1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2020-2021 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 #include <linux/types.h> 24 #include <linux/dma-direction.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/migrate.h> 27 #include "amdgpu_sync.h" 28 #include "amdgpu_object.h" 29 #include "amdgpu_vm.h" 30 #include "amdgpu_res_cursor.h" 31 #include "kfd_priv.h" 32 #include "kfd_svm.h" 33 #include "kfd_migrate.h" 34 #include "kfd_smi_events.h" 35 36 #ifdef dev_fmt 37 #undef dev_fmt 38 #endif 39 #define dev_fmt(fmt) "kfd_migrate: " fmt 40 41 static u64 42 svm_migrate_direct_mapping_addr(struct amdgpu_device *adev, u64 addr) 43 { 44 return addr + amdgpu_ttm_domain_start(adev, TTM_PL_VRAM); 45 } 46 47 static int 48 svm_migrate_gart_map(struct amdgpu_ring *ring, u64 npages, 49 dma_addr_t *addr, u64 *gart_addr, u64 flags) 50 { 51 struct amdgpu_device *adev = ring->adev; 52 struct amdgpu_job *job; 53 unsigned int num_dw, num_bytes; 54 struct dma_fence *fence; 55 u64 src_addr, dst_addr; 56 u64 pte_flags; 57 void *cpu_addr; 58 int r; 59 60 /* use gart window 0 */ 61 *gart_addr = adev->gmc.gart_start; 62 63 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 64 num_bytes = npages * 8; 65 66 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr, 67 AMDGPU_FENCE_OWNER_UNDEFINED, 68 num_dw * 4 + num_bytes, 69 AMDGPU_IB_POOL_DELAYED, 70 &job, 71 AMDGPU_KERNEL_JOB_ID_KFD_GART_MAP); 72 if (r) 73 return r; 74 75 src_addr = num_dw * 4; 76 src_addr += job->ibs[0].gpu_addr; 77 78 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 79 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 80 dst_addr, num_bytes, 0); 81 82 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 83 WARN_ON(job->ibs[0].length_dw > num_dw); 84 85 pte_flags = AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE; 86 pte_flags |= AMDGPU_PTE_SYSTEM | AMDGPU_PTE_SNOOPED; 87 if (!(flags & KFD_IOCTL_SVM_FLAG_GPU_RO)) 88 pte_flags |= AMDGPU_PTE_WRITEABLE; 89 pte_flags |= adev->gart.gart_pte_flags; 90 91 cpu_addr = &job->ibs[0].ptr[num_dw]; 92 93 amdgpu_gart_map(adev, 0, npages, addr, pte_flags, cpu_addr); 94 fence = amdgpu_job_submit(job); 95 dma_fence_put(fence); 96 97 return r; 98 } 99 100 /** 101 * svm_migrate_copy_memory_gart - sdma copy data between ram and vram 102 * 103 * @adev: amdgpu device the sdma ring running 104 * @sys: system DMA pointer to be copied 105 * @vram: vram destination DMA pointer 106 * @npages: number of pages to copy 107 * @direction: enum MIGRATION_COPY_DIR 108 * @mfence: output, sdma fence to signal after sdma is done 109 * 110 * ram address uses GART table continuous entries mapping to ram pages, 111 * vram address uses direct mapping of vram pages, which must have npages 112 * number of continuous pages. 113 * GART update and sdma uses same buf copy function ring, sdma is splited to 114 * multiple GTT_MAX_PAGES transfer, all sdma operations are serialized, wait for 115 * the last sdma finish fence which is returned to check copy memory is done. 116 * 117 * Context: Process context, takes and releases gtt_window_lock 118 * 119 * Return: 120 * 0 - OK, otherwise error code 121 */ 122 123 static int 124 svm_migrate_copy_memory_gart(struct amdgpu_device *adev, dma_addr_t *sys, 125 u64 *vram, u64 npages, 126 enum MIGRATION_COPY_DIR direction, 127 struct dma_fence **mfence) 128 { 129 const u64 GTT_MAX_PAGES = AMDGPU_GTT_MAX_TRANSFER_SIZE; 130 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 131 u64 gart_s, gart_d; 132 struct dma_fence *next; 133 u64 size; 134 int r; 135 136 mutex_lock(&adev->mman.gtt_window_lock); 137 138 while (npages) { 139 size = min(GTT_MAX_PAGES, npages); 140 141 if (direction == FROM_VRAM_TO_RAM) { 142 gart_s = svm_migrate_direct_mapping_addr(adev, *vram); 143 r = svm_migrate_gart_map(ring, size, sys, &gart_d, 0); 144 145 } else if (direction == FROM_RAM_TO_VRAM) { 146 