xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_events.c (revision da1d9caf95def6f0320819cf941c9fd1069ba9e1)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/mm_types.h>
25 #include <linux/slab.h>
26 #include <linux/types.h>
27 #include <linux/sched/signal.h>
28 #include <linux/sched/mm.h>
29 #include <linux/uaccess.h>
30 #include <linux/mman.h>
31 #include <linux/memory.h>
32 #include "kfd_priv.h"
33 #include "kfd_events.h"
34 #include "kfd_iommu.h"
35 #include <linux/device.h>
36 
37 /*
38  * Wrapper around wait_queue_entry_t
39  */
40 struct kfd_event_waiter {
41 	wait_queue_entry_t wait;
42 	struct kfd_event *event; /* Event to wait for */
43 	bool activated;		 /* Becomes true when event is signaled */
44 };
45 
46 /*
47  * Each signal event needs a 64-bit signal slot where the signaler will write
48  * a 1 before sending an interrupt. (This is needed because some interrupts
49  * do not contain enough spare data bits to identify an event.)
50  * We get whole pages and map them to the process VA.
51  * Individual signal events use their event_id as slot index.
52  */
53 struct kfd_signal_page {
54 	uint64_t *kernel_address;
55 	uint64_t __user *user_address;
56 	bool need_to_free_pages;
57 };
58 
59 static uint64_t *page_slots(struct kfd_signal_page *page)
60 {
61 	return page->kernel_address;
62 }
63 
64 static struct kfd_signal_page *allocate_signal_page(struct kfd_process *p)
65 {
66 	void *backing_store;
67 	struct kfd_signal_page *page;
68 
69 	page = kzalloc(sizeof(*page), GFP_KERNEL);
70 	if (!page)
71 		return NULL;
72 
73 	backing_store = (void *) __get_free_pages(GFP_KERNEL,
74 					get_order(KFD_SIGNAL_EVENT_LIMIT * 8));
75 	if (!backing_store)
76 		goto fail_alloc_signal_store;
77 
78 	/* Initialize all events to unsignaled */
79 	memset(backing_store, (uint8_t) UNSIGNALED_EVENT_SLOT,
80 	       KFD_SIGNAL_EVENT_LIMIT * 8);
81 
82 	page->kernel_address = backing_store;
83 	page->need_to_free_pages = true;
84 	pr_debug("Allocated new event signal page at %p, for process %p\n",
85 			page, p);
86 
87 	return page;
88 
89 fail_alloc_signal_store:
90 	kfree(page);
91 	return NULL;
92 }
93 
94 static int allocate_event_notification_slot(struct kfd_process *p,
95 					    struct kfd_event *ev,
96 					    const int *restore_id)
97 {
98 	int id;
99 
100 	if (!p->signal_page) {
101 		p->signal_page = allocate_signal_page(p);
102 		if (!p->signal_page)
103 			return -ENOMEM;
104 		/* Oldest user mode expects 256 event slots */
105 		p->signal_mapped_size = 256*8;
106 	}
107 
108 	if (restore_id) {
109 		id = idr_alloc(&p->event_idr, ev, *restore_id, *restore_id + 1,
110 				GFP_KERNEL);
111 	} else {
112 		/*
113 		 * Compatibility with old user mode: Only use signal slots
114 		 * user mode has mapped, may be less than
115 		 * KFD_SIGNAL_EVENT_LIMIT. This also allows future increase
116 		 * of the event limit without breaking user mode.
117 		 */
118 		id = idr_alloc(&p->event_idr, ev, 0, p->signal_mapped_size / 8,
119 				GFP_KERNEL);
120 	}
121 	if (id < 0)
122 		return id;
123 
124 	ev->event_id = id;
125 	page_slots(p->signal_page)[id] = UNSIGNALED_EVENT_SLOT;
126 
127 	return 0;
128 }
129 
130 /*
131  * Assumes that p->event_mutex or rcu_readlock is held and of course that p is
132  * not going away.
133  */
134 static struct kfd_event *lookup_event_by_id(struct kfd_process *p, uint32_t id)
135 {
136 	return idr_find(&p->event_idr, id);
137 }
138 
139 /**
140  * lookup_signaled_event_by_partial_id - Lookup signaled event from partial ID
141  * @p:     Pointer to struct kfd_process
142  * @id:    ID to look up
143  * @bits:  Number of valid bits in @id
144  *
145  * Finds the first signaled event with a matching partial ID. If no
146  * matching signaled event is found, returns NULL. In that case the
147  * caller should assume that the partial ID is invalid and do an
148  * exhaustive search of all siglaned events.
149  *
150  * If multiple events with the same partial ID signal at the same
151  * time, they will be found one interrupt at a time, not necessarily
152  * in the same order the interrupts occurred. As long as the number of
153  * interrupts is correct, all signaled events will be seen by the
154  * driver.
155  */
156 static struct kfd_event *lookup_signaled_event_by_partial_id(
157 	struct kfd_process *p, uint32_t id, uint32_t bits)
158 {
159 	struct kfd_event *ev;
160 
161 	if (!p->signal_page || id >= KFD_SIGNAL_EVENT_LIMIT)
162 		return NULL;
163 
164 	/* Fast path for the common case that @id is not a partial ID
165 	 * and we only need a single lookup.
166 	 */
167 	if (bits > 31 || (1U << bits) >= KFD_SIGNAL_EVENT_LIMIT) {
168 		if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT)
169 			return NULL;
170 
171 		return idr_find(&p->event_idr, id);
172 	}
173 
174 	/* General case for partial IDs: Iterate over all matching IDs
175 	 * and find the first one that has signaled.
