xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_migrate.c (revision 3f3a1675b731e532d479e65570f2904878fbd9f0)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2020-2021 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 #include <linux/types.h>
24 #include <linux/hmm.h>
25 #include <linux/dma-direction.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/migrate.h>
28 #include "amdgpu_sync.h"
29 #include "amdgpu_object.h"
30 #include "amdgpu_vm.h"
31 #include "amdgpu_res_cursor.h"
32 #include "kfd_priv.h"
33 #include "kfd_svm.h"
34 #include "kfd_migrate.h"
35 #include "kfd_smi_events.h"
36 
37 #ifdef dev_fmt
38 #undef dev_fmt
39 #endif
40 #define dev_fmt(fmt) "kfd_migrate: " fmt
41 
42 static uint64_t
43 svm_migrate_direct_mapping_addr(struct amdgpu_device *adev, uint64_t addr)
44 {
45 	return addr + amdgpu_ttm_domain_start(adev, TTM_PL_VRAM);
46 }
47 
48 static int
49 svm_migrate_gart_map(struct amdgpu_ring *ring, uint64_t npages,
50 		     dma_addr_t *addr, uint64_t *gart_addr, uint64_t flags)
51 {
52 	struct amdgpu_device *adev = ring->adev;
53 	struct amdgpu_job *job;
54 	unsigned int num_dw, num_bytes;
55 	struct dma_fence *fence;
56 	uint64_t src_addr, dst_addr;
57 	uint64_t pte_flags;
58 	void *cpu_addr;
59 	int r;
60 
61 	/* use gart window 0 */
62 	*gart_addr = adev->gmc.gart_start;
63 
64 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
65 	num_bytes = npages * 8;
66 
67 	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.entity,
68 				     AMDGPU_FENCE_OWNER_UNDEFINED,
69 				     num_dw * 4 + num_bytes,
70 				     AMDGPU_IB_POOL_DELAYED,
71 				     &job);
72 	if (r)
73 		return r;
74 
75 	src_addr = num_dw * 4;
76 	src_addr += job->ibs[0].gpu_addr;
77 
78 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
79 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
80 				dst_addr, num_bytes, false);
81 
82 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
83 	WARN_ON(job->ibs[0].length_dw > num_dw);
84 
85 	pte_flags = AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE;
86 	pte_flags |= AMDGPU_PTE_SYSTEM | AMDGPU_PTE_SNOOPED;
87 	if (!(flags & KFD_IOCTL_SVM_FLAG_GPU_RO))
88 		pte_flags |= AMDGPU_PTE_WRITEABLE;
89 	pte_flags |= adev->gart.gart_pte_flags;
90 
91 	cpu_addr = &job->ibs[0].ptr[num_dw];
92 
93 	amdgpu_gart_map(adev, 0, npages, addr, pte_flags, cpu_addr);
94 	fence = amdgpu_job_submit(job);
95 	dma_fence_put(fence);
96 
97 	return r;
98 }
99 
100 /**
101  * svm_migrate_copy_memory_gart - sdma copy data between ram and vram
102  *
103  * @adev: amdgpu device the sdma ring running
104  * @sys: system DMA pointer to be copied
105  * @vram: vram destination DMA pointer
106  * @npages: number of pages to copy
107  * @direction: enum MIGRATION_COPY_DIR
108  * @mfence: output, sdma fence to signal after sdma is done
109  *
110  * ram address uses GART table continuous entries mapping to ram pages,
111  * vram address uses direct mapping of vram pages, which must have npages
112  * number of continuous pages.
113  * GART update and sdma uses same buf copy function ring, sdma is splited to
114  * multiple GTT_MAX_PAGES transfer, all sdma operations are serialized, wait for
115  * the last sdma finish fence which is returned to check copy memory is done.
116  *
117  * Context: Process context, takes and releases gtt_window_lock
118  *
119  * Return:
120  * 0 - OK, otherwise error code
121  */
122 
123 static int
124 svm_migrate_copy_memory_gart(struct amdgpu_device *adev, dma_addr_t *sys,
125 			     uint64_t *vram, uint64_t npages,
126 			     enum MIGRATION_COPY_DIR direction,
127 			     struct dma_fence **mfence)
128 {
129 	const uint64_t GTT_MAX_PAGES = AMDGPU_GTT_MAX_TRANSFER_SIZE;
130 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
131 	uint64_t gart_s, gart_d;
132 	struct dma_fence *next;
133 	uint64_t size;
134 	int r;
135 
136 	mutex_lock(&adev->mman.gtt_window_lock);
137 
138 	while (npages) {
139 		size = min(GTT_MAX_PAGES, npages);
140 
141 		if (direction == FROM_VRAM_TO_RAM) {
142 			gart_s = svm_migrate_direct_mapping_addr(adev, *vram);
143 			r = svm_migrate_gart_map(ring, size, sys, &gart_d, 0);
144 
145 		} else if (direction == FROM_RAM_TO_VRAM) {
146 			r = svm_migrate_gart_map(ring, size, sys, &gart_s,
147 						 KFD_IOCTL_SVM_FLAG_GPU_RO);
148 			gart_d = svm_migrate_direct_mapping_addr(adev, *vram);
149 		}
150 		if (r) {
151 			dev_err(adev->dev, "fail %d create gart mapping\n", r);
152 			goto out_unlock;
153 		}
154 
155 		r = amdgpu_copy_buffer(ring, gart_s, gart_d, size * PAGE_SIZE,
156 				       NULL, &next, false, true, false);
157 		if (r) {
158 			dev_err(adev->dev, "fail %d to copy memory\n", r);
159 			goto out_unlock;
160 		}
161 
162 		dma_fence_put(*mfence);
163 		*mfence = next;
164 		npages -= size;
165 		if (npages) {
166 			sys += size;
167 			vram += size;
168 		}
169 	}
170 
171 out_unlock:
172 	mutex_unlock(&adev->mman.gtt_window_lock);
173 
174 	return r;
175 }
176 
177 /**
178  * svm_migrate_copy_done - wait for memory copy sdma is done
179  *
180  * @adev: amdgpu device the sdma memory copy is executing on
181  * @mfence: migrate fence
182  *
183  * Wait for dma fence is signaled, if the copy ssplit into multiple sdma
184  * operations, this is the last sdma operation fence.