r = svm_migrate_gart_map(ring, size, sys, &gart_s, 147 KFD_IOCTL_SVM_FLAG_GPU_RO); 148 gart_d = svm_migrate_direct_mapping_addr(adev, *vram); 149 } 150 if (r) { 151 dev_err(adev->dev, "fail %d create gart mapping\n", r); 152 goto out_unlock; 153 } 154 155 r = amdgpu_copy_buffer(ring, gart_s, gart_d, size * PAGE_SIZE, 156 NULL, &next, false, true, 0); 157 if (r) { 158 dev_err(adev->dev, "fail %d to copy memory\n", r); 159 goto out_unlock; 160 } 161 162 dma_fence_put(*mfence); 163 *mfence = next; 164 npages -= size; 165 if (npages) { 166 sys += size; 167 vram += size; 168 } 169 } 170 171 out_unlock: 172 mutex_unlock(&adev->mman.gtt_window_lock); 173 174 return r; 175 } 176 177 /** 178 * svm_migrate_copy_done - wait for memory copy sdma is done 179 * 180 * @adev: amdgpu device the sdma memory copy is executing on 181 * @mfence: migrate fence 182 * 183 * Wait for dma fence is signaled, if the copy ssplit into multiple sdma 184 * operations, this is the last sdma operation fence. 185 * 186 * Context: called after svm_migrate_copy_memory 187 * 188 * Return: 189 * 0 - success 190 * otherwise - error code from dma fence signal 191 */ 192 static int 193 svm_migrate_copy_done(struct amdgpu_device *adev, struct dma_fence *mfence) 194 { 195 int r = 0; 196 197 if (mfence) { 198 r = dma_fence_wait(mfence, false); 199 dma_fence_put(mfence); 200 pr_debug("sdma copy memory fence done\n"); 201 } 202 203 return r; 204 } 205 206 unsigned long 207 svm_migrate_addr_to_pfn(struct amdgpu_device *adev, unsigned long addr) 208 { 209 return (addr + adev->kfd.pgmap.range.start) >> PAGE_SHIFT; 210 } 211 212 static void 213 svm_migrate_get_vram_page(struct svm_range *prange, unsigned long pfn) 214 { 215 struct page *page; 216 217 page = pfn_to_page(pfn); 218 svm_range_bo_ref(prange->svm_bo); 219 page->zone_device_data = prange->svm_bo; 220 zone_device_page_init(page, 0); 221 } 222 223 static void 224 svm_migrate_put_vram_page(struct amdgpu_device *adev, unsigned long addr) 225 { 226 struct page *page; 227 228 page = pfn_to_page(svm_migrate_addr_to_pfn(adev, addr)); 229 unlock_page(page); 230 put_page(page); 231 } 232 233 static unsigned long 234 svm_migrate_addr(struct amdgpu_device *adev, struct page *page) 235 { 236 unsigned long addr; 237 238 addr = page_to_pfn(page) << PAGE_SHIFT; 239 return (addr - adev->kfd.pgmap.range.start); 240 } 241 242 static struct page * 243 svm_migrate_get_sys_page(struct vm_area_struct *vma, unsigned long addr) 244 { 245 struct page *page; 246 247 page = alloc_page_vma(GFP_HIGHUSER, vma, addr); 248 if (page) 249 lock_page(page); 250 251 return page; 252 } 253 254 static void svm_migrate_put_sys_page(unsigned long addr) 255 { 256 struct page *page; 257 258 page = pfn_to_page(addr >> PAGE_SHIFT); 259 unlock_page(page); 260 put_page(page); 261 } 262 263 static unsigned long svm_migrate_successful_pages(struct migrate_vma *migrate) 264 { 265 unsigned long mpages = 0; 266 unsigned long i; 267 268 for (i = 0; i < migrate->npages; i++) { 269 if (migrate->dst[i] & MIGRATE_PFN_VALID && 270 migrate->src[i] & MIGRATE_PFN_MIGRATE) 271 mpages++; 272 } 273 return mpages; 274 } 275 276 static int 277 svm_migrate_copy_to_vram(struct kfd_node *node, struct svm_range *prange, 278 struct migrate_vma *migrate, struct dma_fence **mfence, 279 dma_addr_t *scratch, u64 ttm_res_offset) 280 { 281 u64 npages = migrate->npages; 282 struct amdgpu_device *adev = node->adev; 283 struct device *dev = adev->dev; 284 struct amdgpu_res_cursor cursor; 285 u64 mpages = 0; 286 dma_addr_t *src; 287 u64 *dst; 288 u64 i, j; 289 int r; 290 291 pr_debug("svms 0x%p [0x%lx 0x%lx 0x%llx]\n", prange->svms, prange->start, 292 prange->last, ttm_res_offset); 293 294 src = scratch; 295 dst = (u64 *)(scratch + npages); 296 297 amdgpu_res_first(prange->ttm_res, ttm_res_offset, 298 npages << PAGE_SHIFT, &cursor); 299 for (i = j = 0; (i < npages) && (mpages < migrate->cpages); i++) { 300 struct page *spage; 301 302 if (migrate->src[i] & MIGRATE_PFN_MIGRATE) { 303 dst[i] = cursor.start + (j << PAGE_SHIFT); 304 migrate->dst[i] = svm_migrate_addr_to_pfn(adev, dst[i]); 305 svm_migrate_get_vram_page(prange, migrate->dst[i]); 306 migrate->dst[i] = migrate_pfn(migrate->dst[i]); 307 mpages++; 308 } 309 spage = migrate_pfn_to_page(migrate->src[i]); 310 if (spage && !is_zone_device_page(spage)) { 311 src[i] = dma_map_page(dev, spage, 0, PAGE_SIZE, 312 DMA_BIDIRECTIONAL); 313 r = dma_mapping_error(dev, src[i]); 314 if (r) { 315 dev_err(dev, "%s: fail %d dma_map_page\n", 316 __func__, r); 317 goto out_free_vram_pages; 318 } 319 } else { 320 if (j) { 321 r = svm_migrate_copy_memory_gart( 322 adev, src + i - j, 323 dst + i - j, j, 324 FROM_RAM_TO_VRAM, 325 mfence); 326 if (r) 327 goto out_free_vram_pages; 328 amdgpu_res_next(&cursor, (j + 1) << PAGE_SHIFT); 329 j = 0; 330 } else { 331 amdgpu_res_next(&cursor, PAGE_SIZE); 332 } 333 continue; 334 } 335 336 pr_debug_ratelimited("dma mapping src to 0x%llx, pfn 0x%lx\n", 337 src[i] >> PAGE_SHIFT, page_to_pfn(spage)); 338 339 if (j >= (cursor.size >> PAGE_SHIFT) - 1 && i < npages - 1) { 340 r = svm_migrate_copy_memory_gart(adev, src + i - j, 341 dst + i - j, j + 1, 342 FROM_RAM_TO_VRAM, 343 mfence); 344 if (r) 345 goto out_free_vram_pages; 346 amdgpu_res_next(&cursor, (j + 1) * PAGE_SIZE); 347 j = 0; 348 } else { 349 j++; 350 } 351 } 352 353 r = svm_migrate_copy_memory_gart(adev, src + i - j, dst + i - j, j, 354 FROM_RAM_TO_VRAM, mfence); 355 356 out_free_vram_pages: 357 if (r) { 358 pr_debug("failed %d to copy memory to vram\n", r); 359 for (i = 0; i < npages && mpages; i++) { 360 if (!dst[i]) 361 continue; 362 svm_migrate_put_vram_page(adev, dst[i]); 363 migrate->dst[i] = 0; 364 mpages--; 365 } 366 } 367 368 #ifdef DEBUG_FORCE_MIXED_DOMAINS 369 for (i = 0, j = 0; i < npages; i += 4, j++) { 370 if (j & 1) 371 continue; 372 svm_migrate_put_vram_page(adev, dst[i]); 373 migrate->dst[i] = 0; 374 svm_migrate_put_vram_page(adev, dst[i + 1]); 375 migrate->dst[i + 1] = 0; 376 svm_migrate_put_vram_page(adev, dst[i + 2]); 377 migrate->dst[i + 2] = 0; 378 svm_migrate_put_vram_page(adev, dst[i + 3]); 379 migrate->dst[i + 3] = 0; 380 } 381 #endif 382 383 return r; 384 } 385 386 static long 387 svm_migrate_vma_to_vram(struct kfd_node *node, struct svm_range *prange, 388 struct vm_area_struct *vma, u64 start, 389 u64 end, uint32_t trigger, u64 ttm_res_offset) 390 { 391 struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms); 392 u64 npages = (end - start) >> PAGE_SHIFT; 393 struct amdgpu_device *adev = node->adev; 394 struct kfd_process_device *pdd; 395 struct dma_fence *mfence = NULL; 396 struct migrate_vma migrate = { 0 }; 397 unsigned long cpages = 0; 398 unsigned long mpages = 0; 399 dma_addr_t *scratch; 400 void *buf; 401 int r = -ENOMEM; 402 403 memset(&migrate, 0, sizeof(migrate)); 404 migrate.vma = vma; 405 migrate.start = start; 406 migrate.end = end; 407 migrate.flags = MIGRATE_VMA_SELECT_SYSTEM; 408 migrate.pgmap_owner = SVM_ADEV_PGMAP_OWNER(adev); 409 410 buf = kvcalloc(npages, 411 2 * sizeof(*migrate.src) + sizeof(u64) + sizeof(dma_addr_t), 412 GFP_KERNEL); 413 if (!buf) 414 goto out; 415 416 migrate.src = buf; 417 migrate.dst = migrate.src + npages; 418 scratch = (dma_addr_t *)(migrate.dst + npages); 419 420 kfd_smi_event_migration_start(node, p->lead_thread->pid, 421 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 422 0, node->id, prange->prefetch_loc, 423 prange->preferred_loc, trigger); 424 425 r = migrate_vma_setup(&migrate); 426 if (r) { 427 dev_err(adev->dev, "%s: vma setup fail %d range [0x%lx 0x%lx]\n", 428 __func__, r, prange->start, prange->last); 429 goto out_free; 430 } 431 432 cpages = migrate.cpages; 433 if (!cpages) { 434 pr_debug("failed collect migrate sys pages [0x%lx 0x%lx]\n", 435 