xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_events.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/mm_types.h>
24 #include <linux/slab.h>
25 #include <linux/types.h>
26 #include <linux/sched.h>
27 #include <linux/uaccess.h>
28 #include <linux/mm.h>
29 #include <linux/mman.h>
30 #include <linux/memory.h>
31 #include "kfd_priv.h"
32 #include "kfd_events.h"
33 #include <linux/device.h>
34 
35 /*
36  * A task can only be on a single wait_queue at a time, but we need to support
37  * waiting on multiple events (any/all).
38  * Instead of each event simply having a wait_queue with sleeping tasks, it
39  * has a singly-linked list of tasks.
40  * A thread that wants to sleep creates an array of these, one for each event
41  * and adds one to each event's waiter chain.
42  */
43 struct kfd_event_waiter {
44 	struct list_head waiters;
45 	struct task_struct *sleeping_task;
46 
47 	/* Transitions to true when the event this belongs to is signaled. */
48 	bool activated;
49 
50 	/* Event */
51 	struct kfd_event *event;
52 	uint32_t input_index;
53 };
54 
55 /*
56  * Over-complicated pooled allocator for event notification slots.
57  *
58  * Each signal event needs a 64-bit signal slot where the signaler will write
59  * a 1 before sending an interrupt.l (This is needed because some interrupts
60  * do not contain enough spare data bits to identify an event.)
61  * We get whole pages from vmalloc and map them to the process VA.
62  * Individual signal events are then allocated a slot in a page.
63  */
64 
65 struct signal_page {
66 	struct list_head event_pages;	/* kfd_process.signal_event_pages */
67 	uint64_t *kernel_address;
68 	uint64_t __user *user_address;
69 	uint32_t page_index;		/* Index into the mmap aperture. */
70 	unsigned int free_slots;
71 	unsigned long used_slot_bitmap[0];
72 };
73 
74 #define SLOTS_PER_PAGE KFD_SIGNAL_EVENT_LIMIT
75 #define SLOT_BITMAP_SIZE BITS_TO_LONGS(SLOTS_PER_PAGE)
76 #define BITS_PER_PAGE (ilog2(SLOTS_PER_PAGE)+1)
77 #define SIGNAL_PAGE_SIZE (sizeof(struct signal_page) + \
78 				SLOT_BITMAP_SIZE * sizeof(long))
79 
80 /*
81  * For signal events, the event ID is used as the interrupt user data.
82  * For SQ s_sendmsg interrupts, this is limited to 8 bits.
83  */
84 
85 #define INTERRUPT_DATA_BITS 8
86 #define SIGNAL_EVENT_ID_SLOT_SHIFT 0
87 
88 static uint64_t *page_slots(struct signal_page *page)
89 {
90 	return page->kernel_address;
91 }
92 
93 static bool allocate_free_slot(struct kfd_process *process,
94 				struct signal_page **out_page,
95 				unsigned int *out_slot_index)
96 {
97 	struct signal_page *page;
98 
99 	list_for_each_entry(page, &process->signal_event_pages, event_pages) {
100 		if (page->free_slots > 0) {
101 			unsigned int slot =
102 				find_first_zero_bit(page->used_slot_bitmap,
103 							SLOTS_PER_PAGE);
104 
105 			__set_bit(slot, page->used_slot_bitmap);
106 			page->free_slots--;
107 
108 			page_slots(page)[slot] = UNSIGNALED_EVENT_SLOT;
109 
110 			*out_page = page;
111 			*out_slot_index = slot;
112 
113 			pr_debug("allocated event signal slot in page %p, slot %d\n",
114 					page, slot);
115 
116 			return true;
117 		}
118 	}
119 
120 	pr_debug("No free event signal slots were found for process %p\n",
121 			process);
122 
123 	return false;
124 }
125 
126 #define list_tail_entry(head, type, member) \
127 	list_entry((head)->prev, type, member)
128 
129 static bool allocate_signal_page(struct file *devkfd, struct kfd_process *p)
130 {
131 	void *backing_store;
