1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2020-2021 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 #include <linux/types.h> 24 #include <linux/dma-direction.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/migrate.h> 27 #include "amdgpu_sync.h" 28 #include "amdgpu_object.h" 29 #include "amdgpu_vm.h" 30 #include "amdgpu_res_cursor.h" 31 #include "kfd_priv.h" 32 #include "kfd_svm.h" 33 #include "kfd_migrate.h" 34 #include "kfd_smi_events.h" 35 36 #ifdef dev_fmt 37 #undef dev_fmt 38 #endif 39 #define dev_fmt(fmt) "kfd_migrate: " fmt 40 41 static u64 42 svm_migrate_direct_mapping_addr(struct amdgpu_device *adev, u64 addr) 43 { 44 return addr + amdgpu_ttm_domain_start(adev, TTM_PL_VRAM); 45 } 46 47 static int 48 svm_migrate_gart_map(struct amdgpu_ring *ring, 49 struct amdgpu_ttm_buffer_entity *entity, 50 u64 npages, 51 dma_addr_t *addr, u64 *gart_addr, u64 flags) 52 { 53 struct amdgpu_device *adev = ring->adev; 54 struct amdgpu_job *job; 55 unsigned int num_dw, num_bytes; 56 struct dma_fence *fence; 57 u64 src_addr, dst_addr; 58 u64 pte_flags; 59 void *cpu_addr; 60 int r; 61 62 /* use gart window 0 */ 63 *gart_addr = adev->gmc.gart_start; 64 65 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 66 num_bytes = npages * 8; 67 68 r = amdgpu_job_alloc_with_ib(adev, &entity->base, 69 AMDGPU_FENCE_OWNER_UNDEFINED, 70 num_dw * 4 + num_bytes, 71 AMDGPU_IB_POOL_DELAYED, 72 &job, 73 AMDGPU_KERNEL_JOB_ID_KFD_GART_MAP); 74 if (r) 75 return r; 76 77 src_addr = num_dw * 4; 78 src_addr += job->ibs[0].gpu_addr; 79 80 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 81 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 82 dst_addr, num_bytes, 0); 83 84 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 85 WARN_ON(job->ibs[0].length_dw > num_dw); 86 87 pte_flags = AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE; 88 pte_flags |= AMDGPU_PTE_SYSTEM | AMDGPU_PTE_SNOOPED; 89 if (!(flags & KFD_IOCTL_SVM_FLAG_GPU_RO)) 90 pte_flags |= AMDGPU_PTE_WRITEABLE; 91 pte_flags |= adev->gart.gart_pte_flags; 92 93 cpu_addr = &job->ibs[0].ptr[num_dw]; 94 95 amdgpu_gart_map(adev, 0, npages, addr, pte_flags, cpu_addr); 96 fence = amdgpu_job_submit(job); 97 dma_fence_put(fence); 98 99 return r; 100 } 101 102 /** 103 * svm_migrate_copy_memory_gart - sdma copy data between ram and vram 104 * 105 * @adev: amdgpu device the sdma ring running 106 * @sys: system DMA pointer to be copied 107 * @vram: vram destination DMA pointer 108 * @npages: number of pages to copy 109 * @direction: enum MIGRATION_COPY_DIR 110 * @mfence: output, sdma fence to signal after sdma is done 111 * 112 * ram address uses GART table continuous entries mapping to ram pages, 113 * vram address uses direct mapping of vram pages, which must have npages 114 * number of continuous pages. 115 * GART update and sdma uses same buf copy function ring, sdma is splited to 116 * multiple GTT_MAX_PAGES transfer, all sdma operations are serialized, wait for 117 * the last sdma finish fence which is returned to check copy memory is done. 118 * 119 * Context: Process context, takes and releases gtt_window_lock 120 * 121 * Return: 122 * 0 - OK, otherwise error code 123 */ 124 125 static int 126 svm_migrate_copy_memory_gart(struct amdgpu_device *adev, dma_addr_t *sys, 127 u64 *vram, u64 npages, 128 enum MIGRATION_COPY_DIR direction, 129 struct dma_fence **mfence) 130 { 131 const u64 GTT_MAX_PAGES = AMDGPU_GTT_MAX_TRANSFER_SIZE; 132 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 133 struct amdgpu_ttm_buffer_entity *entity; 134 u64 gart_s, gart_d; 135 struct dma_fence *next; 136 u64 size; 137 int r; 138 139 entity = &adev->mman.default_entity; 140 141 mutex_lock(&adev->mman.gtt_window_lock); 142 143 while (npages) { 144 size = min(GTT_MAX_PAGES, npages); 145 146 if (direction == FROM_VRAM_TO_RAM) { 147 gart_s = svm_migrate_direct_mapping_addr(adev, *vram); 