176 	 */
177 	for (ev = NULL; id < KFD_SIGNAL_EVENT_LIMIT && !ev; id += 1U << bits) {
178 		if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT)
179 			continue;
180 
181 		ev = idr_find(&p->event_idr, id);
182 	}
183 
184 	return ev;
185 }
186 
187 static int create_signal_event(struct file *devkfd, struct kfd_process *p,
188 				struct kfd_event *ev, const int *restore_id)
189 {
190 	int ret;
191 
192 	if (p->signal_mapped_size &&
193 	    p->signal_event_count == p->signal_mapped_size / 8) {
194 		if (!p->signal_event_limit_reached) {
195 			pr_debug("Signal event wasn't created because limit was reached\n");
196 			p->signal_event_limit_reached = true;
197 		}
198 		return -ENOSPC;
199 	}
200 
201 	ret = allocate_event_notification_slot(p, ev, restore_id);
202 	if (ret) {
203 		pr_warn("Signal event wasn't created because out of kernel memory\n");
204 		return ret;
205 	}
206 
207 	p->signal_event_count++;
208 
209 	ev->user_signal_address = &p->signal_page->user_address[ev->event_id];
210 	pr_debug("Signal event number %zu created with id %d, address %p\n",
211 			p->signal_event_count, ev->event_id,
212 			ev->user_signal_address);
213 
214 	return 0;
215 }
216 
217 static int create_other_event(struct kfd_process *p, struct kfd_event *ev, const int *restore_id)
218 {
219 	int id;
220 
221 	if (restore_id)
222 		id = idr_alloc(&p->event_idr, ev, *restore_id, *restore_id + 1,
223 			GFP_KERNEL);
224 	else
225 		/* Cast KFD_LAST_NONSIGNAL_EVENT to uint32_t. This allows an
226 		 * intentional integer overflow to -1 without a compiler
227 		 * warning. idr_alloc treats a negative value as "maximum
228 		 * signed integer".
229 		 */
230 		id = idr_alloc(&p->event_idr, ev, KFD_FIRST_NONSIGNAL_EVENT_ID,
231 				(uint32_t)KFD_LAST_NONSIGNAL_EVENT_ID + 1,
232 				GFP_KERNEL);
233 
234 	if (id < 0)
235 		return id;
236 	ev->event_id = id;
237 
238 	return 0;
239 }
240 
241 int kfd_event_init_process(struct kfd_process *p)
242 {
243 	int id;
244 
245 	mutex_init(&p->event_mutex);
246 	idr_init(&p->event_idr);
247 	p->signal_page = NULL;
248 	p->signal_event_count = 1;
249 	/* Allocate event ID 0. It is used for a fast path to ignore bogus events
250 	 * that are sent by the CP without a context ID
251 	 */
252 	id = idr_alloc(&p->event_idr, NULL, 0, 1, GFP_KERNEL);
253 	if (id < 0) {
254 		idr_destroy(&p->event_idr);
255 		mutex_destroy(&p->event_mutex);
256 		return id;
257 	}
258 	return 0;
259 }
260 
261 static void destroy_event(struct kfd_process *p, struct kfd_event *ev)
262 {
263 	struct kfd_event_waiter *waiter;
264 
265 	/* Wake up pending waiters. They will return failure */
266 	spin_lock(&ev->lock);
267 	list_for_each_entry(waiter, &ev->wq.head, wait.entry)
268 		WRITE_ONCE(waiter->event, NULL);
269 	wake_up_all(&ev->wq);
270 	spin_unlock(&ev->lock);
271 
272 	if (ev->type == KFD_EVENT_TYPE_SIGNAL ||
273 	    ev->type == KFD_EVENT_TYPE_DEBUG)
274 		p->signal_event_count--;
275 
276 	idr_remove(&p->event_idr, ev->event_id);
277 	kfree_rcu(ev, rcu);
278 }
279 
280 static void destroy_events(struct kfd_process *p)
281 {
282 	struct kfd_event *ev;
283 	uint32_t id;
284 
285 	idr_for_each_entry(&p->event_idr, ev, id)
286 		if (ev)
287 			destroy_event(p, ev);
288 	idr_destroy(&p->event_idr);
289 	mutex_destroy(&p->event_mutex);
290 }
291 
292 /*
293  * We assume that the process is being destroyed and there is no need to
294  * unmap the pages or keep bookkeeping data in order.
295  */
296 static void shutdown_signal_page(struct kfd_process *p)
297 {
298 	struct kfd_signal_page *page = p->signal_page;
299 
300 	if (page) {
301 		if (page->need_to_free_pages)
302 			free_pages((unsigned long)page->kernel_address,
303 				   get_order(KFD_SIGNAL_EVENT_LIMIT * 8));
304 		kfree(page);
305 	}
306 }
307 
308 void kfd_event_free_process(struct kfd_process *p)
309 {
310 	destroy_events(p);
311 	shutdown_signal_page(p);
312 }
313 
314 static bool event_can_be_gpu_signaled(const struct kfd_event *ev)
315 {
316 	return ev->type == KFD_EVENT_TYPE_SIGNAL ||
317 					ev->type == KFD_EVENT_TYPE_DEBUG;
318 }
319 
320 static bool event_can_be_cpu_signaled(const struct kfd_event *ev)
321 {
322 	return ev->type == KFD_EVENT_TYPE_SIGNAL;
323 }
324 
325 static int kfd_event_page_set(struct kfd_process *p, void *kernel_address,
326 		       uint64_t size, uint64_t user_handle)
327 {
328 	struct kfd_signal_page *page;
329 
330 	if (p->signal_page)
331 		return -EBUSY;
332 
333 	page = kzalloc(sizeof(*page), GFP_KERNEL);
334 	if (!page)
335 		return -ENOMEM;
336 
337 	/* Initialize all events to unsignaled */
338 	memset(kernel_address, (uint8_t) UNSIGNALED_EVENT_SLOT,
339 	       KFD_SIGNAL_EVENT_LIMIT * 8);
340 
341 	page->kernel_address = kernel_address;
342 
343 	p->signal_page = page;
344 	p->signal_mapped_size = size;
345 	p->signal_handle = user_handle;
346 	return 0;
347 }
348 
349 int kfd_kmap_event_page(struct kfd_process *p, uint64_t event_page_offset)
350 {
351 	struct kfd_dev *kfd;
352 	struct kfd_process_device *pdd;
353 	void *mem, *kern_addr;
354 	uint64_t size;
355 	int err = 0;