prange->start, prange->last); 436 goto out_free; 437 } 438 if (cpages != npages) 439 pr_debug("partial migration, 0x%lx/0x%llx pages collected\n", 440 cpages, npages); 441 else 442 pr_debug("0x%lx pages collected\n", cpages); 443 444 r = svm_migrate_copy_to_vram(node, prange, &migrate, &mfence, scratch, ttm_res_offset); 445 migrate_vma_pages(&migrate); 446 447 svm_migrate_copy_done(adev, mfence); 448 migrate_vma_finalize(&migrate); 449 450 mpages = svm_migrate_successful_pages(&migrate); 451 pr_debug("migrated/collected/requested 0x%lx/0x%lx/0x%lx\n", 452 mpages, cpages, migrate.npages); 453 454 svm_range_dma_unmap_dev(adev->dev, scratch, 0, npages); 455 456 out_free: 457 kvfree(buf); 458 kfd_smi_event_migration_end(node, p->lead_thread->pid, 459 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 460 0, node->id, trigger, r); 461 out: 462 if (!r && mpages) { 463 pdd = svm_range_get_pdd_by_node(prange, node); 464 if (pdd) 465 WRITE_ONCE(pdd->page_in, pdd->page_in + mpages); 466 467 return mpages; 468 } 469 return r; 470 } 471 472 /** 473 * svm_migrate_ram_to_vram - migrate svm range from system to device 474 * @prange: range structure 475 * @best_loc: the device to migrate to 476 * @start_mgr: start page to migrate 477 * @last_mgr: last page to migrate 478 * @mm: the process mm structure 479 * @trigger: reason of migration 480 * 481 * Context: Process context, caller hold mmap read lock, svms lock, prange lock 482 * 483 * Return: 484 * 0 - OK, otherwise error code 485 */ 486 static int 487 svm_migrate_ram_to_vram(struct svm_range *prange, uint32_t best_loc, 488 unsigned long start_mgr, unsigned long last_mgr, 489 struct mm_struct *mm, uint32_t trigger) 490 { 491 unsigned long addr, start, end; 492 struct vm_area_struct *vma; 493 u64 ttm_res_offset; 494 struct kfd_node *node; 495 unsigned long mpages = 0; 496 long r = 0; 497 498 if (start_mgr < prange->start || last_mgr > prange->last) { 499 pr_debug("range [0x%lx 0x%lx] out prange [0x%lx 0x%lx]\n", 500 start_mgr, last_mgr, prange->start, prange->last); 501 return -EFAULT; 502 } 503 504 node = svm_range_get_node_by_id(prange, best_loc); 505 if (!node) { 506 pr_debug("failed to get kfd node by id 0x%x\n", best_loc); 507 return -ENODEV; 508 } 509 510 pr_debug("svms 0x%p [0x%lx 0x%lx] in [0x%lx 0x%lx] to gpu 0x%x\n", 511 prange->svms, start_mgr, last_mgr, prange->start, prange->last, 512 best_loc); 513 514 start = start_mgr << PAGE_SHIFT; 515 end = (last_mgr + 1) << PAGE_SHIFT; 516 517 r = amdgpu_amdkfd_reserve_mem_limit(node->adev, 518 prange->npages * PAGE_SIZE, 519 KFD_IOC_ALLOC_MEM_FLAGS_VRAM, 520 node->xcp ? node->xcp->id : 0); 521 if (r) { 522 dev_dbg(node->adev->dev, "failed to reserve VRAM, r: %ld\n", r); 523 return -ENOSPC; 524 } 525 526 r = svm_range_vram_node_new(node, prange, true); 527 if (r) { 528 dev_dbg(node->adev->dev, "fail %ld to alloc vram\n", r); 529 goto out; 530 } 531 ttm_res_offset = (start_mgr - prange->start + prange->offset) << PAGE_SHIFT; 532 533 for (addr = start; addr < end;) { 534 unsigned long next; 535 536 vma = vma_lookup(mm, addr); 537 if (!vma) 538 break; 539 540 next = min(vma->vm_end, end); 541 r = svm_migrate_vma_to_vram(node, prange, vma, addr, next, trigger, ttm_res_offset); 542 if (r < 0) { 543 pr_debug("failed %ld to migrate\n", r); 544 break; 545 } else { 546 mpages += r; 547 } 548 ttm_res_offset += next - addr; 549 addr = next; 550 } 551 552 if (mpages) { 553 prange->actual_loc = best_loc; 554 prange->vram_pages += mpages; 555 } else if (!prange->actual_loc) { 556 /* if no page migrated and all pages from prange are at 557 * sys ram drop svm_bo got from svm_range_vram_node_new 558 */ 559 svm_range_vram_node_free(prange); 560 } 561 562 out: 563 amdgpu_amdkfd_unreserve_mem_limit(node->adev, 564 prange->npages * PAGE_SIZE, 565 KFD_IOC_ALLOC_MEM_FLAGS_VRAM, 566 node->xcp ? node->xcp->id : 0); 567 return r < 0 ? r : 0; 568 } 569 570 static void svm_migrate_folio_free(struct folio *folio) 571 { 572 struct page *page = &folio->page; 573 struct svm_range_bo *svm_bo = page->zone_device_data; 574 575 if (svm_bo) { 576 pr_debug_ratelimited("ref: %d\n", kref_read(&svm_bo->kref)); 577 svm_range_bo_unref_async(svm_bo); 578 } 579 } 580 581 static int 582 svm_migrate_copy_to_ram(struct amdgpu_device *adev, struct svm_range *prange, 583 struct migrate_vma *migrate, struct dma_fence **mfence, 584 dma_addr_t *scratch, u64 npages) 585 { 586 struct device *dev = adev->dev; 587 u64 *src; 588 dma_addr_t *dst; 589 struct page *dpage; 590 u64 i = 0, j; 591 u64 addr; 592 int r = 0; 593 594 pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms, prange->start, 595 prange->last); 596 597 addr = migrate->start; 598 599 src = (u64 *)(scratch + npages); 600 dst = scratch; 601 602 for (i = 0, j = 0; i < npages; i++, addr += PAGE_SIZE) { 603 struct page *spage; 604 605 spage = migrate_pfn_to_page(migrate->src[i]); 606 if (!spage || !is_zone_device_page(spage)) { 607 pr_debug("invalid page. Could be in CPU already svms 0x%p [0x%lx 0x%lx]\n", 608 prange->svms, prange->start, prange->last); 609 if (j) { 610 r = svm_migrate_copy_memory_gart(adev, dst + i - j, 611 src + i - j, j, 612 FROM_VRAM_TO_RAM, 613 mfence); 614 if (r) 615 goto out_oom; 616 j = 0; 617 } 618 continue; 619 } 620 src[i] = svm_migrate_addr(adev, spage); 621 if (j > 0 && src[i] != src[i - 1] + PAGE_SIZE) { 622 r = svm_migrate_copy_memory_gart(adev, dst + i - j, 623 src + i - j, j, 624 FROM_VRAM_TO_RAM, 625 mfence); 626 if (r) 627 goto out_oom; 628 j = 0; 629 } 630 631 dpage = svm_migrate_get_sys_page(migrate->vma, addr); 632 if (!dpage) { 633 pr_debug("failed get page svms 0x%p [0x%lx 0x%lx]\n", 634 prange->svms, prange->start, prange->last); 635 r = -ENOMEM; 636 goto out_oom; 637 } 638 639 dst[i] = dma_map_page(dev, dpage, 0, PAGE_SIZE, DMA_BIDIRECTIONAL); 640 r = dma_mapping_error(dev, dst[i]); 641 if (r) { 642 dev_err(adev->dev, "%s: fail %d dma_map_page\n", __func__, r); 643 goto out_oom; 644 } 645 646 pr_debug_ratelimited("dma mapping dst to 0x%llx, pfn 0x%lx\n", 647 dst[i] >> PAGE_SHIFT, page_to_pfn(dpage)); 648 649 migrate->dst[i] = migrate_pfn(page_to_pfn(dpage)); 650 j++; 651 } 652 653 r = svm_migrate_copy_memory_gart(adev, dst + i - j, src + i - j, j, 654 FROM_VRAM_TO_RAM, mfence); 655 656 out_oom: 657 if (r) { 658 pr_debug("failed %d copy to ram\n", r); 659 while (i--) { 660 svm_migrate_put_sys_page(dst[i]); 661 migrate->dst[i] = 0; 662 } 663 } 664 665 return r; 666 } 667 668 /** 669 * svm_migrate_vma_to_ram - migrate range inside one vma from device to system 670 * 671 * @prange: svm range structure 672 * @vma: vm_area_struct that range [start, end] belongs to 673 * @start: range start virtual address in pages 674 * @end: range end virtual address in pages 675 * @node: kfd node device to migrate from 676 * @trigger: reason of migration 677 * @fault_page: is from vmf->page, svm_migrate_to_ram(), this is CPU page fault callback 678 * 679 * Context: Process context, caller hold mmap read lock, prange->migrate_mutex 680 * 681 * Return: 682 * negative values - indicate error 683 * positive values or zero - number of pages got migrated 684 */ 685 static long 686 svm_migrate_vma_to_ram(struct kfd_node *node, struct svm_range *prange, 687 struct vm_area_struct *vma, u64 start, u64 end, 688 uint32_t trigger, struct page *fault_page) 689 { 690 struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms); 691 u64 npages = (end - start) >> PAGE_SHIFT; 692 unsigned long cpages = 0; 693 unsigned long mpages = 0; 694 struct amdgpu_device *adev = node->adev; 695 struct kfd_process_device *pdd; 696 struct dma_fence *mfence = NULL; 697 struct migrate_vma migrate = { 0 }; 698 dma_addr_t *scratch; 699 void *buf; 700 int r = -ENOMEM; 701 702 memset(&migrate, 0, sizeof(migrate)); 