1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2020-2021 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 #include <linux/types.h> 24 #include <linux/hmm.h> 25 #include <linux/dma-direction.h> 26 #include <linux/dma-mapping.h> 27 #include <linux/migrate.h> 28 #include "amdgpu_sync.h" 29 #include "amdgpu_object.h" 30 #include "amdgpu_vm.h" 31 #include "amdgpu_res_cursor.h" 32 #include "kfd_priv.h" 33 #include "kfd_svm.h" 34 #include "kfd_migrate.h" 35 #include "kfd_smi_events.h" 36 37 #ifdef dev_fmt 38 #undef dev_fmt 39 #endif 40 #define dev_fmt(fmt) "kfd_migrate: " fmt 41 42 static uint64_t 43 svm_migrate_direct_mapping_addr(struct amdgpu_device *adev, uint64_t addr) 44 { 45 return addr + amdgpu_ttm_domain_start(adev, TTM_PL_VRAM); 46 } 47 48 static int 49 svm_migrate_gart_map(struct amdgpu_ring *ring, uint64_t npages, 50 dma_addr_t *addr, uint64_t *gart_addr, uint64_t flags) 51 { 52 struct amdgpu_device *adev = ring->adev; 53 struct amdgpu_job *job; 54 unsigned int num_dw, num_bytes; 55 struct dma_fence *fence; 56 uint64_t src_addr, dst_addr; 57 uint64_t pte_flags; 58 void *cpu_addr; 59 int r; 60 61 /* use gart window 0 */ 62 *gart_addr = adev->gmc.gart_start; 63 64 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 65 num_bytes = npages * 8; 66 67 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr, 68 AMDGPU_FENCE_OWNER_UNDEFINED, 69 num_dw * 4 + num_bytes, 70 AMDGPU_IB_POOL_DELAYED, 71 &job); 72 if (r) 73 return r; 74 75 src_addr = num_dw * 4; 76 src_addr += job->ibs[0].gpu_addr; 77 78 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 79 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 80 dst_addr, num_bytes, 0); 81 82 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 83 WARN_ON(job->ibs[0].length_dw > num_dw); 84 85 pte_flags = AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE; 86 pte_flags |= AMDGPU_PTE_SYSTEM | AMDGPU_PTE_SNOOPED; 87 if (!(flags & KFD_IOCTL_SVM_FLAG_GPU_RO)) 88 pte_flags |= AMDGPU_PTE_WRITEABLE; 89 pte_flags |= adev->gart.gart_pte_flags; 90 91 cpu_addr = &job->ibs[0].ptr[num_dw]; 92 93 amdgpu_gart_map(adev, 0, npages, addr, pte_flags, cpu_addr); 94 fence = amdgpu_job_submit(job); 95 dma_fence_put(fence); 96 97 return r; 98 } 99 100 /** 101 * svm_migrate_copy_memory_gart - sdma copy data between ram and vram 102 * 103 * @adev: amdgpu device the sdma ring running 104 * @sys: system DMA pointer to be copied 105 * @vram: vram destination DMA pointer 106 * @npages: number of pages to copy 107 * @direction: enum MIGRATION_COPY_DIR 108 * @mfence: output, sdma fence to signal after sdma is done 109 * 110 * ram address uses GART table continuous entries mapping to ram pages, 111 * vram address uses direct mapping of vram pages, which must have npages 112 * number of continuous pages. 113 * GART update and sdma uses same buf copy function ring, sdma is splited to 114 * multiple GTT_MAX_PAGES transfer, all sdma operations are serialized, wait for 115 * the last sdma finish fence which is returned to check copy memory is done. 116 * 117 * Context: Process context, takes and releases gtt_window_lock 118 * 119 * Return: 120 * 0 - OK, otherwise error code 121 */ 122 123 static int 124 svm_migrate_copy_memory_gart(struct amdgpu_device *adev, dma_addr_t *sys, 125 uint64_t *vram, uint64_t npages, 126 enum MIGRATION_COPY_DIR direction, 127 struct dma_fence **mfence) 128 { 129 const uint64_t GTT_MAX_PAGES = AMDGPU_GTT_MAX_TRANSFER_SIZE; 130 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 131 uint64_t gart_s, gart_d; 132 struct dma_fence *next; 133 uint64_t size; 134 int r; 135 136 mutex_lock(&adev->mman.gtt_window_lock); 137 138 while (npages) { 139 size = min(GTT_MAX_PAGES, npages); 140 141 if (direction == FROM_VRAM_TO_RAM) { 142 gart_s = svm_migrate_direct_mapping_addr(adev, *vram); 143 r = svm_migrate_gart_map(ring, size, sys, &gart_d, 