1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2014-2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include <linux/mm_types.h> 25 #include <linux/slab.h> 26 #include <linux/types.h> 27 #include <linux/sched/signal.h> 28 #include <linux/sched/mm.h> 29 #include <linux/uaccess.h> 30 #include <linux/mman.h> 31 #include <linux/memory.h> 32 #include "kfd_priv.h" 33 #include "kfd_events.h" 34 #include "kfd_device_queue_manager.h" 35 #include <linux/device.h> 36 37 /* 38 * Wrapper around wait_queue_entry_t 39 */ 40 struct kfd_event_waiter { 41 wait_queue_entry_t wait; 42 struct kfd_event *event; /* Event to wait for */ 43 bool activated; /* Becomes true when event is signaled */ 44 bool event_age_enabled; /* set to true when last_event_age is non-zero */ 45 }; 46 47 /* 48 * Each signal event needs a 64-bit signal slot where the signaler will write 49 * a 1 before sending an interrupt. (This is needed because some interrupts 50 * do not contain enough spare data bits to identify an event.) 51 * We get whole pages and map them to the process VA. 52 * Individual signal events use their event_id as slot index. 53 */ 54 struct kfd_signal_page { 55 uint64_t *kernel_address; 56 uint64_t __user *user_address; 57 bool need_to_free_pages; 58 }; 59 60 static uint64_t *page_slots(struct kfd_signal_page *page) 61 { 62 return page->kernel_address; 63 } 64 65 static struct kfd_signal_page *allocate_signal_page(struct kfd_process *p) 66 { 67 void *backing_store; 68 struct kfd_signal_page *page; 69 70 page = kzalloc(sizeof(*page), GFP_KERNEL); 71 if (!page) 72 return NULL; 73 74 backing_store = (void *) __get_free_pages(GFP_KERNEL, 75 get_order(KFD_SIGNAL_EVENT_LIMIT * 8)); 76 if (!backing_store) 77 goto fail_alloc_signal_store; 78 79 /* Initialize all events to unsignaled */ 80 memset(backing_store, (uint8_t) UNSIGNALED_EVENT_SLOT, 81 KFD_SIGNAL_EVENT_LIMIT * 8); 82 83 page->kernel_address = backing_store; 84 page->need_to_free_pages = true; 85 pr_debug("Allocated new event signal page at %p, for process %p\n", 86 page, p); 87 88 return page; 89 90 fail_alloc_signal_store: 91 kfree(page); 92 return NULL; 93 } 94 95 static int allocate_event_notification_slot(struct kfd_process *p, 96 struct kfd_event *ev, 97 const int *restore_id) 98 { 99 int id; 100 101 if (!p->signal_page) { 102 p->signal_page = allocate_signal_page(p); 103 if (!p->signal_page) 104 return -ENOMEM; 105 /* Oldest user mode expects 256 event slots */ 106 p->signal_mapped_size = 256*8; 107 } 108 109 if (restore_id) { 110 id = idr_alloc(&p->event_idr, ev, *restore_id, *restore_id + 1, 111 GFP_KERNEL); 112 } else { 113 /* 114 * Compatibility with old user mode: Only use signal slots 115 * user mode has mapped, may be less than 116 * KFD_SIGNAL_EVENT_LIMIT. This also allows future increase 117 * of the event limit without breaking user mode. 118 */ 119 id = idr_alloc(&p->event_idr, ev, 0, p->signal_mapped_size / 8, 120 GFP_KERNEL); 121 } 122 if (id < 0) 123 return id; 124 125 ev->event_id = id; 126 page_slots(p->signal_page)[id] = UNSIGNALED_EVENT_SLOT; 127 128 return 0; 129 } 130 131 /* 132 * Assumes that p->event_mutex or rcu_readlock is held and of course that p is 133 * not going away. 134 */ 135 static struct kfd_event *lookup_event_by_id(struct kfd_process *p, uint32_t id) 136 { 137 return idr_find(&p->event_idr, id); 138 } 139 140 /** 141 * lookup_signaled_event_by_partial_id - Lookup signaled event from partial ID 142 * @p: Pointer to struct kfd_process 143 * @id: ID to look up 144 * @bits: Number of valid bits in @id 145 * 146 * Finds the first signaled event with a matching partial ID. If no 147 * matching signaled event is found, returns NULL. In that case the 148 * caller should assume that the partial ID is invalid and do an 149 * exhaustive search of all siglaned events. 150 * 151 * If multiple events with the same partial ID signal at the same 152 * time, they will be found one interrupt at a time, not necessarily 153 * in the same order the interrupts occurred. As long as the number of 154 * interrupts is correct, all signaled events will be seen by the 155 * driver. 156 */ 157 static struct kfd_event *lookup_signaled_event_by_partial_id( 158 struct kfd_process *p, uint32_t id, uint32_t bits) 159 { 160 struct kfd_event *ev; 161 162 if (!p->signal_page || id >= KFD_SIGNAL_EVENT_LIMIT) 163 return NULL; 164 165 /* Fast path for the common case that @id is not a partial ID 166 * and we only need a single lookup. 167 */ 168 if (bits > 31 || (1U << bits) >= KFD_SIGNAL_EVENT_LIMIT) { 169 if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT) 170 return NULL; 171 172 return idr_find(&p->event_idr, id); 173 } 174 175 /* General case for partial IDs: Iterate over all matching IDs 176 * and find the first one that has signaled. 