356 
357 	if (p->signal_page) {
358 		pr_err("Event page is already set\n");
359 		return -EINVAL;
360 	}
361 
362 	pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(event_page_offset));
363 	if (!pdd) {
364 		pr_err("Getting device by id failed in %s\n", __func__);
365 		return -EINVAL;
366 	}
367 	kfd = pdd->dev;
368 
369 	pdd = kfd_bind_process_to_device(kfd, p);
370 	if (IS_ERR(pdd))
371 		return PTR_ERR(pdd);
372 
373 	mem = kfd_process_device_translate_handle(pdd,
374 			GET_IDR_HANDLE(event_page_offset));
375 	if (!mem) {
376 		pr_err("Can't find BO, offset is 0x%llx\n", event_page_offset);
377 		return -EINVAL;
378 	}
379 
380 	err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(kfd->adev,
381 					mem, &kern_addr, &size);
382 	if (err) {
383 		pr_err("Failed to map event page to kernel\n");
384 		return err;
385 	}
386 
387 	err = kfd_event_page_set(p, kern_addr, size, event_page_offset);
388 	if (err) {
389 		pr_err("Failed to set event page\n");
390 		amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(kfd->adev, mem);
391 		return err;
392 	}
393 	return err;
394 }
395 
396 int kfd_event_create(struct file *devkfd, struct kfd_process *p,
397 		     uint32_t event_type, bool auto_reset, uint32_t node_id,
398 		     uint32_t *event_id, uint32_t *event_trigger_data,
399 		     uint64_t *event_page_offset, uint32_t *event_slot_index)
400 {
401 	int ret = 0;
402 	struct kfd_event *ev = kzalloc(sizeof(*ev), GFP_KERNEL);
403 
404 	if (!ev)
405 		return -ENOMEM;
406 
407 	ev->type = event_type;
408 	ev->auto_reset = auto_reset;
409 	ev->signaled = false;
410 
411 	spin_lock_init(&ev->lock);
412 	init_waitqueue_head(&ev->wq);
413 
414 	*event_page_offset = 0;
415 
416 	mutex_lock(&p->event_mutex);
417 
418 	switch (event_type) {
419 	case KFD_EVENT_TYPE_SIGNAL:
420 	case KFD_EVENT_TYPE_DEBUG:
421 		ret = create_signal_event(devkfd, p, ev, NULL);
422 		if (!ret) {
423 			*event_page_offset = KFD_MMAP_TYPE_EVENTS;
424 			*event_slot_index = ev->event_id;
425 		}
426 		break;
427 	default:
428 		ret = create_other_event(p, ev, NULL);
429 		break;
430 	}
431 
432 	if (!ret) {
433 		*event_id = ev->event_id;
434 		*event_trigger_data = ev->event_id;
435 	} else {
436 		kfree(ev);
437 	}
438 
439 	mutex_unlock(&p->event_mutex);
440 
441 	return ret;
442 }
443 
444 int kfd_criu_restore_event(struct file *devkfd,
445 			   struct kfd_process *p,
446 			   uint8_t __user *user_priv_ptr,
447 			   uint64_t *priv_data_offset,
448 			   uint64_t max_priv_data_size)
449 {
450 	struct kfd_criu_event_priv_data *ev_priv;
451 	struct kfd_event *ev = NULL;
452 	int ret = 0;
453 
454 	ev_priv = kmalloc(sizeof(*ev_priv), GFP_KERNEL);
455 	if (!ev_priv)
456 		return -ENOMEM;
457 
458 	ev = kzalloc(sizeof(*ev), GFP_KERNEL);
459 	if (!ev) {
460 		ret = -ENOMEM;
461 		goto exit;
462 	}
463 
464 	if (*priv_data_offset + sizeof(*ev_priv) > max_priv_data_size) {
465 		ret = -EINVAL;
466 		goto exit;
467 	}
468 
469 	ret = copy_from_user(ev_priv, user_priv_ptr + *priv_data_offset, sizeof(*ev_priv));
470 	if (ret) {
471 		ret = -EFAULT;
472 		goto exit;
473 	}
474 	*priv_data_offset += sizeof(*ev_priv);
475 
476 	if (ev_priv->user_handle) {
477 		ret = kfd_kmap_event_page(p, ev_priv->user_handle);
478 		if (ret)
479 			goto exit;
480 	}
481 
482 	ev->type = ev_priv->type;
483 	ev->auto_reset = ev_priv->auto_reset;
484 	ev->signaled = ev_priv->signaled;
485 
486 	spin_lock_init(&ev->lock);
487 	init_waitqueue_head(&ev->wq);
488 
489 	mutex_lock(&p->event_mutex);
490 	switch (ev->type) {
491 	case KFD_EVENT_TYPE_SIGNAL:
492 	case KFD_EVENT_TYPE_DEBUG:
493 		ret = create_signal_event(devkfd, p, ev, &ev_priv->event_id);
494 		break;
495 	case KFD_EVENT_TYPE_MEMORY:
496 		memcpy(&ev->memory_exception_data,
497 			&ev_priv->memory_exception_data,
498 			sizeof(struct kfd_hsa_memory_exception_data));
499 
500 		ret = create_other_event(p, ev, &ev_priv->event_id);
501 		break;
502 	case KFD_EVENT_TYPE_HW_EXCEPTION:
503 		memcpy(&ev->hw_exception_data,
504 			&ev_priv->hw_exception_data,
505 			sizeof(struct kfd_hsa_hw_exception_data));
506 
507 		ret = create_other_event(p, ev, &ev_priv->event_id);
508 		break;
509 	}
510 
511 exit:
512 	if (ret)
513 		kfree(ev);
514 
515 	kfree(ev_priv);
516 
517 	mutex_unlock(&p->event_mutex);
518 
519 	return ret;
520 }
521 
522 int kfd_criu_checkpoint_events(struct kfd_process *p,
523 			 uint8_t __user *user_priv_data,
524 			 uint64_t *priv_data_offset)
525 {
526 	struct kfd_criu_event_priv_data *ev_privs;
527 	int i = 0;
528 	int ret =  0;
529 	struct kfd_event *ev;
530 	uint32_t ev_id;
531 
532 	uint32_t num_events = kfd_get_num_events(p);
533 
534 	if (!num_events)
535 		return 0;
536 
537 	ev_privs = kvzalloc(num_events * sizeof(*ev_privs), GFP_KERNEL);
538 	if (!ev_privs)
539 		return -ENOMEM;
540 
541 
542 	idr_for_each_entry(&p->event_idr, ev, ev_id) {
543 		struct kfd_criu_event_priv_data *ev_priv;
544 
545 		/*
546 		 * Currently, all events have same size of private_data, but the current ioctl's
547 		 * and CRIU plugin supports private_data of variable sizes