0); 144 145 } else if (direction == FROM_RAM_TO_VRAM) { 146 r = svm_migrate_gart_map(ring, size, sys, &gart_s, 147 KFD_IOCTL_SVM_FLAG_GPU_RO); 148 gart_d = svm_migrate_direct_mapping_addr(adev, *vram); 149 } 150 if (r) { 151 dev_err(adev->dev, "fail %d create gart mapping\n", r); 152 goto out_unlock; 153 } 154 155 r = amdgpu_copy_buffer(ring, gart_s, gart_d, size * PAGE_SIZE, 156 NULL, &next, false, true, 0); 157 if (r) { 158 dev_err(adev->dev, "fail %d to copy memory\n", r); 159 goto out_unlock; 160 } 161 162 dma_fence_put(*mfence); 163 *mfence = next; 164 npages -= size; 165 if (npages) { 166 sys += size; 167 vram += size; 168 } 169 } 170 171 out_unlock: 172 mutex_unlock(&adev->mman.gtt_window_lock); 173 174 return r; 175 } 176 177 /** 178 * svm_migrate_copy_done - wait for memory copy sdma is done 179 * 180 * @adev: amdgpu device the sdma memory copy is executing on 181 * @mfence: migrate fence 182 * 183 * Wait for dma fence is signaled, if the copy ssplit into multiple sdma 184 * operations, this is the last sdma operation fence. 185 * 186 * Context: called after svm_migrate_copy_memory 187 * 188 * Return: 189 * 0 - success 190 * otherwise - error code from dma fence signal 191 */ 192 static int 193 svm_migrate_copy_done(struct amdgpu_device *adev, struct dma_fence *mfence) 194 { 195 int r = 0; 196 197 if (mfence) { 198 r = dma_fence_wait(mfence, false); 199 dma_fence_put(mfence); 200 pr_debug("sdma copy memory fence done\n"); 201 } 202 203 return r; 204 } 205 206 unsigned long 207 svm_migrate_addr_to_pfn(struct amdgpu_device *adev, unsigned long addr) 208 { 209 return (addr + adev->kfd.pgmap.range.start) >> PAGE_SHIFT; 210 } 211 212 static void 213 svm_migrate_get_vram_page(struct svm_range *prange, unsigned long pfn) 214 { 215 struct page *page; 216 217 page = pfn_to_page(pfn); 218 svm_range_bo_ref(prange->svm_bo); 219 page->zone_device_data = prange->svm_bo; 220 zone_device_page_init(page); 221 } 222 223 static void 224 svm_migrate_put_vram_page(struct amdgpu_device *adev, unsigned long addr) 225 { 226 struct page *page; 227 228 page = pfn_to_page(svm_migrate_addr_to_pfn(adev, addr)); 229 unlock_page(page); 230 put_page(page); 231 } 232 233 static unsigned long 234 svm_migrate_addr(struct amdgpu_device *adev, struct page *page) 235 { 236 unsigned long addr; 237 238 addr = page_to_pfn(page) << PAGE_SHIFT; 239 return (addr - adev->kfd.pgmap.range.start); 240 } 241 242 static struct page * 243 svm_migrate_get_sys_page(struct vm_area_struct *vma, unsigned long addr) 244 { 245 struct page *page; 246 247 page = alloc_page_vma(GFP_HIGHUSER, vma, addr); 248 if (page) 249 lock_page(page); 250 251 return page; 252 } 253 254 static void svm_migrate_put_sys_page(unsigned long addr) 255 { 256 struct page *page; 257 258 page = pfn_to_page(addr >> PAGE_SHIFT); 259 unlock_page(page); 260 put_page(page); 261 } 262 263 static unsigned long svm_migrate_unsuccessful_pages(struct migrate_vma *migrate) 264 { 265 unsigned long upages = 0; 266 unsigned long i; 267 268 for (i = 0; i < migrate->npages; i++) { 269 if (migrate->src[i] & MIGRATE_PFN_VALID && 270 !(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 271 upages++; 272 } 273 return upages; 274 } 275 276 static int 277 svm_migrate_copy_to_vram(struct kfd_node *node, struct svm_range *prange, 278 struct migrate_vma *migrate, struct dma_fence **mfence, 279 dma_addr_t *scratch, uint64_t ttm_res_offset) 280 { 281 uint64_t npages = migrate->cpages; 282 struct amdgpu_device *adev = node->adev; 283 struct device *dev = adev->dev; 284 struct amdgpu_res_cursor cursor; 285 dma_addr_t *src; 286 uint64_t *dst; 287 uint64_t i, j; 288 int r; 289 290 pr_debug("svms 0x%p [0x%lx 0x%lx 0x%llx]\n", prange->svms, prange->start, 291 prange->last, ttm_res_offset); 292 293 src = scratch; 294 dst = (uint64_t *)(scratch + npages); 295 296 