 149 cu_bitmap_sh_mul]); 150 151 /* Symmetrically map cu_mask to all SEs & SHs: 152 * se_mask programs up to 2 SH in the upper and lower 16 bits. 153 * 154 * Examples 155 * Assuming 1 SH/SE, 4 SEs: 156 * cu_mask[0] bit0 -> se_mask[0] bit0 157 * cu_mask[0] bit1 -> se_mask[1] bit0 158 * ... 159 * cu_mask[0] bit4 -> se_mask[0] bit1 160 * ... 161 * 162 * Assuming 2 SH/SE, 4 SEs 163 * cu_mask[0] bit0 -> se_mask[0] bit0 (SE0,SH0,CU0) 164 * cu_mask[0] bit1 -> se_mask[1] bit0 (SE1,SH0,CU0) 165 * ... 166 * cu_mask[0] bit4 -> se_mask[0] bit16 (SE0,SH1,CU0) 167 * cu_mask[0] bit5 -> se_mask[1] bit16 (SE1,SH1,CU0) 168 * ... 169 * cu_mask[0] bit8 -> se_mask[0] bit1 (SE0,SH0,CU1) 170 * ... 171 * 172 * For GFX 9.4.3, the following code only looks at a 173 * subset of the cu_mask corresponding to the inst parameter. 174 * If we have n XCCs under one GPU node 175 * cu_mask[0] bit0 -> XCC0 se_mask[0] bit0 (XCC0,SE0,SH0,CU0) 176 * cu_mask[0] bit1 -> XCC1 se_mask[0] bit0 (XCC1,SE0,SH0,CU0) 177 * .. 178 * cu_mask[0] bitn -> XCCn se_mask[0] bit0 (XCCn,SE0,SH0,CU0) 179 * cu_mask[0] bit n+1 -> XCC0 se_mask[1] bit0 (XCC0,SE1,SH0,CU0) 180 * 181 * For example, if there are 6 XCCs under 1 KFD node, this code 182 * running for each inst, will look at the bits as: 183 * inst, inst + 6, inst + 12... 184 * 185 * First ensure all CUs are disabled, then enable user specified CUs. 186 */ 187 for (i = 0; i < gfx_info->max_shader_engines; i++) 188 se_mask[i] = 0; 189 190 i = inst; 191 for (cu = 0; cu < 16; cu += cu_inc) { 192 for (sh = 0; sh < gfx_info->max_sh_per_se; sh++) { 193 for (se = 0; se < gfx_info->max_shader_engines; se++) { 194 if (cu_per_sh[se][sh] > cu) { 195 if (cu_mask[i / 32] & (en_mask << (i % 32))) 196 se_mask[se] |= en_mask << (cu + sh * 16); 197 i += inc; 198 if (i >= cu_mask_count) 199 return; 200 } 201 } 202 } 203 } 204 } 205 206 int kfd_hiq_load_mqd_kiq(struct mqd_manager *mm, void *mqd, 207 uint32_t pipe_id, uint32_t queue_id, 208 struct queue_properties *p, struct mm_struct *mms) 209 { 210 return mm->dev->kfd2kgd->hiq_mqd_load(mm->dev->adev, mqd, pipe_id, 211 queue_id, p->doorbell_off, 0); 212 } 213 214 int kfd_destroy_mqd_cp(struct mqd_manager *mm, void *mqd, 215 enum kfd_preempt_type type, unsigned int timeout, 216 uint32_t pipe_id, uint32_t queue_id) 217 { 218 return mm->dev->kfd2kgd->hqd_destroy(mm->dev->adev, mqd, type, timeout, 219 pipe_id, queue_id, 0); 220 } 221 222 void kfd_free_mqd_cp(struct mqd_manager *mm, void *mqd, 223 struct kfd_mem_obj *mqd_mem_obj) 224 { 225 if (mqd_mem_obj->gtt_mem) { 226 amdgpu_amdkfd_free_gtt_mem(mm->dev->adev, mqd_mem_obj->gtt_mem); 227 kfree(mqd_mem_obj); 228 } else { 229 kfd_gtt_sa_free(mm->dev, mqd_mem_obj); 230 } 231 } 232 233 bool kfd_is_occupied_cp(struct mqd_manager *mm, void *mqd, 234 uint64_t queue_address, uint32_t pipe_id, 235 uint32_t queue_id) 236 { 237 return mm->dev->kfd2kgd->hqd_is_occupied(mm->dev->adev, queue_address, 238 pipe_id, queue_id, 0); 239 } 240 241 int kfd_load_mqd_sdma(struct mqd_manager *mm, void *mqd, 242 uint32_t pipe_id, uint32_t queue_id, 243 struct queue_properties *p, struct mm_struct *mms) 244 { 245 return mm->dev->kfd2kgd->hqd_sdma_load(mm->dev->adev, mqd, 246 (uint32_t __user *)p->write_ptr, 247 mms); 248 } 249 250 /* 251 * preempt type here is ignored because there is only one way 252 * to preempt sdma queue 253 */ 254 int kfd_destroy_mqd_sdma(struct mqd_manager *mm, void *mqd, 255 enum kfd_preempt_type type, 256 unsigned int timeout, uint32_t pipe_id, 257 uint32_t queue_id) 258 { 259 return mm->dev->kfd2kgd->hqd_sdma_destroy(mm->dev->adev, mqd, timeout); 260 } 261 262 bool kfd_is_occupied_sdma(struct mqd_manager *mm, void *mqd, 263 uint64_t queue_address, uint32_t pipe_id, 264 uint32_t queue_id) 265 { 266 return mm->dev->kfd2kgd->hqd_sdma_is_occupied(mm->dev->adev, mqd); 267 } 268 269 uint64_t kfd_hiq_mqd_stride(struct kfd_node *dev) 270 { 271 return dev->dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]->mqd_size; 272 } 273 274 void kfd_get_hiq_xcc_mqd(struct kfd_node *dev, struct kfd_mem_obj *mqd_mem_obj, 275 uint32_t virtual_xcc_id) 276 { 277 uint64_t offset; 278 279 offset = kfd_hiq_mqd_stride(dev) * virtual_xcc_id; 280 281 mqd_mem_obj->gtt_mem = (virtual_xcc_id == 0) ? 282 dev->dqm->hiq_sdma_mqd.gtt_mem : NULL; 283 mqd_mem_obj->gpu_addr = dev->dqm->hiq_sdma_mqd.gpu_addr + offset; 284 mqd_mem_obj->cpu_ptr = (uint32_t *)((uintptr_t) 285 dev->dqm->hiq_sdma_mqd.cpu_ptr + offset); 286 } 287 288 uint64_t kfd_mqd_stride(struct mqd_manager *mm, 289 struct queue_properties *q) 290 { 291 return mm->mqd_size; 292 } 293