132 	struct signal_page *page;
133 
134 	page = kzalloc(SIGNAL_PAGE_SIZE, GFP_KERNEL);
135 	if (!page)
136 		goto fail_alloc_signal_page;
137 
138 	page->free_slots = SLOTS_PER_PAGE;
139 
140 	backing_store = (void *) __get_free_pages(GFP_KERNEL | __GFP_ZERO,
141 					get_order(KFD_SIGNAL_EVENT_LIMIT * 8));
142 	if (!backing_store)
143 		goto fail_alloc_signal_store;
144 
145 	/* prevent user-mode info leaks */
146 	memset(backing_store, (uint8_t) UNSIGNALED_EVENT_SLOT,
147 		KFD_SIGNAL_EVENT_LIMIT * 8);
148 
149 	page->kernel_address = backing_store;
150 
151 	if (list_empty(&p->signal_event_pages))
152 		page->page_index = 0;
153 	else
154 		page->page_index = list_tail_entry(&p->signal_event_pages,
155 						   struct signal_page,
156 						   event_pages)->page_index + 1;
157 
158 	pr_debug("allocated new event signal page at %p, for process %p\n",
159 			page, p);
160 	pr_debug("page index is %d\n", page->page_index);
161 
162 	list_add(&page->event_pages, &p->signal_event_pages);
163 
164 	return true;
165 
166 fail_alloc_signal_store:
167 	kfree(page);
168 fail_alloc_signal_page:
169 	return false;
170 }
171 
172 static bool allocate_event_notification_slot(struct file *devkfd,
173 					struct kfd_process *p,
174 					struct signal_page **page,
175 					unsigned int *signal_slot_index)
176 {
177 	bool ret;
178 
179 	ret = allocate_free_slot(p, page, signal_slot_index);
180 	if (ret == false) {
181 		ret = allocate_signal_page(devkfd, p);
182 		if (ret == true)
183 			ret = allocate_free_slot(p, page, signal_slot_index);
184 	}
185 
186 	return ret;
187 }
188 
189 /* Assumes that the process's event_mutex is locked. */
190 static void release_event_notification_slot(struct signal_page *page,
191 						size_t slot_index)
192 {
193 	__clear_bit(slot_index, page->used_slot_bitmap);
194 	page->free_slots++;
195 
196 	/* We don't free signal pages, they are retained by the process
197 	 * and reused until it exits. */
198 }
199 
200 static struct signal_page *lookup_signal_page_by_index(struct kfd_process *p,
201 						unsigned int page_index)
202 {
203 	struct signal_page *page;
204 
205 	/*
206 	 * This is safe because we don't delete signal pages until the
207 	 * process exits.
208 	 */
209 	list_for_each_entry(page, &p->signal_event_pages, event_pages)
210 		if (page->page_index == page_index)
211 			return page;
212 
213 	return NULL;
214 }
215 
216 /*
217  * Assumes that p->event_mutex is held and of course that p is not going
218  * away (current or locked).
219  */
220 static struct kfd_event *lookup_event_by_id(struct kfd_process *p, uint32_t id)
221 {
222 	struct kfd_event *ev;
223 
224 	hash_for_each_possible(p->events, ev, events, id)
225 		if (ev->event_id == id)
226 			return ev;
227 
228 	return NULL;
229 }
230 
231 static u32 make_signal_event_id(struct signal_page *page,
232 					 unsigned int signal_slot_index)
233 {
234 	return page->page_index |
235 			(signal_slot_index << SIGNAL_EVENT_ID_SLOT_SHIFT);
236 }
237 
238 /*
239  * Produce a kfd event id for a nonsignal event.
240  * These are arbitrary numbers, so we do a sequential search through
241  * the hash table for an unused number.
242  */
243 static u32 make_nonsignal_event_id(struct kfd_process *p)
244 {
245 	u32 id;
246 
247 	for (id = p->next_nonsignal_event_id;
248 		id < KFD_LAST_NONSIGNAL_EVENT_ID &&
249 		lookup_event_by_id(p, id) != NULL;
250 		id++)
251 		;
252 
253 	if (id < KFD_LAST_NONSIGNAL_EVENT_ID) {
254 
255 		/*
256 		 * What if id == LAST_NONSIGNAL_EVENT_ID - 1?