148 r = svm_migrate_gart_map(ring, entity, size, sys, &gart_d, 0); 149 150 } else if (direction == FROM_RAM_TO_VRAM) { 151 r = svm_migrate_gart_map(ring, entity, size, sys, &gart_s, 152 KFD_IOCTL_SVM_FLAG_GPU_RO); 153 gart_d = svm_migrate_direct_mapping_addr(adev, *vram); 154 } 155 if (r) { 156 dev_err(adev->dev, "fail %d create gart mapping\n", r); 157 goto out_unlock; 158 } 159 160 r = amdgpu_copy_buffer(adev, entity, 161 gart_s, gart_d, size * PAGE_SIZE, 162 NULL, &next, true, 0); 163 if (r) { 164 dev_err(adev->dev, "fail %d to copy memory\n", r); 165 goto out_unlock; 166 } 167 168 dma_fence_put(*mfence); 169 *mfence = next; 170 npages -= size; 171 if (npages) { 172 sys += size; 173 vram += size; 174 } 175 } 176 177 out_unlock: 178 mutex_unlock(&adev->mman.gtt_window_lock); 179 180 return r; 181 } 182 183 /** 184 * svm_migrate_copy_done - wait for memory copy sdma is done 185 * 186 * @adev: amdgpu device the sdma memory copy is executing on 187 * @mfence: migrate fence 188 * 189 * Wait for dma fence is signaled, if the copy ssplit into multiple sdma 190 * operations, this is the last sdma operation fence. 191 * 192 * Context: called after svm_migrate_copy_memory 193 * 194 * Return: 195 * 0 - success 196 * otherwise - error code from dma fence signal 197 */ 198 static int 199 svm_migrate_copy_done(struct amdgpu_device *adev, struct dma_fence *mfence) 200 { 201 int r = 0; 202 203 if (mfence) { 204 r = dma_fence_wait(mfence, false); 205 dma_fence_put(mfence); 206 pr_debug("sdma copy memory fence done\n"); 207 } 208 209 return r; 210 } 211 212 unsigned long 213 svm_migrate_addr_to_pfn(struct amdgpu_device *adev, unsigned long addr) 214 { 215 return (addr + adev->kfd.pgmap.range.start) >> PAGE_SHIFT; 216 } 217 218 static void 219 svm_migrate_get_vram_page(struct svm_range *prange, unsigned long pfn) 220 { 221 struct page *page; 222 223 page = pfn_to_page(pfn); 224 svm_range_bo_ref(prange->svm_bo); 225 page->zone_device_data = prange->svm_bo; 226 zone_device_page_init(page); 227 } 228 229 static void 230 svm_migrate_put_vram_page(struct amdgpu_device *adev, unsigned long addr) 231 { 232 struct page *page; 233 234 page = pfn_to_page(svm_migrate_addr_to_pfn(adev, addr)); 235 unlock_page(page); 236 put_page(page); 237 } 238 239 static unsigned long 240 svm_migrate_addr(struct amdgpu_device *adev, struct page *page) 241 { 242 unsigned long addr; 243 244 addr = page_to_pfn(page) << PAGE_SHIFT; 245 return (addr - adev->kfd.pgmap.range.start); 246 } 247 248 static struct page * 249 svm_migrate_get_sys_page(struct vm_area_struct *vma, unsigned long addr) 250 { 251 struct page *page; 252 253 page = alloc_page_vma(GFP_HIGHUSER, vma, addr); 254 if (page) 255 lock_page(page); 256 257 return page; 258 } 259 260 static void svm_migrate_put_sys_page(unsigned long addr) 261 { 262 struct page *page; 263 264 page = pfn_to_page(addr >> PAGE_SHIFT); 265 unlock_page(page); 266 put_page(page); 267 } 268 269 static unsigned long svm_migrate_successful_pages(struct migrate_vma *migrate) 270 { 271 unsigned long mpages = 0; 272 unsigned long i; 273 274 for (i = 0; i < migrate->npages; i++) { 275 if (migrate->dst[i] & MIGRATE_PFN_VALID && 276 migrate->src[i] & MIGRATE_PFN_MIGRATE) 277 mpages++; 278 } 279 return mpages; 280 } 281 282 static int 283 svm_migrate_copy_to_vram(struct kfd_node *node, struct svm_range *prange, 284 struct migrate_vma *migrate, struct dma_fence **mfence, 285 dma_addr_t *scratch, u64 ttm_res_offset) 286 { 287 u64 npages = migrate->npages; 288 struct amdgpu_device *adev = node->adev; 289 struct device *dev = adev->dev; 290 struct amdgpu_res_cursor cursor; 291 u64 mpages = 0; 292 dma_addr_t *src; 293 u64 *dst; 294 u64 i, j; 295 int r; 296 297 pr_debug("svms 0x%p [0x%lx 0x%lx 0x%llx]\n", prange->svms, prange->start, 298 prange->last, ttm_res_offset); 299 300 src = scratch; 301 dst = (u64 *)(scratch + npages); 302 