1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2020-2021 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 #include <linux/types.h> 24 #include <linux/hmm.h> 25 #include <linux/dma-direction.h> 26 #include <linux/dma-mapping.h> 27 #include <linux/migrate.h> 28 #include "amdgpu_sync.h" 29 #include "amdgpu_object.h" 30 #include "amdgpu_vm.h" 31 #include "amdgpu_res_cursor.h" 32 #include "kfd_priv.h" 33 #include "kfd_svm.h" 34 #include "kfd_migrate.h" 35 #include "kfd_smi_events.h" 36 37 #ifdef dev_fmt 38 #undef dev_fmt 39 #endif 40 #define dev_fmt(fmt) "kfd_migrate: " fmt 41 42 static uint64_t 43 svm_migrate_direct_mapping_addr(struct amdgpu_device *adev, uint64_t addr) 44 { 45 return addr + amdgpu_ttm_domain_start(adev, TTM_PL_VRAM); 46 } 47 48 static int 49 svm_migrate_gart_map(struct amdgpu_ring *ring, uint64_t npages, 50 dma_addr_t *addr, uint64_t *gart_addr, uint64_t flags) 51 { 52 struct amdgpu_device *adev = ring->adev; 53 struct amdgpu_job *job; 54 unsigned int num_dw, num_bytes; 55 struct dma_fence *fence; 56 uint64_t src_addr, dst_addr; 57 uint64_t pte_flags; 58 void *cpu_addr; 59 int r; 60 61 /* use gart window 0 */ 62 *gart_addr = adev->gmc.gart_start; 63 64 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 65 num_bytes = npages * 8; 66 67 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr, 68 AMDGPU_FENCE_OWNER_UNDEFINED, 69 num_dw * 4 + num_bytes, 70 AMDGPU_IB_POOL_DELAYED, 71 &job); 72 if (r) 73 return r; 74 75 src_addr = num_dw * 4; 76 src_addr += job->ibs[0].gpu_addr; 77 78 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 79 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 80 dst_addr, num_bytes, 0); 81 82 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 83 WARN_ON(job->ibs[0].length_dw > num_dw); 84 85 pte_flags = AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE; 86 pte_flags |= AMDGPU_PTE_SYSTEM | AMDGPU_PTE_SNOOPED; 87 if (!(flags & KFD_IOCTL_SVM_FLAG_GPU_RO)) 88 pte_flags |= AMDGPU_PTE_WRITEABLE; 89 pte_flags |= adev->gart.gart_pte_flags; 90 91 cpu_addr = &job->ibs[0].ptr[num_dw]; 92 93 amdgpu_gart_map(adev, 0, npages, addr, pte_flags, cpu_addr); 94 fence = amdgpu_job_submit(job); 95 dma_fence_put(fence); 96 97 return r; 98 } 99 100 /** 101 * svm_migrate_copy_memory_gart - sdma copy data between ram and vram 102 * 103 * @adev: amdgpu device the sdma ring running 104 * @sys: system DMA pointer to be copied 105 * @vram: vram destination DMA pointer 106 * @npages: number of pages to copy 107 * @direction: enum MIGRATION_COPY_DIR 108 * @mfence: output, sdma fence to signal after sdma is done 109 * 110 * ram address uses GART table continuous entries mapping to ram pages, 111 * vram address uses direct mapping of vram pages, which must have npages 112 * number of continuous pages. 113 * GART update and sdma uses same buf copy function ring, sdma is splited to 114 * multiple GTT_MAX_PAGES transfer, all sdma operations are serialized, wait for 115 * the last sdma finish fence which is returned to check copy memory is done. 116 * 117 * Context: Process context, takes and releases gtt_window_lock 118 * 119 * Return: 120 * 0 - OK, otherwise error code 121 */ 122 123 static int 124 svm_migrate_copy_memory_gart(struct amdgpu_device *adev, dma_addr_t *sys, 125 uint64_t *vram, uint64_t npages, 126 enum MIGRATION_COPY_DIR direction, 127 struct dma_fence **mfence) 128 { 129 const uint64_t GTT_MAX_PAGES = AMDGPU_GTT_MAX_TRANSFER_SIZE; 130 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 131 uint64_t gart_s, gart_d; 132 struct dma_fence *next; 133 uint64_t size; 134 int r; 135 136 mutex_lock(&adev->mman.gtt_window_lock); 137 138 while (npages) { 139 size = min(GTT_MAX_PAGES, npages); 140 141 if (direction == FROM_VRAM_TO_RAM) { 142 gart_s = svm_migrate_direct_mapping_addr(adev, *vram); 143 r = svm_migrate_gart_map(ring, size, sys, &gart_d, 