257 		 * Then next_nonsignal_event_id = LAST_NONSIGNAL_EVENT_ID so
258 		 * the first loop fails immediately and we proceed with the
259 		 * wraparound loop below.
260 		 */
261 		p->next_nonsignal_event_id = id + 1;
262 
263 		return id;
264 	}
265 
266 	for (id = KFD_FIRST_NONSIGNAL_EVENT_ID;
267 		id < KFD_LAST_NONSIGNAL_EVENT_ID &&
268 		lookup_event_by_id(p, id) != NULL;
269 		id++)
270 		;
271 
272 
273 	if (id < KFD_LAST_NONSIGNAL_EVENT_ID) {
274 		p->next_nonsignal_event_id = id + 1;
275 		return id;
276 	}
277 
278 	p->next_nonsignal_event_id = KFD_FIRST_NONSIGNAL_EVENT_ID;
279 	return 0;
280 }
281 
282 static struct kfd_event *lookup_event_by_page_slot(struct kfd_process *p,
283 						struct signal_page *page,
284 						unsigned int signal_slot)
285 {
286 	return lookup_event_by_id(p, make_signal_event_id(page, signal_slot));
287 }
288 
289 static int create_signal_event(struct file *devkfd,
290 				struct kfd_process *p,
291 				struct kfd_event *ev)
292 {
293 	if (p->signal_event_count == KFD_SIGNAL_EVENT_LIMIT) {
294 		pr_warn("amdkfd: Signal event wasn't created because limit was reached\n");
295 		return -ENOMEM;
296 	}
297 
298 	if (!allocate_event_notification_slot(devkfd, p, &ev->signal_page,
299 						&ev->signal_slot_index)) {
300 		pr_warn("amdkfd: Signal event wasn't created because out of kernel memory\n");
301 		return -ENOMEM;
302 	}
303 
304 	p->signal_event_count++;
305 
306 	ev->user_signal_address =
307 			&ev->signal_page->user_address[ev->signal_slot_index];
308 
309 	ev->event_id = make_signal_event_id(ev->signal_page,
310 						ev->signal_slot_index);
311 
312 	pr_debug("signal event number %zu created with id %d, address %p\n",
313 			p->signal_event_count, ev->event_id,
314 			ev->user_signal_address);
315 
316 	pr_debug("signal event number %zu created with id %d, address %p\n",
317 			p->signal_event_count, ev->event_id,
318 			ev->user_signal_address);
319 
320 	return 0;
321 }
322 
323 /*
324  * No non-signal events are supported yet.
325  * We create them as events that never signal.
326  * Set event calls from user-mode are failed.
327  */
328 static int create_other_event(struct kfd_process *p, struct kfd_event *ev)
329 {
330 	ev->event_id = make_nonsignal_event_id(p);
331 	if (ev->event_id == 0)
332 		return -ENOMEM;
333 
334 	return 0;
335 }
336 
337 void kfd_event_init_process(struct kfd_process *p)
338 {
339 	mutex_init(&p->event_mutex);
340 	hash_init(p->events);
341 	INIT_LIST_HEAD(&p->signal_event_pages);
342 	p->next_nonsignal_event_id = KFD_FIRST_NONSIGNAL_EVENT_ID;
343 	p->signal_event_count = 0;
344 }
345 
346 static void destroy_event(struct kfd_process *p, struct kfd_event *ev)
347 {
348 	if (ev->signal_page != NULL) {
349 		release_event_notification_slot(ev->signal_page,
350 						ev->signal_slot_index);
351 		p->signal_event_count--;
352 	}
353 
354 	/*
355 	 * Abandon the list of waiters. Individual waiting threads will
356 	 * clean up their own data.
357 	 */
358 	list_del(&ev->waiters);
359 
360 	hash_del(&ev->events);
361 	kfree(ev);
362 }
363 
364 static void destroy_events(struct kfd_process *p)
365 {
366 	struct kfd_event *ev;
367 	struct hlist_node *tmp;
368 	unsigned int hash_bkt;
369 
370 	hash_for_each_safe(p->events, hash_bkt, tmp, ev, events)
371 		destroy_event(p, ev);
372 }
373 
374 /*
375  * We assume that the process is being destroyed and there is no need to
376  * unmap the pages or keep bookkeeping data in order.
