1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2020-2021 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 #include <linux/types.h> 24 #include <linux/hmm.h> 25 #include <linux/dma-direction.h> 26 #include <linux/dma-mapping.h> 27 #include <linux/migrate.h> 28 #include "amdgpu_sync.h" 29 #include "amdgpu_object.h" 30 #include "amdgpu_vm.h" 31 #include "amdgpu_res_cursor.h" 32 #include "kfd_priv.h" 33 #include "kfd_svm.h" 34 #include "kfd_migrate.h" 35 #include "kfd_smi_events.h" 36 37 #ifdef dev_fmt 38 #undef dev_fmt 39 #endif 40 #define dev_fmt(fmt) "kfd_migrate: " fmt 41 42 static uint64_t 43 svm_migrate_direct_mapping_addr(struct amdgpu_device *adev, uint64_t addr) 44 { 45 return addr + amdgpu_ttm_domain_start(adev, TTM_PL_VRAM); 46 } 47 48 static int 49 svm_migrate_gart_map(struct amdgpu_ring *ring, uint64_t npages, 50 dma_addr_t *addr, uint64_t *gart_addr, uint64_t flags) 51 { 52 struct amdgpu_device *adev = ring->adev; 53 struct amdgpu_job *job; 54 unsigned int num_dw, num_bytes; 55 struct dma_fence *fence; 56 uint64_t src_addr, dst_addr; 57 uint64_t pte_flags; 58 void *cpu_addr; 59 int r; 60 61 /* use gart window 0 */ 62 *gart_addr = adev->gmc.gart_start; 63 64 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 65 num_bytes = npages * 8; 66 67 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.entity, 68 AMDGPU_FENCE_OWNER_UNDEFINED, 69 num_dw * 4 + num_bytes, 70 AMDGPU_IB_POOL_DELAYED, 71 &job); 72 if (r) 73 return r; 74 75 src_addr = num_dw * 4; 76 src_addr += job->ibs[0].gpu_addr; 77 78 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 79 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 80 dst_addr, num_bytes, false); 81 82 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 83 WARN_ON(job->ibs[0].length_dw > num_dw); 84 85 pte_flags = AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE; 86 pte_flags |= AMDGPU_PTE_SYSTEM | AMDGPU_PTE_SNOOPED; 87 if (!(flags & KFD_IOCTL_SVM_FLAG_GPU_RO)) 88 pte_flags |= AMDGPU_PTE_WRITEABLE; 89 pte_flags |= adev->gart.gart_pte_flags; 90 91 cpu_addr = &job->ibs[0].ptr[num_dw]; 92 93 amdgpu_gart_map(adev, 0, npages, addr, pte_flags, cpu_addr); 94 fence = amdgpu_job_submit(job); 95 dma_fence_put(fence); 96 97 return r; 98 } 99 100 /** 101 * svm_migrate_copy_memory_gart - sdma copy data between ram and vram 102 * 103 * @adev: amdgpu device the sdma ring running 104 * @sys: system DMA pointer to be copied 105 * @vram: vram destination DMA pointer 106 * @npages: number of pages to copy 107 * @direction: enum MIGRATION_COPY_DIR 108 * @mfence: output, sdma fence to signal after sdma is done 109 * 110 * ram address uses GART table continuous entries mapping to ram pages, 111 * vram address uses direct mapping of vram pages, which must have npages 112 * number of continuous pages. 113 * GART update and sdma uses same buf copy function ring, sdma is splited to 114 * multiple GTT_MAX_PAGES transfer, all sdma operations are serialized, wait for 115 * the last sdma finish fence which is returned to check copy memory is done. 116 * 117 * Context: Process context, takes and releases gtt_window_lock 118 * 119 * Return: 120 * 0 - OK, otherwise error code 121 */ 122 123 static int 124 svm_migrate_copy_memory_gart(struct amdgpu_device *adev, dma_addr_t *sys, 125 uint64_t *vram, uint64_t npages, 126 enum MIGRATION_COPY_DIR direction, 127 struct dma_fence **mfence) 128 { 129 const uint64_t GTT_MAX_PAGES = AMDGPU_GTT_MAX_TRANSFER_SIZE; 130 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 131 uint64_t gart_s, gart_d; 132 struct dma_fence *next; 133 uint64_t size; 134 int r; 135 136 mutex_lock(&adev->mman.gtt_window_lock); 137 138 while (npages) { 139 size = min(GTT_MAX_PAGES, npages); 140 141 if (direction == FROM_VRAM_TO_RAM) { 142 gart_s = svm_migrate_direct_mapping_addr(adev, *vram); 143 r = svm_migrate_gart_map(ring, size, sys, &gart_d, 0); 144 145 } else if (direction == FROM_RAM_TO_VRAM) { 146 r = svm_migrate_gart_map(ring, size, sys, &gart_s, 147 KFD_IOCTL_SVM_FLAG_GPU_RO); 148 gart_d = svm_migrate_direct_mapping_addr(adev, *vram); 149 } 150 if (r) { 151 dev_err(adev->dev, "fail %d create gart mapping\n", r); 152 goto out_unlock; 153 } 154 155 r = amdgpu_copy_buffer(ring, gart_s, gart_d, size * PAGE_SIZE, 156 NULL, &next, false, true, false); 157 if (r) { 158 dev_err(adev->dev, "fail %d to copy memory\n", r); 159 goto out_unlock; 160 } 161 162 dma_fence_put(*mfence); 163 *mfence = next; 164 npages -= size; 165 if (npages) { 166 sys += size; 167 vram += size; 168 } 169 } 170 171 out_unlock: 172 mutex_unlock(&adev->mman.gtt_window_lock); 173 174 return r; 175 } 176 177 /** 178 * svm_migrate_copy_done - wait for memory copy sdma is done 179 * 180 * @adev: amdgpu device the sdma memory copy is executing on 181 * @mfence: migrate fence 182 * 183 * Wait for dma fence is signaled, if the copy ssplit into multiple sdma 184 * operations, this is the last sdma operation fence. 185 * 186 * Context: called after svm_migrate_copy_memory 187 * 188 * Return: 189 * 0 - success 190 * otherwise - error code from dma fence signal 191 */ 192 static int 193 svm_migrate_copy_done(struct amdgpu_device *adev, struct dma_fence *mfence) 194 { 195 int r = 0; 196 197 if (mfence) { 198 r = dma_fence_wait(mfence, false); 199 dma_fence_put(mfence); 200 pr_debug("sdma copy memory fence done\n"); 201 } 202 203 return r; 204 } 205 206 unsigned long 207 svm_migrate_addr_to_pfn(struct amdgpu_device *adev, unsigned long addr) 208 { 209 return (addr + adev->kfd.dev->pgmap.range.start) >> PAGE_SHIFT; 210 } 211 212 static void 213 svm_migrate_get_vram_page(struct svm_range *prange, unsigned long pfn) 214 { 215 struct page *page; 216 217 page = pfn_to_page(pfn); 218 svm_range_bo_ref(prange->svm_bo); 219 page->zone_device_data = prange->svm_bo; 220 zone_device_page_init(page); 221 } 222 223 static void 224 svm_migrate_put_vram_page(struct amdgpu_device *adev, unsigned long addr) 225 { 226 struct page *page; 227 228 page = pfn_to_page(svm_migrate_addr_to_pfn(adev, addr)); 229 unlock_page(page); 230 put_page(page); 231 } 232 233 static unsigned long 234 svm_migrate_addr(struct amdgpu_device *adev, struct page *page) 235 { 236 unsigned long addr; 237 238 addr = page_to_pfn(page) << PAGE_SHIFT; 239 return (addr - adev->kfd.dev->pgmap.range.start); 240 } 241 242 static struct page * 243 svm_migrate_get_sys_page(struct vm_area_struct *vma, unsigned long addr) 244 { 245 struct page *page; 246 247 page = alloc_page_vma(GFP_HIGHUSER, vma, addr); 248 if (page) 249 lock_page(page); 250 251 return page; 252 } 253 254 static void svm_migrate_put_sys_page(unsigned long addr) 255 { 256 struct page *page; 257 258 page = pfn_to_page(addr >> PAGE_SHIFT); 259 unlock_page(page); 260 put_page(page); 261 } 262 263 static unsigned long svm_migrate_successful_pages(struct migrate_vma *migrate) 264 { 265 unsigned long cpages = 0; 266 unsigned long i; 267 268 for (i = 0; i < migrate->npages; i++) { 269 if (migrate->src[i] & MIGRATE_PFN_VALID && 270 migrate->src[i] & MIGRATE_PFN_MIGRATE) 271 cpages++; 272 } 273 return cpages; 274 } 275 276 static unsigned long svm_migrate_unsuccessful_pages(struct migrate_vma *migrate) 277 { 278 unsigned long upages = 0; 279 unsigned long i; 280 281 for (i = 0; i < migrate->npages; i++) { 282 if (migrate->src[i] & MIGRATE_PFN_VALID && 283 !