1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 */ 22 23 #include <linux/mm_types.h> 24 #include <linux/slab.h> 25 #include <linux/types.h> 26 #include <linux/sched/signal.h> 27 #include <linux/sched/mm.h> 28 #include <linux/uaccess.h> 29 #include <linux/mman.h> 30 #include <linux/memory.h> 31 #include "kfd_priv.h" 32 #include "kfd_events.h" 33 #include "kfd_iommu.h" 34 #include <linux/device.h> 35 36 /* 37 * Wrapper around wait_queue_entry_t 38 */ 39 struct kfd_event_waiter { 40 wait_queue_entry_t wait; 41 struct kfd_event *event; /* Event to wait for */ 42 bool activated; /* Becomes true when event is signaled */ 43 }; 44 45 /* 46 * Each signal event needs a 64-bit signal slot where the signaler will write 47 * a 1 before sending an interrupt. (This is needed because some interrupts 48 * do not contain enough spare data bits to identify an event.) 49 * We get whole pages and map them to the process VA. 50 * Individual signal events use their event_id as slot index. 51 */ 52 struct kfd_signal_page { 53 uint64_t *kernel_address; 54 uint64_t __user *user_address; 55 bool need_to_free_pages; 56 }; 57 58 59 static uint64_t *page_slots(struct kfd_signal_page *page) 60 { 61 return page->kernel_address; 62 } 63 64 static struct kfd_signal_page *allocate_signal_page(struct kfd_process *p) 65 { 66 void *backing_store; 67 struct kfd_signal_page *page; 68 69 page = kzalloc(sizeof(*page), GFP_KERNEL); 70 if (!page) 71 return NULL; 72 73 backing_store = (void *) __get_free_pages(GFP_KERNEL, 74 get_order(KFD_SIGNAL_EVENT_LIMIT * 8)); 75 if (!backing_store) 76 goto fail_alloc_signal_store; 77 78 /* Initialize all events to unsignaled */ 79 memset(backing_store, (uint8_t) UNSIGNALED_EVENT_SLOT, 80 KFD_SIGNAL_EVENT_LIMIT * 8); 81 82 page->kernel_address = backing_store; 83 page->need_to_free_pages = true; 84 pr_debug("Allocated new event signal page at %p, for process %p\n", 85 page, p); 86 87 return page; 88 89 fail_alloc_signal_store: 90 kfree(page); 91 return NULL; 92 } 93 94 static int allocate_event_notification_slot(struct kfd_process *p, 95 struct kfd_event *ev) 96 { 97 int id; 98 99 if (!p->signal_page) { 100 p->signal_page = allocate_signal_page(p); 101 if (!p->signal_page) 102 return -ENOMEM; 103 /* Oldest user mode expects 256 event slots */ 104 p->signal_mapped_size = 256*8; 105 } 106 107 /* 108 * Compatibility with old user mode: Only use signal slots 109 * user mode has mapped, may be less than 110 * KFD_SIGNAL_EVENT_LIMIT. This also allows future increase 111 * of the event limit without breaking user mode. 112 */ 113 id = idr_alloc(&p->event_idr, ev, 0, p->signal_mapped_size / 8, 114 GFP_KERNEL); 115 if (id < 0) 116 return id; 117 118 ev->event_id = id; 119 page_slots(p->signal_page)[id] = UNSIGNALED_EVENT_SLOT; 120 121 return 0; 122 } 123 124 /* 125 * Assumes that p->event_mutex is held and of course that p is not going 126 * away (current or locked). 127 */ 128 static struct kfd_event *lookup_event_by_id(struct kfd_process *p, uint32_t id) 129 { 130 return idr_find(&p->event_idr, id); 131 } 132 133 /** 134 * lookup_signaled_event_by_partial_id - Lookup signaled event from partial ID 135 * @p: Pointer to struct kfd_process 136 * @id: ID to look up 137 * @bits: Number of valid bits in @id 138 * 139 * Finds the first signaled event with a matching partial ID. If no 140 * matching signaled event is found, returns NULL. In that case the 141 * caller should assume that the partial ID is invalid and do an 142 * exhaustive search of all siglaned events. 