703 migrate.vma = vma; 704 migrate.start = start; 705 migrate.end = end; 706 migrate.pgmap_owner = SVM_ADEV_PGMAP_OWNER(adev); 707 if (adev->gmc.xgmi.connected_to_cpu) 708 migrate.flags = MIGRATE_VMA_SELECT_DEVICE_COHERENT; 709 else 710 migrate.flags = MIGRATE_VMA_SELECT_DEVICE_PRIVATE; 711 712 buf = kvcalloc(npages, 713 2 * sizeof(*migrate.src) + sizeof(u64) + sizeof(dma_addr_t), 714 GFP_KERNEL); 715 if (!buf) 716 goto out; 717 718 migrate.src = buf; 719 migrate.dst = migrate.src + npages; 720 migrate.fault_page = fault_page; 721 scratch = (dma_addr_t *)(migrate.dst + npages); 722 723 kfd_smi_event_migration_start(node, p->lead_thread->pid, 724 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 725 node->id, 0, prange->prefetch_loc, 726 prange->preferred_loc, trigger); 727 728 r = migrate_vma_setup(&migrate); 729 if (r) { 730 dev_err(adev->dev, "%s: vma setup fail %d range [0x%lx 0x%lx]\n", 731 __func__, r, prange->start, prange->last); 732 goto out_free; 733 } 734 735 cpages = migrate.cpages; 736 if (!cpages) { 737 pr_debug("failed collect migrate device pages [0x%lx 0x%lx]\n", 738 prange->start, prange->last); 739 goto out_free; 740 } 741 if (cpages != npages) 742 pr_debug("partial migration, 0x%lx/0x%llx pages collected\n", 743 cpages, npages); 744 else 745 pr_debug("0x%lx pages collected\n", cpages); 746 747 r = svm_migrate_copy_to_ram(adev, prange, &migrate, &mfence, 748 scratch, npages); 749 migrate_vma_pages(&migrate); 750 751 mpages = svm_migrate_successful_pages(&migrate); 752 pr_debug("migrated/collected/requested 0x%lx/0x%lx/0x%lx\n", 753 mpages, cpages, migrate.npages); 754 755 svm_migrate_copy_done(adev, mfence); 756 migrate_vma_finalize(&migrate); 757 758 svm_range_dma_unmap_dev(adev->dev, scratch, 0, npages); 759 760 out_free: 761 kvfree(buf); 762 kfd_smi_event_migration_end(node, p->lead_thread->pid, 763 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 764 node->id, 0, trigger, r); 765 out: 766 if (!r && mpages) { 767 pdd = svm_range_get_pdd_by_node(prange, node); 768 if (pdd) 769 WRITE_ONCE(pdd->page_out, pdd->page_out + mpages); 770 } 771 772 return r ? r : mpages; 773 } 774 775 /** 776 * svm_migrate_vram_to_ram - migrate svm range from device to system 777 * @prange: range structure 778 * @mm: process mm, use current->mm if NULL 779 * @start_mgr: start page need be migrated to sys ram 780 * @last_mgr: last page need be migrated to sys ram 781 * @trigger: reason of migration 782 * @fault_page: is from vmf->page, svm_migrate_to_ram(), this is CPU page fault callback 783 * 784 * Context: Process context, caller hold mmap read lock, prange->migrate_mutex 785 * 786 * Return: 787 * 0 - OK, otherwise error code 788 */ 789 int svm_migrate_vram_to_ram(struct svm_range *prange, struct mm_struct *mm, 790 unsigned long start_mgr, unsigned long last_mgr, 791 uint32_t trigger, struct page *fault_page) 792 { 793 struct kfd_node *node; 794 struct vm_area_struct *vma; 795 unsigned long addr; 796 unsigned long start; 797 unsigned long end; 798 unsigned long mpages = 0; 799 long r = 0; 800 801 /* this pragne has no any vram page to migrate to sys ram */ 802 if (!prange->actual_loc) { 803 pr_debug("[0x%lx 0x%lx] already migrated to ram\n", 804 prange->start, prange->last); 805 return 0; 806 } 807 808 if (start_mgr < prange->start || last_mgr > prange->last) { 809 pr_debug("range [0x%lx 0x%lx] out prange [0x%lx 0x%lx]\n", 810 start_mgr, last_mgr, prange->start, prange->last); 811 return -EFAULT; 812 } 813 814 node = svm_range_get_node_by_id(prange, prange->actual_loc); 815 if (!node) { 816 pr_debug("failed to get kfd node by id 0x%x\n", prange->actual_loc); 817 return -ENODEV; 818 } 819 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] from gpu 0x%x to ram\n", 820 prange->svms, prange, start_mgr, last_mgr, 821 prange->actual_loc); 822 823 start = start_mgr << PAGE_SHIFT; 824 