548 		 */
549 		ev_priv = &ev_privs[i];
550 
551 		ev_priv->object_type = KFD_CRIU_OBJECT_TYPE_EVENT;
552 
553 		/* We store the user_handle with the first event */
554 		if (i == 0 && p->signal_page)
555 			ev_priv->user_handle = p->signal_handle;
556 
557 		ev_priv->event_id = ev->event_id;
558 		ev_priv->auto_reset = ev->auto_reset;
559 		ev_priv->type = ev->type;
560 		ev_priv->signaled = ev->signaled;
561 
562 		if (ev_priv->type == KFD_EVENT_TYPE_MEMORY)
563 			memcpy(&ev_priv->memory_exception_data,
564 				&ev->memory_exception_data,
565 				sizeof(struct kfd_hsa_memory_exception_data));
566 		else if (ev_priv->type == KFD_EVENT_TYPE_HW_EXCEPTION)
567 			memcpy(&ev_priv->hw_exception_data,
568 				&ev->hw_exception_data,
569 				sizeof(struct kfd_hsa_hw_exception_data));
570 
571 		pr_debug("Checkpointed event[%d] id = 0x%08x auto_reset = %x type = %x signaled = %x\n",
572 			  i,
573 			  ev_priv->event_id,
574 			  ev_priv->auto_reset,
575 			  ev_priv->type,
576 			  ev_priv->signaled);
577 		i++;
578 	}
579 
580 	ret = copy_to_user(user_priv_data + *priv_data_offset,
581 			   ev_privs, num_events * sizeof(*ev_privs));
582 	if (ret) {
583 		pr_err("Failed to copy events priv to user\n");
584 		ret = -EFAULT;
585 	}
586 
587 	*priv_data_offset += num_events * sizeof(*ev_privs);
588 
589 	kvfree(ev_privs);
590 	return ret;
591 }
592 
593 int kfd_get_num_events(struct kfd_process *p)
594 {
595 	struct kfd_event *ev;
596 	uint32_t id;
597 	u32 num_events = 0;
598 
599 	idr_for_each_entry(&p->event_idr, ev, id)
600 		num_events++;
601 
602 	return num_events;
603 }
604 
605 /* Assumes that p is current. */
606 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id)
607 {
608 	struct kfd_event *ev;
609 	int ret = 0;
610 
611 	mutex_lock(&p->event_mutex);
612 
613 	ev = lookup_event_by_id(p, event_id);
614 
615 	if (ev)
616 		destroy_event(p, ev);
617 	else
618 		ret = -EINVAL;
619 
620 	mutex_unlock(&p->event_mutex);
621 	return ret;
622 }
623 
624 static void set_event(struct kfd_event *ev)
625 {
626 	struct kfd_event_waiter *waiter;
627 
628 	/* Auto reset if the list is non-empty and we're waking
629 	 * someone. waitqueue_active is safe here because we're
630 	 * protected by the ev->lock, which is also held when
631 	 * updating the wait queues in kfd_wait_on_events.
632 	 */
633 	ev->signaled = !ev->auto_reset || !waitqueue_active(&ev->wq);
634 
635 	list_for_each_entry(waiter, &ev->wq.head, wait.entry)
636 		WRITE_ONCE(waiter->activated, true);
637 
638 	wake_up_all(&ev->wq);
639 }
640 
641 /* Assumes that p is current. */
642 int kfd_set_event(struct kfd_process *p, uint32_t event_id)
643 {
644 	int ret = 0;
645 	struct kfd_event *ev;
646 
647 	rcu_read_lock();
648 
649 	ev = lookup_event_by_id(p, event_id);
650 	if (!ev) {
651 		ret = -EINVAL;
652 		goto unlock_rcu;
653 	}
654 	spin_lock(&ev->lock);
655 
656 	if (event_can_be_cpu_signaled(ev))
657 		set_event(ev);
658 	else
659 		ret = -EINVAL;
660 
661 	spin_unlock(&ev->lock);
662 unlock_rcu:
663 	rcu_read_unlock();
664 	return ret;
665 }
666 
667 static void reset_event(struct kfd_event *ev)
668 {
669 	ev->signaled = false;
670 }
671 
672 /* Assumes that p is current. */
673 int kfd_reset_event(struct kfd_process *p, uint32_t event_id)
674 {
675 	int ret = 0;
676 	struct kfd_event *ev;
677 
678 	rcu_read_lock();
679 
680 	ev = lookup_event_by_id(p, event_id);
681 	if (!ev) {
682 		ret = -EINVAL;
683 		goto unlock_rcu;
684 	}
685 	spin_lock(&ev->lock);
686 
687 	if (event_can_be_cpu_signaled(ev))
688 		reset_event(ev);
689 	else
690 		ret = -EINVAL;
691 
692 	spin_unlock(&ev->lock);
693 unlock_rcu:
694 	rcu_read_unlock();
695 	return ret;
696 
697 }
698 
699 static void acknowledge_signal(struct kfd_process *p, struct kfd_event *ev)
700 {
701 	WRITE_ONCE(page_slots(p->signal_page)[ev->event_id], UNSIGNALED_EVENT_SLOT);
702 }
703 
704 static void set_event_from_interrupt(struct kfd_process *p,
705 					struct kfd_event *ev)
706 {
707 	if (ev && event_can_be_gpu_signaled(ev)) {
708 		acknowledge_signal(p, ev);
709 		spin_lock(&ev->lock);
710 		set_event(ev);
711 		spin_unlock(&ev->lock);
712 	}
713 }
714 
715 void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id,
716 				uint32_t valid_id_bits)
717 {
718 	struct kfd_event *ev = NULL;
719 
720 	/*
721 	 * Because we are called from arbitrary context (workqueue) as opposed
722 	 * to process context, kfd_process could attempt to exit while we are
723 	 * running so the lookup function increments the process ref count.
724 	 */
725 	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
726 
727 	if (!p)
728 		return; /* Presumably process exited. */
729 
730 	rcu_read_lock();
731 
732 	if (valid_id_bits)
733 		ev = lookup_signaled_event_by_partial_id(p, partial_id,
734 							 valid_id_bits);
735 	if (ev) {
736 		set_event_from_interrupt(p, ev);
737 	} else if (p->signal_page) {
738 		/*
739 		 * Partial ID lookup failed. Assume that the event ID
740 		 * in the interrupt payload was invalid and do an
741 		 * exhaustive search of signaled events.