177 */ 178 for (ev = NULL; id < KFD_SIGNAL_EVENT_LIMIT && !ev; id += 1U << bits) { 179 if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT) 180 continue; 181 182 ev = idr_find(&p->event_idr, id); 183 } 184 185 return ev; 186 } 187 188 static int create_signal_event(struct file *devkfd, struct kfd_process *p, 189 struct kfd_event *ev, const int *restore_id) 190 { 191 int ret; 192 193 if (p->signal_mapped_size && 194 p->signal_event_count == p->signal_mapped_size / 8) { 195 if (!p->signal_event_limit_reached) { 196 pr_debug("Signal event wasn't created because limit was reached\n"); 197 p->signal_event_limit_reached = true; 198 } 199 return -ENOSPC; 200 } 201 202 ret = allocate_event_notification_slot(p, ev, restore_id); 203 if (ret) { 204 pr_warn("Signal event wasn't created because out of kernel memory\n"); 205 return ret; 206 } 207 208 p->signal_event_count++; 209 210 ev->user_signal_address = &p->signal_page->user_address[ev->event_id]; 211 pr_debug("Signal event number %zu created with id %d, address %p\n", 212 p->signal_event_count, ev->event_id, 213 ev->user_signal_address); 214 215 return 0; 216 } 217 218 static int create_other_event(struct kfd_process *p, struct kfd_event *ev, const int *restore_id) 219 { 220 int id; 221 222 if (restore_id) 223 id = idr_alloc(&p->event_idr, ev, *restore_id, *restore_id + 1, 224 GFP_KERNEL); 225 else 226 /* Cast KFD_LAST_NONSIGNAL_EVENT to uint32_t. This allows an 227 * intentional integer overflow to -1 without a compiler 228 * warning. idr_alloc treats a negative value as "maximum 229 * signed integer". 230 */ 231 id = idr_alloc(&p->event_idr, ev, KFD_FIRST_NONSIGNAL_EVENT_ID, 232 (uint32_t)KFD_LAST_NONSIGNAL_EVENT_ID + 1, 233 GFP_KERNEL); 234 235 if (id < 0) 236 return id; 237 ev->event_id = id; 238 239 return 0; 240 } 241 242 int kfd_event_init_process(struct kfd_process *p) 243 { 244 int id; 245 246 mutex_init(&p->event_mutex); 247 idr_init(&p->event_idr); 248 p->signal_page = NULL; 249 p->signal_event_count = 1; 250 /* Allocate event ID 0. It is used for a fast path to ignore bogus events 251 * that are sent by the CP without a context ID 252 */ 253 id = idr_alloc(&p->event_idr, NULL, 0, 1, GFP_KERNEL); 254 if (id < 0) { 255 idr_destroy(&p->event_idr); 256 mutex_destroy(&p->event_mutex); 257 return id; 258 } 259 return 0; 260 } 261 262 static void destroy_event(struct kfd_process *p, struct kfd_event *ev) 263 { 264 struct kfd_event_waiter *waiter; 265 266 /* Wake up pending waiters. They will return failure */ 267 spin_lock(&ev->lock); 268 list_for_each_entry(waiter, &ev->wq.head, wait.entry) 269 WRITE_ONCE(waiter->event, NULL); 270 wake_up_all(&ev->wq); 271 spin_unlock(&ev->lock); 272 273 if (ev->type == KFD_EVENT_TYPE_SIGNAL || 274 ev->type == KFD_EVENT_TYPE_DEBUG) 275 p->signal_event_count--; 276 277 idr_remove(&p->event_idr, ev->event_id); 278 kfree_rcu(ev, rcu); 279 } 280 281 static void destroy_events(struct kfd_process *p) 282 { 283 struct kfd_event *ev; 284 uint32_t id; 285 286 idr_for_each_entry(&p->event_idr, ev, id) 287 if (ev) 288 destroy_event(p, ev); 289 idr_destroy(&p->event_idr); 290 mutex_destroy(&p->event_mutex); 291 } 292 293 /* 294 * We assume that the process is being destroyed and there is no need to 295 * unmap the pages or keep bookkeeping data in order. 296 */ 297 static void shutdown_signal_page(struct kfd_process *p) 298 { 299 struct kfd_signal_page *page = p->signal_page; 300 301 if (page) { 302 if (page->need_to_free_pages) 303 free_pages((unsigned long)page->kernel_address, 304 get_order(KFD_SIGNAL_EVENT_LIMIT * 8)); 305 kfree(page); 306 } 307 } 308 309 void kfd_event_free_process(struct kfd_process *p) 310 { 311 destroy_events(p); 312 shutdown_signal_page(p); 313 } 314 315 static bool event_can_be_gpu_signaled(const struct kfd_event *ev) 316 { 317 return ev->type == KFD_EVENT_TYPE_SIGNAL || 318 ev->type == KFD_EVENT_TYPE_DEBUG; 319 } 320 321 static bool event_can_be_cpu_signaled(const struct kfd_event *ev) 322 { 323 return ev->type == KFD_EVENT_TYPE_SIGNAL; 324 } 325 326 static int kfd_event_page_set(struct kfd_process *p, void *kernel_address, 327 uint64_t size, uint64_t user_handle) 328 { 329 struct kfd_signal_page *page; 330 331 if (p->signal_page) 332 return -EBUSY; 333 334 page = kzalloc(sizeof(*page), GFP_KERNEL); 335 if (!page) 336 return -ENOMEM; 337 338 /* Initialize all events to unsignaled */ 339 memset(kernel_address, (uint8_t) UNSIGNALED_EVENT_SLOT, 340 KFD_SIGNAL_EVENT_LIMIT * 8); 341 342 page->kernel_address = kernel_address; 343 344 p->signal_page = page; 345 p->signal_mapped_size = size; 346 p->signal_handle = user_handle; 347 return 0; 348 } 349 350 int kfd_kmap_event_page(struct kfd_process *p, uint64_t event_page_offset) 351 { 352 struct kfd_node *kfd; 353 struct kfd_process_device *pdd; 354 void *mem, *kern_addr; 355 uint64_t size; 356 int err = 0; 357 358 if (p->signal_page) { 359 pr_err("Event page is