0); 144 145 } else if (direction == FROM_RAM_TO_VRAM) { 146 r = svm_migrate_gart_map(ring, size, sys, &gart_s, 147 KFD_IOCTL_SVM_FLAG_GPU_RO); 148 gart_d = svm_migrate_direct_mapping_addr(adev, *vram); 149 } 150 if (r) { 151 dev_err(adev->dev, "fail %d create gart mapping\n", r); 152 goto out_unlock; 153 } 154 155 r = amdgpu_copy_buffer(ring, gart_s, gart_d, size * PAGE_SIZE, 156 NULL, &next, false, true, 0); 157 if (r) { 158 dev_err(adev->dev, "fail %d to copy memory\n", r); 159 goto out_unlock; 160 } 161 162 dma_fence_put(*mfence); 163 *mfence = next; 164 npages -= size; 165 if (npages) { 166 sys += size; 167 vram += size; 168 } 169 } 170 171 out_unlock: 172 mutex_unlock(&adev->mman.gtt_window_lock); 173 174 return r; 175 } 176 177 /** 178 * svm_migrate_copy_done - wait for memory copy sdma is done 179 * 180 * @adev: amdgpu device the sdma memory copy is executing on 181 * @mfence: migrate fence 182 * 183 * Wait for dma fence is signaled, if the copy ssplit into multiple sdma 184 * operations, this is the last sdma operation fence. 185 * 186 * Context: called after svm_migrate_copy_memory 187 * 188 * Return: 189 * 0 - success 190 * otherwise - error code from dma fence signal 191 */ 192 static int 193 svm_migrate_copy_done(struct amdgpu_device *adev, struct dma_fence *mfence) 194 { 195 int r = 0; 196 197 if (mfence) { 198 r = dma_fence_wait(mfence, false); 199 dma_fence_put(mfence); 200 pr_debug("sdma copy memory fence done\n"); 201 } 202 203 return r; 204 } 205 206 unsigned long 207 svm_migrate_addr_to_pfn(struct amdgpu_device *adev, unsigned long addr) 208 { 209 return (addr + adev->kfd.pgmap.range.start) >> PAGE_SHIFT; 210 } 211 212 static void 213 svm_migrate_get_vram_page(struct svm_range *prange, unsigned long pfn) 214 { 215 struct page *page; 216 217 page = pfn_to_page(pfn); 218 svm_range_bo_ref(prange->svm_bo); 219 page->zone_device_data = prange->svm_bo; 220 zone_device_page_init(page); 221 } 222 223 static void 224 svm_migrate_put_vram_page(struct amdgpu_device *adev, unsigned long addr) 225 { 226 struct page *page; 227 228 page = pfn_to_page(svm_migrate_addr_to_pfn(adev, addr)); 229 unlock_page(page); 230 put_page(page); 231 } 232 233 static unsigned long 234 svm_migrate_addr(struct amdgpu_device *adev, struct page *page) 235 { 236 unsigned long addr; 237 238 addr = page_to_pfn(page) << PAGE_SHIFT; 239 return (addr - adev->kfd.pgmap.range.start); 240 } 241 242 static struct page * 243 svm_migrate_get_sys_page(struct vm_area_struct *vma, unsigned long addr) 244 { 245 struct page *page; 246 247 page = alloc_page_vma(GFP_HIGHUSER, vma, addr); 248 if (page) 249 lock_page(page); 250 251 return page; 252 } 253 254 static void svm_migrate_put_sys_page(unsigned long addr) 255 { 256 struct page *page; 257 258 page = pfn_to_page(addr >> PAGE_SHIFT); 259 unlock_page(page); 260 put_page(page); 261 } 262 263 static unsigned long svm_migrate_unsuccessful_pages(struct migrate_vma *migrate) 264 { 265 unsigned long upages = 0; 266 unsigned long i; 267 268 for (i = 0; i < migrate->npages; i++) { 269 if (migrate->src[i] & MIGRATE_PFN_VALID && 270 !(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 271 upages++; 272 } 273 return upages; 274 } 275 276 static int 277 svm_migrate_copy_to_vram(struct kfd_node *node, struct svm_range *prange, 278 struct migrate_vma *migrate, struct dma_fence **mfence, 279 dma_addr_t *scratch, uint64_t ttm_res_offset) 280 { 281 uint64_t npages = migrate->cpages; 282 struct amdgpu_device *adev = node->adev; 283 struct device *dev = adev->dev; 284 struct amdgpu_res_cursor cursor; 285 dma_addr_t *src; 286 uint64_t *dst; 287 uint64_t i, j; 288 int r; 289 290 pr_debug("svms 0x%p [0x%lx 0x%lx 0x%llx]\n", prange->svms, prange->start, 291 prange->last, ttm_res_offset); 292 293 src = scratch; 294 dst = (uint64_t *)(scratch + npages); 295 296 