303 amdgpu_res_first(prange->ttm_res, ttm_res_offset, 304 npages << PAGE_SHIFT, &cursor); 305 for (i = j = 0; (i < npages) && (mpages < migrate->cpages); i++) { 306 struct page *spage; 307 308 if (migrate->src[i] & MIGRATE_PFN_MIGRATE) { 309 dst[i] = cursor.start + (j << PAGE_SHIFT); 310 migrate->dst[i] = svm_migrate_addr_to_pfn(adev, dst[i]); 311 svm_migrate_get_vram_page(prange, migrate->dst[i]); 312 migrate->dst[i] = migrate_pfn(migrate->dst[i]); 313 mpages++; 314 } 315 spage = migrate_pfn_to_page(migrate->src[i]); 316 if (spage && !is_zone_device_page(spage)) { 317 src[i] = dma_map_page(dev, spage, 0, PAGE_SIZE, 318 DMA_BIDIRECTIONAL); 319 r = dma_mapping_error(dev, src[i]); 320 if (r) { 321 dev_err(dev, "%s: fail %d dma_map_page\n", 322 __func__, r); 323 goto out_free_vram_pages; 324 } 325 } else { 326 if (j) { 327 r = svm_migrate_copy_memory_gart( 328 adev, src + i - j, 329 dst + i - j, j, 330 FROM_RAM_TO_VRAM, 331 mfence); 332 if (r) 333 goto out_free_vram_pages; 334 amdgpu_res_next(&cursor, (j + 1) << PAGE_SHIFT); 335 j = 0; 336 } else { 337 amdgpu_res_next(&cursor, PAGE_SIZE); 338 } 339 continue; 340 } 341 342 pr_debug_ratelimited("dma mapping src to 0x%llx, pfn 0x%lx\n", 343 src[i] >> PAGE_SHIFT, page_to_pfn(spage)); 344 345 if (j >= (cursor.size >> PAGE_SHIFT) - 1 && i < npages - 1) { 346 r = svm_migrate_copy_memory_gart(adev, src + i - j, 347 dst + i - j, j + 1, 348 FROM_RAM_TO_VRAM, 349 mfence); 350 if (r) 351 goto out_free_vram_pages; 352 amdgpu_res_next(&cursor, (j + 1) * PAGE_SIZE); 353 j = 0; 354 } else { 355 j++; 356 } 357 } 358 359 r = svm_migrate_copy_memory_gart(adev, src + i - j, dst + i - j, j, 360 FROM_RAM_TO_VRAM, mfence); 361 362 out_free_vram_pages: 363 if (r) { 364 pr_debug("failed %d to copy memory to vram\n", r); 365 for (i = 0; i < npages && mpages; i++) { 366 if (!dst[i]) 367 continue; 368 svm_migrate_put_vram_page(adev, dst[i]); 369 migrate->dst[i] = 0; 370 mpages--; 371 } 372 } 373 374 #ifdef DEBUG_FORCE_MIXED_DOMAINS 375 for (i = 0, j = 0; i < npages; i += 4, j++) { 376 if (j & 1) 377 continue; 378 svm_migrate_put_vram_page(adev, dst[i]); 379 migrate->dst[i] = 0; 380 svm_migrate_put_vram_page(adev, dst[i + 1]); 381 migrate->dst[i + 1] = 0; 382 svm_migrate_put_vram_page(adev, dst[i + 2]); 383 migrate->dst[i + 2] = 0; 384 svm_migrate_put_vram_page(adev, dst[i + 3]); 385 migrate->dst[i + 3] = 0; 386 } 387 #endif 388 389 return r; 390 } 391 392 static long 393 svm_migrate_vma_to_vram(struct kfd_node *node, struct svm_range *prange, 394 struct vm_area_struct *vma, u64 start, 395 u64 end, uint32_t trigger, u64 ttm_res_offset) 396 { 397 struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms); 398 u64 npages = (end - start) >> PAGE_SHIFT; 399 struct amdgpu_device *adev = node->adev; 400 struct kfd_process_device *pdd; 401 struct dma_fence *mfence = NULL; 402 struct migrate_vma migrate = { 0 }; 403 unsigned long cpages = 0; 404 unsigned long mpages = 0; 405 dma_addr_t *scratch; 406 void *buf; 407 int r = -ENOMEM; 408 409 memset(&migrate, 0, sizeof(migrate)); 410 migrate.vma = vma; 411 migrate.start = start; 412 migrate.end = end; 413 migrate.flags = MIGRATE_VMA_SELECT_SYSTEM; 414 migrate.pgmap_owner = SVM_ADEV_PGMAP_OWNER(adev); 415 416 buf = kvcalloc(npages, 417 2 * sizeof(*migrate.src) + sizeof(u64) + sizeof(dma_addr_t), 418 GFP_KERNEL); 419 if (!buf) 420 goto out; 421 422 migrate.src = buf; 423 migrate.dst = migrate.src + npages; 424 scratch = (dma_addr_t *)(migrate.dst + npages); 425 426 kfd_smi_event_migration_start(node, p->lead_thread->pid, 427 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 428 0, node->id, prange->prefetch_loc, 429 prange->preferred_loc, trigger); 430 431 r = migrate_vma_setup(&migrate); 432 if (r) { 433 dev_err(adev->dev, "%s: vma setup fail %d range [0x%lx 0x%lx]\n", 434 __func__, r, prange->start, prange->last); 435 goto out_free; 436 } 437 438 