185  *
186  * Context: called after svm_migrate_copy_memory
187  *
188  * Return:
189  * 0		- success
190  * otherwise	- error code from dma fence signal
191  */
192 static int
193 svm_migrate_copy_done(struct amdgpu_device *adev, struct dma_fence *mfence)
194 {
195 	int r = 0;
196 
197 	if (mfence) {
198 		r = dma_fence_wait(mfence, false);
199 		dma_fence_put(mfence);
200 		pr_debug("sdma copy memory fence done\n");
201 	}
202 
203 	return r;
204 }
205 
206 unsigned long
207 svm_migrate_addr_to_pfn(struct amdgpu_device *adev, unsigned long addr)
208 {
209 	return (addr + adev->kfd.dev->pgmap.range.start) >> PAGE_SHIFT;
210 }
211 
212 static void
213 svm_migrate_get_vram_page(struct svm_range *prange, unsigned long pfn)
214 {
215 	struct page *page;
216 
217 	page = pfn_to_page(pfn);
218 	svm_range_bo_ref(prange->svm_bo);
219 	page->zone_device_data = prange->svm_bo;
220 	zone_device_page_init(page);
221 }
222 
223 static void
224 svm_migrate_put_vram_page(struct amdgpu_device *adev, unsigned long addr)
225 {
226 	struct page *page;
227 
228 	page = pfn_to_page(svm_migrate_addr_to_pfn(adev, addr));
229 	unlock_page(page);
230 	put_page(page);
231 }
232 
233 static unsigned long
234 svm_migrate_addr(struct amdgpu_device *adev, struct page *page)
235 {
236 	unsigned long addr;
237 
238 	addr = page_to_pfn(page) << PAGE_SHIFT;
239 	return (addr - adev->kfd.dev->pgmap.range.start);
240 }
241 
242 static struct page *
243 svm_migrate_get_sys_page(struct vm_area_struct *vma, unsigned long addr)
244 {
245 	struct page *page;
246 
247 	page = alloc_page_vma(GFP_HIGHUSER, vma, addr);
248 	if (page)
249 		lock_page(page);
250 
251 	return page;
252 }
253 
254 static void svm_migrate_put_sys_page(unsigned long addr)
255 {
256 	struct page *page;
257 
258 	page = pfn_to_page(addr >> PAGE_SHIFT);
259 	unlock_page(page);
260 	put_page(page);
261 }
262 
263 static unsigned long svm_migrate_successful_pages(struct migrate_vma *migrate)
264 {
265 	unsigned long cpages = 0;
266 	unsigned long i;
267 
268 	for (i = 0; i < migrate->npages; i++) {
269 		if (migrate->src[i] & MIGRATE_PFN_VALID &&
270 		    migrate->src[i] & MIGRATE_PFN_MIGRATE)
271 			cpages++;
272 	}
273 	return cpages;
274 }
275 
276 static unsigned long svm_migrate_unsuccessful_pages(struct migrate_vma *migrate)
277 {
278 	unsigned long upages = 0;
279 	unsigned long i;
280 
281 	for (i = 0; i < migrate->npages; i++) {
282 		if (migrate->src[i] & MIGRATE_PFN_VALID &&
283 		    !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
284 			upages++;
285 	}
286 	return upages;
287 }
288 
289 static int
290 svm_migrate_copy_to_vram(struct amdgpu_device *adev, struct svm_range *prange,
291 			 struct migrate_vma *migrate, struct dma_fence **mfence,
292 			 dma_addr_t *scratch, uint64_t ttm_res_offset)
293 {
294 	uint64_t npages = migrate->npages;
295 	struct device *dev = adev->dev;
296 	struct amdgpu_res_cursor cursor;
297 	dma_addr_t *src;
298 	uint64_t *dst;
299 	uint64_t i, j;
300 	int r;
301 
302 	pr_debug("svms 0x%p [0x%lx 0x%lx 0x%llx]\n", prange->svms, prange->start,
303 		 prange->last, ttm_res_offset);
304 
305 	src = scratch;
306 	dst = (uint64_t *)(scratch + npages);
307 
308 	amdgpu_res_first(prange->ttm_res, ttm_res_offset,
309 			 npages << PAGE_SHIFT, &cursor);
310 	for (i = j = 0; i < npages; i++) {
311 		struct page *spage;
312 
313 		dst[i] = cursor.start + (j << PAGE_SHIFT);
314 		migrate->dst[i] = svm_migrate_addr_to_pfn(adev, dst[i]);
315 		svm_migrate_get_vram_page(prange, migrate->dst[i]);
316 		migrate->dst[i] = migrate_pfn(migrate->dst[i]);
317 
318 		spage = migrate_pfn_to_page(migrate->src[i]);
319 		if (spage && !is_zone_device_page(spage)) {
320 			src[i] = dma_map_page(dev, spage, 0, PAGE_SIZE,