377  */
378 static void shutdown_signal_pages(struct kfd_process *p)
379 {
380 	struct signal_page *page, *tmp;
381 
382 	list_for_each_entry_safe(page, tmp, &p->signal_event_pages,
383 					event_pages) {
384 		free_pages((unsigned long)page->kernel_address,
385 				get_order(KFD_SIGNAL_EVENT_LIMIT * 8));
386 		kfree(page);
387 	}
388 }
389 
390 void kfd_event_free_process(struct kfd_process *p)
391 {
392 	destroy_events(p);
393 	shutdown_signal_pages(p);
394 }
395 
396 static bool event_can_be_gpu_signaled(const struct kfd_event *ev)
397 {
398 	return ev->type == KFD_EVENT_TYPE_SIGNAL ||
399 					ev->type == KFD_EVENT_TYPE_DEBUG;
400 }
401 
402 static bool event_can_be_cpu_signaled(const struct kfd_event *ev)
403 {
404 	return ev->type == KFD_EVENT_TYPE_SIGNAL;
405 }
406 
407 int kfd_event_create(struct file *devkfd, struct kfd_process *p,
408 		     uint32_t event_type, bool auto_reset, uint32_t node_id,
409 		     uint32_t *event_id, uint32_t *event_trigger_data,
410 		     uint64_t *event_page_offset, uint32_t *event_slot_index)
411 {
412 	int ret = 0;
413 	struct kfd_event *ev = kzalloc(sizeof(*ev), GFP_KERNEL);
414 
415 	if (!ev)
416 		return -ENOMEM;
417 
418 	ev->type = event_type;
419 	ev->auto_reset = auto_reset;
420 	ev->signaled = false;
421 
422 	INIT_LIST_HEAD(&ev->waiters);
423 
424 	*event_page_offset = 0;
425 
426 	mutex_lock(&p->event_mutex);
427 
428 	switch (event_type) {
429 	case KFD_EVENT_TYPE_SIGNAL:
430 	case KFD_EVENT_TYPE_DEBUG:
431 		ret = create_signal_event(devkfd, p, ev);
432 		if (!ret) {
433 			*event_page_offset = (ev->signal_page->page_index |
434 					KFD_MMAP_EVENTS_MASK);
435 			*event_page_offset <<= PAGE_SHIFT;
436 			*event_slot_index = ev->signal_slot_index;
437 		}
438 		break;
439 	default:
440 		ret = create_other_event(p, ev);
441 		break;
442 	}
443 
444 	if (!ret) {
445 		hash_add(p->events, &ev->events, ev->event_id);
446 
447 		*event_id = ev->event_id;
448 		*event_trigger_data = ev->event_id;
449 	} else {
450 		kfree(ev);
451 	}
452 
453 	mutex_unlock(&p->event_mutex);
454 
455 	return ret;
456 }
457 
458 /* Assumes that p is current. */
459 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id)
460 {
461 	struct kfd_event *ev;
462 	int ret = 0;
463 
464 	mutex_lock(&p->event_mutex);
465 
466 	ev = lookup_event_by_id(p, event_id);
467 
468 	if (ev)
469 		destroy_event(p, ev);
470 	else
471 		ret = -EINVAL;
472 
473 	mutex_unlock(&p->event_mutex);
474 	return ret;
475 }
476 
477 static void set_event(struct kfd_event *ev)
478 {
479 	struct kfd_event_waiter *waiter;
480 	struct kfd_event_waiter *next;
481 
482 	/* Auto reset if the list is non-empty and we're waking someone. */
483 	ev->signaled = !ev->auto_reset || list_empty(&ev->waiters);
484 
485 	list_for_each_entry_safe(waiter, next, &ev->waiters, waiters) {
486 		waiter->activated = true;
487 
488 		/* _init because free_waiters will call list_del */
489 		list_del_init(&waiter->waiters);
490 
491 		wake_up_process(waiter->sleeping_task);
492 	}
493 }
494 
495 /* Assumes that p is current. */
496 int kfd_set_event(struct kfd_process *p, uint32_t event_id)
497 {
498 	int ret = 0;
499 	struct kfd_event *ev;
500 
501 	mutex_lock(&p->event_mutex);
502 
503 	ev = lookup_event_by_id(p, event_id);
504 
505 	if (ev && event_can_be_cpu_signaled(ev))
506 		set_event(ev);
507 	else
508 		ret = -EINVAL;
509 
510 	mutex_unlock(&p->event_mutex);
511 	return ret;
512 }
513 
514 static void reset_event(struct kfd_event *ev)
515 {
516 	ev->signaled = false;
517 }
518 
519 /* Assumes that p is current. */
520 int kfd_reset_event(struct kfd_process *p, uint32_t event_id)
521 {
522 	int ret = 0;