amdgpu_res_first(prange->ttm_res, ttm_res_offset, 297 npages << PAGE_SHIFT, &cursor); 298 for (i = j = 0; i < npages; i++) { 299 struct page *spage; 300 301 dst[i] = cursor.start + (j << PAGE_SHIFT); 302 migrate->dst[i] = svm_migrate_addr_to_pfn(adev, dst[i]); 303 svm_migrate_get_vram_page(prange, migrate->dst[i]); 304 migrate->dst[i] = migrate_pfn(migrate->dst[i]); 305 306 spage = migrate_pfn_to_page(migrate->src[i]); 307 if (spage && !is_zone_device_page(spage)) { 308 src[i] = dma_map_page(dev, spage, 0, PAGE_SIZE, 309 DMA_TO_DEVICE); 310 r = dma_mapping_error(dev, src[i]); 311 if (r) { 312 dev_err(dev, "%s: fail %d dma_map_page\n", 313 __func__, r); 314 goto out_free_vram_pages; 315 } 316 } else { 317 if (j) { 318 r = svm_migrate_copy_memory_gart( 319 adev, src + i - j, 320 dst + i - j, j, 321 FROM_RAM_TO_VRAM, 322 mfence); 323 if (r) 324 goto out_free_vram_pages; 325 amdgpu_res_next(&cursor, (j + 1) << PAGE_SHIFT); 326 j = 0; 327 } else { 328 amdgpu_res_next(&cursor, PAGE_SIZE); 329 } 330 continue; 331 } 332 333 pr_debug_ratelimited("dma mapping src to 0x%llx, pfn 0x%lx\n", 334 src[i] >> PAGE_SHIFT, page_to_pfn(spage)); 335 336 if (j >= (cursor.size >> PAGE_SHIFT) - 1 && i < npages - 1) { 337 r = svm_migrate_copy_memory_gart(adev, src + i - j, 338 dst + i - j, j + 1, 339 FROM_RAM_TO_VRAM, 340 mfence); 341 if (r) 342 goto out_free_vram_pages; 343 amdgpu_res_next(&cursor, (j + 1) * PAGE_SIZE); 344 j = 0; 345 } else { 346 j++; 347 } 348 } 349 350 r = svm_migrate_copy_memory_gart(adev, src + i - j, dst + i - j, j, 351 FROM_RAM_TO_VRAM, mfence); 352 353 out_free_vram_pages: 354 if (r) { 355 pr_debug("failed %d to copy memory to vram\n", r); 356 while (i--) { 357 svm_migrate_put_vram_page(adev, dst[i]); 358 migrate->dst[i] = 0; 359 } 360 } 361 362 #ifdef DEBUG_FORCE_MIXED_DOMAINS 363 for (i = 0, j = 0; i < npages; i += 4, j++) { 364 if (j & 1) 365 continue; 366 svm_migrate_put_vram_page(adev, dst[i]); 367 migrate->dst[i] = 0; 368 svm_migrate_put_vram_page(adev, dst[i + 1]); 369 migrate->dst[i + 1] = 0; 370 svm_migrate_put_vram_page(adev, dst[i + 2]); 371 migrate->dst[i + 2] = 0; 372 svm_migrate_put_vram_page(adev, dst[i + 3]); 373 migrate->dst[i + 3] = 0; 374 } 375 #endif 376 377 return r; 378 } 379 380 static long 381 svm_migrate_vma_to_vram(struct kfd_node *node, struct svm_range *prange, 382 struct vm_area_struct *vma, uint64_t start, 383 uint64_t end, uint32_t trigger, uint64_t ttm_res_offset) 384 { 385 struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms); 386 uint64_t npages = (end - start) >> PAGE_SHIFT; 387 struct amdgpu_device *adev = node->adev; 388 struct kfd_process_device *pdd; 389 struct dma_fence *mfence = NULL; 390 struct migrate_vma migrate = { 0 }; 391 unsigned long cpages = 0; 392 unsigned long mpages = 0; 393 dma_addr_t *scratch; 394 void *buf; 395 int r = -ENOMEM; 396 397 memset(&migrate, 0, sizeof(migrate)); 398 migrate.vma = vma; 399 migrate.start = start; 400 migrate.end = end; 401 migrate.flags = MIGRATE_VMA_SELECT_SYSTEM; 402 migrate.pgmap_owner = SVM_ADEV_PGMAP_OWNER(adev); 403 404 buf = kvcalloc(npages, 405 2 * sizeof(*migrate.src) + sizeof(uint64_t) + sizeof(dma_addr_t), 406 GFP_KERNEL); 407 if (!buf) 408 goto out; 409 410 migrate.src = buf; 411 migrate.dst = migrate.src + npages; 412 scratch = (dma_addr_t *)(migrate.dst + npages); 413 414 kfd_smi_event_migration_start(node, p->lead_thread->pid, 415 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 416 0, node->id, prange->prefetch_loc, 417 prange->preferred_loc, trigger); 418 419 r = migrate_vma_setup(&migrate); 420 if (r) { 421 dev_err(adev->dev, "%s: vma setup fail %d range [0x%lx 0x%lx]\n", 422 __func__, r, prange->start, prange->last); 423 goto out_free; 424 } 425 426 cpages = migrate.cpages; 427 if (!cpages) { 428 pr_debug("failed collect migrate sys pages [0x%lx 0x%lx]\n", 429 prange->start, prange->last); 430 