end = (last_mgr + 1) << PAGE_SHIFT; 825 826 for (addr = start; addr < end;) { 827 unsigned long next; 828 829 vma = vma_lookup(mm, addr); 830 if (!vma) { 831 pr_debug("failed to find vma for prange %p\n", prange); 832 r = -EFAULT; 833 break; 834 } 835 836 next = min(vma->vm_end, end); 837 r = svm_migrate_vma_to_ram(node, prange, vma, addr, next, trigger, 838 fault_page); 839 if (r < 0) { 840 pr_debug("failed %ld to migrate prange %p\n", r, prange); 841 break; 842 } else { 843 mpages += r; 844 } 845 addr = next; 846 } 847 848 if (r >= 0) { 849 WARN_ONCE(prange->vram_pages < mpages, 850 "Recorded vram pages(0x%llx) should not be less than migration pages(0x%lx).", 851 prange->vram_pages, mpages); 852 prange->vram_pages -= mpages; 853 854 /* prange does not have vram page set its actual_loc to system 855 * and drop its svm_bo ref 856 */ 857 if (prange->vram_pages == 0 && prange->ttm_res) { 858 prange->actual_loc = 0; 859 svm_range_vram_node_free(prange); 860 } 861 } 862 863 return r < 0 ? r : 0; 864 } 865 866 /** 867 * svm_migrate_vram_to_vram - migrate svm range from device to device 868 * @prange: range structure 869 * @best_loc: the device to migrate to 870 * @start: start page need be migrated to sys ram 871 * @last: last page need be migrated to sys ram 872 * @mm: process mm, use current->mm if NULL 873 * @trigger: reason of migration 874 * 875 * Context: Process context, caller hold mmap read lock, svms lock, prange lock 876 * 877 * migrate all vram pages in prange to sys ram, then migrate 878 * [start, last] pages from sys ram to gpu node best_loc. 879 * 880 * Return: 881 * 0 - OK, otherwise error code 882 */ 883 static int 884 svm_migrate_vram_to_vram(struct svm_range *prange, uint32_t best_loc, 885 unsigned long start, unsigned long last, 886 struct mm_struct *mm, uint32_t trigger) 887 { 888 int r, retries = 3; 889 890 /* 891 * TODO: for both devices with PCIe large bar or on same xgmi hive, skip 892 * system memory as migration bridge 893 */ 894 895 pr_debug("from gpu 0x%x to gpu 0x%x\n", prange->actual_loc, best_loc); 896 897 do { 898 r = svm_migrate_vram_to_ram(prange, mm, prange->start, prange->last, 899 trigger, NULL); 900 if (r) 901 return r; 902 } while (prange->actual_loc && --retries); 903 904 if (prange->actual_loc) 905 return -EDEADLK; 906 907 return svm_migrate_ram_to_vram(prange, best_loc, start, last, mm, trigger); 908 } 909 910 int 911 svm_migrate_to_vram(struct svm_range *prange, uint32_t best_loc, 912 unsigned long start, unsigned long last, 913 struct mm_struct *mm, uint32_t trigger) 914 { 915 if (!prange->actual_loc || prange->actual_loc == best_loc) 916 return svm_migrate_ram_to_vram(prange, best_loc, start, last, 917 mm, trigger); 918 919 else 920 return svm_migrate_vram_to_vram(prange, best_loc, start, last, 921 mm, trigger); 922 923 } 924 925 /** 926 * svm_migrate_to_ram - CPU page fault handler 927 * @vmf: CPU vm fault vma, address 928 * 929 * Context: vm fault handler, caller holds the mmap read lock 930 * 931 * Return: 932 * 0 - OK 933 * VM_FAULT_SIGBUS - notice application to have SIGBUS page fault 934 */ 935 static vm_fault_t svm_migrate_to_ram(struct vm_fault *vmf) 936 { 937 unsigned long start, last, size; 938 unsigned long addr = vmf->address; 939 struct svm_range_bo *svm_bo; 940 struct svm_range *prange; 941 struct kfd_process *p; 942 struct mm_struct *mm; 943 int r = 0; 944 945 svm_bo = vmf->page->zone_device_data; 946 if (!svm_bo) { 947 pr_debug("failed get device page at addr 0x%lx\n", addr); 948 return VM_FAULT_SIGBUS; 949 } 950 if (!mmget_not_zero(svm_bo->eviction_fence->mm)) { 951 pr_debug("addr 0x%lx of process mm is destroyed\n", addr); 952 return VM_FAULT_SIGBUS; 953 } 954 955 mm = svm_bo->eviction_fence->mm; 956 if (mm != vmf->vma->vm_mm) 957 pr_debug("addr 0x%lx is COW mapping in child process\n", addr); 958 959 p = kfd_lookup_process_by_mm(mm); 960 