523 	struct kfd_event *ev;
524 
525 	mutex_lock(&p->event_mutex);
526 
527 	ev = lookup_event_by_id(p, event_id);
528 
529 	if (ev && event_can_be_cpu_signaled(ev))
530 		reset_event(ev);
531 	else
532 		ret = -EINVAL;
533 
534 	mutex_unlock(&p->event_mutex);
535 	return ret;
536 
537 }
538 
539 static void acknowledge_signal(struct kfd_process *p, struct kfd_event *ev)
540 {
541 	page_slots(ev->signal_page)[ev->signal_slot_index] =
542 						UNSIGNALED_EVENT_SLOT;
543 }
544 
545 static bool is_slot_signaled(struct signal_page *page, unsigned int index)
546 {
547 	return page_slots(page)[index] != UNSIGNALED_EVENT_SLOT;
548 }
549 
550 static void set_event_from_interrupt(struct kfd_process *p,
551 					struct kfd_event *ev)
552 {
553 	if (ev && event_can_be_gpu_signaled(ev)) {
554 		acknowledge_signal(p, ev);
555 		set_event(ev);
556 	}
557 }
558 
559 void kfd_signal_event_interrupt(unsigned int pasid, uint32_t partial_id,
560 				uint32_t valid_id_bits)
561 {
562 	struct kfd_event *ev;
563 
564 	/*
565 	 * Because we are called from arbitrary context (workqueue) as opposed
566 	 * to process context, kfd_process could attempt to exit while we are
567 	 * running so the lookup function returns a locked process.
568 	 */
569 	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
570 
571 	if (!p)
572 		return; /* Presumably process exited. */
573 
574 	mutex_lock(&p->event_mutex);
575 
576 	if (valid_id_bits >= INTERRUPT_DATA_BITS) {
577 		/* Partial ID is a full ID. */
578 		ev = lookup_event_by_id(p, partial_id);
579 		set_event_from_interrupt(p, ev);
580 	} else {
581 		/*
582 		 * Partial ID is in fact partial. For now we completely
583 		 * ignore it, but we could use any bits we did receive to
584 		 * search faster.
585 		 */
586 		struct signal_page *page;
587 		unsigned i;
588 
589 		list_for_each_entry(page, &p->signal_event_pages, event_pages)
590 			for (i = 0; i < SLOTS_PER_PAGE; i++)
591 				if (is_slot_signaled(page, i)) {
592 					ev = lookup_event_by_page_slot(p,
593 								page, i);
594 					set_event_from_interrupt(p, ev);
595 				}
596 	}
597 
598 	mutex_unlock(&p->event_mutex);
599 	mutex_unlock(&p->mutex);
600 }
601 
602 static struct kfd_event_waiter *alloc_event_waiters(uint32_t num_events)
603 {
604 	struct kfd_event_waiter *event_waiters;
605 	uint32_t i;
606 
607 	event_waiters = kmalloc_array(num_events,
608 					sizeof(struct kfd_event_waiter),
609 					GFP_KERNEL);
610 
611 	for (i = 0; (event_waiters) && (i < num_events) ; i++) {
612 		INIT_LIST_HEAD(&event_waiters[i].waiters);
613 		event_waiters[i].sleeping_task = current;
614 		event_waiters[i].activated = false;
615 	}
616 
617 	return event_waiters;
618 }
619 
620 static int init_event_waiter(struct kfd_process *p,
621 		struct kfd_event_waiter *waiter,
622 		uint32_t event_id,
623 		uint32_t input_index)
624 {
625 	struct kfd_event *ev = lookup_event_by_id(p, event_id);
626 
627 	if (!ev)
628 		return -EINVAL;
629 
630 	waiter->event = ev;
631 	waiter->input_index = input_index;
632 	waiter->activated = ev->signaled;
633 	ev->signaled = ev->signaled && !ev->auto_reset;
634 
635 	list_add(&waiter->waiters, &ev->waiters);
636 
637 	return 0;
638 }
639 
640 static bool test_event_condition(bool all, uint32_t num_events,
641 				struct kfd_event_waiter *event_waiters)
642 {
643 	uint32_t i;
644 	uint32_t activated_count = 0;
645 
646 	for (i = 0; i < num_events; i++) {
647 		if (event_waiters[i].activated) {
648 			if (!all)
649 				return true;
650 
651 			activated_count++;
652 		}
653 	}
654 
655 	return activated_count == num_events;
656 }
657 
658 /*
659  * Copy event specific data, if defined.