already set\n"); 360 return -EINVAL; 361 } 362 363 pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(event_page_offset)); 364 if (!pdd) { 365 pr_err("Getting device by id failed in %s\n", __func__); 366 return -EINVAL; 367 } 368 kfd = pdd->dev; 369 370 pdd = kfd_bind_process_to_device(kfd, p); 371 if (IS_ERR(pdd)) 372 return PTR_ERR(pdd); 373 374 mem = kfd_process_device_translate_handle(pdd, 375 GET_IDR_HANDLE(event_page_offset)); 376 if (!mem) { 377 pr_err("Can't find BO, offset is 0x%llx\n", event_page_offset); 378 return -EINVAL; 379 } 380 381 err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(mem, &kern_addr, &size); 382 if (err) { 383 pr_err("Failed to map event page to kernel\n"); 384 return err; 385 } 386 387 err = kfd_event_page_set(p, kern_addr, size, event_page_offset); 388 if (err) { 389 pr_err("Failed to set event page\n"); 390 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem); 391 return err; 392 } 393 return err; 394 } 395 396 int kfd_event_create(struct file *devkfd, struct kfd_process *p, 397 uint32_t event_type, bool auto_reset, uint32_t node_id, 398 uint32_t *event_id, uint32_t *event_trigger_data, 399 uint64_t *event_page_offset, uint32_t *event_slot_index) 400 { 401 int ret = 0; 402 struct kfd_event *ev = kzalloc(sizeof(*ev), GFP_KERNEL); 403 404 if (!ev) 405 return -ENOMEM; 406 407 ev->type = event_type; 408 ev->auto_reset = auto_reset; 409 ev->signaled = false; 410 411 spin_lock_init(&ev->lock); 412 init_waitqueue_head(&ev->wq); 413 414 *event_page_offset = 0; 415 416 mutex_lock(&p->event_mutex); 417 418 switch (event_type) { 419 case KFD_EVENT_TYPE_SIGNAL: 420 case KFD_EVENT_TYPE_DEBUG: 421 ret = create_signal_event(devkfd, p, ev, NULL); 422 if (!ret) { 423 *event_page_offset = KFD_MMAP_TYPE_EVENTS; 424 *event_slot_index = ev->event_id; 425 } 426 break; 427 default: 428 ret = create_other_event(p, ev, NULL); 429 break; 430 } 431 432 if (!ret) { 433 *event_id = ev->event_id; 434 *event_trigger_data = ev->event_id; 435 ev->event_age = 1; 436 } else { 437 kfree(ev); 438 } 439 440 mutex_unlock(&p->event_mutex); 441 442 return ret; 443 } 444 445 int kfd_criu_restore_event(struct file *devkfd, 446 struct kfd_process *p, 447 uint8_t __user *user_priv_ptr, 448 uint64_t *priv_data_offset, 449 uint64_t max_priv_data_size) 450 { 451 struct kfd_criu_event_priv_data *ev_priv; 452 struct kfd_event *ev = NULL; 453 int ret = 0; 454 455 ev_priv = kmalloc(sizeof(*ev_priv), GFP_KERNEL); 456 if (!ev_priv) 457 return -ENOMEM; 458 459 ev = kzalloc(sizeof(*ev), GFP_KERNEL); 460 if (!ev) { 461 ret = -ENOMEM; 462 goto exit; 463 } 464 465 if (*priv_data_offset + sizeof(*ev_priv) > max_priv_data_size) { 466 ret = -EINVAL; 467 goto exit; 468 } 469 470 ret = copy_from_user(ev_priv, user_priv_ptr + *priv_data_offset, sizeof(*ev_priv)); 471 if (ret) { 472 ret = -EFAULT; 473 goto exit; 474 } 475 *priv_data_offset += sizeof(*ev_priv); 476 477 if (ev_priv->user_handle) { 478 ret = kfd_kmap_event_page(p, ev_priv->user_handle); 479 if (ret) 480 goto exit; 481 } 482 483 ev->type = ev_priv->type; 484 ev->auto_reset = ev_priv->auto_reset; 485 ev->signaled = ev_priv->signaled; 486 487 spin_lock_init(&ev->lock); 488 init_waitqueue_head(&ev->wq); 489 490 mutex_lock(&p->event_mutex); 491 switch (ev->type) { 492 case KFD_EVENT_TYPE_SIGNAL: 493 case KFD_EVENT_TYPE_DEBUG: 494 ret = create_signal_event(devkfd, p, ev, &ev_priv->event_id); 495 break; 496 case KFD_EVENT_TYPE_MEMORY: 497 memcpy(&ev->memory_exception_data, 498 &ev_priv->memory_exception_data, 499 sizeof(struct kfd_hsa_memory_exception_data)); 500 501 ret = create_other_event(p, ev, &ev_priv->event_id); 502 break; 503 case KFD_EVENT_TYPE_HW_EXCEPTION: 504 memcpy(&ev->hw_exception_data, 505 &ev_priv->hw_exception_data, 506 sizeof(struct kfd_hsa_hw_exception_data)); 507 508 ret = create_other_event(p, ev, &ev_priv->event_id); 509 break; 510 } 511 mutex_unlock(&p->event_mutex); 512 513 exit: 514 if (ret) 515 kfree(ev); 516 517 kfree(ev_priv); 518 519 return ret; 520 } 521 522 int kfd_criu_checkpoint_events(struct kfd_process *p, 523 uint8_t __user *user_priv_data, 524 uint64_t *priv_data_offset) 525 { 526 struct kfd_criu_event_priv_data *ev_privs; 527 int i = 0; 528 int ret = 0; 529 struct kfd_event *ev; 530 uint32_t ev_id; 531 532 uint32_t num_events = kfd_get_num_events(p); 533 534 if (!num_events) 535 return 0; 536 537 ev_privs = kvzalloc(num_events * sizeof(*ev_privs), GFP_KERNEL); 538 if (!ev_privs) 539 return -ENOMEM; 540 541 542 idr_for_each_entry(&p->event_idr, ev, ev_id) { 543 struct kfd_criu_event_priv_data *ev_priv; 544 545 /* 546 * Currently, all events have same size of private_data, but the current ioctl's 547 * and CRIU plugin supports private_data of variable sizes 548 */ 549 ev_priv = &ev_privs[i]; 550 551 ev_priv->object_type = KFD_CRIU_OBJECT_TYPE_EVENT; 552 553 /* We store