if (!p) { 961 pr_debug("failed find process at fault address 0x%lx\n", addr); 962 r = VM_FAULT_SIGBUS; 963 goto out_mmput; 964 } 965 if (READ_ONCE(p->svms.faulting_task) == current) { 966 pr_debug("skipping ram migration\n"); 967 r = 0; 968 goto out_unref_process; 969 } 970 971 pr_debug("CPU page fault svms 0x%p address 0x%lx\n", &p->svms, addr); 972 addr >>= PAGE_SHIFT; 973 974 mutex_lock(&p->svms.lock); 975 976 prange = svm_range_from_addr(&p->svms, addr, NULL); 977 if (!prange) { 978 pr_debug("failed get range svms 0x%p addr 0x%lx\n", &p->svms, addr); 979 r = -EFAULT; 980 goto out_unlock_svms; 981 } 982 983 mutex_lock(&prange->migrate_mutex); 984 985 if (!prange->actual_loc) 986 goto out_unlock_prange; 987 988 /* Align migration range start and size to granularity size */ 989 size = 1UL << prange->granularity; 990 start = max(ALIGN_DOWN(addr, size), prange->start); 991 last = min(ALIGN(addr + 1, size) - 1, prange->last); 992 993 r = svm_migrate_vram_to_ram(prange, vmf->vma->vm_mm, start, last, 994 KFD_MIGRATE_TRIGGER_PAGEFAULT_CPU, vmf->page); 995 if (r) 996 pr_debug("failed %d migrate svms 0x%p range 0x%p [0x%lx 0x%lx]\n", 997 r, prange->svms, prange, start, last); 998 999 out_unlock_prange: 1000 mutex_unlock(&prange->migrate_mutex); 1001 out_unlock_svms: 1002 mutex_unlock(&p->svms.lock); 1003 out_unref_process: 1004 pr_debug("CPU fault svms 0x%p address 0x%lx done\n", &p->svms, addr); 1005 kfd_unref_process(p); 1006 out_mmput: 1007 mmput(mm); 1008 return r ? VM_FAULT_SIGBUS : 0; 1009 } 1010 1011 static const struct dev_pagemap_ops svm_migrate_pgmap_ops = { 1012 .folio_free = svm_migrate_folio_free, 1013 .migrate_to_ram = svm_migrate_to_ram, 1014 }; 1015 1016 /* Each VRAM page uses sizeof(struct page) on system memory */ 1017 #define SVM_HMM_PAGE_STRUCT_SIZE(size) ((size)/PAGE_SIZE * sizeof(struct page)) 1018 1019 int kgd2kfd_init_zone_device(struct amdgpu_device *adev) 1020 { 1021 struct amdgpu_kfd_dev *kfddev = &adev->kfd; 1022 struct dev_pagemap *pgmap; 1023 struct resource *res = NULL; 1024 unsigned long size; 1025 void *r; 1026 1027 /* Page migration works on gfx9 or newer */ 1028 if (amdgpu_ip_version(adev, GC_HWIP, 0) < IP_VERSION(9, 0, 1)) 1029 return -EINVAL; 1030 1031 if (adev->apu_prefer_gtt) 1032 return 0; 1033 1034 pgmap = &kfddev->pgmap; 1035 memset(pgmap, 0, sizeof(*pgmap)); 1036 1037 /* TODO: register all vram to HMM for now. 1038 * should remove reserved size 1039 */ 1040 size = ALIGN(adev->gmc.real_vram_size, 2ULL << 20); 1041 if (adev->gmc.xgmi.connected_to_cpu) { 1042 pgmap->range.start = adev->gmc.aper_base; 1043 pgmap->range.end = adev->gmc.aper_base + adev->gmc.aper_size - 1; 1044 pgmap->type = MEMORY_DEVICE_COHERENT; 1045 } else { 1046 res = devm_request_free_mem_region(adev->dev, &iomem_resource, size); 1047 if (IS_ERR(res)) 1048 return PTR_ERR(res); 1049 pgmap->range.start = res->start; 1050 pgmap->range.end = res->end; 1051 pgmap->type = MEMORY_DEVICE_PRIVATE; 1052 } 1053 1054 pgmap->nr_range = 1; 1055 pgmap->ops = &svm_migrate_pgmap_ops; 1056 pgmap->owner = SVM_ADEV_PGMAP_OWNER(adev); 1057 pgmap->flags = 0; 1058 /* Device manager releases device-specific resources, memory region and 1059 * pgmap when driver disconnects from device. 1060 */ 1061 r = devm_memremap_pages(adev->dev, pgmap); 1062 if (IS_ERR(r)) { 1063 pr_err("failed to register HMM device memory\n"); 1064 if (pgmap->type == MEMORY_DEVICE_PRIVATE) 1065 devm_release_mem_region(adev->dev, res->start, resource_size(res)); 1066 /* Disable SVM support capability */ 1067 pgmap->type = 0; 1068 return PTR_ERR(r); 1069 } 1070 1071 pr_debug("reserve %ldMB system memory for VRAM pages struct\n", 1072 SVM_HMM_PAGE_STRUCT_SIZE(size) >> 20); 1073 1074 amdgpu_amdkfd_reserve_system_mem(SVM_HMM_PAGE_STRUCT_SIZE(size)); 1075 1076 pr_info("HMM registered %ldMB device memory\n", size >> 20); 1077 1078 return 0; 1079 } 1080