goto out_free; 431 } 432 if (cpages != npages) 433 pr_debug("partial migration, 0x%lx/0x%llx pages collected\n", 434 cpages, npages); 435 else 436 pr_debug("0x%lx pages collected\n", cpages); 437 438 r = svm_migrate_copy_to_vram(node, prange, &migrate, &mfence, scratch, ttm_res_offset); 439 migrate_vma_pages(&migrate); 440 441 svm_migrate_copy_done(adev, mfence); 442 migrate_vma_finalize(&migrate); 443 444 mpages = cpages - svm_migrate_unsuccessful_pages(&migrate); 445 pr_debug("successful/cpages/npages 0x%lx/0x%lx/0x%lx\n", 446 mpages, cpages, migrate.npages); 447 448 svm_range_dma_unmap_dev(adev->dev, scratch, 0, npages); 449 450 out_free: 451 kvfree(buf); 452 kfd_smi_event_migration_end(node, p->lead_thread->pid, 453 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 454 0, node->id, trigger, r); 455 out: 456 if (!r && mpages) { 457 pdd = svm_range_get_pdd_by_node(prange, node); 458 if (pdd) 459 WRITE_ONCE(pdd->page_in, pdd->page_in + mpages); 460 461 return mpages; 462 } 463 return r; 464 } 465 466 /** 467 * svm_migrate_ram_to_vram - migrate svm range from system to device 468 * @prange: range structure 469 * @best_loc: the device to migrate to 470 * @start_mgr: start page to migrate 471 * @last_mgr: last page to migrate 472 * @mm: the process mm structure 473 * @trigger: reason of migration 474 * 475 * Context: Process context, caller hold mmap read lock, svms lock, prange lock 476 * 477 * Return: 478 * 0 - OK, otherwise error code 479 */ 480 static int 481 svm_migrate_ram_to_vram(struct svm_range *prange, uint32_t best_loc, 482 unsigned long start_mgr, unsigned long last_mgr, 483 struct mm_struct *mm, uint32_t trigger) 484 { 485 unsigned long addr, start, end; 486 struct vm_area_struct *vma; 487 uint64_t ttm_res_offset; 488 struct kfd_node *node; 489 unsigned long mpages = 0; 490 long r = 0; 491 492 if (start_mgr < prange->start || last_mgr > prange->last) { 493 pr_debug("range [0x%lx 0x%lx] out prange [0x%lx 0x%lx]\n", 494 start_mgr, last_mgr, prange->start, prange->last); 495 return -EFAULT; 496 } 497 498 node = svm_range_get_node_by_id(prange, best_loc); 499 if (!node) { 500 pr_debug("failed to get kfd node by id 0x%x\n", best_loc); 501 return -ENODEV; 502 } 503 504 pr_debug("svms 0x%p [0x%lx 0x%lx] in [0x%lx 0x%lx] to gpu 0x%x\n", 505 prange->svms, start_mgr, last_mgr, prange->start, prange->last, 506 best_loc); 507 508 start = start_mgr << PAGE_SHIFT; 509 end = (last_mgr + 1) << PAGE_SHIFT; 510 511 r = amdgpu_amdkfd_reserve_mem_limit(node->adev, 512 prange->npages * PAGE_SIZE, 513 KFD_IOC_ALLOC_MEM_FLAGS_VRAM, 514 node->xcp ? node->xcp->id : 0); 515 if (r) { 516 dev_dbg(node->adev->dev, "failed to reserve VRAM, r: %ld\n", r); 517 return -ENOSPC; 518 } 519 520 r = svm_range_vram_node_new(node, prange, true); 521 if (r) { 522 dev_dbg(node->adev->dev, "fail %ld to alloc vram\n", r); 523 goto out; 524 } 525 ttm_res_offset = (start_mgr - prange->start + prange->offset) << PAGE_SHIFT; 526 527 for (addr = start; addr < end;) { 528 unsigned long next; 529 530 vma = vma_lookup(mm, addr); 531 if (!vma) 532 break; 533 534 next = min(vma->vm_end, end); 535 r = svm_migrate_vma_to_vram(node, prange, vma, addr, next, trigger, ttm_res_offset); 536 if (r < 0) { 537 pr_debug("failed %ld to migrate\n", r); 538 break; 539 } else { 540 mpages += r; 541 } 542 ttm_res_offset += next - addr; 543 addr = next; 544 } 545 546 if (mpages) { 547 prange->actual_loc = best_loc; 548 prange->vram_pages += mpages; 549 } else if (!prange->actual_loc) { 550 /* if no page migrated and all pages from prange are at 551 * sys ram drop svm_bo got from svm_range_vram_node_new 552 */ 553 svm_range_vram_node_free(prange); 554 } 555 556 out: 557 amdgpu_amdkfd_unreserve_mem_limit(node->adev, 558 prange->npages * PAGE_SIZE, 559 KFD_IOC_ALLOC_MEM_FLAGS_VRAM, 560 node->xcp ? node->xcp->id : 0); 561 return r < 0 ? r : 0; 