the user_handle with the first event */ 554 if (i == 0 && p->signal_page) 555 ev_priv->user_handle = p->signal_handle; 556 557 ev_priv->event_id = ev->event_id; 558 ev_priv->auto_reset = ev->auto_reset; 559 ev_priv->type = ev->type; 560 ev_priv->signaled = ev->signaled; 561 562 if (ev_priv->type == KFD_EVENT_TYPE_MEMORY) 563 memcpy(&ev_priv->memory_exception_data, 564 &ev->memory_exception_data, 565 sizeof(struct kfd_hsa_memory_exception_data)); 566 else if (ev_priv->type == KFD_EVENT_TYPE_HW_EXCEPTION) 567 memcpy(&ev_priv->hw_exception_data, 568 &ev->hw_exception_data, 569 sizeof(struct kfd_hsa_hw_exception_data)); 570 571 pr_debug("Checkpointed event[%d] id = 0x%08x auto_reset = %x type = %x signaled = %x\n", 572 i, 573 ev_priv->event_id, 574 ev_priv->auto_reset, 575 ev_priv->type, 576 ev_priv->signaled); 577 i++; 578 } 579 580 ret = copy_to_user(user_priv_data + *priv_data_offset, 581 ev_privs, num_events * sizeof(*ev_privs)); 582 if (ret) { 583 pr_err("Failed to copy events priv to user\n"); 584 ret = -EFAULT; 585 } 586 587 *priv_data_offset += num_events * sizeof(*ev_privs); 588 589 kvfree(ev_privs); 590 return ret; 591 } 592 593 int kfd_get_num_events(struct kfd_process *p) 594 { 595 struct kfd_event *ev; 596 uint32_t id; 597 u32 num_events = 0; 598 599 idr_for_each_entry(&p->event_idr, ev, id) 600 num_events++; 601 602 return num_events; 603 } 604 605 /* Assumes that p is current. */ 606 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id) 607 { 608 struct kfd_event *ev; 609 int ret = 0; 610 611 mutex_lock(&p->event_mutex); 612 613 ev = lookup_event_by_id(p, event_id); 614 615 if (ev) 616 destroy_event(p, ev); 617 else 618 ret = -EINVAL; 619 620 mutex_unlock(&p->event_mutex); 621 return ret; 622 } 623 624 static void set_event(struct kfd_event *ev) 625 { 626 struct kfd_event_waiter *waiter; 627 628 /* Auto reset if the list is non-empty and we're waking 629 * someone. waitqueue_active is safe here because we're 630 * protected by the ev->lock, which is also held when 631 * updating the wait queues in kfd_wait_on_events. 632 */ 633 ev->signaled = !ev->auto_reset || !waitqueue_active(&ev->wq); 634 if (!(++ev->event_age)) { 635 /* Never wrap back to reserved/default event age 0/1 */ 636 ev->event_age = 2; 637 WARN_ONCE(1, "event_age wrap back!"); 638 } 639 640 list_for_each_entry(waiter, &ev->wq.head, wait.entry) 641 WRITE_ONCE(waiter->activated, true); 642 643 wake_up_all(&ev->wq); 644 } 645 646 /* Assumes that p is current. */ 647 int kfd_set_event(struct kfd_process *p, uint32_t event_id) 648 { 649 int ret = 0; 650 struct kfd_event *ev; 651 652 rcu_read_lock(); 653 654 ev = lookup_event_by_id(p, event_id); 655 if (!ev) { 656 ret = -EINVAL; 657 goto unlock_rcu; 658 } 659 spin_lock(&ev->lock); 660 661 if (event_can_be_cpu_signaled(ev)) 662 set_event(ev); 663 else 664 ret = -EINVAL; 665 666 spin_unlock(&ev->lock); 667 unlock_rcu: 668 rcu_read_unlock(); 669 return ret; 670 } 671 672 static void reset_event(struct kfd_event *ev) 673 { 674 ev->signaled = false; 675 } 676 677 /* Assumes that p is current. */ 678 int kfd_reset_event(struct kfd_process *p, uint32_t event_id) 679 { 680 int ret = 0; 681 struct kfd_event *ev; 682 683 rcu_read_lock(); 684 685 ev = lookup_event_by_id(p, event_id); 686 if (!ev) { 687 ret = -EINVAL; 688 goto unlock_rcu; 689 } 690 spin_lock(&ev->lock); 691 692 if (event_can_be_cpu_signaled(ev)) 693 reset_event(ev); 694 else 695 ret = -EINVAL; 696 697 spin_unlock(&ev->lock); 698 unlock_rcu: 699 rcu_read_unlock(); 700 return ret; 701 702 } 703 704 static void acknowledge_signal(struct kfd_process *p, struct kfd_event *ev) 705 { 706 WRITE_ONCE(page_slots(p->signal_page)[ev->event_id], UNSIGNALED_EVENT_SLOT); 707 } 708 709 static void set_event_from_interrupt(struct kfd_process *p, 710 struct kfd_event *ev) 711 { 712 if (ev && event_can_be_gpu_signaled(ev)) { 713 acknowledge_signal(p, ev); 714 spin_lock(&ev->lock); 715 set_event(ev); 716 spin_unlock(&ev->lock); 717 } 718 } 719 720 void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id, 721 uint32_t valid_id_bits) 722 { 723 struct kfd_event *ev = NULL; 724 725 /* 726 * Because we are called from arbitrary context (workqueue) as opposed 727 * to process context, kfd_process could attempt to exit while we are 728 * running so the lookup function increments the process ref count. 729 */ 730 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); 731 732 if (!p) 733 return; /* Presumably process exited. */ 734 735 rcu_read_lock(); 736 737 if (valid_id_bits) 738 ev = lookup_signaled_event_by_partial_id(p, partial_id, 739 valid_id_bits); 740 if (ev) { 741 set_event_from_interrupt(p, ev); 742 } else if (p->signal_page) { 743 /* 744 * Partial ID lookup failed. Assume that the event ID 745 * in the interrupt payload was invalid and do an 746 * exhaustive search of signaled events. 