amdgpu_res_first(prange->ttm_res, ttm_res_offset, 297 npages << PAGE_SHIFT, &cursor); 298 for (i = j = 0; i < npages; i++) { 299 struct page *spage; 300 301 dst[i] = cursor.start + (j << PAGE_SHIFT); 302 migrate->dst[i] = svm_migrate_addr_to_pfn(adev, dst[i]); 303 svm_migrate_get_vram_page(prange, migrate->dst[i]); 304 migrate->dst[i] = migrate_pfn(migrate->dst[i]); 305 306 spage = migrate_pfn_to_page(migrate->src[i]); 307 if (spage && !is_zone_device_page(spage)) { 308 src[i] = dma_map_page(dev, spage, 0, PAGE_SIZE, 309 DMA_TO_DEVICE); 310 r = dma_mapping_error(dev, src[i]); 311 if (r) { 312 dev_err(dev, "%s: fail %d dma_map_page\n", 313 __func__, r); 314 goto out_free_vram_pages; 315 } 316 } else { 317 if (j) { 318 r = svm_migrate_copy_memory_gart( 319 adev, src + i - j, 320 dst + i - j, j, 321 FROM_RAM_TO_VRAM, 322 mfence); 323 if (r) 324 goto out_free_vram_pages; 325 amdgpu_res_next(&cursor, (j + 1) << PAGE_SHIFT); 326 j = 0; 327 } else { 328 amdgpu_res_next(&cursor, PAGE_SIZE); 329 } 330 continue; 331 } 332 333 pr_debug_ratelimited("dma mapping src to 0x%llx, pfn 0x%lx\n", 334 src[i] >> PAGE_SHIFT, page_to_pfn(spage)); 335 336 if (j >= (cursor.size >> PAGE_SHIFT) - 1 && i < npages - 1) { 337 r = svm_migrate_copy_memory_gart(adev, src + i - j, 338 dst + i - j, j + 1, 339 FROM_RAM_TO_VRAM, 340 mfence); 341 if (r) 342 goto out_free_vram_pages; 343 amdgpu_res_next(&cursor, (j + 1) * PAGE_SIZE); 344 j = 0; 345 } else { 346 j++; 347 } 348 } 349 350 r = svm_migrate_copy_memory_gart(adev, src + i - j, dst + i - j, j, 351 FROM_RAM_TO_VRAM, mfence); 352 353 out_free_vram_pages: 354 if (r) { 355 pr_debug("failed %d to copy memory to vram\n", r); 356 while (i--) { 357 svm_migrate_put_vram_page(adev, dst[i]); 358 migrate->dst[i] = 0; 359 } 360 } 361 362 #ifdef DEBUG_FORCE_MIXED_DOMAINS 363 for (i = 0, j = 0; i < npages; i += 4, j++) { 364 if (j & 1) 365 continue; 366 svm_migrate_put_vram_page(adev, dst[i]); 367 migrate->dst[i] = 0; 368 svm_migrate_put_vram_page(adev, dst[i + 1]); 369 migrate->dst[i + 1] = 0; 370 svm_migrate_put_vram_page(adev, dst[i + 2]); 371 migrate->dst[i + 2] = 0; 372 svm_migrate_put_vram_page(adev, dst[i + 3]); 373 migrate->dst[i + 3] = 0; 374 } 375 #endif 376 377 return r; 378 } 379 380 static long 381 svm_migrate_vma_to_vram(struct kfd_node *node, struct svm_range *prange, 382 struct vm_area_struct *vma, uint64_t start, 383 uint64_t end, uint32_t trigger, uint64_t ttm_res_offset) 384 { 385 struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms); 386 uint64_t npages = (end - start) >> PAGE_SHIFT; 387 struct amdgpu_device *adev = node->adev; 388 struct kfd_process_device *pdd; 389 struct dma_fence *mfence = NULL; 390 struct migrate_vma migrate = { 0 }; 391 unsigned long cpages = 0; 392 unsigned long mpages = 0; 393 dma_addr_t *scratch; 394 void *buf; 395 int r = -ENOMEM; 396 397 memset(&migrate, 0, sizeof(migrate)); 398 migrate.vma = vma; 399 migrate.start = start; 400 migrate.end = end; 401 migrate.flags = MIGRATE_VMA_SELECT_SYSTEM; 402 migrate.pgmap_owner = SVM_ADEV_PGMAP_OWNER(adev); 403 404 buf = kvcalloc(npages, 405 2 * sizeof(*migrate.src) + sizeof(uint64_t) + sizeof(dma_addr_t), 406 GFP_KERNEL); 407 if (!buf) 408 goto out; 409 410 migrate.src = buf; 411 migrate.dst = migrate.src + npages; 412 scratch = (dma_addr_t *)(migrate.dst + npages); 413 414 kfd_smi_event_migration_start(node, p->lead_thread->pid, 415 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 416 0, node->id, prange->prefetch_loc, 417 prange->preferred_loc, trigger); 418 419 r = migrate_vma_setup(&migrate); 420 if (r) { 421 dev_err(adev->dev, "%s: vma setup fail %d range [0x%lx 0x%lx]\n", 422 __func__, r, prange->start, prange->last); 423 goto out_free; 424 } 425 426 cpages = migrate.cpages; 427 if (!cpages) { 428 pr_debug("failed collect migrate sys pages [0x%lx 0x%lx]\n", 429 prange->start, prange->last); 430 