cpages = migrate.cpages; 439 if (!cpages) { 440 pr_debug("failed collect migrate sys pages [0x%lx 0x%lx]\n", 441 prange->start, prange->last); 442 goto out_free; 443 } 444 if (cpages != npages) 445 pr_debug("partial migration, 0x%lx/0x%llx pages collected\n", 446 cpages, npages); 447 else 448 pr_debug("0x%lx pages collected\n", cpages); 449 450 r = svm_migrate_copy_to_vram(node, prange, &migrate, &mfence, scratch, ttm_res_offset); 451 migrate_vma_pages(&migrate); 452 453 svm_migrate_copy_done(adev, mfence); 454 migrate_vma_finalize(&migrate); 455 456 mpages = svm_migrate_successful_pages(&migrate); 457 pr_debug("migrated/collected/requested 0x%lx/0x%lx/0x%lx\n", 458 mpages, cpages, migrate.npages); 459 460 svm_range_dma_unmap_dev(adev->dev, scratch, 0, npages); 461 462 out_free: 463 kvfree(buf); 464 kfd_smi_event_migration_end(node, p->lead_thread->pid, 465 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 466 0, node->id, trigger, r); 467 out: 468 if (!r && mpages) { 469 pdd = svm_range_get_pdd_by_node(prange, node); 470 if (pdd) 471 WRITE_ONCE(pdd->page_in, pdd->page_in + mpages); 472 473 return mpages; 474 } 475 return r; 476 } 477 478 /** 479 * svm_migrate_ram_to_vram - migrate svm range from system to device 480 * @prange: range structure 481 * @best_loc: the device to migrate to 482 * @start_mgr: start page to migrate 483 * @last_mgr: last page to migrate 484 * @mm: the process mm structure 485 * @trigger: reason of migration 486 * 487 * Context: Process context, caller hold mmap read lock, svms lock, prange lock 488 * 489 * Return: 490 * 0 - OK, otherwise error code 491 */ 492 static int 493 svm_migrate_ram_to_vram(struct svm_range *prange, uint32_t best_loc, 494 unsigned long start_mgr, unsigned long last_mgr, 495 struct mm_struct *mm, uint32_t trigger) 496 { 497 unsigned long addr, start, end; 498 struct vm_area_struct *vma; 499 u64 ttm_res_offset; 500 struct kfd_node *node; 501 unsigned long mpages = 0; 502 long r = 0; 503 504 if (start_mgr < prange->start || last_mgr > prange->last) { 505 pr_debug("range [0x%lx 0x%lx] out prange [0x%lx 0x%lx]\n", 506 start_mgr, last_mgr, prange->start, prange->last); 507 return -EFAULT; 508 } 509 510 node = svm_range_get_node_by_id(prange, best_loc); 511 if (!node) { 512 pr_debug("failed to get kfd node by id 0x%x\n", best_loc); 513 return -ENODEV; 514 } 515 516 pr_debug("svms 0x%p [0x%lx 0x%lx] in [0x%lx 0x%lx] to gpu 0x%x\n", 517 prange->svms, start_mgr, last_mgr, prange->start, prange->last, 518 best_loc); 519 520 start = start_mgr << PAGE_SHIFT; 521 end = (last_mgr + 1) << PAGE_SHIFT; 522 523 r = amdgpu_amdkfd_reserve_mem_limit(node->adev, 524 prange->npages * PAGE_SIZE, 525 KFD_IOC_ALLOC_MEM_FLAGS_VRAM, 526 node->xcp ? node->xcp->id : 0); 527 if (r) { 528 dev_dbg(node->adev->dev, "failed to reserve VRAM, r: %ld\n", r); 529 return -ENOSPC; 530 } 531 532 r = svm_range_vram_node_new(node, prange, true); 533 if (r) { 534 dev_dbg(node->adev->dev, "fail %ld to alloc vram\n", r); 535 goto out; 536 } 537 ttm_res_offset = (start_mgr - prange->start + prange->offset) << PAGE_SHIFT; 538 539 for (addr = start; addr < end;) { 540 unsigned long next; 541 542 vma = vma_lookup(mm, addr); 543 if (!vma) 544 break; 545 546 next = min(vma->vm_end, end); 547 r = svm_migrate_vma_to_vram(node, prange, vma, addr, next, trigger, ttm_res_offset); 548 if (r < 0) { 549 pr_debug("failed %ld to migrate\n", r); 550 break; 551 } else { 552 mpages += r; 553 } 554 ttm_res_offset += next - addr; 555 addr = next; 556 } 557 558 if (mpages) { 559 prange->actual_loc = best_loc; 560 prange->vram_pages += mpages; 561 } else if (!prange->actual_loc) { 562 /* if no page migrated and all pages from prange are at 563 * sys ram drop svm_bo got from svm_range_vram_node_new 564 */ 565 svm_range_vram_node_free(prange); 566 } 567 568 out: 569 amdgpu_amdkfd_unreserve_mem_limit(node->adev, 570 prange->npages * PAGE_SIZE, 571 KFD_IOC_ALLOC_MEM_FLAGS_VRAM, 572 node->xcp ? node->xcp->id : 0); 573 return r < 0 ? r : 0; 574 } 575 576 static void svm_migrate_page_free(struct page *page) 577 { 578 struct svm_range_bo *svm_bo = page->zone_device_data; 579 580 if (svm_bo) { 581 pr_debug_ratelimited("ref: %d\n", kref_read(&svm_bo->kref)); 582 svm_range_bo_unref_async(svm_bo); 583 } 584 } 585 586 static int 587 svm_migrate_copy_to_ram(struct amdgpu_device *adev, struct svm_range *prange, 588 struct migrate_vma *migrate, struct dma_fence **mfence, 589 dma_addr_t *scratch, u64 npages) 590 { 591 struct device *dev = adev->dev; 592 u64 *src; 593 dma_addr_t *dst; 594 struct page *dpage; 595 u64 i = 0, j; 596 u64 addr; 597 int r = 0; 598 599 pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms, prange->start, 600 prange->last); 601 602 addr = migrate->start; 603 604 src = (u64 *)(scratch + npages); 605 dst = scratch; 606 607 for (i = 0, j = 0; i < npages; i++, addr += PAGE_SIZE) { 608 struct page *spage; 609 610 spage = migrate_pfn_to_page(migrate->src[i]); 611 if (!spage || !is_zone_device_page(spage)) { 612 pr_debug("invalid page. Could be in CPU already svms 0x%p [0x%lx 0x%lx]\n", 613 prange->svms, prange->start, prange->last); 614 if (j) { 615 r = svm_migrate_copy_memory_gart(adev, dst + i - j, 616 src + i - j, j, 617 FROM_VRAM_TO_RAM, 618 mfence); 619 if (r) 620 goto out_oom; 621 j = 0; 622 } 623 continue; 624 } 625 src[i] = svm_migrate_addr(adev, spage); 626 if (j > 0 && src[i] != src[i - 1] + PAGE_SIZE) { 627 r = svm_migrate_copy_memory_gart(adev, dst + i - j, 628 src + i - j, j, 629 FROM_VRAM_TO_RAM, 630 mfence); 631 if (r) 632 goto out_oom; 633 j = 0; 634 } 635 636 dpage = svm_migrate_get_sys_page(migrate->vma, addr); 637 if (!dpage) { 638 pr_debug("failed get page svms 0x%p [0x%lx 0x%lx]\n", 639 prange->svms, prange->start, prange->last); 640 r = -ENOMEM; 641 goto out_oom; 642 } 643 644 dst[i] = dma_map_page(dev, dpage, 0, PAGE_SIZE, DMA_BIDIRECTIONAL); 645 r = dma_mapping_error(dev, dst[i]); 646 if (r) { 647 dev_err(adev->dev, "%s: fail %d dma_map_page\n", __func__, r); 648 goto out_oom; 649 } 650 651 pr_debug_ratelimited("dma mapping dst to 0x%llx, pfn 0x%lx\n", 652 dst[i] >> PAGE_SHIFT, page_to_pfn(dpage)); 653 654 migrate->dst[i] = migrate_pfn(page_to_pfn(dpage)); 655 j++; 656 } 657 658 r = svm_migrate_copy_memory_gart(adev, dst + i - j, src + i - j, j, 659 FROM_VRAM_TO_RAM, mfence); 660 661 out_oom: 662 if (r) { 663 pr_debug("failed %d copy to ram\n", r); 664 while (i--) { 665 svm_migrate_put_sys_page(dst[i]); 666 migrate->dst[i] = 0; 667 } 668 } 669 670 return r; 671 } 672 673 /** 674 * svm_migrate_vma_to_ram - migrate range inside one vma from device to system 675 * 676 * @prange: svm range structure 677 * @vma: vm_area_struct that range [start, end] belongs to 678 * @start: range start virtual address in pages 679 * @end: range end virtual address in pages 680 * @node: kfd node device to migrate from 681 * @trigger: reason of migration 682 * @fault_page: is from vmf->page, svm_migrate_to_ram(), this is CPU page fault callback 683 * 684 * Context: Process context, caller hold mmap read lock, prange->migrate_mutex 685 * 686 * Return: 687 * negative values - indicate error 688 * positive values or zero - number of pages got migrated 689 */ 690 static long 691 svm_migrate_vma_to_ram(struct kfd_node *node, struct svm_range *prange, 692 struct vm_area_struct *vma, u64 start, u64 end, 693 uint32_t trigger, struct page *fault_page) 694 { 695 struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms); 696 u64 npages = (end - start) >> PAGE_SHIFT; 697 unsigned long cpages = 0; 698 unsigned long mpages = 0; 699 struct amdgpu_device *adev = node->adev; 700 struct kfd_process_device *pdd; 701 struct dma_fence *mfence = NULL; 702 struct migrate_vma migrate = { 0 }; 703 dma_addr_t *scratch; 704 void *buf; 705 int r = -ENOMEM; 