321 					      DMA_TO_DEVICE);
322 			r = dma_mapping_error(dev, src[i]);
323 			if (r) {
324 				dev_err(adev->dev, "%s: fail %d dma_map_page\n",
325 					__func__, r);
326 				goto out_free_vram_pages;
327 			}
328 		} else {
329 			if (j) {
330 				r = svm_migrate_copy_memory_gart(
331 						adev, src + i - j,
332 						dst + i - j, j,
333 						FROM_RAM_TO_VRAM,
334 						mfence);
335 				if (r)
336 					goto out_free_vram_pages;
337 				amdgpu_res_next(&cursor, (j + 1) << PAGE_SHIFT);
338 				j = 0;
339 			} else {
340 				amdgpu_res_next(&cursor, PAGE_SIZE);
341 			}
342 			continue;
343 		}
344 
345 		pr_debug_ratelimited("dma mapping src to 0x%llx, pfn 0x%lx\n",
346 				     src[i] >> PAGE_SHIFT, page_to_pfn(spage));
347 
348 		if (j >= (cursor.size >> PAGE_SHIFT) - 1 && i < npages - 1) {
349 			r = svm_migrate_copy_memory_gart(adev, src + i - j,
350 							 dst + i - j, j + 1,
351 							 FROM_RAM_TO_VRAM,
352 							 mfence);
353 			if (r)
354 				goto out_free_vram_pages;
355 			amdgpu_res_next(&cursor, (j + 1) * PAGE_SIZE);
356 			j = 0;
357 		} else {
358 			j++;
359 		}
360 	}
361 
362 	r = svm_migrate_copy_memory_gart(adev, src + i - j, dst + i - j, j,
363 					 FROM_RAM_TO_VRAM, mfence);
364 
365 out_free_vram_pages:
366 	if (r) {
367 		pr_debug("failed %d to copy memory to vram\n", r);
368 		while (i--) {
369 			svm_migrate_put_vram_page(adev, dst[i]);
370 			migrate->dst[i] = 0;
371 		}
372 	}
373 
374 #ifdef DEBUG_FORCE_MIXED_DOMAINS
375 	for (i = 0, j = 0; i < npages; i += 4, j++) {
376 		if (j & 1)
377 			continue;
378 		svm_migrate_put_vram_page(adev, dst[i]);
379 		migrate->dst[i] = 0;
380 		svm_migrate_put_vram_page(adev, dst[i + 1]);
381 		migrate->dst[i + 1] = 0;
382 		svm_migrate_put_vram_page(adev, dst[i + 2]);
383 		migrate->dst[i + 2] = 0;
384 		svm_migrate_put_vram_page(adev, dst[i + 3]);
385 		migrate->dst[i + 3] = 0;
386 	}
387 #endif
388 
389 	return r;
390 }
391 
392 static long
393 svm_migrate_vma_to_vram(struct amdgpu_device *adev, struct svm_range *prange,
394 			struct vm_area_struct *vma, uint64_t start,
395 			uint64_t end, uint32_t trigger, uint64_t ttm_res_offset)
396 {
397 	struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms);
398 	uint64_t npages = (end - start) >> PAGE_SHIFT;
399 	struct kfd_process_device *pdd;
400 	struct dma_fence *mfence = NULL;
401 	struct migrate_vma migrate = { 0 };
402 	unsigned long cpages = 0;
403 	dma_addr_t *scratch;
404 	void *buf;
405 	int r = -ENOMEM;
406 
407 	memset(&migrate, 0, sizeof(migrate));
408 	migrate.vma = vma;
409 	migrate.start = start;
410 	migrate.end = end;
411 	migrate.flags = MIGRATE_VMA_SELECT_SYSTEM;
412 	migrate.pgmap_owner = SVM_ADEV_PGMAP_OWNER(adev);
413 
414 	buf = kvcalloc(npages,
415 		       2 * sizeof(*migrate.src) + sizeof(uint64_t) + sizeof(dma_addr_t),
416 		       GFP_KERNEL);
417 	if (!buf)
418 		goto out;
419 
420 	migrate.src = buf;
421 	migrate.dst = migrate.src + npages;
422 	scratch = (dma_addr_t *)(migrate.dst + npages);
423 
424 	kfd_smi_event_migration_start(adev->kfd.dev, p->lead_thread->pid,
425 				      start >> PAGE_SHIFT, end >> PAGE_SHIFT,
426 				      0, adev->kfd.dev->id, prange->prefetch_loc,
427 				      prange->preferred_loc, trigger);
428 
429 	r = migrate_vma_setup(&migrate);
430 	if (r) {
431 		dev_err(adev->dev, "%s: vma setup fail %d range [0x%lx 0x%lx]\n",
432 			__func__, r, prange->start, prange->last);
433 		goto out_free;
434 	}
435 
436 	cpages = migrate.cpages;
437 	if (!cpages) {
438 		pr_debug("failed collect migrate sys pages [0x%lx 0x%lx]\n",
439 			 prange->start, prange->last);
440 		goto out_free;
441 	}
442 	if (cpages != npages)
443 		pr_debug("partial migration, 0x%lx/0x%llx pages migrated\n",