goto out_free; 431 } 432 if (cpages != npages) 433 pr_debug("partial migration, 0x%lx/0x%llx pages collected\n", 434 cpages, npages); 435 else 436 pr_debug("0x%lx pages collected\n", cpages); 437 438 r = svm_migrate_copy_to_vram(node, prange, &migrate, &mfence, scratch, ttm_res_offset); 439 migrate_vma_pages(&migrate); 440 441 svm_migrate_copy_done(adev, mfence); 442 migrate_vma_finalize(&migrate); 443 444 mpages = cpages - svm_migrate_unsuccessful_pages(&migrate); 445 pr_debug("successful/cpages/npages 0x%lx/0x%lx/0x%lx\n", 446 mpages, cpages, migrate.npages); 447 448 kfd_smi_event_migration_end(node, p->lead_thread->pid, 449 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 450 0, node->id, trigger); 451 452 svm_range_dma_unmap_dev(adev->dev, scratch, 0, npages); 453 454 out_free: 455 kvfree(buf); 456 out: 457 if (!r && mpages) { 458 pdd = svm_range_get_pdd_by_node(prange, node); 459 if (pdd) 460 WRITE_ONCE(pdd->page_in, pdd->page_in + mpages); 461 462 return mpages; 463 } 464 return r; 465 } 466 467 /** 468 * svm_migrate_ram_to_vram - migrate svm range from system to device 469 * @prange: range structure 470 * @best_loc: the device to migrate to 471 * @start_mgr: start page to migrate 472 * @last_mgr: last page to migrate 473 * @mm: the process mm structure 474 * @trigger: reason of migration 475 * 476 * Context: Process context, caller hold mmap read lock, svms lock, prange lock 477 * 478 * Return: 479 * 0 - OK, otherwise error code 480 */ 481 static int 482 svm_migrate_ram_to_vram(struct svm_range *prange, uint32_t best_loc, 483 unsigned long start_mgr, unsigned long last_mgr, 484 struct mm_struct *mm, uint32_t trigger) 485 { 486 unsigned long addr, start, end; 487 struct vm_area_struct *vma; 488 uint64_t ttm_res_offset; 489 struct kfd_node *node; 490 unsigned long mpages = 0; 491 long r = 0; 492 493 if (start_mgr < prange->start || last_mgr > prange->last) { 494 pr_debug("range [0x%lx 0x%lx] out prange [0x%lx 0x%lx]\n", 495 start_mgr, last_mgr, prange->start, prange->last); 496 return -EFAULT; 497 } 498 499 node = svm_range_get_node_by_id(prange, best_loc); 500 if (!node) { 501 pr_debug("failed to get kfd node by id 0x%x\n", best_loc); 502 return -ENODEV; 503 } 504 505 pr_debug("svms 0x%p [0x%lx 0x%lx] in [0x%lx 0x%lx] to gpu 0x%x\n", 506 prange->svms, start_mgr, last_mgr, prange->start, prange->last, 507 best_loc); 508 509 start = start_mgr << PAGE_SHIFT; 510 end = (last_mgr + 1) << PAGE_SHIFT; 511 512 r = amdgpu_amdkfd_reserve_mem_limit(node->adev, 513 prange->npages * PAGE_SIZE, 514 KFD_IOC_ALLOC_MEM_FLAGS_VRAM, 515 node->xcp ? node->xcp->id : 0); 516 if (r) { 517 dev_dbg(node->adev->dev, "failed to reserve VRAM, r: %ld\n", r); 518 return -ENOSPC; 519 } 520 521 r = svm_range_vram_node_new(node, prange, true); 522 if (r) { 523 dev_dbg(node->adev->dev, "fail %ld to alloc vram\n", r); 524 goto out; 525 } 526 ttm_res_offset = (start_mgr - prange->start + prange->offset) << PAGE_SHIFT; 527 528 for (addr = start; addr < end;) { 529 unsigned long next; 530 531 vma = vma_lookup(mm, addr); 532 if (!vma) 533 break; 534 535 next = min(vma->vm_end, end); 536 r = svm_migrate_vma_to_vram(node, prange, vma, addr, next, trigger, ttm_res_offset); 537 if (r < 0) { 538 pr_debug("failed %ld to migrate\n", r); 539 break; 540 } else { 541 mpages += r; 542 } 543 ttm_res_offset += next - addr; 544 addr = next; 545 } 546 547 if (mpages) { 548 prange->actual_loc = best_loc; 549 prange->vram_pages += mpages; 550 } else if (!prange->actual_loc) { 551 /* if no page migrated and all pages from prange are at 552 * sys ram drop svm_bo got from svm_range_vram_node_new 553 */ 554 svm_range_vram_node_free(prange); 555 } 556 557 out: 558 amdgpu_amdkfd_unreserve_mem_limit(node->adev, 559 prange->npages * PAGE_SIZE, 560 KFD_IOC_ALLOC_MEM_FLAGS_VRAM, 561 node->xcp ? node->xcp->id : 0); 562 return r < 0 ? r : 