562 } 563 564 static void svm_migrate_page_free(struct page *page) 565 { 566 struct svm_range_bo *svm_bo = page->zone_device_data; 567 568 if (svm_bo) { 569 pr_debug_ratelimited("ref: %d\n", kref_read(&svm_bo->kref)); 570 svm_range_bo_unref_async(svm_bo); 571 } 572 } 573 574 static int 575 svm_migrate_copy_to_ram(struct amdgpu_device *adev, struct svm_range *prange, 576 struct migrate_vma *migrate, struct dma_fence **mfence, 577 dma_addr_t *scratch, uint64_t npages) 578 { 579 struct device *dev = adev->dev; 580 uint64_t *src; 581 dma_addr_t *dst; 582 struct page *dpage; 583 uint64_t i = 0, j; 584 uint64_t addr; 585 int r = 0; 586 587 pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms, prange->start, 588 prange->last); 589 590 addr = migrate->start; 591 592 src = (uint64_t *)(scratch + npages); 593 dst = scratch; 594 595 for (i = 0, j = 0; i < npages; i++, addr += PAGE_SIZE) { 596 struct page *spage; 597 598 spage = migrate_pfn_to_page(migrate->src[i]); 599 if (!spage || !is_zone_device_page(spage)) { 600 pr_debug("invalid page. Could be in CPU already svms 0x%p [0x%lx 0x%lx]\n", 601 prange->svms, prange->start, prange->last); 602 if (j) { 603 r = svm_migrate_copy_memory_gart(adev, dst + i - j, 604 src + i - j, j, 605 FROM_VRAM_TO_RAM, 606 mfence); 607 if (r) 608 goto out_oom; 609 j = 0; 610 } 611 continue; 612 } 613 src[i] = svm_migrate_addr(adev, spage); 614 if (j > 0 && src[i] != src[i - 1] + PAGE_SIZE) { 615 r = svm_migrate_copy_memory_gart(adev, dst + i - j, 616 src + i - j, j, 617 FROM_VRAM_TO_RAM, 618 mfence); 619 if (r) 620 goto out_oom; 621 j = 0; 622 } 623 624 dpage = svm_migrate_get_sys_page(migrate->vma, addr); 625 if (!dpage) { 626 pr_debug("failed get page svms 0x%p [0x%lx 0x%lx]\n", 627 prange->svms, prange->start, prange->last); 628 r = -ENOMEM; 629 goto out_oom; 630 } 631 632 dst[i] = dma_map_page(dev, dpage, 0, PAGE_SIZE, DMA_FROM_DEVICE); 633 r = dma_mapping_error(dev, dst[i]); 634 if (r) { 635 dev_err(adev->dev, "%s: fail %d dma_map_page\n", __func__, r); 636 goto out_oom; 637 } 638 639 pr_debug_ratelimited("dma mapping dst to 0x%llx, pfn 0x%lx\n", 640 dst[i] >> PAGE_SHIFT, page_to_pfn(dpage)); 641 642 migrate->dst[i] = migrate_pfn(page_to_pfn(dpage)); 643 j++; 644 } 645 646 r = svm_migrate_copy_memory_gart(adev, dst + i - j, src + i - j, j, 647 FROM_VRAM_TO_RAM, mfence); 648 649 out_oom: 650 if (r) { 651 pr_debug("failed %d copy to ram\n", r); 652 while (i--) { 653 svm_migrate_put_sys_page(dst[i]); 654 migrate->dst[i] = 0; 655 } 656 } 657 658 return r; 659 } 660 661 /** 662 * svm_migrate_vma_to_ram - migrate range inside one vma from device to system 663 * 664 * @prange: svm range structure 665 * @vma: vm_area_struct that range [start, end] belongs to 666 * @start: range start virtual address in pages 667 * @end: range end virtual address in pages 668 * @node: kfd node device to migrate from 669 * @trigger: reason of migration 670 * @fault_page: is from vmf->page, svm_migrate_to_ram(), this is CPU page fault callback 671 * 672 * Context: Process context, caller hold mmap read lock, prange->migrate_mutex 673 * 674 * Return: 675 * negative values - indicate error 676 * positive values or zero - number of pages got migrated 677 */ 678 static long 679 svm_migrate_vma_to_ram(struct kfd_node *node, struct svm_range *prange, 680 struct vm_area_struct *vma, uint64_t start, uint64_t end, 681 uint32_t trigger, struct page *fault_page) 682 { 683 struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms); 684 uint64_t npages = (end - start) >> PAGE_SHIFT; 685 unsigned long upages = npages; 686 unsigned long cpages = 0; 687 unsigned long mpages = 0; 688 struct amdgpu_device *adev = node->adev; 689 struct kfd_process_device *pdd; 690 struct dma_fence *mfence = NULL; 691 struct migrate_vma migrate = { 0 }; 692 dma_addr_t *scratch; 693 void *buf; 694 int r = -ENOMEM; 695 