444 			 cpages, npages);
445 	else
446 		pr_debug("0x%lx pages migrated\n", cpages);
447 
448 	r = svm_migrate_copy_to_vram(adev, prange, &migrate, &mfence, scratch, ttm_res_offset);
449 	migrate_vma_pages(&migrate);
450 
451 	pr_debug("successful/cpages/npages 0x%lx/0x%lx/0x%lx\n",
452 		svm_migrate_successful_pages(&migrate), cpages, migrate.npages);
453 
454 	svm_migrate_copy_done(adev, mfence);
455 	migrate_vma_finalize(&migrate);
456 
457 	kfd_smi_event_migration_end(adev->kfd.dev, p->lead_thread->pid,
458 				    start >> PAGE_SHIFT, end >> PAGE_SHIFT,
459 				    0, adev->kfd.dev->id, trigger);
460 
461 	svm_range_dma_unmap(adev->dev, scratch, 0, npages);
462 	svm_range_free_dma_mappings(prange);
463 
464 out_free:
465 	kvfree(buf);
466 out:
467 	if (!r && cpages) {
468 		pdd = svm_range_get_pdd_by_adev(prange, adev);
469 		if (pdd)
470 			WRITE_ONCE(pdd->page_in, pdd->page_in + cpages);
471 
472 		return cpages;
473 	}
474 	return r;
475 }
476 
477 /**
478  * svm_migrate_ram_to_vram - migrate svm range from system to device
479  * @prange: range structure
480  * @best_loc: the device to migrate to
481  * @mm: the process mm structure
482  * @trigger: reason of migration
483  *
484  * Context: Process context, caller hold mmap read lock, svms lock, prange lock
485  *
486  * Return:
487  * 0 - OK, otherwise error code
488  */
489 static int
490 svm_migrate_ram_to_vram(struct svm_range *prange, uint32_t best_loc,
491 			struct mm_struct *mm, uint32_t trigger)
492 {
493 	unsigned long addr, start, end;
494 	struct vm_area_struct *vma;
495 	struct amdgpu_device *adev;
496 	uint64_t ttm_res_offset;
497 	unsigned long cpages = 0;
498 	long r = 0;
499 
500 	if (prange->actual_loc == best_loc) {
501 		pr_debug("svms 0x%p [0x%lx 0x%lx] already on best_loc 0x%x\n",
502 			 prange->svms, prange->start, prange->last, best_loc);
503 		return 0;
504 	}
505 
506 	adev = svm_range_get_adev_by_id(prange, best_loc);
507 	if (!adev) {
508 		pr_debug("failed to get device by id 0x%x\n", best_loc);
509 		return -ENODEV;
510 	}
511 
512 	pr_debug("svms 0x%p [0x%lx 0x%lx] to gpu 0x%x\n", prange->svms,
513 		 prange->start, prange->last, best_loc);
514 
515 	start = prange->start << PAGE_SHIFT;
516 	end = (prange->last + 1) << PAGE_SHIFT;
517 
518 	r = svm_range_vram_node_new(adev, prange, true);
519 	if (r) {
520 		dev_dbg(adev->dev, "fail %ld to alloc vram\n", r);
521 		return r;
522 	}
523 	ttm_res_offset = prange->offset << PAGE_SHIFT;
524 
525 	for (addr = start; addr < end;) {
526 		unsigned long next;
527 
528 		vma = vma_lookup(mm, addr);
529 		if (!vma)
530 			break;
531 
532 		next = min(vma->vm_end, end);
533 		r = svm_migrate_vma_to_vram(adev, prange, vma, addr, next, trigger, ttm_res_offset);
534 		if (r < 0) {
535 			pr_debug("failed %ld to migrate\n", r);
536 			break;
537 		} else {
538 			cpages += r;
539 		}
540 		ttm_res_offset += next - addr;
541 		addr = next;
542 	}
543 
544 	if (cpages)
545 		prange->actual_loc = best_loc;
546 	else
547 		svm_range_vram_node_free(prange);
548 
549 	return r < 0 ? r : 0;
550 }
551 
552 static void svm_migrate_page_free(struct page *page)
553 {
554 	struct svm_range_bo *svm_bo = page->zone_device_data;
555 
556 	if (svm_bo) {
557 		pr_debug_ratelimited("ref: %d\n", kref_read(&svm_bo->kref));
558 		svm_range_bo_unref_async(svm_bo);
559 	}
560 }
561 
562 static int
563 svm_migrate_copy_to_ram(struct amdgpu_device *adev, struct svm_range *prange,
564 			struct migrate_vma *migrate, struct dma_fence **mfence,
565 			dma_addr_t *scratch, uint64_t npages)
566 {
567 	struct device *dev = adev->dev;
568 	uint64_t *src;
569 	dma_addr_t *dst;
570 	struct page *dpage;
571 	uint64_t i = 0, j;