747 */ 748 uint64_t *slots = page_slots(p->signal_page); 749 uint32_t id; 750 751 /* 752 * If id is valid but slot is not signaled, GPU may signal the same event twice 753 * before driver have chance to process the first interrupt, then signal slot is 754 * auto-reset after set_event wakeup the user space, just drop the second event as 755 * the application only need wakeup once. 756 */ 757 if ((valid_id_bits > 31 || (1U << valid_id_bits) >= KFD_SIGNAL_EVENT_LIMIT) && 758 partial_id < KFD_SIGNAL_EVENT_LIMIT && slots[partial_id] == UNSIGNALED_EVENT_SLOT) 759 goto out_unlock; 760 761 if (valid_id_bits) 762 pr_debug_ratelimited("Partial ID invalid: %u (%u valid bits)\n", 763 partial_id, valid_id_bits); 764 765 if (p->signal_event_count < KFD_SIGNAL_EVENT_LIMIT / 64) { 766 /* With relatively few events, it's faster to 767 * iterate over the event IDR 768 */ 769 idr_for_each_entry(&p->event_idr, ev, id) { 770 if (id >= KFD_SIGNAL_EVENT_LIMIT) 771 break; 772 773 if (READ_ONCE(slots[id]) != UNSIGNALED_EVENT_SLOT) 774 set_event_from_interrupt(p, ev); 775 } 776 } else { 777 /* With relatively many events, it's faster to 778 * iterate over the signal slots and lookup 779 * only signaled events from the IDR. 780 */ 781 for (id = 1; id < KFD_SIGNAL_EVENT_LIMIT; id++) 782 if (READ_ONCE(slots[id]) != UNSIGNALED_EVENT_SLOT) { 783 ev = lookup_event_by_id(p, id); 784 set_event_from_interrupt(p, ev); 785 } 786 } 787 } 788 789 out_unlock: 790 rcu_read_unlock(); 791 kfd_unref_process(p); 792 } 793 794 static struct kfd_event_waiter *alloc_event_waiters(uint32_t num_events) 795 { 796 struct kfd_event_waiter *event_waiters; 797 uint32_t i; 798 799 event_waiters = kcalloc(num_events, sizeof(struct kfd_event_waiter), 800 GFP_KERNEL); 801 if (!event_waiters) 802 return NULL; 803 804 for (i = 0; i < num_events; i++) 805 init_wait(&event_waiters[i].wait); 806 807 return event_waiters; 808 } 809 810 static int init_event_waiter(struct kfd_process *p, 811 struct kfd_event_waiter *waiter, 812 struct kfd_event_data *event_data) 813 { 814 struct kfd_event *ev = lookup_event_by_id(p, event_data->event_id); 815 816 if (!ev) 817 return -EINVAL; 818 819 spin_lock(&ev->lock); 820 waiter->event = ev; 821 waiter->activated = ev->signaled; 822 ev->signaled = ev->signaled && !ev->auto_reset; 823 824 /* last_event_age = 0 reserved for backward compatible */ 825 if (waiter->event->type == KFD_EVENT_TYPE_SIGNAL && 826 event_data->signal_event_data.last_event_age) { 827 waiter->event_age_enabled = true; 828 if (ev->event_age != event_data->signal_event_data.last_event_age) 829 waiter->activated = true; 830 } 831 832 if (!waiter->activated) 833 add_wait_queue(&ev->wq, &waiter->wait); 834 spin_unlock(&ev->lock); 835 836 return 0; 837 } 838 839 /* test_event_condition - Test condition of events being waited for 840 * @all: Return completion only if all events have signaled 841 * @num_events: Number of events to wait for 842 * @event_waiters: Array of event waiters, one per event 843 * 844 * Returns KFD_IOC_WAIT_RESULT_COMPLETE if all (or one) event(s) have 845 * signaled. Returns KFD_IOC_WAIT_RESULT_TIMEOUT if no (or not all) 846 * events have signaled. Returns KFD_IOC_WAIT_RESULT_FAIL if any of 847 * the events have been destroyed. 848 */ 849 static uint32_t test_event_condition(bool all, uint32_t num_events, 850 struct kfd_event_waiter *event_waiters) 851 { 852 uint32_t i; 853 uint32_t activated_count = 0; 854 855 for (i = 0; i < num_events; i++) { 856 if (!READ_ONCE(event_waiters[i].event)) 857 return KFD_IOC_WAIT_RESULT_FAIL; 858 859 if (READ_ONCE(event_waiters[i].activated)) { 860 if (!all) 861 return KFD_IOC_WAIT_RESULT_COMPLETE; 862 863 activated_count++; 864 } 865 } 866 867 return activated_count == num_events ? 868 KFD_IOC_WAIT_RESULT_COMPLETE : KFD_IOC_WAIT_RESULT_TIMEOUT; 869 } 870 871 /* 872 * Copy event specific data, if defined. 873 * Currently only memory exception events have additional data to copy to user 874 */ 875 static int copy_signaled_event_data(uint32_t num_events, 876 struct kfd_event_waiter *event_waiters, 877 struct kfd_event_data __user *data) 878 { 879 void *src; 880 void __user *dst; 881 struct kfd_event_waiter *waiter; 882 struct kfd_event *event; 883 uint32_t i, size = 0; 884 885 for (i = 0; i < num_events; i++) { 886 waiter = &event_waiters[i]; 887 event = waiter->event; 888 if (!event) 889 return -EINVAL; /* event was destroyed */ 890 if (waiter->activated) { 891 if (event->type == KFD_EVENT_TYPE_MEMORY) { 892 dst = &data[i].memory_exception_data; 893 src = &event->memory_exception_data; 894 size = sizeof(struct kfd_hsa_memory_exception_data); 895 } else if (event->type == KFD_EVENT_TYPE_HW_EXCEPTION) { 896 dst = &data[i].memory_exception_data; 897 src = &event->hw_exception_data; 898 size = sizeof(struct kfd_hsa_hw_exception_data); 899 } else if (event->type == KFD_EVENT_TYPE_SIGNAL && 900 waiter->event_age_enabled) { 901 dst = &data[i].signal_event_data.last_event_age; 902 src = &event->event_age; 903 size = sizeof(u64); 904 } 905 if (size && copy_to_user(dst, src, size)) 906 return -EFAULT; 907 } 908 } 909 910 return 0; 911 } 912 913 static long user_timeout_to_jiffies(uint32_t user_timeout_ms) 914 { 915 if (user_timeout_ms == KFD_EVENT_TIMEOUT_IMMEDIATE) 916 return 0; 917 918 if (user_timeout_ms == KFD_EVENT_TIMEOUT_INFINITE) 919 return MAX_SCHEDULE_TIMEOUT; 920 921 /* 922 * msecs_to_jiffies interprets all values above 2^31-1 as infinite, 923 * but we consider them finite. 