0; 563 } 564 565 static void svm_migrate_page_free(struct page *page) 566 { 567 struct svm_range_bo *svm_bo = page->zone_device_data; 568 569 if (svm_bo) { 570 pr_debug_ratelimited("ref: %d\n", kref_read(&svm_bo->kref)); 571 svm_range_bo_unref_async(svm_bo); 572 } 573 } 574 575 static int 576 svm_migrate_copy_to_ram(struct amdgpu_device *adev, struct svm_range *prange, 577 struct migrate_vma *migrate, struct dma_fence **mfence, 578 dma_addr_t *scratch, uint64_t npages) 579 { 580 struct device *dev = adev->dev; 581 uint64_t *src; 582 dma_addr_t *dst; 583 struct page *dpage; 584 uint64_t i = 0, j; 585 uint64_t addr; 586 int r = 0; 587 588 pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms, prange->start, 589 prange->last); 590 591 addr = migrate->start; 592 593 src = (uint64_t *)(scratch + npages); 594 dst = scratch; 595 596 for (i = 0, j = 0; i < npages; i++, addr += PAGE_SIZE) { 597 struct page *spage; 598 599 spage = migrate_pfn_to_page(migrate->src[i]); 600 if (!spage || !is_zone_device_page(spage)) { 601 pr_debug("invalid page. Could be in CPU already svms 0x%p [0x%lx 0x%lx]\n", 602 prange->svms, prange->start, prange->last); 603 if (j) { 604 r = svm_migrate_copy_memory_gart(adev, dst + i - j, 605 src + i - j, j, 606 FROM_VRAM_TO_RAM, 607 mfence); 608 if (r) 609 goto out_oom; 610 j = 0; 611 } 612 continue; 613 } 614 src[i] = svm_migrate_addr(adev, spage); 615 if (j > 0 && src[i] != src[i - 1] + PAGE_SIZE) { 616 r = svm_migrate_copy_memory_gart(adev, dst + i - j, 617 src + i - j, j, 618 FROM_VRAM_TO_RAM, 619 mfence); 620 if (r) 621 goto out_oom; 622 j = 0; 623 } 624 625 dpage = svm_migrate_get_sys_page(migrate->vma, addr); 626 if (!dpage) { 627 pr_debug("failed get page svms 0x%p [0x%lx 0x%lx]\n", 628 prange->svms, prange->start, prange->last); 629 r = -ENOMEM; 630 goto out_oom; 631 } 632 633 dst[i] = dma_map_page(dev, dpage, 0, PAGE_SIZE, DMA_FROM_DEVICE); 634 r = dma_mapping_error(dev, dst[i]); 635 if (r) { 636 dev_err(adev->dev, "%s: fail %d dma_map_page\n", __func__, r); 637 goto out_oom; 638 } 639 640 pr_debug_ratelimited("dma mapping dst to 0x%llx, pfn 0x%lx\n", 641 dst[i] >> PAGE_SHIFT, page_to_pfn(dpage)); 642 643 migrate->dst[i] = migrate_pfn(page_to_pfn(dpage)); 644 j++; 645 } 646 647 r = svm_migrate_copy_memory_gart(adev, dst + i - j, src + i - j, j, 648 FROM_VRAM_TO_RAM, mfence); 649 650 out_oom: 651 if (r) { 652 pr_debug("failed %d copy to ram\n", r); 653 while (i--) { 654 svm_migrate_put_sys_page(dst[i]); 655 migrate->dst[i] = 0; 656 } 657 } 658 659 return r; 660 } 661 662 /** 663 * svm_migrate_vma_to_ram - migrate range inside one vma from device to system 664 * 665 * @prange: svm range structure 666 * @vma: vm_area_struct that range [start, end] belongs to 667 * @start: range start virtual address in pages 668 * @end: range end virtual address in pages 669 * @node: kfd node device to migrate from 670 * @trigger: reason of migration 671 * @fault_page: is from vmf->page, svm_migrate_to_ram(), this is CPU page fault callback 672 * 673 * Context: Process context, caller hold mmap read lock, prange->migrate_mutex 674 * 675 * Return: 676 * negative values - indicate error 677 * positive values or zero - number of pages got migrated 678 */ 679 static long 680 svm_migrate_vma_to_ram(struct kfd_node *node, struct svm_range *prange, 681 struct vm_area_struct *vma, uint64_t start, uint64_t end, 682 uint32_t trigger, struct page *fault_page) 683 { 684 struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms); 685 uint64_t npages = (end - start) >> PAGE_SHIFT; 686 unsigned long upages = npages; 687 unsigned long cpages = 0; 688 unsigned long mpages = 0; 689 struct amdgpu_device *adev = node->adev; 690 struct kfd_process_device *pdd; 691 struct dma_fence *mfence = NULL; 692 struct migrate_vma migrate = { 0 }; 693 dma_addr_t *scratch; 694 void *buf; 695 int r = -ENOMEM; 