572 	uint64_t addr;
573 	int r = 0;
574 
575 	pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms, prange->start,
576 		 prange->last);
577 
578 	addr = prange->start << PAGE_SHIFT;
579 
580 	src = (uint64_t *)(scratch + npages);
581 	dst = scratch;
582 
583 	for (i = 0, j = 0; i < npages; i++, addr += PAGE_SIZE) {
584 		struct page *spage;
585 
586 		spage = migrate_pfn_to_page(migrate->src[i]);
587 		if (!spage || !is_zone_device_page(spage)) {
588 			pr_debug("invalid page. Could be in CPU already svms 0x%p [0x%lx 0x%lx]\n",
589 				 prange->svms, prange->start, prange->last);
590 			if (j) {
591 				r = svm_migrate_copy_memory_gart(adev, dst + i - j,
592 								 src + i - j, j,
593 								 FROM_VRAM_TO_RAM,
594 								 mfence);
595 				if (r)
596 					goto out_oom;
597 				j = 0;
598 			}
599 			continue;
600 		}
601 		src[i] = svm_migrate_addr(adev, spage);
602 		if (j > 0 && src[i] != src[i - 1] + PAGE_SIZE) {
603 			r = svm_migrate_copy_memory_gart(adev, dst + i - j,
604 							 src + i - j, j,
605 							 FROM_VRAM_TO_RAM,
606 							 mfence);
607 			if (r)
608 				goto out_oom;
609 			j = 0;
610 		}
611 
612 		dpage = svm_migrate_get_sys_page(migrate->vma, addr);
613 		if (!dpage) {
614 			pr_debug("failed get page svms 0x%p [0x%lx 0x%lx]\n",
615 				 prange->svms, prange->start, prange->last);
616 			r = -ENOMEM;
617 			goto out_oom;
618 		}
619 
620 		dst[i] = dma_map_page(dev, dpage, 0, PAGE_SIZE, DMA_FROM_DEVICE);
621 		r = dma_mapping_error(dev, dst[i]);
622 		if (r) {
623 			dev_err(adev->dev, "%s: fail %d dma_map_page\n", __func__, r);
624 			goto out_oom;
625 		}
626 
627 		pr_debug_ratelimited("dma mapping dst to 0x%llx, pfn 0x%lx\n",
628 				     dst[i] >> PAGE_SHIFT, page_to_pfn(dpage));
629 
630 		migrate->dst[i] = migrate_pfn(page_to_pfn(dpage));
631 		j++;
632 	}
633 
634 	r = svm_migrate_copy_memory_gart(adev, dst + i - j, src + i - j, j,
635 					 FROM_VRAM_TO_RAM, mfence);
636 
637 out_oom:
638 	if (r) {
639 		pr_debug("failed %d copy to ram\n", r);
640 		while (i--) {
641 			svm_migrate_put_sys_page(dst[i]);
642 			migrate->dst[i] = 0;
643 		}
644 	}
645 
646 	return r;
647 }
648 
649 /**
650  * svm_migrate_vma_to_ram - migrate range inside one vma from device to system
651  *
652  * @adev: amdgpu device to migrate from
653  * @prange: svm range structure
654  * @vma: vm_area_struct that range [start, end] belongs to
655  * @start: range start virtual address in pages
656  * @end: range end virtual address in pages
657  *
658  * Context: Process context, caller hold mmap read lock, prange->migrate_mutex
659  *
660  * Return:
661  *   0 - success with all pages migrated
662  *   negative values - indicate error
663  *   positive values - partial migration, number of pages not migrated
664  */
665 static long
666 svm_migrate_vma_to_ram(struct amdgpu_device *adev, struct svm_range *prange,
667 		       struct vm_area_struct *vma, uint64_t start, uint64_t end,
668 		       uint32_t trigger, struct page *fault_page)
669 {
670 	struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms);
671 	uint64_t npages = (end - start) >> PAGE_SHIFT;
672 	unsigned long upages = npages;
673 	unsigned long cpages = 0;
674 	struct kfd_process_device *pdd;
675 	struct dma_fence *mfence = NULL;
676 	struct migrate_vma migrate = { 0 };
677 	dma_addr_t *scratch;
678 	void *buf;
679 	int r = -ENOMEM;
680 
681 	memset(&migrate, 0, sizeof(migrate));
682 	migrate.vma = vma;
683 	migrate.start = start;
684 	migrate.end = end;
685 	migrate.pgmap_owner = SVM_ADEV_PGMAP_OWNER(adev);
686 	if (adev->gmc.xgmi.connected_to_cpu)
687 		migrate.flags = MIGRATE_VMA_SELECT_DEVICE_COHERENT;
688 	else
689 		migrate.flags = MIGRATE_VMA_SELECT_DEVICE_PRIVATE;