660  * Currently only memory exception events have additional data to copy to user
661  */
662 static bool copy_signaled_event_data(uint32_t num_events,
663 		struct kfd_event_waiter *event_waiters,
664 		struct kfd_event_data __user *data)
665 {
666 	struct kfd_hsa_memory_exception_data *src;
667 	struct kfd_hsa_memory_exception_data __user *dst;
668 	struct kfd_event_waiter *waiter;
669 	struct kfd_event *event;
670 	uint32_t i;
671 
672 	for (i = 0; i < num_events; i++) {
673 		waiter = &event_waiters[i];
674 		event = waiter->event;
675 		if (waiter->activated && event->type == KFD_EVENT_TYPE_MEMORY) {
676 			dst = &data[waiter->input_index].memory_exception_data;
677 			src = &event->memory_exception_data;
678 			if (copy_to_user(dst, src,
679 				sizeof(struct kfd_hsa_memory_exception_data)))
680 				return false;
681 		}
682 	}
683 
684 	return true;
685 
686 }
687 
688 
689 
690 static long user_timeout_to_jiffies(uint32_t user_timeout_ms)
691 {
692 	if (user_timeout_ms == KFD_EVENT_TIMEOUT_IMMEDIATE)
693 		return 0;
694 
695 	if (user_timeout_ms == KFD_EVENT_TIMEOUT_INFINITE)
696 		return MAX_SCHEDULE_TIMEOUT;
697 
698 	/*
699 	 * msecs_to_jiffies interprets all values above 2^31-1 as infinite,
700 	 * but we consider them finite.
701 	 * This hack is wrong, but nobody is likely to notice.
702 	 */
703 	user_timeout_ms = min_t(uint32_t, user_timeout_ms, 0x7FFFFFFF);
704 
705 	return msecs_to_jiffies(user_timeout_ms) + 1;
706 }
707 
708 static void free_waiters(uint32_t num_events, struct kfd_event_waiter *waiters)
709 {
710 	uint32_t i;
711 
712 	for (i = 0; i < num_events; i++)
713 		list_del(&waiters[i].waiters);
714 
715 	kfree(waiters);
716 }
717 
718 int kfd_wait_on_events(struct kfd_process *p,
719 		       uint32_t num_events, void __user *data,
720 		       bool all, uint32_t user_timeout_ms,
721 		       enum kfd_event_wait_result *wait_result)
722 {
723 	struct kfd_event_data __user *events =
724 			(struct kfd_event_data __user *) data;
725 	uint32_t i;
726 	int ret = 0;
727 	struct kfd_event_waiter *event_waiters = NULL;
728 	long timeout = user_timeout_to_jiffies(user_timeout_ms);
729 
730 	mutex_lock(&p->event_mutex);
731 
732 	event_waiters = alloc_event_waiters(num_events);
733 	if (!event_waiters) {
734 		ret = -ENOMEM;
735 		goto fail;
736 	}
737 
738 	for (i = 0; i < num_events; i++) {
739 		struct kfd_event_data event_data;
740 
741 		if (copy_from_user(&event_data, &events[i],
742 				sizeof(struct kfd_event_data)))
743 			goto fail;
744 
745 		ret = init_event_waiter(p, &event_waiters[i],
746 				event_data.event_id, i);
747 		if (ret)
748 			goto fail;
749 	}
750 
751 	mutex_unlock(&p->event_mutex);
752 
753 	while (true) {
754 		if (fatal_signal_pending(current)) {
755 			ret = -EINTR;
756 			break;
757 		}
758 
759 		if (signal_pending(current)) {
760 			/*
761 			 * This is wrong when a nonzero, non-infinite timeout
762 			 * is specified. We need to use
763 			 * ERESTARTSYS_RESTARTBLOCK, but struct restart_block
764 			 * contains a union with data for each user and it's
765 			 * in generic kernel code that I don't want to
766 			 * touch yet.