924 * This hack is wrong, but nobody is likely to notice. 925 */ 926 user_timeout_ms = min_t(uint32_t, user_timeout_ms, 0x7FFFFFFF); 927 928 return msecs_to_jiffies(user_timeout_ms) + 1; 929 } 930 931 static void free_waiters(uint32_t num_events, struct kfd_event_waiter *waiters, 932 bool undo_auto_reset) 933 { 934 uint32_t i; 935 936 for (i = 0; i < num_events; i++) 937 if (waiters[i].event) { 938 spin_lock(&waiters[i].event->lock); 939 remove_wait_queue(&waiters[i].event->wq, 940 &waiters[i].wait); 941 if (undo_auto_reset && waiters[i].activated && 942 waiters[i].event && waiters[i].event->auto_reset) 943 set_event(waiters[i].event); 944 spin_unlock(&waiters[i].event->lock); 945 } 946 947 kfree(waiters); 948 } 949 950 int kfd_wait_on_events(struct kfd_process *p, 951 uint32_t num_events, void __user *data, 952 bool all, uint32_t *user_timeout_ms, 953 uint32_t *wait_result) 954 { 955 struct kfd_event_data __user *events = 956 (struct kfd_event_data __user *) data; 957 uint32_t i; 958 int ret = 0; 959 960 struct kfd_event_waiter *event_waiters = NULL; 961 long timeout = user_timeout_to_jiffies(*user_timeout_ms); 962 963 event_waiters = alloc_event_waiters(num_events); 964 if (!event_waiters) { 965 ret = -ENOMEM; 966 goto out; 967 } 968 969 /* Use p->event_mutex here to protect against concurrent creation and 970 * destruction of events while we initialize event_waiters. 971 */ 972 mutex_lock(&p->event_mutex); 973 974 for (i = 0; i < num_events; i++) { 975 struct kfd_event_data event_data; 976 977 if (copy_from_user(&event_data, &events[i], 978 sizeof(struct kfd_event_data))) { 979 ret = -EFAULT; 980 goto out_unlock; 981 } 982 983 ret = init_event_waiter(p, &event_waiters[i], &event_data); 984 if (ret) 985 goto out_unlock; 986 } 987 988 /* Check condition once. */ 989 *wait_result = test_event_condition(all, num_events, event_waiters); 990 if (*wait_result == KFD_IOC_WAIT_RESULT_COMPLETE) { 991 ret = copy_signaled_event_data(num_events, 992 event_waiters, events); 993 goto out_unlock; 994 } else if (WARN_ON(*wait_result == KFD_IOC_WAIT_RESULT_FAIL)) { 995 /* This should not happen. Events shouldn't be 996 * destroyed while we're holding the event_mutex 997 */ 998 goto out_unlock; 999 } 1000 1001 mutex_unlock(&p->event_mutex); 1002 1003 while (true) { 1004 if (fatal_signal_pending(current)) { 1005 ret = -EINTR; 1006 break; 1007 } 1008 1009 if (signal_pending(current)) { 1010 ret = -ERESTARTSYS; 1011 if (*user_timeout_ms != KFD_EVENT_TIMEOUT_IMMEDIATE && 1012 *user_timeout_ms != KFD_EVENT_TIMEOUT_INFINITE) 1013 *user_timeout_ms = jiffies_to_msecs( 1014 max(0l, timeout-1)); 1015 break; 1016 } 1017 1018 /* Set task state to interruptible sleep before 1019 * checking wake-up conditions. A concurrent wake-up 1020 * will put the task back into runnable state. In that 1021 * case schedule_timeout will not put the task to 1022 * sleep and we'll get a chance to re-check the 1023 * updated conditions almost immediately. Otherwise, 1024 * this race condition would lead to a soft hang or a 1025 * very long sleep. 1026 */ 1027 set_current_state(TASK_INTERRUPTIBLE); 1028 1029 *wait_result = test_event_condition(all, num_events, 1030 event_waiters); 1031 if (*wait_result != KFD_IOC_WAIT_RESULT_TIMEOUT) 1032 break; 1033 1034 if (timeout <= 0) 1035 break; 1036 1037 timeout = schedule_timeout(timeout); 1038 } 1039 __set_current_state(TASK_RUNNING); 1040 1041 mutex_lock(&p->event_mutex); 1042 /* copy_signaled_event_data may sleep. So this has to happen 1043 * after the task state is set back to RUNNING. 1044 * 1045 * The event may also have been destroyed after signaling. So 1046 * copy_signaled_event_data also must confirm that the event 1047 * still exists. Therefore this must be under the p->event_mutex 1048 * which is also held when events are destroyed. 