690 
691 	buf = kvcalloc(npages,
692 		       2 * sizeof(*migrate.src) + sizeof(uint64_t) + sizeof(dma_addr_t),
693 		       GFP_KERNEL);
694 	if (!buf)
695 		goto out;
696 
697 	migrate.src = buf;
698 	migrate.dst = migrate.src + npages;
699 	migrate.fault_page = fault_page;
700 	scratch = (dma_addr_t *)(migrate.dst + npages);
701 
702 	kfd_smi_event_migration_start(adev->kfd.dev, p->lead_thread->pid,
703 				      start >> PAGE_SHIFT, end >> PAGE_SHIFT,
704 				      adev->kfd.dev->id, 0, prange->prefetch_loc,
705 				      prange->preferred_loc, trigger);
706 
707 	r = migrate_vma_setup(&migrate);
708 	if (r) {
709 		dev_err(adev->dev, "%s: vma setup fail %d range [0x%lx 0x%lx]\n",
710 			__func__, r, prange->start, prange->last);
711 		goto out_free;
712 	}
713 
714 	cpages = migrate.cpages;
715 	if (!cpages) {
716 		pr_debug("failed collect migrate device pages [0x%lx 0x%lx]\n",
717 			 prange->start, prange->last);
718 		upages = svm_migrate_unsuccessful_pages(&migrate);
719 		goto out_free;
720 	}
721 	if (cpages != npages)
722 		pr_debug("partial migration, 0x%lx/0x%llx pages migrated\n",
723 			 cpages, npages);
724 	else
725 		pr_debug("0x%lx pages migrated\n", cpages);
726 
727 	r = svm_migrate_copy_to_ram(adev, prange, &migrate, &mfence,
728 				    scratch, npages);
729 	migrate_vma_pages(&migrate);
730 
731 	upages = svm_migrate_unsuccessful_pages(&migrate);
732 	pr_debug("unsuccessful/cpages/npages 0x%lx/0x%lx/0x%lx\n",
733 		 upages, cpages, migrate.npages);
734 
735 	svm_migrate_copy_done(adev, mfence);
736 	migrate_vma_finalize(&migrate);
737 
738 	kfd_smi_event_migration_end(adev->kfd.dev, p->lead_thread->pid,
739 				    start >> PAGE_SHIFT, end >> PAGE_SHIFT,
740 				    adev->kfd.dev->id, 0, trigger);
741 
742 	svm_range_dma_unmap(adev->dev, scratch, 0, npages);
743 
744 out_free:
745 	kvfree(buf);
746 out:
747 	if (!r && cpages) {
748 		pdd = svm_range_get_pdd_by_adev(prange, adev);
749 		if (pdd)
750 			WRITE_ONCE(pdd->page_out, pdd->page_out + cpages);
751 	}
752 	return r ? r : upages;
753 }
754 
755 /**
756  * svm_migrate_vram_to_ram - migrate svm range from device to system
757  * @prange: range structure
758  * @mm: process mm, use current->mm if NULL
759  * @trigger: reason of migration
760  *
761  * Context: Process context, caller hold mmap read lock, prange->migrate_mutex
762  *
763  * Return:
764  * 0 - OK, otherwise error code
765  */
766 int svm_migrate_vram_to_ram(struct svm_range *prange, struct mm_struct *mm,
767 			    uint32_t trigger, struct page *fault_page)
768 {
769 	struct amdgpu_device *adev;
770 	struct vm_area_struct *vma;
771 	unsigned long addr;
772 	unsigned long start;
773 	unsigned long end;
774 	unsigned long upages = 0;
775 	long r = 0;
776 
777 	if (!prange->actual_loc) {
778 		pr_debug("[0x%lx 0x%lx] already migrated to ram\n",
779 			 prange->start, prange->last);
780 		return 0;
781 	}
782 
783 	adev = svm_range_get_adev_by_id(prange, prange->actual_loc);
784 	if (!adev) {
785 		pr_debug("failed to get device by id 0x%x\n",
786 			 prange->actual_loc);
787 		return -ENODEV;
788 	}
789 
790 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] from gpu 0x%x to ram\n",
791 		 prange->svms, prange, prange->start, prange->last,
792 		 prange->actual_loc);
793 
794 	start = prange->start << PAGE_SHIFT;
795 	end = (prange->last + 1) << PAGE_SHIFT;
796 
797 	for (addr = start; addr < end;) {
798 		unsigned long next;
799 
800 		vma = vma_lookup(mm, addr);
801 		if (!vma) {
802 			pr_debug("failed to find vma for prange %p\n", prange);
803 			r = -EFAULT;
804 			break;
805 		}
806 
807 		next = min(vma->vm_end, end);
808 		r = svm_migrate_vma_to_ram(adev, prange, vma, addr, next, trigger,