696 697 memset(&migrate, 0, sizeof(migrate)); 698 migrate.vma = vma; 699 migrate.start = start; 700 migrate.end = end; 701 migrate.pgmap_owner = SVM_ADEV_PGMAP_OWNER(adev); 702 if (adev->gmc.xgmi.connected_to_cpu) 703 migrate.flags = MIGRATE_VMA_SELECT_DEVICE_COHERENT; 704 else 705 migrate.flags = MIGRATE_VMA_SELECT_DEVICE_PRIVATE; 706 707 buf = kvcalloc(npages, 708 2 * sizeof(*migrate.src) + sizeof(uint64_t) + sizeof(dma_addr_t), 709 GFP_KERNEL); 710 if (!buf) 711 goto out; 712 713 migrate.src = buf; 714 migrate.dst = migrate.src + npages; 715 migrate.fault_page = fault_page; 716 scratch = (dma_addr_t *)(migrate.dst + npages); 717 718 kfd_smi_event_migration_start(node, p->lead_thread->pid, 719 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 720 node->id, 0, prange->prefetch_loc, 721 prange->preferred_loc, trigger); 722 723 r = migrate_vma_setup(&migrate); 724 if (r) { 725 dev_err(adev->dev, "%s: vma setup fail %d range [0x%lx 0x%lx]\n", 726 __func__, r, prange->start, prange->last); 727 goto out_free; 728 } 729 730 cpages = migrate.cpages; 731 if (!cpages) { 732 pr_debug("failed collect migrate device pages [0x%lx 0x%lx]\n", 733 prange->start, prange->last); 734 upages = svm_migrate_unsuccessful_pages(&migrate); 735 goto out_free; 736 } 737 if (cpages != npages) 738 pr_debug("partial migration, 0x%lx/0x%llx pages collected\n", 739 cpages, npages); 740 else 741 pr_debug("0x%lx pages collected\n", cpages); 742 743 r = svm_migrate_copy_to_ram(adev, prange, &migrate, &mfence, 744 scratch, npages); 745 migrate_vma_pages(&migrate); 746 747 upages = svm_migrate_unsuccessful_pages(&migrate); 748 pr_debug("unsuccessful/cpages/npages 0x%lx/0x%lx/0x%lx\n", 749 upages, cpages, migrate.npages); 750 751 svm_migrate_copy_done(adev, mfence); 752 migrate_vma_finalize(&migrate); 753 754 kfd_smi_event_migration_end(node, p->lead_thread->pid, 755 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 756 node->id, 0, trigger); 757 758 svm_range_dma_unmap_dev(adev->dev, scratch, 0, npages); 759 760 out_free: 761 kvfree(buf); 762 out: 763 if (!r && cpages) { 764 mpages = cpages - upages; 765 pdd = svm_range_get_pdd_by_node(prange, node); 766 if (pdd) 767 WRITE_ONCE(pdd->page_out, pdd->page_out + mpages); 768 } 769 770 return r ? r : mpages; 771 } 772 773 /** 774 * svm_migrate_vram_to_ram - migrate svm range from device to system 775 * @prange: range structure 776 * @mm: process mm, use current->mm if NULL 777 * @start_mgr: start page need be migrated to sys ram 778 * @last_mgr: last page need be migrated to sys ram 779 * @trigger: reason of migration 780 * @fault_page: is from vmf->page, svm_migrate_to_ram(), this is CPU page fault callback 781 * 782 * Context: Process context, caller hold mmap read lock, prange->migrate_mutex 783 * 784 * Return: 785 * 0 - OK, otherwise error code 786 */ 787 int svm_migrate_vram_to_ram(struct svm_range *prange, struct mm_struct *mm, 788 unsigned long start_mgr, unsigned long last_mgr, 789 uint32_t trigger, struct page *fault_page) 790 { 791 struct kfd_node *node; 792 struct vm_area_struct *vma; 793 unsigned long addr; 794 unsigned long start; 795 unsigned long end; 796 unsigned long mpages = 0; 797 long r = 0; 798 799 /* this pragne has no any vram page to migrate to sys ram */ 800 if (!prange->actual_loc) { 801 pr_debug("[0x%lx 0x%lx] already migrated to ram\n", 802 prange->start, prange->last); 803 return 0; 804 } 805 806 if (start_mgr < prange->start || last_mgr > prange->last) { 807 pr_debug("range [0x%lx 0x%lx] out prange [0x%lx 0x%lx]\n", 808 start_mgr, last_mgr, prange->start, prange->last); 809 return -EFAULT; 810 } 811 812 node = svm_range_get_node_by_id(prange, prange->actual_loc); 813 if (!node) { 814 pr_debug("failed to get kfd node by id 0x%x\n", prange->actual_loc); 815 return -ENODEV; 816 } 817 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] from