143 * 144 * If multiple events with the same partial ID signal at the same 145 * time, they will be found one interrupt at a time, not necessarily 146 * in the same order the interrupts occurred. As long as the number of 147 * interrupts is correct, all signaled events will be seen by the 148 * driver. 149 */ 150 static struct kfd_event *lookup_signaled_event_by_partial_id( 151 struct kfd_process *p, uint32_t id, uint32_t bits) 152 { 153 struct kfd_event *ev; 154 155 if (!p->signal_page || id >= KFD_SIGNAL_EVENT_LIMIT) 156 return NULL; 157 158 /* Fast path for the common case that @id is not a partial ID 159 * and we only need a single lookup. 160 */ 161 if (bits > 31 || (1U << bits) >= KFD_SIGNAL_EVENT_LIMIT) { 162 if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT) 163 return NULL; 164 165 return idr_find(&p->event_idr, id); 166 } 167 168 /* General case for partial IDs: Iterate over all matching IDs 169 * and find the first one that has signaled. 170 */ 171 for (ev = NULL; id < KFD_SIGNAL_EVENT_LIMIT && !ev; id += 1U << bits) { 172 if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT) 173 continue; 174 175 ev = idr_find(&p->event_idr, id); 176 } 177 178 return ev; 179 } 180 181 static int create_signal_event(struct file *devkfd, 182 struct kfd_process *p, 183 struct kfd_event *ev) 184 { 185 int ret; 186 187 if (p->signal_mapped_size && 188 p->signal_event_count == p->signal_mapped_size / 8) { 189 if (!p->signal_event_limit_reached) { 190 pr_warn("Signal event wasn't created because limit was reached\n"); 191 p->signal_event_limit_reached = true; 192 } 193 return -ENOSPC; 194 } 195 196 ret = allocate_event_notification_slot(p, ev); 197 if (ret) { 198 pr_warn("Signal event wasn't created because out of kernel memory\n"); 199 return ret; 200 } 201 202 p->signal_event_count++; 203 204 ev->user_signal_address = &p->signal_page->user_address[ev->event_id]; 205 pr_debug("Signal event number %zu created with id %d, address %p\n", 206 p->signal_event_count, ev->event_id, 207 ev->user_signal_address); 208 209 return 0; 210 } 211 212 static int create_other_event(struct kfd_process *p, struct kfd_event *ev) 213 { 214 /* Cast KFD_LAST_NONSIGNAL_EVENT to uint32_t. This allows an 215 * intentional integer overflow to -1 without a compiler 216 * warning. idr_alloc treats a negative value as "maximum 217 * signed integer". 218 */ 219 int id = idr_alloc(&p->event_idr, ev, KFD_FIRST_NONSIGNAL_EVENT_ID, 220 (uint32_t)KFD_LAST_NONSIGNAL_EVENT_ID + 1, 221 GFP_KERNEL); 222 223 if (id < 0) 224 return id; 225 ev->event_id = id; 226 227 return 0; 228 } 229 230 void kfd_event_init_process(struct kfd_process *p) 231 { 232 mutex_init(&p->event_mutex); 233 idr_init(&p->event_idr); 234 p->signal_page = NULL; 235 p->signal_event_count = 0; 236 } 237 238 static void destroy_event(struct kfd_process *p, struct kfd_event *ev) 239 { 240 struct kfd_event_waiter *waiter; 241 242 /* Wake up pending waiters. They will return failure */ 243 