(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 284 upages++; 285 } 286 return upages; 287 } 288 289 static int 290 svm_migrate_copy_to_vram(struct amdgpu_device *adev, struct svm_range *prange, 291 struct migrate_vma *migrate, struct dma_fence **mfence, 292 dma_addr_t *scratch, uint64_t ttm_res_offset) 293 { 294 uint64_t npages = migrate->npages; 295 struct device *dev = adev->dev; 296 struct amdgpu_res_cursor cursor; 297 dma_addr_t *src; 298 uint64_t *dst; 299 uint64_t i, j; 300 int r; 301 302 pr_debug("svms 0x%p [0x%lx 0x%lx 0x%llx]\n", prange->svms, prange->start, 303 prange->last, ttm_res_offset); 304 305 src = scratch; 306 dst = (uint64_t *)(scratch + npages); 307 308 amdgpu_res_first(prange->ttm_res, ttm_res_offset, 309 npages << PAGE_SHIFT, &cursor); 310 for (i = j = 0; i < npages; i++) { 311 struct page *spage; 312 313 dst[i] = cursor.start + (j << PAGE_SHIFT); 314 migrate->dst[i] = svm_migrate_addr_to_pfn(adev, dst[i]); 315 svm_migrate_get_vram_page(prange, migrate->dst[i]); 316 migrate->dst[i] = migrate_pfn(migrate->dst[i]); 317 318 spage = migrate_pfn_to_page(migrate->src[i]); 319 if (spage && !is_zone_device_page(spage)) { 320 src[i] = dma_map_page(dev, spage, 0, PAGE_SIZE, 321 DMA_TO_DEVICE); 322 r = dma_mapping_error(dev, src[i]); 323 if (r) { 324 dev_err(adev->dev, "%s: fail %d dma_map_page\n", 325 __func__, r); 326 goto out_free_vram_pages; 327 } 328 } else { 329 if (j) { 330 r = svm_migrate_copy_memory_gart( 331 adev, src + i - j, 332 dst + i - j, j, 333 FROM_RAM_TO_VRAM, 334 mfence); 335 if (r) 336 goto out_free_vram_pages; 337 amdgpu_res_next(&cursor, (j + 1) << PAGE_SHIFT); 338 j = 0; 339 } else { 340 amdgpu_res_next(&cursor, PAGE_SIZE); 341 } 342 continue; 343 } 344 345 pr_debug_ratelimited("dma mapping src to 0x%llx, pfn 0x%lx\n", 346 src[i] >> PAGE_SHIFT, page_to_pfn(spage)); 347 348 if (j >= (cursor.size >> PAGE_SHIFT) - 1 && i < npages - 1) { 349 r = svm_migrate_copy_memory_gart(adev, src + i - j, 350 dst + i - j, j + 1, 351 FROM_RAM_TO_VRAM, 352 mfence); 353 if (r) 354 goto out_free_vram_pages; 355 amdgpu_res_next(&cursor, (j + 1) * PAGE_SIZE); 356 j = 0; 357 } else { 358 j++; 359 } 360 } 361 362 r = svm_migrate_copy_memory_gart(adev, src + i - j, dst + i - j, j, 363 FROM_RAM_TO_VRAM, mfence); 364 365 out_free_vram_pages: 366 if (r) { 367 pr_debug("failed %d to copy memory to vram\n", r); 368 while (i--) { 369 svm_migrate_put_vram_page(adev, dst[i]); 370 migrate->dst[i] = 0; 371 } 372 } 373 374 #ifdef DEBUG_FORCE_MIXED_DOMAINS 375 for (i = 0, j = 0; i < npages; i += 4, j++) { 376 if (j & 1) 377 continue; 378 svm_migrate_put_vram_page(adev, dst[i]); 379 migrate->dst[i] = 0; 380 svm_migrate_put_vram_page(adev, dst[i + 1]); 381 migrate->dst[i + 1] = 0; 382 svm_migrate_put_vram_page(adev, dst[i + 2]); 383 migrate->dst[i + 2] = 0; 384 svm_migrate_put_vram_page(adev, dst[i + 3]); 385 migrate->dst[i + 3] = 0; 386 } 387 #endif 388 389 return r; 390 } 391 392 static long 393 svm_migrate_vma_to_vram(struct amdgpu_device *adev, struct svm_range *prange, 394 struct vm_area_struct *vma, uint64_t start, 395 uint64_t end, uint32_t trigger, uint64_t ttm_res_offset) 396 { 397 struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms); 398 uint64_t npages = (end - start) >> PAGE_SHIFT; 399 struct kfd_process_device *pdd; 400 struct dma_fence *mfence = NULL; 401 struct migrate_vma migrate = { 0 }; 402 unsigned long cpages = 0; 403 dma_addr_t *scratch; 404 void *buf; 405 int r = -ENOMEM; 406 407 memset(&migrate, 0, sizeof(migrate)); 408 migrate.vma = vma; 409 migrate.start = start; 410 migrate.end = end; 411 migrate.flags = MIGRATE_VMA_SELECT_SYSTEM; 412 migrate.pgmap_owner = SVM_ADEV_PGMAP_OWNER(adev); 413 414 buf = kvcalloc(npages, 415 2 * sizeof(*migrate.src) + sizeof(uint64_t) + sizeof(dma_addr_t), 