767 			 */
768 			ret = -ERESTARTSYS;
769 			break;
770 		}
771 
772 		if (test_event_condition(all, num_events, event_waiters)) {
773 			if (copy_signaled_event_data(num_events,
774 					event_waiters, events))
775 				*wait_result = KFD_WAIT_COMPLETE;
776 			else
777 				*wait_result = KFD_WAIT_ERROR;
778 			break;
779 		}
780 
781 		if (timeout <= 0) {
782 			*wait_result = KFD_WAIT_TIMEOUT;
783 			break;
784 		}
785 
786 		timeout = schedule_timeout_interruptible(timeout);
787 	}
788 	__set_current_state(TASK_RUNNING);
789 
790 	mutex_lock(&p->event_mutex);
791 	free_waiters(num_events, event_waiters);
792 	mutex_unlock(&p->event_mutex);
793 
794 	return ret;
795 
796 fail:
797 	if (event_waiters)
798 		free_waiters(num_events, event_waiters);
799 
800 	mutex_unlock(&p->event_mutex);
801 
802 	*wait_result = KFD_WAIT_ERROR;
803 
804 	return ret;
805 }
806 
807 int kfd_event_mmap(struct kfd_process *p, struct vm_area_struct *vma)
808 {
809 
810 	unsigned int page_index;
811 	unsigned long pfn;
812 	struct signal_page *page;
813 
814 	/* check required size is logical */
815 	if (get_order(KFD_SIGNAL_EVENT_LIMIT * 8) !=
816 			get_order(vma->vm_end - vma->vm_start)) {
817 		pr_err("amdkfd: event page mmap requested illegal size\n");
818 		return -EINVAL;
819 	}
820 
821 	page_index = vma->vm_pgoff;
822 
823 	page = lookup_signal_page_by_index(p, page_index);
824 	if (!page) {
825 		/* Probably KFD bug, but mmap is user-accessible. */
826 		pr_debug("signal page could not be found for page_index %u\n",
827 				page_index);
828 		return -EINVAL;
829 	}
830 
831 	pfn = __pa(page->kernel_address);
832 	pfn >>= PAGE_SHIFT;
833 
834 	vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE
835 		       | VM_DONTDUMP | VM_PFNMAP;
836 
837 	pr_debug("mapping signal page\n");
838 	pr_debug("     start user address  == 0x%08lx\n", vma->vm_start);
839 	pr_debug("     end user address    == 0x%08lx\n", vma->vm_end);
840 	pr_debug("     pfn                 == 0x%016lX\n", pfn);
841 	pr_debug("     vm_flags            == 0x%08lX\n", vma->vm_flags);
842 	pr_debug("     size                == 0x%08lX\n",
843 			vma->vm_end - vma->vm_start);
844 
845 	page->user_address = (uint64_t __user *)vma->vm_start;
846 
847 	/* mapping the page to user process */
848 	return remap_pfn_range(vma, vma->vm_start, pfn,
849 			vma->vm_end - vma->vm_start, vma->vm_page_prot);
850 }
851 
852 /*
853  * Assumes that p->event_mutex is held and of course
854  * that p is not going away (current or locked).