696 memset(&migrate, 0, sizeof(migrate)); 697 migrate.vma = vma; 698 migrate.start = start; 699 migrate.end = end; 700 migrate.pgmap_owner = SVM_ADEV_PGMAP_OWNER(adev); 701 if (adev->gmc.xgmi.connected_to_cpu) 702 migrate.flags = MIGRATE_VMA_SELECT_DEVICE_COHERENT; 703 else 704 migrate.flags = MIGRATE_VMA_SELECT_DEVICE_PRIVATE; 705 706 buf = kvcalloc(npages, 707 2 * sizeof(*migrate.src) + sizeof(uint64_t) + sizeof(dma_addr_t), 708 GFP_KERNEL); 709 if (!buf) 710 goto out; 711 712 migrate.src = buf; 713 migrate.dst = migrate.src + npages; 714 migrate.fault_page = fault_page; 715 scratch = (dma_addr_t *)(migrate.dst + npages); 716 717 kfd_smi_event_migration_start(node, p->lead_thread->pid, 718 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 719 node->id, 0, prange->prefetch_loc, 720 prange->preferred_loc, trigger); 721 722 r = migrate_vma_setup(&migrate); 723 if (r) { 724 dev_err(adev->dev, "%s: vma setup fail %d range [0x%lx 0x%lx]\n", 725 __func__, r, prange->start, prange->last); 726 goto out_free; 727 } 728 729 cpages = migrate.cpages; 730 if (!cpages) { 731 pr_debug("failed collect migrate device pages [0x%lx 0x%lx]\n", 732 prange->start, prange->last); 733 upages = svm_migrate_unsuccessful_pages(&migrate); 734 goto out_free; 735 } 736 if (cpages != npages) 737 pr_debug("partial migration, 0x%lx/0x%llx pages collected\n", 738 cpages, npages); 739 else 740 pr_debug("0x%lx pages collected\n", cpages); 741 742 r = svm_migrate_copy_to_ram(adev, prange, &migrate, &mfence, 743 scratch, npages); 744 migrate_vma_pages(&migrate); 745 746 upages = svm_migrate_unsuccessful_pages(&migrate); 747 pr_debug("unsuccessful/cpages/npages 0x%lx/0x%lx/0x%lx\n", 748 upages, cpages, migrate.npages); 749 750 svm_migrate_copy_done(adev, mfence); 751 migrate_vma_finalize(&migrate); 752 753 svm_range_dma_unmap_dev(adev->dev, scratch, 0, npages); 754 755 out_free: 756 kvfree(buf); 757 kfd_smi_event_migration_end(node, p->lead_thread->pid, 758 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 759 node->id, 0, trigger, r); 760 out: 761 if (!r && cpages) { 762 mpages = cpages - upages; 763 pdd = svm_range_get_pdd_by_node(prange, node); 764 if (pdd) 765 WRITE_ONCE(pdd->page_out, pdd->page_out + mpages); 766 } 767 768 return r ? r : mpages; 769 } 770 771 /** 772 * svm_migrate_vram_to_ram - migrate svm range from device to system 773 * @prange: range structure 774 * @mm: process mm, use current->mm if NULL 775 * @start_mgr: start page need be migrated to sys ram 776 * @last_mgr: last page need be migrated to sys ram 777 * @trigger: reason of migration 778 * @fault_page: is from vmf->page, svm_migrate_to_ram(), this is CPU page fault callback 779 * 780 * Context: Process context, caller hold mmap read lock, prange->migrate_mutex 781 * 782 * Return: 783 * 0 - OK, otherwise error code 784 */ 785 int svm_migrate_vram_to_ram(struct svm_range *prange, struct mm_struct *mm, 786 unsigned long start_mgr, unsigned long last_mgr, 787 uint32_t trigger, struct page *fault_page) 788 { 789 struct kfd_node *node; 790 struct vm_area_struct *vma; 791 unsigned long addr; 792 unsigned long start; 793 unsigned long end; 794 unsigned long mpages = 0; 795 long r = 0; 796 797 /* this pragne has no any vram page to migrate to sys ram */ 798 if (!prange->actual_loc) { 799 pr_debug("[0x%lx 0x%lx] already migrated to ram\n", 800 prange->start, prange->last); 801 return 0; 802 } 803 804 if (start_mgr < prange->start || last_mgr > prange->last) { 805 pr_debug("range [0x%lx 0x%lx] out prange [0x%lx 0x%lx]\n", 806 start_mgr, last_mgr, prange->start, prange->last); 807 return -EFAULT; 808 } 809 810 node = svm_range_get_node_by_id(prange, prange->actual_loc); 811 if (!node) { 812 pr_debug("failed to get kfd node by id 0x%x\n", prange->actual_loc); 813 return -ENODEV; 814 } 815 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] from