416 GFP_KERNEL); 417 if (!buf) 418 goto out; 419 420 migrate.src = buf; 421 migrate.dst = migrate.src + npages; 422 scratch = (dma_addr_t *)(migrate.dst + npages); 423 424 kfd_smi_event_migration_start(adev->kfd.dev, p->lead_thread->pid, 425 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 426 0, adev->kfd.dev->id, prange->prefetch_loc, 427 prange->preferred_loc, trigger); 428 429 r = migrate_vma_setup(&migrate); 430 if (r) { 431 dev_err(adev->dev, "%s: vma setup fail %d range [0x%lx 0x%lx]\n", 432 __func__, r, prange->start, prange->last); 433 goto out_free; 434 } 435 436 cpages = migrate.cpages; 437 if (!cpages) { 438 pr_debug("failed collect migrate sys pages [0x%lx 0x%lx]\n", 439 prange->start, prange->last); 440 goto out_free; 441 } 442 if (cpages != npages) 443 pr_debug("partial migration, 0x%lx/0x%llx pages migrated\n", 444 cpages, npages); 445 else 446 pr_debug("0x%lx pages migrated\n", cpages); 447 448 r = svm_migrate_copy_to_vram(adev, prange, &migrate, &mfence, scratch, ttm_res_offset); 449 migrate_vma_pages(&migrate); 450 451 pr_debug("successful/cpages/npages 0x%lx/0x%lx/0x%lx\n", 452 svm_migrate_successful_pages(&migrate), cpages, migrate.npages); 453 454 svm_migrate_copy_done(adev, mfence); 455 migrate_vma_finalize(&migrate); 456 457 kfd_smi_event_migration_end(adev->kfd.dev, p->lead_thread->pid, 458 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 459 0, adev->kfd.dev->id, trigger); 460 461 svm_range_dma_unmap(adev->dev, scratch, 0, npages); 462 svm_range_free_dma_mappings(prange); 463 464 out_free: 465 kvfree(buf); 466 out: 467 if (!r && cpages) { 468 pdd = svm_range_get_pdd_by_adev(prange, adev); 469 if (pdd) 470 WRITE_ONCE(pdd->page_in, pdd->page_in + cpages); 471 472 return cpages; 473 } 474 return r; 475 } 476 477 /** 478 * svm_migrate_ram_to_vram - migrate svm range from system to device 479 * @prange: range structure 480 * @best_loc: the device to migrate to 481 * @mm: the process mm structure 482 * @trigger: reason of migration 483 * 484 * Context: Process context, caller hold mmap read lock, svms lock, prange lock 485 * 486 * Return: 487 * 0 - OK, otherwise error code 488 */ 489 static int 490 svm_migrate_ram_to_vram(struct svm_range *prange, uint32_t best_loc, 491 struct mm_struct *mm, uint32_t trigger) 492 { 493 unsigned long addr, start, end; 494 struct vm_area_struct *vma; 495 struct amdgpu_device *adev; 496 uint64_t ttm_res_offset; 497 unsigned long cpages = 0; 498 long r = 0; 499 500 if (prange->actual_loc == best_loc) { 501 pr_debug("svms 0x%p [0x%lx 0x%lx] already on best_loc 0x%x\n", 502 prange->svms, prange->start, prange->last, best_loc); 503 return 0; 504 } 505 506 adev = svm_range_get_adev_by_id(prange, best_loc); 507 if (!adev) { 508 pr_debug("failed to get device by id 0x%x\n", best_loc); 509 return -ENODEV; 510 } 511 512 pr_debug("svms 0x%p [0x%lx 0x%lx] to gpu 0x%x\n", prange->svms, 513 prange->start, prange->last, best_loc); 514 515 start = prange->start << PAGE_SHIFT; 516 end = (prange->last + 1) << PAGE_SHIFT; 517 518 r = svm_range_vram_node_new(adev, prange, true); 519 if (r) { 520 dev_dbg(adev->dev, "fail %ld to alloc vram\n", r); 521 return r; 522 } 523 ttm_res_offset = prange->offset << PAGE_SHIFT; 524 525 for (addr = start; addr < end;) { 526 unsigned long next; 527 528 vma = vma_lookup(mm, addr); 529 if (!vma) 530 break; 531 532 next = min(vma->vm_end, end); 533 r = svm_migrate_vma_to_vram(adev, prange, vma, addr, next, trigger, ttm_res_offset); 534 if (r < 0) { 535 pr_debug("failed %ld to migrate\n", r); 536 break; 537 } else { 538 cpages += r; 539 } 540 ttm_res_offset += next - addr; 541 addr = next; 542 } 543 544 if (cpages) 545 prange->actual_loc = best_loc; 546 else 547 svm_range_vram_node_free(prange); 548 549 return r < 0 ? r : 0; 550 } 551 552 static void svm_migrate_page_free(struct page *page) 553 { 554 struct svm_range_bo *svm_bo = page->zone_device_data; 555 556 if (svm_bo) { 557 pr_debug_ratelimited("ref: %d\n", kref_read(&svm_bo->kref)); 558 svm_range_bo_unref_async(svm_bo); 559 } 560 } 561 562 static int 563 svm_migrate_copy_to_ram(struct amdgpu_device *adev, struct svm_range *prange, 564 struct migrate_vma *migrate, struct dma_fence **mfence, 565 dma_addr_t *scratch, uint64_t npages) 566 { 567 struct device *dev = adev->dev; 568 uint64_t *src; 569 dma_addr_t *dst; 570 struct page *dpage; 571 uint64_t i = 0, j; 572 uint64_t addr; 573 int r = 0; 574 575 pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms, prange->start, 576 prange->last); 577 578 addr = prange->start << PAGE_SHIFT; 579 580 src = (uint64_t *)(scratch + npages); 581 dst = scratch; 582 583 for (i = 0, j = 0; i < npages; i++, addr += PAGE_SIZE) { 584 struct page *spage; 585 586 spage = migrate_pfn_to_page(migrate->src[i]); 587 if (!spage || !is_zone_device_page(spage)) { 588 pr_debug("invalid page. Could be in CPU already svms 0x%p [0x%lx 0x%lx]\n", 589 prange->svms, prange->start, prange->last); 590 if (j) { 591 r = svm_migrate_copy_memory_gart(adev, dst + i - j, 592 src + i - j, j, 593 FROM_VRAM_TO_RAM, 594 mfence); 595 if (r) 596 goto out_oom; 597 j = 0; 598 } 599 continue; 600 } 601 src[i] = svm_migrate_addr(adev, spage); 602 if (j > 0 && src[i] != src[i - 1] + PAGE_SIZE) { 603 r = svm_migrate_copy_memory_gart(adev, dst + i - j, 604 src + i - j, j, 605 FROM_VRAM_TO_RAM, 606 mfence); 607 if (r) 608 goto out_oom; 609 j = 0; 610 } 611 612 dpage = svm_migrate_get_sys_page(migrate->vma, addr); 613 if (!dpage) { 614 pr_debug("failed get page svms 0x%p [0x%lx 0x%lx]\n", 615 prange->svms, prange->start, prange->last); 616 r = -ENOMEM; 617 goto out_oom; 618 } 619 620 dst[i] = dma_map_page(dev, dpage, 0, PAGE_SIZE, DMA_FROM_DEVICE); 621 r = dma_mapping_error(dev, dst[i]); 622 if (r) { 623 dev_err(adev->dev, "%s: fail %d dma_map_page\n", __func__, r); 624 goto out_oom; 625 } 626 627 pr_debug_ratelimited("dma mapping dst to 0x%llx, pfn 0x%lx\n", 628 dst[i] >> PAGE_SHIFT, page_to_pfn(dpage)); 629 630 migrate->dst[i] = migrate_pfn(page_to_pfn(dpage)); 631 j++; 632 } 633 634 r = svm_migrate_copy_memory_gart(adev, dst + i - j, src + i - j, j, 635 FROM_VRAM_TO_RAM, mfence); 636 637 out_oom: 638 if (r) { 639 pr_debug("failed %d copy to ram\n", r); 640 while (i--) { 641 svm_migrate_put_sys_page(dst[i]); 642 migrate->dst[i] = 0; 643 } 644 } 645 646 return r; 647 } 648 649 /** 650 * svm_migrate_vma_to_ram - migrate range inside one vma from device to system 651 * 652 * @adev: amdgpu device to migrate from 653 * @prange: svm range structure 654 * @vma: vm_area_struct that range [start, end] belongs to 655 * @start: range start virtual address in pages 656 * @end: range end virtual address in pages 657 * 658 * Context: Process context, caller hold mmap read lock, prange->migrate_mutex 659 * 660 * Return: 661 * 0 - success with all pages migrated 662 * negative values - indicate error 663 * positive values - partial migration, number of pages not migrated 664 */ 665 static long 666 svm_migrate_vma_to_ram(struct amdgpu_device *adev, struct svm_range *prange, 667 struct vm_area_struct *vma, uint64_t start, uint64_t end, 668 uint32_t trigger, struct page *fault_page) 669 { 670 struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms); 671 uint64_t npages = (end - start) >> PAGE_SHIFT; 672 unsigned long upages = npages; 673 unsigned long cpages = 0; 674 struct kfd_process_device *pdd; 675 struct dma_fence *mfence = NULL; 676 struct migrate_vma migrate = { 0 }; 677 dma_addr_t *scratch; 678 void *buf; 679 int r = -ENOMEM; 680 681 memset(&migrate, 0, sizeof(migrate)); 682 migrate.vma = vma; 683 migrate.start = start; 684 migrate.end = end; 685 migrate.pgmap_owner = SVM_ADEV_PGMAP_OWNER(adev); 686 if (adev->gmc.xgmi.connected_to_cpu) 687 migrate.flags = MIGRATE_VMA_SELECT_DEVICE_COHERENT; 688 else 689 migrate.flags = MIGRATE_VMA_SELECT_DEVICE_PRIVATE; 690 691 buf = kvcalloc(npages, 692 2 * sizeof(*migrate.src) + sizeof(uint64_t) + sizeof(dma_addr_t), 693 GFP_KERNEL); 694 if (!buf) 695 goto out; 696 697 migrate.src = buf; 698 migrate.dst = migrate.src + npages; 699 migrate.fault_page = fault_page; 700 scratch = (dma_addr_t *)(migrate.dst + npages); 701 702 kfd_smi_event_migration_start(adev->kfd.dev, p->lead_thread->pid, 703 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 704 adev->kfd.dev->id, 0, prange->prefetch_loc, 705 prange->preferred_loc, trigger); 706 707 r = migrate_vma_setup(&migrate); 708 if (r) { 709 dev_err(adev->dev, "%s: vma setup fail %d range [0x%lx 0x%lx]\n", 710 __func__, r, prange->start, prange->last); 711 goto out_free; 712 } 713 714 cpages = migrate.cpages; 715 if (!cpages) { 716 pr_debug("failed collect migrate device pages [0x%lx 0x%lx]\n", 717 prange->start, prange->last); 718 upages = svm_migrate_unsuccessful_pages(&migrate); 719 goto out_free; 720 } 721 if (cpages != npages) 722 pr_debug("partial migration, 0x%lx/0x%llx pages migrated\n", 723 cpages, npages); 724 else 725 pr_debug("0x%lx pages migrated\n", cpages); 726 727 r = svm_migrate_copy_to_ram(adev, prange, &migrate, &mfence, 728 scratch, npages); 729 migrate_vma_pages(&migrate); 730 731 upages = svm_migrate_unsuccessful_pages(&migrate); 732 pr_debug("unsuccessful/cpages/npages 0x%lx/0x%lx/0x%lx\n", 733 upages, cpages, migrate.npages); 734 735 svm_migrate_copy_done(adev, mfence); 736 migrate_vma_finalize(&migrate); 737 738 kfd_smi_event_migration_end(adev->kfd.dev, p->lead_thread->pid, 739 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 740 adev->kfd.dev->id, 0, trigger); 741 742 svm_range_dma_unmap(adev->dev, scratch, 0, npages); 743 744 out_free: 745 kvfree(buf); 746 out: 747 if (!r && cpages) { 748 pdd = svm_range_get_pdd_by_adev(prange, adev); 749 if (pdd) 750 WRITE_ONCE(pdd->page_out, pdd->page_out + cpages); 751 } 752 return r ? r : upages; 753 } 754 755 /** 756 * svm_migrate_vram_to_ram - migrate svm range from device to system 757 * @prange: range structure 758 * @mm: process mm, use current->mm if NULL 759 * @trigger: reason of migration 760 * 761 * Context: Process context, caller hold mmap read lock, prange->migrate_mutex 762 * 763 * Return: 764 * 0 - OK, otherwise error code 765 */ 766 int svm_migrate_vram_to_ram(struct svm_range *prange, struct mm_struct *mm, 767 uint32_t trigger, struct page *fault_page) 768 { 769 struct amdgpu_device *adev; 770 struct vm_area_struct *vma; 771 unsigned long addr; 772 unsigned long start; 773 unsigned long end; 774 unsigned long upages = 0; 775 long r = 0; 776 777 if (!prange->actual_loc) { 778 pr_debug("[0x%lx 0x%lx] already migrated to ram\n", 779 prange->start, prange->last); 780 return 0; 781 } 782 783 adev = svm_range_get_adev_by_id(prange, prange->actual_loc); 784 if (!adev) { 785 pr_debug("failed to get device by id 0x%x\n", 786 prange->actual_loc); 787 return -ENODEV; 788 } 789 790 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] from gpu 0x%x to ram\n", 791 prange->svms, prange, prange->start, prange->last, 792 prange->actual_loc); 793 794 start = prange->start << PAGE_SHIFT; 795 end = (prange->last + 1) << PAGE_SHIFT; 796 797 for (addr = start; addr < end;) { 798 unsigned