list_for_each_entry(waiter, &ev->wq.head, wait.entry) 244 waiter->event = NULL; 245 wake_up_all(&ev->wq); 246 247 if (ev->type == KFD_EVENT_TYPE_SIGNAL || 248 ev->type == KFD_EVENT_TYPE_DEBUG) 249 p->signal_event_count--; 250 251 idr_remove(&p->event_idr, ev->event_id); 252 kfree(ev); 253 } 254 255 static void destroy_events(struct kfd_process *p) 256 { 257 struct kfd_event *ev; 258 uint32_t id; 259 260 idr_for_each_entry(&p->event_idr, ev, id) 261 destroy_event(p, ev); 262 idr_destroy(&p->event_idr); 263 } 264 265 /* 266 * We assume that the process is being destroyed and there is no need to 267 * unmap the pages or keep bookkeeping data in order. 268 */ 269 static void shutdown_signal_page(struct kfd_process *p) 270 { 271 struct kfd_signal_page *page = p->signal_page; 272 273 if (page) { 274 if (page->need_to_free_pages) 275 free_pages((unsigned long)page->kernel_address, 276 get_order(KFD_SIGNAL_EVENT_LIMIT * 8)); 277 kfree(page); 278 } 279 } 280 281 void kfd_event_free_process(struct kfd_process *p) 282 { 283 destroy_events(p); 284 shutdown_signal_page(p); 285 } 286 287 static bool event_can_be_gpu_signaled(const struct kfd_event *ev) 288 { 289 return ev->type == KFD_EVENT_TYPE_SIGNAL || 290 ev->type == KFD_EVENT_TYPE_DEBUG; 291 } 292 293 static bool event_can_be_cpu_signaled(const struct kfd_event *ev) 294 { 295 return ev->type == KFD_EVENT_TYPE_SIGNAL; 296 } 297 298 int kfd_event_page_set(struct kfd_process *p, void *kernel_address, 299 uint64_t size) 300 { 301 struct kfd_signal_page *page; 302 303 if (p->signal_page) 304 return -EBUSY; 305 306 page = kzalloc(sizeof(*page), GFP_KERNEL); 307 if (!page) 308 return -ENOMEM; 309 310 /* Initialize all events to unsignaled */ 311 memset(kernel_address, (uint8_t) UNSIGNALED_EVENT_SLOT, 312 KFD_SIGNAL_EVENT_LIMIT * 8); 313 314 page->kernel_address = kernel_address; 315 316 p->signal_page = page; 317 p->signal_mapped_size = size; 318 319 return 0; 320 } 321 322 int kfd_event_create(struct file *devkfd, struct kfd_process *p, 323 uint32_t event_type, bool auto_reset, uint32_t node_id, 324 uint32_t *event_id, uint32_t *event_trigger_data, 325 uint64_t *event_page_offset, uint32_t *event_slot_index) 326 { 327 int ret = 0; 328 struct kfd_event *ev = kzalloc(sizeof(*ev), GFP_KERNEL); 329 330 if (!ev) 331 return -ENOMEM; 332 333 ev->type = event_type; 334 ev->auto_reset = auto_reset; 335 ev->signaled = false; 336 337 init_waitqueue_head(&ev->wq); 338 339 *event_page_offset = 0; 340 341 mutex_lock(&p->event_mutex); 342 343 switch (event_type) { 344 case KFD_EVENT_TYPE_SIGNAL: 345 case KFD_EVENT_TYPE_DEBUG: 346 ret = create_signal_event(devkfd, p, ev); 347 if (!ret) { 348 *event_page_offset = KFD_MMAP_TYPE_EVENTS; 349 *event_page_offset <<= PAGE_SHIFT; 350 *event_slot_index = ev->event_id; 351 } 352 break; 353 default: 354 ret = create_other_event(p, ev); 355 break; 356 } 357 358 if (!ret) { 359 *event_id = ev->event_id; 360 *event_trigger_data = ev->event_id; 361 } else { 362 kfree(ev); 363 } 364 365 mutex_unlock(&p->event_mutex); 366 367 return ret; 368 } 369 370 /* Assumes that p is current. */ 371 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id) 372 { 373 struct kfd_event *ev; 374 int ret = 0; 375 376 mutex_lock(&p->event_mutex); 377 378 ev = lookup_event_by_id(p, event_id); 379 380 if (ev) 381 destroy_event(p, ev); 382 else 383 ret = -EINVAL; 384 385 mutex_unlock(&p->event_mutex); 386 return ret; 387 } 388 389 static void set_event(struct kfd_event *ev) 390 { 391 struct kfd_event_waiter *waiter; 392 393 /* Auto reset if the list is non-empty and we're waking 394 * someone. waitqueue_active is safe here because we're 395 * protected by the p->event_mutex, which is also held when 396 * updating the wait queues in kfd_wait_on_events. 397 */ 398 ev->signaled = !ev->auto_reset || !waitqueue_active(&ev->wq); 399 400 list_for_each_entry(waiter, &ev->wq.head, wait.entry) 401 waiter->activated = true; 402 403 wake_up_all(&ev->wq); 404 } 405 406 /* Assumes that p is current. */ 407 int kfd_set_event(struct kfd_process *p, uint32_t event_id) 408 { 409 int ret = 0; 410 struct kfd_event *ev; 411 412 mutex_lock(&p->event_mutex); 413 414 ev = lookup_event_by_id(p, event_id); 415 416 if (ev && event_can_be_cpu_signaled(ev)) 417 set_event(ev); 418 else 419 ret = -EINVAL; 420 421 mutex_unlock(&p->event_mutex); 422 return ret; 423 } 424 425 static void reset_event(struct kfd_event *ev) 426 { 427 ev->signaled = false; 428 } 429 430 /* Assumes that p is current. */ 431 int kfd_reset_event(struct kfd_process *p, uint32_t event_id) 432 { 433 int ret = 0; 434 struct kfd_event *ev; 435 436 mutex_lock(&p->event_mutex); 437 438 ev = lookup_event_by_id(p, event_id); 439 440 if (ev && event_can_be_cpu_signaled(ev)) 441 reset_event(ev); 442 else 443 ret = -EINVAL; 444 445 mutex_unlock(&p->event_mutex); 446 return ret; 447 448 } 449 450 static void acknowledge_signal(struct kfd_process *p, struct kfd_event *ev) 451 { 452 page_slots(p->signal_page)[ev->event_id] = UNSIGNALED_EVENT_SLOT; 453 } 454 455 static void set_event_from_interrupt(struct kfd_process *p, 456 struct kfd_event *ev) 457 { 458 if (ev && event_can_be_gpu_signaled(ev)) { 459 acknowledge_signal(p, ev); 460 set_event(ev); 461 } 462 } 463 464 void kfd_signal_event_interrupt(unsigned int pasid, uint32_t partial_id, 465 uint32_t valid_id_bits) 466 { 467 struct kfd_event *ev = NULL; 468 469 /* 470 * Because we are called from arbitrary context (workqueue) as opposed 471 * to process context, kfd_process could attempt to exit while we are 472 * running so the lookup function increments the process ref count. 473 */ 474 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); 475 476 if (!p) 477 return; /* Presumably process exited. */ 478 479 mutex_lock(&p->event_mutex); 480 481 if (valid_id_bits) 482 ev = lookup_signaled_event_by_partial_id(p, partial_id, 483 valid_id_bits); 484 if (ev) { 485 set_event_from_interrupt(p, ev); 486 } else if (p->signal_page) { 487 /* 488 * Partial ID lookup failed. Assume that the event ID 489 * in the interrupt payload was invalid and do an 490 * exhaustive search of signaled events. 