gpu 0x%x to ram\n", 818 prange->svms, prange, start_mgr, last_mgr, 819 prange->actual_loc); 820 821 start = start_mgr << PAGE_SHIFT; 822 end = (last_mgr + 1) << PAGE_SHIFT; 823 824 for (addr = start; addr < end;) { 825 unsigned long next; 826 827 vma = vma_lookup(mm, addr); 828 if (!vma) { 829 pr_debug("failed to find vma for prange %p\n", prange); 830 r = -EFAULT; 831 break; 832 } 833 834 next = min(vma->vm_end, end); 835 r = svm_migrate_vma_to_ram(node, prange, vma, addr, next, trigger, 836 fault_page); 837 if (r < 0) { 838 pr_debug("failed %ld to migrate prange %p\n", r, prange); 839 break; 840 } else { 841 mpages += r; 842 } 843 addr = next; 844 } 845 846 if (r >= 0) { 847 prange->vram_pages -= mpages; 848 849 /* prange does not have vram page set its actual_loc to system 850 * and drop its svm_bo ref 851 */ 852 if (prange->vram_pages == 0 && prange->ttm_res) { 853 prange->actual_loc = 0; 854 svm_range_vram_node_free(prange); 855 } 856 } 857 858 return r < 0 ? r : 0; 859 } 860 861 /** 862 * svm_migrate_vram_to_vram - migrate svm range from device to device 863 * @prange: range structure 864 * @best_loc: the device to migrate to 865 * @start: start page need be migrated to sys ram 866 * @last: last page need be migrated to sys ram 867 * @mm: process mm, use current->mm if NULL 868 * @trigger: reason of migration 869 * 870 * Context: Process context, caller hold mmap read lock, svms lock, prange lock 871 * 872 * migrate all vram pages in prange to sys ram, then migrate 873 * [start, last] pages from sys ram to gpu node best_loc. 874 * 875 * Return: 876 * 0 - OK, otherwise error code 877 */ 878 static int 879 svm_migrate_vram_to_vram(struct svm_range *prange, uint32_t best_loc, 880 unsigned long start, unsigned long last, 881 struct mm_struct *mm, uint32_t trigger) 882 { 883 int r, retries = 3; 884 885 /* 886 * TODO: for both devices with PCIe large bar or on same xgmi hive, skip 887 * system memory as migration bridge 888 */ 889 890 pr_debug("from gpu 0x%x to gpu 0x%x\n", prange->actual_loc, best_loc); 891 892 do { 893 r = svm_migrate_vram_to_ram(prange, mm, prange->start, prange->last, 894 trigger, NULL); 895 if (r) 896 return r; 897 } while (prange->actual_loc && --retries); 898 899 if (prange->actual_loc) 900 return -EDEADLK; 901 902 return svm_migrate_ram_to_vram(prange, best_loc, start, last, mm, trigger); 903 } 904 905 int 906 svm_migrate_to_vram(struct svm_range *prange, uint32_t best_loc, 907 unsigned long start, unsigned long last, 908 struct mm_struct *mm, uint32_t trigger) 909 { 910 if (!prange->actual_loc || prange->actual_loc == best_loc) 911 return svm_migrate_ram_to_vram(prange, best_loc, start, last, 912 mm, trigger); 913 914 else 915 return svm_migrate_vram_to_vram(prange, best_loc, start, last, 916 mm, trigger); 917 918 } 919 920 /** 921 * svm_migrate_to_ram - CPU page fault handler 922 * @vmf: CPU vm fault vma, address 923 * 924 * Context: vm fault handler, caller holds the mmap read lock 925 * 926 * Return: 927 * 0 - OK 928 * VM_FAULT_SIGBUS - notice application to have SIGBUS page fault 929 */ 930 static vm_fault_t svm_migrate_to_ram(struct vm_fault *vmf) 931 { 932 unsigned long start, last, size; 933 unsigned long addr = vmf->address; 934 struct svm_range_bo *svm_bo; 935 struct svm_range *prange; 936 struct kfd_process *p; 937 struct mm_struct *mm; 938 int r = 0; 939 940 svm_bo = vmf->page->zone_device_data; 941 if (!svm_bo) { 942 pr_debug("failed get device page at addr 0x%lx\n", addr); 943 return VM_FAULT_SIGBUS; 944 } 945 if (!mmget_not_zero(svm_bo->eviction_fence->mm)) { 946 pr_debug("addr 0x%lx of process mm is destroyed\n", addr); 947 return VM_FAULT_SIGBUS; 948 } 949 950 mm = svm_bo->eviction_fence->mm; 951 if (mm != vmf->vma->vm_mm) 952 pr_debug("addr 0x%lx is COW mapping in child process\n", addr); 953 954 p = kfd_lookup_process_by_mm(mm); 955 if (!p) { 956 pr_debug("failed find process at fault address 0x%lx\n", addr); 957 r = VM_FAULT_SIGBUS; 958 goto out_mmput; 959 } 960 if (READ_ONCE(p->svms.faulting_task) == current) { 961 pr_debug("skipping ram migration\n"); 962 r = 0; 963 goto out_unref_process; 964 } 965 966 pr_debug("CPU page fault svms 0x%p address 0x%lx\n", &p->svms, addr); 967 addr >>= PAGE_SHIFT; 968 969 mutex_lock(&p->svms.lock); 970 971 prange = svm_range_from_addr(&p->svms, addr, NULL); 972 if (!prange) { 973 pr_debug("failed get range svms 0x%p addr 0x%lx\n", &p->svms, addr); 974 r = -EFAULT; 975 goto out_unlock_svms; 976 } 977 978 mutex_lock(&prange->migrate_mutex); 979 980 if (!prange->actual_loc) 981 goto out_unlock_prange; 982 983 /* Align migration range start and size to granularity size */ 984 size = 1UL << prange->granularity; 985 start = max(ALIGN_DOWN(addr, size), prange->start); 986 last = min(ALIGN(addr + 1, size) - 1, prange->last); 987 988 r = svm_migrate_vram_to_ram(prange, vmf->vma->vm_mm, start, last, 989 KFD_MIGRATE_TRIGGER_PAGEFAULT_CPU, vmf->page); 990 if (r) 991 pr_debug("failed %d migrate svms 0x%p range 0x%p [0x%lx 0x%lx]\n", 992 r, prange->svms, prange, start, last); 993 994 out_unlock_prange: 995 mutex_unlock(&prange->migrate_mutex); 996 out_unlock_svms: 997 mutex_unlock(&p->svms.lock); 998 out_unref_process: 999 pr_debug("CPU fault svms 0x%p address 0x%lx done\n", &p->svms, addr); 1000 kfd_unref_process(p); 1001 out_mmput: 1002 mmput(mm); 1003 return r ? VM_FAULT_SIGBUS : 0; 1004 } 1005 1006 static const struct dev_pagemap_ops svm_migrate_pgmap_ops = { 1007 .page_free = svm_migrate_page_free, 1008 .migrate_to_ram = svm_migrate_to_ram, 1009 }; 1010 1011 /* Each VRAM page uses sizeof(struct page) on system memory */ 1012 #define SVM_HMM_PAGE_STRUCT_SIZE(size) ((size)/PAGE_SIZE * sizeof(struct page)) 1013 1014 int kgd2kfd_init_zone_device(struct amdgpu_device *adev) 1015 { 1016 struct amdgpu_kfd_dev *kfddev = &adev->kfd; 1017 struct dev_pagemap *pgmap; 1018 struct resource *res = NULL; 1019 unsigned long size; 1020 void *r; 1021 1022 /* Page migration works on gfx9 or newer */ 1023 if (amdgpu_ip_version(adev, GC_HWIP, 0) < IP_VERSION(9, 0, 1)) 1024 return -EINVAL; 1025 1026 if (adev->gmc.is_app_apu) 1027 return 0; 1028 1029 pgmap = &kfddev->pgmap; 1030 memset(pgmap, 0, sizeof(*pgmap)); 1031 1032 /* TODO: register all vram to HMM for now. 1033 * should remove reserved size 1034 */ 1035 size = ALIGN(adev->gmc.real_vram_size, 2ULL << 20); 1036 if (adev->gmc.xgmi.connected_to_cpu) { 1037 pgmap->range.start = adev->gmc.aper_base; 1038 pgmap->range.end = adev->gmc.aper_base + adev->gmc.aper_size - 1; 1039 pgmap->type = MEMORY_DEVICE_COHERENT; 1040 } else { 1041 res = devm_request_free_mem_region(adev->dev, &iomem_resource, size); 1042 if (IS_ERR(res)) 1043 return PTR_ERR(res); 1044 pgmap->range.start = res->start; 1045 pgmap->range.end = res->end; 1046 pgmap->type = MEMORY_DEVICE_PRIVATE; 1047 } 1048 1049 pgmap->nr_range = 1; 1050 pgmap->ops = &svm_migrate_pgmap_ops; 1051 pgmap->owner = SVM_ADEV_PGMAP_OWNER(adev); 1052 pgmap->flags = 0; 1053 /* Device manager releases device-specific resources, memory region and 1054 * pgmap when driver disconnects from device. 1055 */ 1056 r = devm_memremap_pages(adev->dev, pgmap); 1057 if (IS_ERR(r)) { 1058 pr_err("failed to register HMM device memory\n"); 1059 if (pgmap->type == MEMORY_DEVICE_PRIVATE) 1060 devm_release_mem_region(adev->dev, res->start, resource_size(res)); 1061 /* Disable SVM support capability */ 1062 pgmap->type = 0; 1063 return PTR_ERR(r); 1064 } 1065 1066 pr_debug("reserve %ldMB system memory for VRAM pages struct\n", 1067 SVM_HMM_PAGE_STRUCT_SIZE(size) >> 20); 1068 1069 amdgpu_amdkfd_reserve_system_mem(SVM_HMM_PAGE_STRUCT_SIZE(size)); 1070 1071 pr_info("HMM registered %ldMB device memory\n", size >> 20); 1072 1073 return 0; 1074 } 1075