706 707 memset(&migrate, 0, sizeof(migrate)); 708 migrate.vma = vma; 709 migrate.start = start; 710 migrate.end = end; 711 migrate.pgmap_owner = SVM_ADEV_PGMAP_OWNER(adev); 712 if (adev->gmc.xgmi.connected_to_cpu) 713 migrate.flags = MIGRATE_VMA_SELECT_DEVICE_COHERENT; 714 else 715 migrate.flags = MIGRATE_VMA_SELECT_DEVICE_PRIVATE; 716 717 buf = kvcalloc(npages, 718 2 * sizeof(*migrate.src) + sizeof(u64) + sizeof(dma_addr_t), 719 GFP_KERNEL); 720 if (!buf) 721 goto out; 722 723 migrate.src = buf; 724 migrate.dst = migrate.src + npages; 725 migrate.fault_page = fault_page; 726 scratch = (dma_addr_t *)(migrate.dst + npages); 727 728 kfd_smi_event_migration_start(node, p->lead_thread->pid, 729 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 730 node->id, 0, prange->prefetch_loc, 731 prange->preferred_loc, trigger); 732 733 r = migrate_vma_setup(&migrate); 734 if (r) { 735 dev_err(adev->dev, "%s: vma setup fail %d range [0x%lx 0x%lx]\n", 736 __func__, r, prange->start, prange->last); 737 goto out_free; 738 } 739 740 cpages = migrate.cpages; 741 if (!cpages) { 742 pr_debug("failed collect migrate device pages [0x%lx 0x%lx]\n", 743 prange->start, prange->last); 744 goto out_free; 745 } 746 if (cpages != npages) 747 pr_debug("partial migration, 0x%lx/0x%llx pages collected\n", 748 cpages, npages); 749 else 750 pr_debug("0x%lx pages collected\n", cpages); 751 752 r = svm_migrate_copy_to_ram(adev, prange, &migrate, &mfence, 753 scratch, npages); 754 migrate_vma_pages(&migrate); 755 756 mpages = svm_migrate_successful_pages(&migrate); 757 pr_debug("migrated/collected/requested 0x%lx/0x%lx/0x%lx\n", 758 mpages, cpages, migrate.npages); 759 760 svm_migrate_copy_done(adev, mfence); 761 migrate_vma_finalize(&migrate); 762 763 svm_range_dma_unmap_dev(adev->dev, scratch, 0, npages); 764 765 out_free: 766 kvfree(buf); 767 kfd_smi_event_migration_end(node, p->lead_thread->pid, 768 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 769 node->id, 0, trigger, r); 770 out: 771 if (!r && mpages) { 772 pdd = svm_range_get_pdd_by_node(prange, node); 773 if (pdd) 774 WRITE_ONCE(pdd->page_out, pdd->page_out + mpages); 775 } 776 777 return r ? r : mpages; 778 } 779 780 /** 781 * svm_migrate_vram_to_ram - migrate svm range from device to system 782 * @prange: range structure 783 * @mm: process mm, use current->mm if NULL 784 * @start_mgr: start page need be migrated to sys ram 785 * @last_mgr: last page need be migrated to sys ram 786 * @trigger: reason of migration 787 * @fault_page: is from vmf->page, svm_migrate_to_ram(), this is CPU page fault callback 788 * 789 * Context: Process context, caller hold mmap read lock, prange->migrate_mutex 790 * 791 * Return: 792 * 0 - OK, otherwise error code 793 */ 794 int svm_migrate_vram_to_ram(struct svm_range *prange, struct mm_struct *mm, 795 unsigned long start_mgr, unsigned long last_mgr, 796 uint32_t trigger, struct page *fault_page) 797 { 798 struct kfd_node *node; 799 struct vm_area_struct *vma; 800 unsigned long addr; 801 unsigned long start; 802 unsigned long end; 803 unsigned long mpages = 0; 804 long r = 0; 805 806 /* this pragne has no any vram page to migrate to sys ram */ 807 if (!prange->actual_loc) { 808 pr_debug("[0x%lx 0x%lx] already migrated to ram\n", 809 prange->start, prange->last); 810 return 0; 811 } 812 813 if (start_mgr < prange->start || last_mgr > prange->last) { 814 pr_debug("range [0x%lx 0x%lx] out prange [0x%lx 0x%lx]\n", 815 start_mgr, last_mgr, prange->start, prange->last); 816 return -EFAULT; 817 } 818 819 node = svm_range_get_node_by_id(prange, prange->actual_loc); 820 if (!node) { 821 pr_debug("failed to get kfd node by id 0x%x\n", prange->actual_loc); 822 return -ENODEV; 823 } 824 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] from gpu 0x%x to ram\n", 825 prange->svms, prange, start_mgr, last_mgr, 826 prange->actual_loc); 827 828 start = start_mgr << PAGE_SHIFT; 829 end = (last_mgr + 1) << PAGE_SHIFT; 830 831 for (addr = start; addr < end;) { 832 unsigned long next; 833 834 vma = vma_lookup(mm, addr); 835 if (!vma) { 836 pr_debug("failed to find vma for prange %p\n", prange); 837 r = -EFAULT; 838 break; 839 } 840 841 next = min(vma->vm_end, end); 842 r = svm_migrate_vma_to_ram(node, prange, vma, addr, next, trigger, 843 fault_page); 844 if (r < 0) { 845 pr_debug("failed %ld to migrate prange %p\n", r, prange); 846 break; 847 } else { 848 mpages += r; 849 } 850 addr = next; 851 } 852 853 if (r >= 0) { 854 WARN_ONCE(prange->vram_pages < mpages, 855 "Recorded vram pages(0x%llx) should not be less than migration pages(0x%lx).", 856 prange->vram_pages, mpages); 857 prange->vram_pages -= mpages; 858 859 /* prange does not have vram page set its actual_loc to system 860 * and drop its svm_bo ref 861 */ 862 if (prange->vram_pages == 0 && prange->ttm_res) { 863 prange->actual_loc = 0; 864 svm_range_vram_node_free(prange); 865 } 866 } 867 868 return r < 0 ? r : 0; 869 } 870 871 /** 872 * svm_migrate_vram_to_vram - migrate svm range from device to device 873 * @prange: range structure 874 * @best_loc: the device to migrate to 875 * @start: start page need be migrated to sys ram 876 * @last: last page need be migrated to sys ram 877 * @mm: process mm, use current->mm if NULL 878 * @trigger: reason of migration 879 * 880 * Context: Process context, caller hold mmap read lock, svms lock, prange lock 881 * 882 * migrate all vram pages in prange to sys ram, then migrate 883 * [start, last] pages from sys ram to gpu node best_loc. 884 * 885 * Return: 886 * 0 - OK, otherwise error code 887 */ 888 static int 889 svm_migrate_vram_to_vram(struct svm_range *prange, uint32_t best_loc, 890 unsigned long start, unsigned long last, 891 struct mm_struct *mm, uint32_t trigger) 892 { 893 int r, retries = 3; 894 895 /* 896 * TODO: for both devices with PCIe large bar or on same xgmi hive, skip 897 * system memory as migration bridge 898 */ 899 900 pr_debug("from gpu 0x%x to gpu 0x%x\n", prange->actual_loc, best_loc); 901 902 do { 903 r = svm_migrate_vram_to_ram(prange, mm, prange->start, prange->last, 904 trigger, NULL); 905 if (r) 906 return r; 907 } while (prange->actual_loc && --retries); 908 909 if (prange->actual_loc) 910 return -EDEADLK; 911 912 return svm_migrate_ram_to_vram(prange, best_loc, start, last, mm, trigger); 913 } 914 915 int 916 svm_migrate_to_vram(struct svm_range *prange, uint32_t best_loc, 917 unsigned long start, unsigned long last, 918 struct mm_struct *mm, uint32_t trigger) 919 { 920 if (!prange->actual_loc || prange->actual_loc == best_loc) 921 return svm_migrate_ram_to_vram(prange, best_loc, start, last, 922 mm, trigger); 923 924 else 925 return svm_migrate_vram_to_vram(prange, best_loc, start, last, 926 mm, trigger); 927 928 } 929 930 /** 931 * svm_migrate_to_ram - CPU page fault handler 932 * @vmf: CPU vm fault vma, address 933 * 934 * Context: vm fault handler, caller holds the mmap read lock 935 * 936 * Return: 937 * 0 - OK 938 * VM_FAULT_SIGBUS - notice application to have SIGBUS page fault 939 */ 940 static vm_fault_t svm_migrate_to_ram(struct vm_fault *vmf) 941 { 942 unsigned long start, last, size; 943 unsigned long addr = vmf->address; 944 struct svm_range_bo *svm_bo; 945 struct svm_range *prange; 946 struct kfd_process *p; 947 struct mm_struct *mm; 948 int r = 0; 949 950 svm_bo = vmf->page->zone_device_data; 951 if (!svm_bo) { 952 pr_debug("failed get device page at addr 0x%lx\n", addr); 953 return VM_FAULT_SIGBUS; 954 } 955 if (!mmget_not_zero(svm_bo->eviction_fence->mm)) { 956 pr_debug("addr 0x%lx of process mm is destroyed\n", addr); 957 return VM_FAULT_SIGBUS; 958 } 959 960 mm = svm_bo->eviction_fence->mm; 961 if (mm != vmf->vma->vm_mm) 962 pr_debug("addr 0x%lx is COW mapping in child process\n", addr); 963 964 p = kfd_lookup_process_by_mm(mm); 