855  */
856 static void lookup_events_by_type_and_signal(struct kfd_process *p,
857 		int type, void *event_data)
858 {
859 	struct kfd_hsa_memory_exception_data *ev_data;
860 	struct kfd_event *ev;
861 	int bkt;
862 	bool send_signal = true;
863 
864 	ev_data = (struct kfd_hsa_memory_exception_data *) event_data;
865 
866 	hash_for_each(p->events, bkt, ev, events)
867 		if (ev->type == type) {
868 			send_signal = false;
869 			dev_dbg(kfd_device,
870 					"Event found: id %X type %d",
871 					ev->event_id, ev->type);
872 			set_event(ev);
873 			if (ev->type == KFD_EVENT_TYPE_MEMORY && ev_data)
874 				ev->memory_exception_data = *ev_data;
875 		}
876 
877 	/* Send SIGTERM no event of type "type" has been found*/
878 	if (send_signal) {
879 		if (send_sigterm) {
880 			dev_warn(kfd_device,
881 				"Sending SIGTERM to HSA Process with PID %d ",
882 					p->lead_thread->pid);
883 			send_sig(SIGTERM, p->lead_thread, 0);
884 		} else {
885 			dev_err(kfd_device,
886 				"HSA Process (PID %d) got unhandled exception",
887 				p->lead_thread->pid);
888 		}
889 	}
890 }
891 
892 void kfd_signal_iommu_event(struct kfd_dev *dev, unsigned int pasid,
893 		unsigned long address, bool is_write_requested,
894 		bool is_execute_requested)
895 {
896 	struct kfd_hsa_memory_exception_data memory_exception_data;
897 	struct vm_area_struct *vma;
898 
899 	/*
900 	 * Because we are called from arbitrary context (workqueue) as opposed
901 	 * to process context, kfd_process could attempt to exit while we are
902 	 * running so the lookup function returns a locked process.
903 	 */
904 	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
905 
906 	if (!p)
907 		return; /* Presumably process exited. */
908 
909 	memset(&memory_exception_data, 0, sizeof(memory_exception_data));
910 
911 	down_read(&p->mm->mmap_sem);
912 	vma = find_vma(p->mm, address);
913 
914 	memory_exception_data.gpu_id = dev->id;
915 	memory_exception_data.va = address;
916 	/* Set failure reason */
917 	memory_exception_data.failure.NotPresent = 1;
918 	memory_exception_data.failure.NoExecute = 0;
919 	memory_exception_data.failure.ReadOnly = 0;
920 	if (vma) {
921 		if (vma->vm_start > address) {
922 			memory_exception_data.failure.NotPresent = 1;
923 			memory_exception_data.failure.NoExecute = 0;
924 			memory_exception_data.failure.ReadOnly = 0;
925 		} else {
926 			memory_exception_data.failure.NotPresent = 0;
927 			if (is_write_requested && !(vma->vm_flags & VM_WRITE))
928 				memory_exception_data.failure.ReadOnly = 1;
929 			else
930 				memory_exception_data.failure.ReadOnly = 0;
931 			if (is_execute_requested && !(vma->vm_flags & VM_EXEC))
932 				memory_exception_data.failure.NoExecute = 1;
933 			else
934 				memory_exception_data.failure.NoExecute = 0;
935 		}
936 	}
937 
938 	up_read(&p->mm->mmap_sem);
939 
940 	mutex_lock(&p->event_mutex);
941 
942 	/* Lookup events by type and signal them */
943 	lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_MEMORY,
944 			&memory_exception_data);
945 
946 	mutex_unlock(&p->event_mutex);
947 	mutex_unlock(&p->mutex);
948 }
949 
950 void kfd_signal_hw_exception_event(unsigned int pasid)
951 {
952 	/*
953 	 * Because we are called from arbitrary context (workqueue) as opposed
954 	 * to process context, kfd_process could attempt to exit while we are
955 	 * running so the lookup function returns a locked process.
956 	 */
957 	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
958 
959 	if (!p)
960 		return; /* Presumably process exited. */
961 
962 	mutex_lock(&p->event_mutex);
963 
964 	/* Lookup events by type and signal them */
965 	lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_HW_EXCEPTION, NULL);
966 
967 	mutex_unlock(&p->event_mutex);
968 	mutex_unlock(&p->mutex);
969 }
970