gpu 0x%x to ram\n", 816 prange->svms, prange, start_mgr, last_mgr, 817 prange->actual_loc); 818 819 start = start_mgr << PAGE_SHIFT; 820 end = (last_mgr + 1) << PAGE_SHIFT; 821 822 for (addr = start; addr < end;) { 823 unsigned long next; 824 825 vma = vma_lookup(mm, addr); 826 if (!vma) { 827 pr_debug("failed to find vma for prange %p\n", prange); 828 r = -EFAULT; 829 break; 830 } 831 832 next = min(vma->vm_end, end); 833 r = svm_migrate_vma_to_ram(node, prange, vma, addr, next, trigger, 834 fault_page); 835 if (r < 0) { 836 pr_debug("failed %ld to migrate prange %p\n", r, prange); 837 break; 838 } else { 839 mpages += r; 840 } 841 addr = next; 842 } 843 844 if (r >= 0) { 845 prange->vram_pages -= mpages; 846 847 /* prange does not have vram page set its actual_loc to system 848 * and drop its svm_bo ref 849 */ 850 if (prange->vram_pages == 0 && prange->ttm_res) { 851 prange->actual_loc = 0; 852 svm_range_vram_node_free(prange); 853 } 854 } 855 856 return r < 0 ? r : 0; 857 } 858 859 /** 860 * svm_migrate_vram_to_vram - migrate svm range from device to device 861 * @prange: range structure 862 * @best_loc: the device to migrate to 863 * @start: start page need be migrated to sys ram 864 * @last: last page need be migrated to sys ram 865 * @mm: process mm, use current->mm if NULL 866 * @trigger: reason of migration 867 * 868 * Context: Process context, caller hold mmap read lock, svms lock, prange lock 869 * 870 * migrate all vram pages in prange to sys ram, then migrate 871 * [start, last] pages from sys ram to gpu node best_loc. 872 * 873 * Return: 874 * 0 - OK, otherwise error code 875 */ 876 static int 877 svm_migrate_vram_to_vram(struct svm_range *prange, uint32_t best_loc, 878 unsigned long start, unsigned long last, 879 struct mm_struct *mm, uint32_t trigger) 880 { 881 int r, retries = 3; 882 883 /* 884 * TODO: for both devices with PCIe large bar or on same xgmi hive, skip 885 * system memory as migration bridge 886 */ 887 888 pr_debug("from gpu 0x%x to gpu 0x%x\n", prange->actual_loc, best_loc); 889 890 do { 891 r = svm_migrate_vram_to_ram(prange, mm, prange->start, prange->last, 892 trigger, NULL); 893 if (r) 894 return r; 895 } while (prange->actual_loc && --retries); 896 897 if (prange->actual_loc) 898 return -EDEADLK; 899 900 return svm_migrate_ram_to_vram(prange, best_loc, start, last, mm, trigger); 901 } 902 903 int 904 svm_migrate_to_vram(struct svm_range *prange, uint32_t best_loc, 905 unsigned long start, unsigned long last, 906 struct mm_struct *mm, uint32_t trigger) 907 { 908 if (!prange->actual_loc || prange->actual_loc == best_loc) 909 return svm_migrate_ram_to_vram(prange, best_loc, start, last, 910 mm, trigger); 911 912 else 913 return svm_migrate_vram_to_vram(prange, best_loc, start, last, 914 mm, trigger); 915 916 } 917 918 /** 919 * svm_migrate_to_ram - CPU page fault handler 920 * @vmf: CPU vm fault vma, address 921 * 922 * Context: vm fault handler, caller holds the mmap read lock 923 * 924 * Return: 925 * 0 - OK 926 * VM_FAULT_SIGBUS - notice application to have SIGBUS page fault 927 */ 928 static vm_fault_t svm_migrate_to_ram(struct vm_fault *vmf) 929 { 930 unsigned long start, last, size; 931 unsigned long addr = vmf->address; 932 struct svm_range_bo *svm_bo; 933 struct svm_range *prange; 934 struct kfd_process *p; 935 struct mm_struct *mm; 936 int r = 0; 937 938 svm_bo = vmf->page->zone_device_data; 939 if (!svm_bo) { 940 pr_debug("failed get device page at addr 0x%lx\n", addr); 941 return VM_FAULT_SIGBUS; 942 } 943 if (!mmget_not_zero(svm_bo->eviction_fence->mm)) { 944 pr_debug("addr 0x%lx of process mm is destroyed\n", addr); 945 return VM_FAULT_SIGBUS; 946 } 947 948 mm = svm_bo->eviction_fence->mm; 949 if (mm != vmf->vma->vm_mm) 950 pr_debug("addr 0x%lx is COW mapping in child process\n", addr); 951 952 p = kfd_lookup_process_by_mm(mm); 953 if (!p) { 