965 if (!p) { 966 pr_debug("failed find process at fault address 0x%lx\n", addr); 967 r = VM_FAULT_SIGBUS; 968 goto out_mmput; 969 } 970 if (READ_ONCE(p->svms.faulting_task) == current) { 971 pr_debug("skipping ram migration\n"); 972 r = 0; 973 goto out_unref_process; 974 } 975 976 pr_debug("CPU page fault svms 0x%p address 0x%lx\n", &p->svms, addr); 977 addr >>= PAGE_SHIFT; 978 979 mutex_lock(&p->svms.lock); 980 981 prange = svm_range_from_addr(&p->svms, addr, NULL); 982 if (!prange) { 983 pr_debug("failed get range svms 0x%p addr 0x%lx\n", &p->svms, addr); 984 r = -EFAULT; 985 goto out_unlock_svms; 986 } 987 988 mutex_lock(&prange->migrate_mutex); 989 990 if (!prange->actual_loc) 991 goto out_unlock_prange; 992 993 /* Align migration range start and size to granularity size */ 994 size = 1UL << prange->granularity; 995 start = max(ALIGN_DOWN(addr, size), prange->start); 996 last = min(ALIGN(addr + 1, size) - 1, prange->last); 997 998 r = svm_migrate_vram_to_ram(prange, vmf->vma->vm_mm, start, last, 999 KFD_MIGRATE_TRIGGER_PAGEFAULT_CPU, vmf->page); 1000 if (r) 1001 pr_debug("failed %d migrate svms 0x%p range 0x%p [0x%lx 0x%lx]\n", 1002 r, prange->svms, prange, start, last); 1003 1004 out_unlock_prange: 1005 mutex_unlock(&prange->migrate_mutex); 1006 out_unlock_svms: 1007 mutex_unlock(&p->svms.lock); 1008 out_unref_process: 1009 pr_debug("CPU fault svms 0x%p address 0x%lx done\n", &p->svms, addr); 1010 kfd_unref_process(p); 1011 out_mmput: 1012 mmput(mm); 1013 return r ? VM_FAULT_SIGBUS : 0; 1014 } 1015 1016 static const struct dev_pagemap_ops svm_migrate_pgmap_ops = { 1017 .page_free = svm_migrate_page_free, 1018 .migrate_to_ram = svm_migrate_to_ram, 1019 }; 1020 1021 /* Each VRAM page uses sizeof(struct page) on system memory */ 1022 #define SVM_HMM_PAGE_STRUCT_SIZE(size) ((size)/PAGE_SIZE * sizeof(struct page)) 1023 1024 int kgd2kfd_init_zone_device(struct amdgpu_device *adev) 1025 { 1026 struct amdgpu_kfd_dev *kfddev = &adev->kfd; 1027 struct dev_pagemap *pgmap; 1028 struct resource *res = NULL; 1029 unsigned long size; 1030 void *r; 1031 1032 /* Page migration works on gfx9 or newer */ 1033 if (amdgpu_ip_version(adev, GC_HWIP, 0) < IP_VERSION(9, 0, 1)) 1034 return -EINVAL; 1035 1036 if (adev->apu_prefer_gtt) 1037 return 0; 1038 1039 pgmap = &kfddev->pgmap; 1040 memset(pgmap, 0, sizeof(*pgmap)); 1041 1042 /* TODO: register all vram to HMM for now. 1043 * should remove reserved size 1044 */ 1045 size = ALIGN(adev->gmc.real_vram_size, 2ULL << 20); 1046 if (adev->gmc.xgmi.connected_to_cpu) { 1047 pgmap->range.start = adev->gmc.aper_base; 1048 pgmap->range.end = adev->gmc.aper_base + adev->gmc.aper_size - 1; 1049 pgmap->type = MEMORY_DEVICE_COHERENT; 1050 } else { 1051 res = devm_request_free_mem_region(adev->dev, &iomem_resource, size); 1052 if (IS_ERR(res)) 1053 return PTR_ERR(res); 1054 pgmap->range.start = res->start; 1055 pgmap->range.end = res->end; 1056 pgmap->type = MEMORY_DEVICE_PRIVATE; 1057 } 1058 1059 pgmap->nr_range = 1; 1060 pgmap->ops = &svm_migrate_pgmap_ops; 1061 pgmap->owner = SVM_ADEV_PGMAP_OWNER(adev); 1062 pgmap->flags = 0; 1063 /* Device manager releases device-specific resources, memory region and 1064 * pgmap when driver disconnects from device. 1065 */ 1066 r = devm_memremap_pages(adev->dev, pgmap); 1067 if (IS_ERR(r)) { 1068 pr_err("failed to register HMM device memory\n"); 1069 if (pgmap->type == MEMORY_DEVICE_PRIVATE) 1070 devm_release_mem_region(adev->dev, res->start, resource_size(res)); 1071 /* Disable SVM support capability */ 1072 pgmap->type = 0; 1073 return PTR_ERR(r); 1074 } 1075 1076 pr_debug("reserve %ldMB system memory for VRAM pages struct\n", 1077 SVM_HMM_PAGE_STRUCT_SIZE(size) >> 20); 1078 1079 amdgpu_amdkfd_reserve_system_mem(SVM_HMM_PAGE_STRUCT_SIZE(size)); 1080 1081 pr_info("HMM registered %ldMB device memory\n", size >> 20); 1082 1083 return 0; 1084 } 1085