1049 */ 1050 if (!ret && *wait_result == KFD_IOC_WAIT_RESULT_COMPLETE) 1051 ret = copy_signaled_event_data(num_events, 1052 event_waiters, events); 1053 1054 out_unlock: 1055 free_waiters(num_events, event_waiters, ret == -ERESTARTSYS); 1056 mutex_unlock(&p->event_mutex); 1057 out: 1058 if (ret) 1059 *wait_result = KFD_IOC_WAIT_RESULT_FAIL; 1060 else if (*wait_result == KFD_IOC_WAIT_RESULT_FAIL) 1061 ret = -EIO; 1062 1063 return ret; 1064 } 1065 1066 int kfd_event_mmap(struct kfd_process *p, struct vm_area_struct *vma) 1067 { 1068 unsigned long pfn; 1069 struct kfd_signal_page *page; 1070 int ret; 1071 1072 /* check required size doesn't exceed the allocated size */ 1073 if (get_order(KFD_SIGNAL_EVENT_LIMIT * 8) < 1074 get_order(vma->vm_end - vma->vm_start)) { 1075 pr_err("Event page mmap requested illegal size\n"); 1076 return -EINVAL; 1077 } 1078 1079 page = p->signal_page; 1080 if (!page) { 1081 /* Probably KFD bug, but mmap is user-accessible. */ 1082 pr_debug("Signal page could not be found\n"); 1083 return -EINVAL; 1084 } 1085 1086 pfn = __pa(page->kernel_address); 1087 pfn >>= PAGE_SHIFT; 1088 1089 vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE 1090 | VM_DONTDUMP | VM_PFNMAP); 1091 1092 pr_debug("Mapping signal page\n"); 1093 pr_debug(" start user address == 0x%08lx\n", vma->vm_start); 1094 pr_debug(" end user address == 0x%08lx\n", vma->vm_end); 1095 pr_debug(" pfn == 0x%016lX\n", pfn); 1096 pr_debug(" vm_flags == 0x%08lX\n", vma->vm_flags); 1097 pr_debug(" size == 0x%08lX\n", 1098 vma->vm_end - vma->vm_start); 1099 1100 page->user_address = (uint64_t __user *)vma->vm_start; 1101 1102 /* mapping the page to user process */ 1103 ret = remap_pfn_range(vma, vma->vm_start, pfn, 1104 vma->vm_end - vma->vm_start, vma->vm_page_prot); 1105 if (!ret) 1106 p->signal_mapped_size = vma->vm_end - vma->vm_start; 1107 1108 return ret; 1109 } 1110 1111 /* 1112 * Assumes that p is not going away. 1113 */ 1114 static void lookup_events_by_type_and_signal(struct kfd_process *p, 1115 int type, void *event_data) 1116 { 1117 struct kfd_hsa_memory_exception_data *ev_data; 1118 struct kfd_event *ev; 1119 uint32_t id; 1120 bool send_signal = true; 1121 1122 ev_data = (struct kfd_hsa_memory_exception_data *) event_data; 1123 1124 rcu_read_lock(); 1125 1126 id = KFD_FIRST_NONSIGNAL_EVENT_ID; 1127 idr_for_each_entry_continue(&p->event_idr, ev, id) 1128 if (ev->type == type) { 1129 send_signal = false; 1130 dev_dbg(kfd_device, 1131 "Event found: id %X type %d", 1132 ev->event_id, ev->type); 1133 spin_lock(&ev->lock); 1134 set_event(ev); 1135 if (ev->type == KFD_EVENT_TYPE_MEMORY && ev_data) 1136 ev->memory_exception_data = *ev_data; 1137 spin_unlock(&ev->lock); 1138 } 1139 1140 if (type == KFD_EVENT_TYPE_MEMORY) { 1141 dev_warn(kfd_device, 1142 "Sending SIGSEGV to process %d (pasid 0x%x)", 1143 p->lead_thread->pid, p->pasid); 1144 send_sig(SIGSEGV, p->lead_thread, 0); 1145 } 1146 1147 /* Send SIGTERM no event of type "type" has been found*/ 1148 if (send_signal) { 1149 if (send_sigterm) { 1150 dev_warn(kfd_device, 1151 "Sending SIGTERM to process %d (pasid 0x%x)", 1152 p->lead_thread->pid, p->pasid); 1153 send_sig(SIGTERM, p->lead_thread, 0); 1154 } else { 1155 dev_err(kfd_device, 1156 "Process %d (pasid 0x%x) got unhandled exception", 1157 p->lead_thread->pid, p->pasid); 1158 } 1159 } 1160 1161 rcu_read_unlock(); 1162 } 1163 1164 void kfd_signal_hw_exception_event(u32 pasid) 1165 { 1166 /* 1167 * Because we are called from arbitrary context (workqueue) as opposed 1168 * to process context, kfd_process could attempt to exit while we are 1169 * running so the lookup function increments the process ref count. 1170 */ 1171 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); 1172 1173 if (!p) 1174 return; /* Presumably process exited. */ 1175 1176 lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_HW_EXCEPTION, NULL); 1177 kfd_unref_process(p); 1178 } 1179 1180 void kfd_signal_vm_fault_event(struct kfd_node *dev, u32 pasid, 1181 struct kfd_vm_fault_info *info, 1182 struct kfd_hsa_memory_exception_data *data) 1183 { 1184 struct kfd_event *ev; 1185 uint32_t id; 1186 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); 1187 struct kfd_hsa_memory_exception_data memory_exception_data; 1188 int user_gpu_id; 1189 1190 if (!p) 1191 return; /* Presumably process exited. */ 1192 1193 user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id); 1194 if (unlikely(user_gpu_id == -EINVAL)) { 1195 WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id); 1196 return; 1197 } 1198 1199 /* SoC15 chips and onwards will pass in data from now on. */ 1200 if (!data) { 1201 memset(&memory_exception_data, 0, sizeof(memory_exception_data)); 1202 memory_exception_data.gpu_id = user_gpu_id; 1203 memory_exception_data.failure.imprecise = true; 1204 1205 /* Set failure reason */ 1206 if (info) { 1207 memory_exception_data.va = (info->page_addr) << 1208 PAGE_SHIFT; 1209 memory_exception_data.failure.NotPresent = 1210 info->prot_valid ? 1 : 0; 1211 memory_exception_data.failure.NoExecute = 1212 info->prot_exec ? 1 : 0; 1213 memory_exception_data.failure.ReadOnly = 1214 info->prot_write ? 