809 			fault_page);
810 		if (r < 0) {
811 			pr_debug("failed %ld to migrate prange %p\n", r, prange);
812 			break;
813 		} else {
814 			upages += r;
815 		}
816 		addr = next;
817 	}
818 
819 	if (r >= 0 && !upages) {
820 		svm_range_vram_node_free(prange);
821 		prange->actual_loc = 0;
822 	}
823 
824 	return r < 0 ? r : 0;
825 }
826 
827 /**
828  * svm_migrate_vram_to_vram - migrate svm range from device to device
829  * @prange: range structure
830  * @best_loc: the device to migrate to
831  * @mm: process mm, use current->mm if NULL
832  * @trigger: reason of migration
833  *
834  * Context: Process context, caller hold mmap read lock, svms lock, prange lock
835  *
836  * Return:
837  * 0 - OK, otherwise error code
838  */
839 static int
840 svm_migrate_vram_to_vram(struct svm_range *prange, uint32_t best_loc,
841 			 struct mm_struct *mm, uint32_t trigger)
842 {
843 	int r, retries = 3;
844 
845 	/*
846 	 * TODO: for both devices with PCIe large bar or on same xgmi hive, skip
847 	 * system memory as migration bridge
848 	 */
849 
850 	pr_debug("from gpu 0x%x to gpu 0x%x\n", prange->actual_loc, best_loc);
851 
852 	do {
853 		r = svm_migrate_vram_to_ram(prange, mm, trigger, NULL);
854 		if (r)
855 			return r;
856 	} while (prange->actual_loc && --retries);
857 
858 	if (prange->actual_loc)
859 		return -EDEADLK;
860 
861 	return svm_migrate_ram_to_vram(prange, best_loc, mm, trigger);
862 }
863 
864 int
865 svm_migrate_to_vram(struct svm_range *prange, uint32_t best_loc,
866 		    struct mm_struct *mm, uint32_t trigger)
867 {
868 	if  (!prange->actual_loc)
869 		return svm_migrate_ram_to_vram(prange, best_loc, mm, trigger);
870 	else
871 		return svm_migrate_vram_to_vram(prange, best_loc, mm, trigger);
872 
873 }
874 
875 /**
876  * svm_migrate_to_ram - CPU page fault handler
877  * @vmf: CPU vm fault vma, address
878  *
879  * Context: vm fault handler, caller holds the mmap read lock
880  *
881  * Return:
882  * 0 - OK
883  * VM_FAULT_SIGBUS - notice application to have SIGBUS page fault
884  */
885 static vm_fault_t svm_migrate_to_ram(struct vm_fault *vmf)
886 {
887 	unsigned long addr = vmf->address;
888 	struct svm_range_bo *svm_bo;
889 	enum svm_work_list_ops op;
890 	struct svm_range *parent;
891 	struct svm_range *prange;
892 	struct kfd_process *p;
893 	struct mm_struct *mm;
894 	int r = 0;
895 
896 	svm_bo = vmf->page->zone_device_data;
897 	if (!svm_bo) {
898 		pr_debug("failed get device page at addr 0x%lx\n", addr);
899 		return VM_FAULT_SIGBUS;
900 	}
901 	if (!mmget_not_zero(svm_bo->eviction_fence->mm)) {
902 		pr_debug("addr 0x%lx of process mm is destroyed\n", addr);
903 		return VM_FAULT_SIGBUS;
904 	}
905 
906 	mm = svm_bo->eviction_fence->mm;
907 	if (mm != vmf->vma->vm_mm)
908 		pr_debug("addr 0x%lx is COW mapping in child process\n", addr);
909 
910 	p = kfd_lookup_process_by_mm(mm);
911 	if (!p) {
912 		pr_debug("failed find process at fault address 0x%lx\n", addr);
913 		r = VM_FAULT_SIGBUS;
914 		goto out_mmput;
915 	}
916 	if (READ_ONCE(p->svms.faulting_task) == current) {
917 		pr_debug("skipping ram migration\n");
918 		r = 0;
919 		goto out_unref_process;
920 	}
921 
922 	pr_debug("CPU page fault svms 0x%p address 0x%lx\n", &p->svms, addr);
923 	addr >>= PAGE_SHIFT;
924 
925 	mutex_lock(&p->svms.lock);
926 
927 	prange = svm_range_from_addr(&p->svms, addr, &parent);
928 	if (!prange) {
929 		pr_debug("failed get range svms 0x%p addr 0x%lx\n", &p->svms, addr);
930 		r = -EFAULT;
931 		goto out_unlock_svms;
932 	}
933 
934 	mutex_lock(&parent->migrate_mutex);
935 	if (prange != parent)
936 		mutex_lock_nested(&prange->migrate_mutex, 1);
937 
938 	if (!prange->actual_loc)
939 		goto out_unlock_prange;
940 