742 		 */
743 		uint64_t *slots = page_slots(p->signal_page);
744 		uint32_t id;
745 
746 		if (valid_id_bits)
747 			pr_debug_ratelimited("Partial ID invalid: %u (%u valid bits)\n",
748 					     partial_id, valid_id_bits);
749 
750 		if (p->signal_event_count < KFD_SIGNAL_EVENT_LIMIT / 64) {
751 			/* With relatively few events, it's faster to
752 			 * iterate over the event IDR
753 			 */
754 			idr_for_each_entry(&p->event_idr, ev, id) {
755 				if (id >= KFD_SIGNAL_EVENT_LIMIT)
756 					break;
757 
758 				if (READ_ONCE(slots[id]) != UNSIGNALED_EVENT_SLOT)
759 					set_event_from_interrupt(p, ev);
760 			}
761 		} else {
762 			/* With relatively many events, it's faster to
763 			 * iterate over the signal slots and lookup
764 			 * only signaled events from the IDR.
765 			 */
766 			for (id = 1; id < KFD_SIGNAL_EVENT_LIMIT; id++)
767 				if (READ_ONCE(slots[id]) != UNSIGNALED_EVENT_SLOT) {
768 					ev = lookup_event_by_id(p, id);
769 					set_event_from_interrupt(p, ev);
770 				}
771 		}
772 	}
773 
774 	rcu_read_unlock();
775 	kfd_unref_process(p);
776 }
777 
778 static struct kfd_event_waiter *alloc_event_waiters(uint32_t num_events)
779 {
780 	struct kfd_event_waiter *event_waiters;
781 	uint32_t i;
782 
783 	event_waiters = kmalloc_array(num_events,
784 					sizeof(struct kfd_event_waiter),
785 					GFP_KERNEL);
786 	if (!event_waiters)
787 		return NULL;
788 
789 	for (i = 0; (event_waiters) && (i < num_events) ; i++) {
790 		init_wait(&event_waiters[i].wait);
791 		event_waiters[i].activated = false;
792 	}
793 
794 	return event_waiters;
795 }
796 
797 static int init_event_waiter(struct kfd_process *p,
798 		struct kfd_event_waiter *waiter,
799 		uint32_t event_id)
800 {
801 	struct kfd_event *ev = lookup_event_by_id(p, event_id);
802 
803 	if (!ev)
804 		return -EINVAL;
805 
806 	spin_lock(&ev->lock);
807 	waiter->event = ev;
808 	waiter->activated = ev->signaled;
809 	ev->signaled = ev->signaled && !ev->auto_reset;
810 	if (!waiter->activated)
811 		add_wait_queue(&ev->wq, &waiter->wait);
812 	spin_unlock(&ev->lock);
813 
814 	return 0;
815 }
816 
817 /* test_event_condition - Test condition of events being waited for
818  * @all:           Return completion only if all events have signaled
819  * @num_events:    Number of events to wait for
820  * @event_waiters: Array of event waiters, one per event
821  *
822  * Returns KFD_IOC_WAIT_RESULT_COMPLETE if all (or one) event(s) have
823  * signaled. Returns KFD_IOC_WAIT_RESULT_TIMEOUT if no (or not all)
824  * events have signaled. Returns KFD_IOC_WAIT_RESULT_FAIL if any of
825  * the events have been destroyed.
826  */
827 static uint32_t test_event_condition(bool all, uint32_t num_events,
828 				struct kfd_event_waiter *event_waiters)
829 {
830 	uint32_t i;
831 	uint32_t activated_count = 0;
832 
833 	for (i = 0; i < num_events; i++) {
834 		if (!READ_ONCE(event_waiters[i].event))
835 			return KFD_IOC_WAIT_RESULT_FAIL;
836 
837 		if (READ_ONCE(event_waiters[i].activated)) {
838 			if (!all)
839 				return KFD_IOC_WAIT_RESULT_COMPLETE;
840 
841 			activated_count++;
842 		}
843 	}
844 
845 	return activated_count == num_events ?
846 		KFD_IOC_WAIT_RESULT_COMPLETE : KFD_IOC_WAIT_RESULT_TIMEOUT;
847 }
848 
849 /*
850  * Copy event specific data, if defined.
851  * Currently only memory exception events have additional data to copy to user
852  */
853 static int copy_signaled_event_data(uint32_t num_events,
854 		struct kfd_event_waiter *event_waiters,
855 		struct kfd_event_data __user *data)
856 {
857 	struct kfd_hsa_memory_exception_data *src;
858 	struct kfd_hsa_memory_exception_data __user *dst;
859 	struct kfd_event_waiter *waiter;
860 	struct kfd_event *event;
861 	uint32_t i;
862 
863 	for (i = 0; i < num_events; i++) {
864 		waiter = &event_waiters[i];
865 		event = waiter->event;
866 		if (!event)
867 			return -EINVAL; /* event was destroyed */
868 		if (waiter->activated && event->type == KFD_EVENT_TYPE_MEMORY) {
869 			dst = &data[i].memory_exception_data;
870 			src = &event->memory_exception_data;
871 			if (copy_to_user(dst, src,
872 				sizeof(struct kfd_hsa_memory_exception_data)))
873 				return -EFAULT;
874 		}
875 	}
876 
877 	return 0;
878 }
879 
880 static long user_timeout_to_jiffies(uint32_t user_timeout_ms)
881 {
882 	if (user_timeout_ms == KFD_EVENT_TIMEOUT_IMMEDIATE)
883 		return 0;
884 
885 	if (user_timeout_ms == KFD_EVENT_TIMEOUT_INFINITE)
886 		return MAX_SCHEDULE_TIMEOUT;
887 
888 	/*
889 	 * msecs_to_jiffies interprets all values above 2^31-1 as infinite,
890 	 * but we consider them finite.
891 	 * This hack is wrong, but nobody is likely to notice.
892 	 */
893 	user_timeout_ms = min_t(uint32_t, user_timeout_ms, 0x7FFFFFFF);
894 
895 	return msecs_to_jiffies(user_timeout_ms) + 1;
896 }
897 
898 static void free_waiters(uint32_t num_events, struct kfd_event_waiter *waiters)
899 {
900 	uint32_t i;
901 
902 	for (i = 0; i < num_events; i++)
903 		if (waiters[i].event) {
904 			spin_lock(&waiters[i].event->lock);
905 			remove_wait_queue(&waiters[i].event->wq,
906 					  &waiters[i].wait);
907 			spin_unlock(&waiters[i].event->lock);
908 		}
909 
910 	kfree(waiters);
911 }
912 
913 int kfd_wait_on_events(struct kfd_process *p,
914 		       uint32_t num_events, void __user *data,
915 		       bool all, uint32_t user_timeout_ms,
916 		       uint32_t *wait_result)
917 {
918 	struct kfd_event_data __user *events =
919 			(struct kfd_event_data __user *) data;
920 	uint32_t i;
921 	int ret = 0;
922 
923 	struct kfd_event_waiter *event_waiters = NULL;
924 	long timeout = user_timeout_to_jiffies(user_timeout_ms);
925 
926 	event_waiters = alloc_event_waiters(num_events);
927 	if (!event_waiters) {
928 		ret = -ENOMEM;
929 		goto out;
930 	}
931 
932 	/* Use p->event_mutex here to protect against concurrent creation and
933 	 * destruction of events while we initialize event_waiters.
