xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_interrupt.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 /*
24  * KFD Interrupts.
25  *
26  * AMD GPUs deliver interrupts by pushing an interrupt description onto the
27  * interrupt ring and then sending an interrupt. KGD receives the interrupt
28  * in ISR and sends us a pointer to each new entry on the interrupt ring.
29  *
30  * We generally can't process interrupt-signaled events from ISR, so we call
31  * out to each interrupt client module (currently only the scheduler) to ask if
32  * each interrupt is interesting. If they return true, then it requires further
33  * processing so we copy it to an internal interrupt ring and call each
34  * interrupt client again from a work-queue.
35  *
36  * There's no acknowledgment for the interrupts we use. The hardware simply
37  * queues a new interrupt each time without waiting.
38  *
39  * The fixed-size internal queue means that it's possible for us to lose
40  * interrupts because we have no back-pressure to the hardware.
41  */
42 
43 #include <linux/slab.h>
44 #include <linux/device.h>
45 #include "kfd_priv.h"
46 
47 #define KFD_INTERRUPT_RING_SIZE 1024
48 
49 static void interrupt_wq(struct work_struct *);
50 
51 int kfd_interrupt_init(struct kfd_dev *kfd)
52 {
53 	void *interrupt_ring = kmalloc_array(KFD_INTERRUPT_RING_SIZE,
54 					kfd->device_info->ih_ring_entry_size,
55 					GFP_KERNEL);
56 	if (!interrupt_ring)
57 		return -ENOMEM;
58 
59 	kfd->interrupt_ring = interrupt_ring;
60 	kfd->interrupt_ring_size =
61 		KFD_INTERRUPT_RING_SIZE * kfd->device_info->ih_ring_entry_size;
62 	atomic_set(&kfd->interrupt_ring_wptr, 0);
63 	atomic_set(&kfd->interrupt_ring_rptr, 0);
64 
65 	spin_lock_init(&kfd->interrupt_lock);
66 
67 	INIT_WORK(&kfd->interrupt_work, interrupt_wq);
68 
69 	kfd->interrupts_active = true;
70 
71 	/*
72 	 * After this function returns, the interrupt will be enabled. This
73 	 * barrier ensures that the interrupt running on a different processor
74 	 * sees all the above writes.
75 	 */
76 	smp_wmb();
77 
78 	return 0;
79 }
80 
81 void kfd_interrupt_exit(struct kfd_dev *kfd)
82 {
83 	/*
84 	 * Stop the interrupt handler from writing to the ring and scheduling
85 	 * workqueue items. The spinlock ensures that any interrupt running
86 	 * after we have unlocked sees interrupts_active = false.
87 	 */
88 	unsigned long flags;
89 
90 	spin_lock_irqsave(&kfd->interrupt_lock, flags);
91 	kfd->interrupts_active = false;
92 	spin_unlock_irqrestore(&kfd->interrupt_lock, flags);
93 
94 	/*
95 	 * Flush_scheduled_work ensures that there are no outstanding
96 	 * work-queue items that will access interrupt_ring. New work items
97 	 * can't be created because we stopped interrupt handling above.
98 	 */
99 	flush_scheduled_work();
100 
101 	kfree(kfd->interrupt_ring);
102 }
103 
104 /*
105  * This assumes that it can't be called concurrently with itself
106  * but only with dequeue_ih_ring_entry.
107  */
108 bool enqueue_ih_ring_entry(struct kfd_dev *kfd,	const void *ih_ring_entry)
109 {
110 	unsigned int rptr = atomic_read(&kfd->interrupt_ring_rptr);
111 	unsigned int wptr = atomic_read(&kfd->interrupt_ring_wptr);
112 
113 	if ((rptr - wptr) % kfd->interrupt_ring_size ==
114 					kfd->device_info->ih_ring_entry_size) {
115 		/* This is very bad, the system is likely to hang. */
116 		dev_err_ratelimited(kfd_chardev(),
117 			"Interrupt ring overflow, dropping interrupt.\n");
118 		return false;
119 	}
120 
121 	memcpy(kfd->interrupt_ring + wptr, ih_ring_entry,
122 			kfd->device_info->ih_ring_entry_size);
123 
124 	wptr = (wptr + kfd->device_info->ih_ring_entry_size) %
125 			kfd->interrupt_ring_size;
126 	smp_wmb(); /* Ensure memcpy'd data is visible before wptr update. */
127 	atomic_set(&kfd->interrupt_ring_wptr, wptr);
128 
129 	return true;
130 }
131 
132 /*
133  * This assumes that it can't be called concurrently with itself
134  * but only with enqueue_ih_ring_entry.
135  */
136 static bool dequeue_ih_ring_entry(struct kfd_dev *kfd, void *ih_ring_entry)
137 {
138 	/*
139 	 * Assume that wait queues have an implicit barrier, i.e. anything that
140 	 * happened in the ISR before it queued work is visible.
141 	 */
142 
143 	unsigned int wptr = atomic_read(&kfd->interrupt_ring_wptr);
144 	unsigned int rptr = atomic_read(&kfd->interrupt_ring_rptr);
145 
146 	if (rptr == wptr)
147 		return false;
148 
149 	memcpy(ih_ring_entry, kfd->interrupt_ring + rptr,
150 			kfd->device_info->ih_ring_entry_size);
151 
152 	rptr = (rptr + kfd->device_info->ih_ring_entry_size) %
153 			kfd->interrupt_ring_size;
154 
155 	/*
156 	 * Ensure the rptr write update is not visible until
157 	 * memcpy has finished reading.
158 	 */
159 	smp_mb();
160 	atomic_set(&kfd->interrupt_ring_rptr, rptr);
161 
162 	return true;
163 }
164 
165 static void interrupt_wq(struct work_struct *work)
166 {
167 	struct kfd_dev *dev = container_of(work, struct kfd_dev,
168 						interrupt_work);
169 
170 	uint32_t ih_ring_entry[DIV_ROUND_UP(
171 				dev->device_info->ih_ring_entry_size,
172 				sizeof(uint32_t))];
173 
174 	while (dequeue_ih_ring_entry(dev, ih_ring_entry))
175 		dev->device_info->event_interrupt_class->interrupt_wq(dev,
176 								ih_ring_entry);
177 }
178 
179 bool interrupt_is_wanted(struct kfd_dev *dev, const uint32_t *ih_ring_entry)
180 {
181 	/* integer and bitwise OR so there is no boolean short-circuiting */
182 	unsigned wanted = 0;
183 
184 	wanted |= dev->device_info->event_interrupt_class->interrupt_isr(dev,
185 								ih_ring_entry);
186 
187 	return wanted != 0;
188 }
189