1 : 0; 1215 memory_exception_data.failure.imprecise = 0; 1216 } 1217 } 1218 1219 rcu_read_lock(); 1220 1221 id = KFD_FIRST_NONSIGNAL_EVENT_ID; 1222 idr_for_each_entry_continue(&p->event_idr, ev, id) 1223 if (ev->type == KFD_EVENT_TYPE_MEMORY) { 1224 spin_lock(&ev->lock); 1225 ev->memory_exception_data = data ? *data : 1226 memory_exception_data; 1227 set_event(ev); 1228 spin_unlock(&ev->lock); 1229 } 1230 1231 rcu_read_unlock(); 1232 kfd_unref_process(p); 1233 } 1234 1235 void kfd_signal_reset_event(struct kfd_node *dev) 1236 { 1237 struct kfd_hsa_hw_exception_data hw_exception_data; 1238 struct kfd_hsa_memory_exception_data memory_exception_data; 1239 struct kfd_process *p; 1240 struct kfd_event *ev; 1241 unsigned int temp; 1242 uint32_t id, idx; 1243 int reset_cause = atomic_read(&dev->sram_ecc_flag) ? 1244 KFD_HW_EXCEPTION_ECC : 1245 KFD_HW_EXCEPTION_GPU_HANG; 1246 1247 /* Whole gpu reset caused by GPU hang and memory is lost */ 1248 memset(&hw_exception_data, 0, sizeof(hw_exception_data)); 1249 hw_exception_data.memory_lost = 1; 1250 hw_exception_data.reset_cause = reset_cause; 1251 1252 memset(&memory_exception_data, 0, sizeof(memory_exception_data)); 1253 memory_exception_data.ErrorType = KFD_MEM_ERR_SRAM_ECC; 1254 memory_exception_data.failure.imprecise = true; 1255 1256 idx = srcu_read_lock(&kfd_processes_srcu); 1257 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1258 int user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id); 1259 struct kfd_process_device *pdd = kfd_get_process_device_data(dev, p); 1260 1261 if (unlikely(user_gpu_id == -EINVAL)) { 1262 WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id); 1263 continue; 1264 } 1265 1266 if (unlikely(!pdd)) { 1267 WARN_ONCE(1, "Could not get device data from pasid:0x%x\n", p->pasid); 1268 continue; 1269 } 1270 1271 if (dev->dqm->detect_hang_count && !pdd->has_reset_queue) 1272 continue; 1273 1274 if (dev->dqm->detect_hang_count) { 1275 struct amdgpu_task_info *ti; 1276 1277 ti = amdgpu_vm_get_task_info_pasid(dev->adev, p->pasid); 1278 if (ti) { 1279 dev_err(dev->adev->dev, 1280 "Queues reset on process %s tid %d thread %s pid %d\n", 1281 ti->process_name, ti->tgid, ti->task_name, ti->pid); 1282 amdgpu_vm_put_task_info(ti); 1283 } 1284 } 1285 1286 rcu_read_lock(); 1287 1288 id = KFD_FIRST_NONSIGNAL_EVENT_ID; 1289 idr_for_each_entry_continue(&p->event_idr, ev, id) { 1290 if (ev->type == KFD_EVENT_TYPE_HW_EXCEPTION) { 1291 spin_lock(&ev->lock); 1292 ev->hw_exception_data = hw_exception_data; 1293 ev->hw_exception_data.gpu_id = user_gpu_id; 1294 set_event(ev); 1295 spin_unlock(&ev->lock); 1296 } 1297 if (ev->type == KFD_EVENT_TYPE_MEMORY && 1298 reset_cause == KFD_HW_EXCEPTION_ECC) { 1299 spin_lock(&ev->lock); 1300 ev->memory_exception_data = memory_exception_data; 1301 ev->memory_exception_data.gpu_id = user_gpu_id; 1302 set_event(ev); 1303 spin_unlock(&ev->lock); 1304 } 1305 } 1306 1307 rcu_read_unlock(); 1308 } 1309 srcu_read_unlock(&kfd_processes_srcu, idx); 1310 } 1311 1312 void kfd_signal_poison_consumed_event(struct kfd_node *dev, u32 pasid) 1313 { 1314 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); 1315 struct kfd_hsa_memory_exception_data memory_exception_data; 1316 struct kfd_hsa_hw_exception_data hw_exception_data; 1317 struct kfd_event *ev; 1318 uint32_t id = KFD_FIRST_NONSIGNAL_EVENT_ID; 1319 int user_gpu_id; 1320 1321 if (!p) { 1322 dev_warn(dev->adev->dev, "Not find process with pasid:%d\n", pasid); 1323 return; /* Presumably process exited. */ 1324 } 1325 1326 user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id); 1327 if (unlikely(user_gpu_id == -EINVAL)) { 1328 WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id); 1329 return; 1330 } 1331 1332 memset(&hw_exception_data, 0, sizeof(hw_exception_data)); 1333 hw_exception_data.gpu_id = user_gpu_id; 1334 hw_exception_data.memory_lost = 1; 1335 hw_exception_data.reset_cause = KFD_HW_EXCEPTION_ECC; 1336 1337 memset(&memory_exception_data, 0, sizeof(memory_exception_data)); 1338 memory_exception_data.ErrorType = KFD_MEM_ERR_POISON_CONSUMED; 1339 memory_exception_data.gpu_id = user_gpu_id; 1340 memory_exception_data.failure.imprecise = true; 1341 1342 rcu_read_lock(); 1343 1344 idr_for_each_entry_continue(&p->event_idr, ev, id) { 1345 if (ev->type == KFD_EVENT_TYPE_HW_EXCEPTION) { 1346 spin_lock(&ev->lock); 1347 ev->hw_exception_data = hw_exception_data; 1348 set_event(ev); 1349 spin_unlock(&ev->lock); 1350 } 1351 1352 if (ev->type == KFD_EVENT_TYPE_MEMORY) { 1353 spin_lock(&ev->lock); 1354 ev->memory_exception_data = memory_exception_data; 1355 set_event(ev); 1356 spin_unlock(&ev->lock); 1357 } 1358 } 1359 1360 dev_warn(dev->adev->dev, "Send SIGBUS to process %s(pasid:%d)\n", 1361 p->lead_thread->comm, pasid); 1362 rcu_read_unlock(); 1363 1364 /* user application will handle SIGBUS signal */ 1365 send_sig(SIGBUS, p->lead_thread, 0); 1366 1367 kfd_unref_process(p); 1368 } 1369