934 	 */
935 	mutex_lock(&p->event_mutex);
936 
937 	for (i = 0; i < num_events; i++) {
938 		struct kfd_event_data event_data;
939 
940 		if (copy_from_user(&event_data, &events[i],
941 				sizeof(struct kfd_event_data))) {
942 			ret = -EFAULT;
943 			goto out_unlock;
944 		}
945 
946 		ret = init_event_waiter(p, &event_waiters[i],
947 					event_data.event_id);
948 		if (ret)
949 			goto out_unlock;
950 	}
951 
952 	/* Check condition once. */
953 	*wait_result = test_event_condition(all, num_events, event_waiters);
954 	if (*wait_result == KFD_IOC_WAIT_RESULT_COMPLETE) {
955 		ret = copy_signaled_event_data(num_events,
956 					       event_waiters, events);
957 		goto out_unlock;
958 	} else if (WARN_ON(*wait_result == KFD_IOC_WAIT_RESULT_FAIL)) {
959 		/* This should not happen. Events shouldn't be
960 		 * destroyed while we're holding the event_mutex
961 		 */
962 		goto out_unlock;
963 	}
964 
965 	mutex_unlock(&p->event_mutex);
966 
967 	while (true) {
968 		if (fatal_signal_pending(current)) {
969 			ret = -EINTR;
970 			break;
971 		}
972 
973 		if (signal_pending(current)) {
974 			/*
975 			 * This is wrong when a nonzero, non-infinite timeout
976 			 * is specified. We need to use
977 			 * ERESTARTSYS_RESTARTBLOCK, but struct restart_block
978 			 * contains a union with data for each user and it's
979 			 * in generic kernel code that I don't want to
980 			 * touch yet.
981 			 */
982 			ret = -ERESTARTSYS;
983 			break;
984 		}
985 
986 		/* Set task state to interruptible sleep before
987 		 * checking wake-up conditions. A concurrent wake-up
988 		 * will put the task back into runnable state. In that
989 		 * case schedule_timeout will not put the task to
990 		 * sleep and we'll get a chance to re-check the
991 		 * updated conditions almost immediately. Otherwise,
992 		 * this race condition would lead to a soft hang or a
993 		 * very long sleep.
994 		 */
995 		set_current_state(TASK_INTERRUPTIBLE);
996 
997 		*wait_result = test_event_condition(all, num_events,
998 						    event_waiters);
999 		if (*wait_result != KFD_IOC_WAIT_RESULT_TIMEOUT)
1000 			break;
1001 
1002 		if (timeout <= 0)
1003 			break;
1004 
1005 		timeout = schedule_timeout(timeout);
1006 	}
1007 	__set_current_state(TASK_RUNNING);
1008 
1009 	mutex_lock(&p->event_mutex);
1010 	/* copy_signaled_event_data may sleep. So this has to happen
1011 	 * after the task state is set back to RUNNING.
1012 	 *
1013 	 * The event may also have been destroyed after signaling. So
1014 	 * copy_signaled_event_data also must confirm that the event
1015 	 * still exists. Therefore this must be under the p->event_mutex
1016 	 * which is also held when events are destroyed.
1017 	 */
1018 	if (!ret && *wait_result == KFD_IOC_WAIT_RESULT_COMPLETE)
1019 		ret = copy_signaled_event_data(num_events,
1020 					       event_waiters, events);
1021 
1022 out_unlock:
1023 	free_waiters(num_events, event_waiters);
1024 	mutex_unlock(&p->event_mutex);
1025 out:
1026 	if (ret)
1027 		*wait_result = KFD_IOC_WAIT_RESULT_FAIL;
1028 	else if (*wait_result == KFD_IOC_WAIT_RESULT_FAIL)
1029 		ret = -EIO;
1030 
1031 	return ret;
1032 }
1033 
1034 int kfd_event_mmap(struct kfd_process *p, struct vm_area_struct *vma)
1035 {
1036 	unsigned long pfn;
1037 	struct kfd_signal_page *page;
1038 	int ret;
1039 
1040 	/* check required size doesn't exceed the allocated size */
1041 	if (get_order(KFD_SIGNAL_EVENT_LIMIT * 8) <
1042 			get_order(vma->vm_end - vma->vm_start)) {
1043 		pr_err("Event page mmap requested illegal size\n");
1044 		return -EINVAL;
1045 	}
1046 
1047 	page = p->signal_page;
1048 	if (!page) {
1049 		/* Probably KFD bug, but mmap is user-accessible. */
1050 		pr_debug("Signal page could not be found\n");
1051 		return -EINVAL;
1052 	}
1053 
1054 	pfn = __pa(page->kernel_address);
1055 	pfn >>= PAGE_SHIFT;
1056 
1057 	vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE
1058 		       | VM_DONTDUMP | VM_PFNMAP;
1059 
1060 	pr_debug("Mapping signal page\n");
1061 	pr_debug("     start user address  == 0x%08lx\n", vma->vm_start);
1062 	pr_debug("     end user address    == 0x%08lx\n", vma->vm_end);
1063 	pr_debug("     pfn                 == 0x%016lX\n", pfn);
1064 	pr_debug("     vm_flags            == 0x%08lX\n", vma->vm_flags);
1065 	pr_debug("     size                == 0x%08lX\n",
1066 			vma->vm_end - vma->vm_start);
1067 
1068 	page->user_address = (uint64_t __user *)vma->vm_start;
1069 
1070 	/* mapping the page to user process */
1071 	ret = remap_pfn_range(vma, vma->vm_start, pfn,
1072 			vma->vm_end - vma->vm_start, vma->vm_page_prot);
1073 	if (!ret)
1074 		p->signal_mapped_size = vma->vm_end - vma->vm_start;
1075 
1076 	return ret;
1077 }
1078 
1079 /*
1080  * Assumes that p is not going away.