954 pr_debug("failed find process at fault address 0x%lx\n", addr); 955 r = VM_FAULT_SIGBUS; 956 goto out_mmput; 957 } 958 if (READ_ONCE(p->svms.faulting_task) == current) { 959 pr_debug("skipping ram migration\n"); 960 r = 0; 961 goto out_unref_process; 962 } 963 964 pr_debug("CPU page fault svms 0x%p address 0x%lx\n", &p->svms, addr); 965 addr >>= PAGE_SHIFT; 966 967 mutex_lock(&p->svms.lock); 968 969 prange = svm_range_from_addr(&p->svms, addr, NULL); 970 if (!prange) { 971 pr_debug("failed get range svms 0x%p addr 0x%lx\n", &p->svms, addr); 972 r = -EFAULT; 973 goto out_unlock_svms; 974 } 975 976 mutex_lock(&prange->migrate_mutex); 977 978 if (!prange->actual_loc) 979 goto out_unlock_prange; 980 981 /* Align migration range start and size to granularity size */ 982 size = 1UL << prange->granularity; 983 start = max(ALIGN_DOWN(addr, size), prange->start); 984 last = min(ALIGN(addr + 1, size) - 1, prange->last); 985 986 r = svm_migrate_vram_to_ram(prange, vmf->vma->vm_mm, start, last, 987 KFD_MIGRATE_TRIGGER_PAGEFAULT_CPU, vmf->page); 988 if (r) 989 pr_debug("failed %d migrate svms 0x%p range 0x%p [0x%lx 0x%lx]\n", 990 r, prange->svms, prange, start, last); 991 992 out_unlock_prange: 993 mutex_unlock(&prange->migrate_mutex); 994 out_unlock_svms: 995 mutex_unlock(&p->svms.lock); 996 out_unref_process: 997 pr_debug("CPU fault svms 0x%p address 0x%lx done\n", &p->svms, addr); 998 kfd_unref_process(p); 999 out_mmput: 1000 mmput(mm); 1001 return r ? VM_FAULT_SIGBUS : 0; 1002 } 1003 1004 static const struct dev_pagemap_ops svm_migrate_pgmap_ops = { 1005 .page_free = svm_migrate_page_free, 1006 .migrate_to_ram = svm_migrate_to_ram, 1007 }; 1008 1009 /* Each VRAM page uses sizeof(struct page) on system memory */ 1010 #define SVM_HMM_PAGE_STRUCT_SIZE(size) ((size)/PAGE_SIZE * sizeof(struct page)) 1011 1012 int kgd2kfd_init_zone_device(struct amdgpu_device *adev) 1013 { 1014 struct amdgpu_kfd_dev *kfddev = &adev->kfd; 1015 struct dev_pagemap *pgmap; 1016 struct resource *res = NULL; 1017 unsigned long size; 1018 void *r; 1019 1020 /* Page migration works on gfx9 or newer */ 1021 if (amdgpu_ip_version(adev, GC_HWIP, 0) < IP_VERSION(9, 0, 1)) 1022 return -EINVAL; 1023 1024 if (adev->flags & AMD_IS_APU) 1025 return 0; 1026 1027 pgmap = &kfddev->pgmap; 1028 memset(pgmap, 0, sizeof(*pgmap)); 1029 1030 /* TODO: register all vram to HMM for now. 1031 * should remove reserved size 1032 */ 1033 size = ALIGN(adev->gmc.real_vram_size, 2ULL << 20); 1034 if (adev->gmc.xgmi.connected_to_cpu) { 1035 pgmap->range.start = adev->gmc.aper_base; 1036 pgmap->range.end = adev->gmc.aper_base + adev->gmc.aper_size - 1; 1037 pgmap->type = MEMORY_DEVICE_COHERENT; 1038 } else { 1039 res = devm_request_free_mem_region(adev->dev, &iomem_resource, size); 1040 if (IS_ERR(res)) 1041 return PTR_ERR(res); 1042 pgmap->range.start = res->start; 1043 pgmap->range.end = res->end; 1044 pgmap->type = MEMORY_DEVICE_PRIVATE; 1045 } 1046 1047 pgmap->nr_range = 1; 1048 pgmap->ops = &svm_migrate_pgmap_ops; 1049 pgmap->owner = SVM_ADEV_PGMAP_OWNER(adev); 1050 pgmap->flags = 0; 1051 /* Device manager releases device-specific resources, memory region and 1052 * pgmap when driver disconnects from device. 1053 */ 1054 r = devm_memremap_pages(adev->dev, pgmap); 1055 if (IS_ERR(r)) { 1056 pr_err("failed to register HMM device memory\n"); 1057 if (pgmap->type == MEMORY_DEVICE_PRIVATE) 1058 devm_release_mem_region(adev->dev, res->start, resource_size(res)); 1059 /* Disable SVM support capability */ 1060 pgmap->type = 0; 1061 return PTR_ERR(r); 1062 } 1063 1064 pr_debug("reserve %ldMB system memory for VRAM pages struct\n", 1065 SVM_HMM_PAGE_STRUCT_SIZE(size) >> 20); 1066 1067 amdgpu_amdkfd_reserve_system_mem(SVM_HMM_PAGE_STRUCT_SIZE(size)); 1068 1069 pr_info("HMM registered %ldMB device memory\n", size >> 20); 1070 1071 return 0; 1072 } 1073