long next; 799 800 vma = vma_lookup(mm, addr); 801 if (!vma) { 802 pr_debug("failed to find vma for prange %p\n", prange); 803 r = -EFAULT; 804 break; 805 } 806 807 next = min(vma->vm_end, end); 808 r = svm_migrate_vma_to_ram(adev, prange, vma, addr, next, trigger, 809 fault_page); 810 if (r < 0) { 811 pr_debug("failed %ld to migrate prange %p\n", r, prange); 812 break; 813 } else { 814 upages += r; 815 } 816 addr = next; 817 } 818 819 if (r >= 0 && !upages) { 820 svm_range_vram_node_free(prange); 821 prange->actual_loc = 0; 822 } 823 824 return r < 0 ? r : 0; 825 } 826 827 /** 828 * svm_migrate_vram_to_vram - migrate svm range from device to device 829 * @prange: range structure 830 * @best_loc: the device to migrate to 831 * @mm: process mm, use current->mm if NULL 832 * @trigger: reason of migration 833 * 834 * Context: Process context, caller hold mmap read lock, svms lock, prange lock 835 * 836 * Return: 837 * 0 - OK, otherwise error code 838 */ 839 static int 840 svm_migrate_vram_to_vram(struct svm_range *prange, uint32_t best_loc, 841 struct mm_struct *mm, uint32_t trigger) 842 { 843 int r, retries = 3; 844 845 /* 846 * TODO: for both devices with PCIe large bar or on same xgmi hive, skip 847 * system memory as migration bridge 848 */ 849 850 pr_debug("from gpu 0x%x to gpu 0x%x\n", prange->actual_loc, best_loc); 851 852 do { 853 r = svm_migrate_vram_to_ram(prange, mm, trigger, NULL); 854 if (r) 855 return r; 856 } while (prange->actual_loc && --retries); 857 858 if (prange->actual_loc) 859 return -EDEADLK; 860 861 return svm_migrate_ram_to_vram(prange, best_loc, mm, trigger); 862 } 863 864 int 865 svm_migrate_to_vram(struct svm_range *prange, uint32_t best_loc, 866 struct mm_struct *mm, uint32_t trigger) 867 { 868 if (!prange->actual_loc) 869 return svm_migrate_ram_to_vram(prange, best_loc, mm, trigger); 870 else 871 return svm_migrate_vram_to_vram(prange, best_loc, mm, trigger); 872 873 } 874 875 /** 876 * svm_migrate_to_ram - CPU page fault handler 877 * @vmf: CPU vm fault vma, address 878 * 879 * Context: vm fault handler, caller holds the mmap read lock 880 * 881 * Return: 882 * 0 - OK 883 * VM_FAULT_SIGBUS - notice application to have SIGBUS page fault 884 */ 885 static vm_fault_t svm_migrate_to_ram(struct vm_fault *vmf) 886 { 887 unsigned long addr = vmf->address; 888 struct svm_range_bo *svm_bo; 889 enum svm_work_list_ops op; 890 struct svm_range *parent; 891 struct svm_range *prange; 892 struct kfd_process *p; 893 struct mm_struct *mm; 894 int r = 0; 895 896 svm_bo = vmf->page->zone_device_data; 897 if (!svm_bo) { 898 pr_debug("failed get device page at addr 0x%lx\n", addr); 899 return VM_FAULT_SIGBUS; 900 } 901 if (!mmget_not_zero(svm_bo->eviction_fence->mm)) { 902 pr_debug("addr 0x%lx of process mm is destroyed\n", addr); 903 return VM_FAULT_SIGBUS; 904 } 905 906 mm = svm_bo->eviction_fence->mm; 907 if (mm != vmf->vma->vm_mm) 908 pr_debug("addr 0x%lx is COW mapping in child process\n", addr); 909 910 p = kfd_lookup_process_by_mm(mm); 911 if (!p) { 912 pr_debug("failed find process at fault address 0x%lx\n", addr); 913 r = VM_FAULT_SIGBUS; 914 goto out_mmput; 915 } 916 if (READ_ONCE(p->svms.faulting_task) == current) { 917 pr_debug("skipping ram migration\n"); 918 r = 0; 919 goto out_unref_process; 920 } 921 922 pr_debug("CPU page fault svms 0x%p address 0x%lx\n", &p->svms, addr); 923 addr >>= PAGE_SHIFT; 924 925 mutex_lock(&p->svms.lock); 926 927 prange = svm_range_from_addr(&p->svms, addr, &parent); 928 if (!prange) { 929 pr_debug("failed get range svms 0x%p addr 0x%lx\n", &p->svms, addr); 930 r = -EFAULT; 931 goto out_unlock_svms; 932 } 933 934 mutex_lock(&parent->migrate_mutex); 935 if (prange != parent) 936 