1081  */
1082 static void lookup_events_by_type_and_signal(struct kfd_process *p,
1083 		int type, void *event_data)
1084 {
1085 	struct kfd_hsa_memory_exception_data *ev_data;
1086 	struct kfd_event *ev;
1087 	uint32_t id;
1088 	bool send_signal = true;
1089 
1090 	ev_data = (struct kfd_hsa_memory_exception_data *) event_data;
1091 
1092 	rcu_read_lock();
1093 
1094 	id = KFD_FIRST_NONSIGNAL_EVENT_ID;
1095 	idr_for_each_entry_continue(&p->event_idr, ev, id)
1096 		if (ev->type == type) {
1097 			send_signal = false;
1098 			dev_dbg(kfd_device,
1099 					"Event found: id %X type %d",
1100 					ev->event_id, ev->type);
1101 			spin_lock(&ev->lock);
1102 			set_event(ev);
1103 			if (ev->type == KFD_EVENT_TYPE_MEMORY && ev_data)
1104 				ev->memory_exception_data = *ev_data;
1105 			spin_unlock(&ev->lock);
1106 		}
1107 
1108 	if (type == KFD_EVENT_TYPE_MEMORY) {
1109 		dev_warn(kfd_device,
1110 			"Sending SIGSEGV to process %d (pasid 0x%x)",
1111 				p->lead_thread->pid, p->pasid);
1112 		send_sig(SIGSEGV, p->lead_thread, 0);
1113 	}
1114 
1115 	/* Send SIGTERM no event of type "type" has been found*/
1116 	if (send_signal) {
1117 		if (send_sigterm) {
1118 			dev_warn(kfd_device,
1119 				"Sending SIGTERM to process %d (pasid 0x%x)",
1120 					p->lead_thread->pid, p->pasid);
1121 			send_sig(SIGTERM, p->lead_thread, 0);
1122 		} else {
1123 			dev_err(kfd_device,
1124 				"Process %d (pasid 0x%x) got unhandled exception",
1125 				p->lead_thread->pid, p->pasid);
1126 		}
1127 	}
1128 
1129 	rcu_read_unlock();
1130 }
1131 
1132 #ifdef KFD_SUPPORT_IOMMU_V2
1133 void kfd_signal_iommu_event(struct kfd_dev *dev, u32 pasid,
1134 		unsigned long address, bool is_write_requested,
1135 		bool is_execute_requested)
1136 {
1137 	struct kfd_hsa_memory_exception_data memory_exception_data;
1138 	struct vm_area_struct *vma;
1139 	int user_gpu_id;
1140 
1141 	/*
1142 	 * Because we are called from arbitrary context (workqueue) as opposed
1143 	 * to process context, kfd_process could attempt to exit while we are
1144 	 * running so the lookup function increments the process ref count.
1145 	 */
1146 	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
1147 	struct mm_struct *mm;
1148 
1149 	if (!p)
1150 		return; /* Presumably process exited. */
1151 
1152 	/* Take a safe reference to the mm_struct, which may otherwise
1153 	 * disappear even while the kfd_process is still referenced.
1154 	 */
1155 	mm = get_task_mm(p->lead_thread);
1156 	if (!mm) {
1157 		kfd_unref_process(p);
1158 		return; /* Process is exiting */
1159 	}
1160 
1161 	user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id);
1162 	if (unlikely(user_gpu_id == -EINVAL)) {
1163 		WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id);
1164 		return;
1165 	}
1166 	memset(&memory_exception_data, 0, sizeof(memory_exception_data));
1167 
1168 	mmap_read_lock(mm);
1169 	vma = find_vma(mm, address);
1170 
1171 	memory_exception_data.gpu_id = user_gpu_id;
1172 	memory_exception_data.va = address;
1173 	/* Set failure reason */
1174 	memory_exception_data.failure.NotPresent = 1;
1175 	memory_exception_data.failure.NoExecute = 0;
1176 	memory_exception_data.failure.ReadOnly = 0;
1177 	if (vma && address >= vma->vm_start) {
1178 		memory_exception_data.failure.NotPresent = 0;
1179 
1180 		if (is_write_requested && !(vma->vm_flags & VM_WRITE))
1181 			memory_exception_data.failure.ReadOnly = 1;
1182 		else
1183 			memory_exception_data.failure.ReadOnly = 0;
1184 
1185 		if (is_execute_requested && !(vma->vm_flags & VM_EXEC))
1186 			memory_exception_data.failure.NoExecute = 1;
1187 		else
1188 			memory_exception_data.failure.NoExecute = 0;
1189 	}
1190 
1191 	mmap_read_unlock(mm);
1192 	mmput(mm);
1193 
1194 	pr_debug("notpresent %d, noexecute %d, readonly %d\n",
1195 			memory_exception_data.failure.NotPresent,
1196 			memory_exception_data.failure.NoExecute,
1197 			memory_exception_data.failure.ReadOnly);
1198 
1199 	/* Workaround on Raven to not kill the process when memory is freed
1200 	 * before IOMMU is able to finish processing all the excessive PPRs
1201 	 */
1202 
1203 	if (KFD_GC_VERSION(dev) != IP_VERSION(9, 1, 0) &&
1204 	    KFD_GC_VERSION(dev) != IP_VERSION(9, 2, 2) &&
1205 	    KFD_GC_VERSION(dev) != IP_VERSION(9, 3, 0))
1206 		lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_MEMORY,
1207 				&memory_exception_data);
1208 
1209 	kfd_unref_process(p);
1210 }
1211 #endif /* KFD_SUPPORT_IOMMU_V2 */
1212 
1213 void kfd_signal_hw_exception_event(u32 pasid)
1214 {
1215 	/*
1216 	 * Because we are called from arbitrary context (workqueue) as opposed
1217 	 * to process context, kfd_process could attempt to exit while we are
1218 	 * running so the lookup function increments the process ref count.