941 	svm_range_lock(parent);
942 	if (prange != parent)
943 		mutex_lock_nested(&prange->lock, 1);
944 	r = svm_range_split_by_granularity(p, mm, addr, parent, prange);
945 	if (prange != parent)
946 		mutex_unlock(&prange->lock);
947 	svm_range_unlock(parent);
948 	if (r) {
949 		pr_debug("failed %d to split range by granularity\n", r);
950 		goto out_unlock_prange;
951 	}
952 
953 	r = svm_migrate_vram_to_ram(prange, vmf->vma->vm_mm,
954 				    KFD_MIGRATE_TRIGGER_PAGEFAULT_CPU,
955 				    vmf->page);
956 	if (r)
957 		pr_debug("failed %d migrate svms 0x%p range 0x%p [0x%lx 0x%lx]\n",
958 			 r, prange->svms, prange, prange->start, prange->last);
959 
960 	/* xnack on, update mapping on GPUs with ACCESS_IN_PLACE */
961 	if (p->xnack_enabled && parent == prange)
962 		op = SVM_OP_UPDATE_RANGE_NOTIFIER_AND_MAP;
963 	else
964 		op = SVM_OP_UPDATE_RANGE_NOTIFIER;
965 	svm_range_add_list_work(&p->svms, parent, mm, op);
966 	schedule_deferred_list_work(&p->svms);
967 
968 out_unlock_prange:
969 	if (prange != parent)
970 		mutex_unlock(&prange->migrate_mutex);
971 	mutex_unlock(&parent->migrate_mutex);
972 out_unlock_svms:
973 	mutex_unlock(&p->svms.lock);
974 out_unref_process:
975 	pr_debug("CPU fault svms 0x%p address 0x%lx done\n", &p->svms, addr);
976 	kfd_unref_process(p);
977 out_mmput:
978 	mmput(mm);
979 	return r ? VM_FAULT_SIGBUS : 0;
980 }
981 
982 static const struct dev_pagemap_ops svm_migrate_pgmap_ops = {
983 	.page_free		= svm_migrate_page_free,
984 	.migrate_to_ram		= svm_migrate_to_ram,
985 };
986 
987 /* Each VRAM page uses sizeof(struct page) on system memory */
988 #define SVM_HMM_PAGE_STRUCT_SIZE(size) ((size)/PAGE_SIZE * sizeof(struct page))
989 
990 int svm_migrate_init(struct amdgpu_device *adev)
991 {
992 	struct kfd_dev *kfddev = adev->kfd.dev;
993 	struct dev_pagemap *pgmap;
994 	struct resource *res = NULL;
995 	unsigned long size;
996 	void *r;
997 
998 	/* Page migration works on Vega10 or newer */
999 	if (!KFD_IS_SOC15(kfddev))
1000 		return -EINVAL;
1001 
1002 	pgmap = &kfddev->pgmap;
1003 	memset(pgmap, 0, sizeof(*pgmap));
1004 
1005 	/* TODO: register all vram to HMM for now.
1006 	 * should remove reserved size
1007 	 */
1008 	size = ALIGN(adev->gmc.real_vram_size, 2ULL << 20);
1009 	if (adev->gmc.xgmi.connected_to_cpu) {
1010 		pgmap->range.start = adev->gmc.aper_base;
1011 		pgmap->range.end = adev->gmc.aper_base + adev->gmc.aper_size - 1;
1012 		pgmap->type = MEMORY_DEVICE_COHERENT;
1013 	} else {
1014 		res = devm_request_free_mem_region(adev->dev, &iomem_resource, size);
1015 		if (IS_ERR(res))
1016 			return -ENOMEM;
1017 		pgmap->range.start = res->start;
1018 		pgmap->range.end = res->end;
1019 		pgmap->type = MEMORY_DEVICE_PRIVATE;
1020 	}
1021 
1022 	pgmap->nr_range = 1;
1023 	pgmap->ops = &svm_migrate_pgmap_ops;
1024 	pgmap->owner = SVM_ADEV_PGMAP_OWNER(adev);
1025 	pgmap->flags = 0;
1026 	/* Device manager releases device-specific resources, memory region and
1027 	 * pgmap when driver disconnects from device.
1028 	 */
1029 	r = devm_memremap_pages(adev->dev, pgmap);
1030 	if (IS_ERR(r)) {
1031 		pr_err("failed to register HMM device memory\n");
1032 		/* Disable SVM support capability */
1033 		pgmap->type = 0;
1034 		if (pgmap->type == MEMORY_DEVICE_PRIVATE)
1035 			devm_release_mem_region(adev->dev, res->start, resource_size(res));
1036 		return PTR_ERR(r);
1037 	}
1038 
1039 	pr_debug("reserve %ldMB system memory for VRAM pages struct\n",
1040 		 SVM_HMM_PAGE_STRUCT_SIZE(size) >> 20);
1041 
1042 	amdgpu_amdkfd_reserve_system_mem(SVM_HMM_PAGE_STRUCT_SIZE(size));
1043 
1044 	svm_range_set_max_pages(adev);
1045 
1046 	pr_info("HMM registered %ldMB device memory\n", size >> 20);
1047 
1048 	return 0;
1049 }
1050