mutex_lock_nested(&prange->migrate_mutex, 1); 937 938 if (!prange->actual_loc) 939 goto out_unlock_prange; 940 941 svm_range_lock(parent); 942 if (prange != parent) 943 mutex_lock_nested(&prange->lock, 1); 944 r = svm_range_split_by_granularity(p, mm, addr, parent, prange); 945 if (prange != parent) 946 mutex_unlock(&prange->lock); 947 svm_range_unlock(parent); 948 if (r) { 949 pr_debug("failed %d to split range by granularity\n", r); 950 goto out_unlock_prange; 951 } 952 953 r = svm_migrate_vram_to_ram(prange, vmf->vma->vm_mm, 954 KFD_MIGRATE_TRIGGER_PAGEFAULT_CPU, 955 vmf->page); 956 if (r) 957 pr_debug("failed %d migrate svms 0x%p range 0x%p [0x%lx 0x%lx]\n", 958 r, prange->svms, prange, prange->start, prange->last); 959 960 /* xnack on, update mapping on GPUs with ACCESS_IN_PLACE */ 961 if (p->xnack_enabled && parent == prange) 962 op = SVM_OP_UPDATE_RANGE_NOTIFIER_AND_MAP; 963 else 964 op = SVM_OP_UPDATE_RANGE_NOTIFIER; 965 svm_range_add_list_work(&p->svms, parent, mm, op); 966 schedule_deferred_list_work(&p->svms); 967 968 out_unlock_prange: 969 if (prange != parent) 970 mutex_unlock(&prange->migrate_mutex); 971 mutex_unlock(&parent->migrate_mutex); 972 out_unlock_svms: 973 mutex_unlock(&p->svms.lock); 974 out_unref_process: 975 pr_debug("CPU fault svms 0x%p address 0x%lx done\n", &p->svms, addr); 976 kfd_unref_process(p); 977 out_mmput: 978 mmput(mm); 979 return r ? VM_FAULT_SIGBUS : 0; 980 } 981 982 static const struct dev_pagemap_ops svm_migrate_pgmap_ops = { 983 .page_free = svm_migrate_page_free, 984 .migrate_to_ram = svm_migrate_to_ram, 985 }; 986 987 /* Each VRAM page uses sizeof(struct page) on system memory */ 988 #define SVM_HMM_PAGE_STRUCT_SIZE(size) ((size)/PAGE_SIZE * sizeof(struct page)) 989 990 int svm_migrate_init(struct amdgpu_device *adev) 991 { 992 struct kfd_dev *kfddev = adev->kfd.dev; 993 struct dev_pagemap *pgmap; 994 struct resource *res = NULL; 995 unsigned long size; 996 void *r; 997 998 /* Page migration works on Vega10 or newer */ 999 if (!KFD_IS_SOC15(kfddev)) 1000 return -EINVAL; 1001 1002 pgmap = &kfddev->pgmap; 1003 memset(pgmap, 0, sizeof(*pgmap)); 1004 1005 /* TODO: register all vram to HMM for now. 1006 * should remove reserved size 1007 */ 1008 size = ALIGN(adev->gmc.real_vram_size, 2ULL << 20); 1009 if (adev->gmc.xgmi.connected_to_cpu) { 1010 pgmap->range.start = adev->gmc.aper_base; 1011 pgmap->range.end = adev->gmc.aper_base + adev->gmc.aper_size - 1; 1012 pgmap->type = MEMORY_DEVICE_COHERENT; 1013 } else { 1014 res = devm_request_free_mem_region(adev->dev, &iomem_resource, size); 1015 if (IS_ERR(res)) 1016 return -ENOMEM; 1017 pgmap->range.start = res->start; 1018 pgmap->range.end = res->end; 1019 pgmap->type = MEMORY_DEVICE_PRIVATE; 1020 } 1021 1022 pgmap->nr_range = 1; 1023 pgmap->ops = &svm_migrate_pgmap_ops; 1024 pgmap->owner = SVM_ADEV_PGMAP_OWNER(adev); 1025 pgmap->flags = 0; 1026 /* Device manager releases device-specific resources, memory region and 1027 * pgmap when driver disconnects from device. 1028 */ 1029 r = devm_memremap_pages(adev->dev, pgmap); 1030 if (IS_ERR(r)) { 1031 pr_err("failed to register HMM device memory\n"); 1032 /* Disable SVM support capability */ 1033 pgmap->type = 0; 1034 if (pgmap->type == MEMORY_DEVICE_PRIVATE) 1035 devm_release_mem_region(adev->dev, res->start, resource_size(res)); 1036 return PTR_ERR(r); 1037 } 1038 1039 pr_debug("reserve %ldMB system memory for VRAM pages struct\n", 1040 SVM_HMM_PAGE_STRUCT_SIZE(size) >> 20); 1041 1042 amdgpu_amdkfd_reserve_system_mem(SVM_HMM_PAGE_STRUCT_SIZE(size)); 1043 1044 svm_range_set_max_pages(adev); 1045 1046 pr_info("HMM registered %ldMB device memory\n", size >> 20); 1047 1048 return 0; 1049 } 1050