1219 	 */
1220 	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
1221 
1222 	if (!p)
1223 		return; /* Presumably process exited. */
1224 
1225 	lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_HW_EXCEPTION, NULL);
1226 	kfd_unref_process(p);
1227 }
1228 
1229 void kfd_signal_vm_fault_event(struct kfd_dev *dev, u32 pasid,
1230 				struct kfd_vm_fault_info *info)
1231 {
1232 	struct kfd_event *ev;
1233 	uint32_t id;
1234 	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
1235 	struct kfd_hsa_memory_exception_data memory_exception_data;
1236 	int user_gpu_id;
1237 
1238 	if (!p)
1239 		return; /* Presumably process exited. */
1240 
1241 	user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id);
1242 	if (unlikely(user_gpu_id == -EINVAL)) {
1243 		WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id);
1244 		return;
1245 	}
1246 
1247 	memset(&memory_exception_data, 0, sizeof(memory_exception_data));
1248 	memory_exception_data.gpu_id = user_gpu_id;
1249 	memory_exception_data.failure.imprecise = true;
1250 	/* Set failure reason */
1251 	if (info) {
1252 		memory_exception_data.va = (info->page_addr) << PAGE_SHIFT;
1253 		memory_exception_data.failure.NotPresent =
1254 			info->prot_valid ? 1 : 0;
1255 		memory_exception_data.failure.NoExecute =
1256 			info->prot_exec ? 1 : 0;
1257 		memory_exception_data.failure.ReadOnly =
1258 			info->prot_write ? 1 : 0;
1259 		memory_exception_data.failure.imprecise = 0;
1260 	}
1261 
1262 	rcu_read_lock();
1263 
1264 	id = KFD_FIRST_NONSIGNAL_EVENT_ID;
1265 	idr_for_each_entry_continue(&p->event_idr, ev, id)
1266 		if (ev->type == KFD_EVENT_TYPE_MEMORY) {
1267 			spin_lock(&ev->lock);
1268 			ev->memory_exception_data = memory_exception_data;
1269 			set_event(ev);
1270 			spin_unlock(&ev->lock);
1271 		}
1272 
1273 	rcu_read_unlock();
1274 	kfd_unref_process(p);
1275 }
1276 
1277 void kfd_signal_reset_event(struct kfd_dev *dev)
1278 {
1279 	struct kfd_hsa_hw_exception_data hw_exception_data;
1280 	struct kfd_hsa_memory_exception_data memory_exception_data;
1281 	struct kfd_process *p;
1282 	struct kfd_event *ev;
1283 	unsigned int temp;
1284 	uint32_t id, idx;
1285 	int reset_cause = atomic_read(&dev->sram_ecc_flag) ?
1286 			KFD_HW_EXCEPTION_ECC :
1287 			KFD_HW_EXCEPTION_GPU_HANG;
1288 
1289 	/* Whole gpu reset caused by GPU hang and memory is lost */
1290 	memset(&hw_exception_data, 0, sizeof(hw_exception_data));
1291 	hw_exception_data.memory_lost = 1;
1292 	hw_exception_data.reset_cause = reset_cause;
1293 
1294 	memset(&memory_exception_data, 0, sizeof(memory_exception_data));
1295 	memory_exception_data.ErrorType = KFD_MEM_ERR_SRAM_ECC;
1296 	memory_exception_data.failure.imprecise = true;
1297 
1298 	idx = srcu_read_lock(&kfd_processes_srcu);
1299 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1300 		int user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id);
1301 
1302 		if (unlikely(user_gpu_id == -EINVAL)) {
1303 			WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id);
1304 			continue;
1305 		}
1306 
1307 		rcu_read_lock();
1308 
1309 		id = KFD_FIRST_NONSIGNAL_EVENT_ID;
1310 		idr_for_each_entry_continue(&p->event_idr, ev, id) {
1311 			if (ev->type == KFD_EVENT_TYPE_HW_EXCEPTION) {
1312 				spin_lock(&ev->lock);
1313 				ev->hw_exception_data = hw_exception_data;
1314 				ev->hw_exception_data.gpu_id = user_gpu_id;
1315 				set_event(ev);
1316 				spin_unlock(&ev->lock);
1317 			}
1318 			if (ev->type == KFD_EVENT_TYPE_MEMORY &&
1319 			    reset_cause == KFD_HW_EXCEPTION_ECC) {
1320 				spin_lock(&ev->lock);
1321 				ev->memory_exception_data = memory_exception_data;
1322 				ev->memory_exception_data.gpu_id = user_gpu_id;
1323 				set_event(ev);
1324 				spin_unlock(&ev->lock);
1325 			}
1326 		}
1327 
1328 		rcu_read_unlock();
1329 	}
1330 	srcu_read_unlock(&kfd_processes_srcu, idx);
1331 }
1332 
1333 void kfd_signal_poison_consumed_event(struct kfd_dev *dev, u32 pasid)
1334 {
1335 	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
1336 	struct kfd_hsa_memory_exception_data memory_exception_data;
1337 	struct kfd_hsa_hw_exception_data hw_exception_data;
1338 	struct kfd_event *ev;
1339 	uint32_t id = KFD_FIRST_NONSIGNAL_EVENT_ID;
1340 	int user_gpu_id;
1341 
1342 	if (!p)
1343 		return; /* Presumably process exited. */
1344 
1345 	user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id);
1346 	if (unlikely(user_gpu_id == -EINVAL)) {
1347 		WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id);
1348 		return;
1349 	}
1350 
1351 	memset(&hw_exception_data, 0, sizeof(hw_exception_data));
1352 	hw_exception_data.gpu_id = user_gpu_id;
1353 	hw_exception_data.memory_lost = 1;
1354 	hw_exception_data.reset_cause = KFD_HW_EXCEPTION_ECC;
1355 
1356 	memset(&memory_exception_data, 0, sizeof(memory_exception_data));
1357 	memory_exception_data.ErrorType = KFD_MEM_ERR_POISON_CONSUMED;
1358 	memory_exception_data.gpu_id = user_gpu_id;
1359 	memory_exception_data.failure.imprecise = true;
1360 
1361 	rcu_read_lock();
1362 
1363 	idr_for_each_entry_continue(&p->event_idr, ev, id) {
1364 		if (ev->type == KFD_EVENT_TYPE_HW_EXCEPTION) {
1365 			spin_lock(&ev->lock);
1366 			ev->hw_exception_data = hw_exception_data;
1367 			set_event(ev);
1368 			spin_unlock(&ev->lock);
1369 		}
1370 
1371 		if (ev->type == KFD_EVENT_TYPE_MEMORY) {
1372 			spin_lock(&ev->lock);
1373 			ev->memory_exception_data = memory_exception_data;
1374 			set_event(ev);
1375 			spin_unlock(&ev->lock);
1376 		}
1377 	}
1378 
1379 	rcu_read_unlock();
1380 
1381 	/* user application will handle SIGBUS signal */
1382 	send_sig(SIGBUS, p->lead_thread, 0);
1383 
1384 	kfd_unref_process(p);
1385 }
1386