491 */ 492 uint64_t *slots = page_slots(p->signal_page); 493 uint32_t id; 494 495 if (valid_id_bits) 496 pr_debug_ratelimited("Partial ID invalid: %u (%u valid bits)\n", 497 partial_id, valid_id_bits); 498 499 if (p->signal_event_count < KFD_SIGNAL_EVENT_LIMIT / 64) { 500 /* With relatively few events, it's faster to 501 * iterate over the event IDR 502 */ 503 idr_for_each_entry(&p->event_idr, ev, id) { 504 if (id >= KFD_SIGNAL_EVENT_LIMIT) 505 break; 506 507 if (slots[id] != UNSIGNALED_EVENT_SLOT) 508 set_event_from_interrupt(p, ev); 509 } 510 } else { 511 /* With relatively many events, it's faster to 512 * iterate over the signal slots and lookup 513 * only signaled events from the IDR. 514 */ 515 for (id = 0; id < KFD_SIGNAL_EVENT_LIMIT; id++) 516 if (slots[id] != UNSIGNALED_EVENT_SLOT) { 517 ev = lookup_event_by_id(p, id); 518 set_event_from_interrupt(p, ev); 519 } 520 } 521 } 522 523 mutex_unlock(&p->event_mutex); 524 kfd_unref_process(p); 525 } 526 527 static struct kfd_event_waiter *alloc_event_waiters(uint32_t num_events) 528 { 529 struct kfd_event_waiter *event_waiters; 530 uint32_t i; 531 532 event_waiters = kmalloc_array(num_events, 533 sizeof(struct kfd_event_waiter), 534 GFP_KERNEL); 535 536 for (i = 0; (event_waiters) && (i < num_events) ; i++) { 537 init_wait(&event_waiters[i].wait); 538 event_waiters[i].activated = false; 539 } 540 541 return event_waiters; 542 } 543 544 static int init_event_waiter_get_status(struct kfd_process *p, 545 struct kfd_event_waiter *waiter, 546 uint32_t event_id) 547 { 548 struct kfd_event *ev = lookup_event_by_id(p, event_id); 549 550 if (!ev) 551 return -EINVAL; 552 553 waiter->event = ev; 554 waiter->activated = ev->signaled; 555 ev->signaled = ev->signaled && !ev->auto_reset; 556 557 return 0; 558 } 559 560 static void init_event_waiter_add_to_waitlist(struct kfd_event_waiter *waiter) 561 { 562 struct kfd_event *ev = waiter->event; 563 564 /* Only add to the wait list if we actually need to 565 * wait on this event. 566 */ 567 if (!waiter->activated) 568 add_wait_queue(&ev->wq, &waiter->wait); 569 } 570 571 /* test_event_condition - Test condition of events being waited for 572 * @all: Return completion only if all events have signaled 573 * @num_events: Number of events to wait for 574 * @event_waiters: Array of event waiters, one per event 575 * 576 * Returns KFD_IOC_WAIT_RESULT_COMPLETE if all (or one) event(s) have 577 * signaled. Returns KFD_IOC_WAIT_RESULT_TIMEOUT if no (or not all) 578 * events have signaled. Returns KFD_IOC_WAIT_RESULT_FAIL if any of 579 * the events have been destroyed. 580 */ 581 static uint32_t test_event_condition(bool all, uint32_t num_events, 582 struct kfd_event_waiter *event_waiters) 583 { 584 uint32_t i; 585 uint32_t activated_count = 0; 586 587 for (i = 0; i < num_events; i++) { 588 if (!event_waiters[i].event) 589 return KFD_IOC_WAIT_RESULT_FAIL; 590 591 if (event_waiters[i].activated) { 592 if (!all) 593 return KFD_IOC_WAIT_RESULT_COMPLETE; 594 595 activated_count++; 596 } 597 } 598 599 return activated_count == num_events ? 600 KFD_IOC_WAIT_RESULT_COMPLETE : KFD_IOC_WAIT_RESULT_TIMEOUT; 601 } 602 603 /* 604 * Copy event specific data, if defined. 605 * Currently only memory exception events have additional data to copy to user 606 */ 607 static int copy_signaled_event_data(uint32_t num_events, 608 struct kfd_event_waiter *event_waiters, 609 struct kfd_event_data __user *data) 610 { 611 struct kfd_hsa_memory_exception_data *src; 612 struct kfd_hsa_memory_exception_data __user *dst; 613 struct kfd_event_waiter *waiter; 614 struct kfd_event *event; 615 uint32_t i; 616 617 for (i = 0; i < num_events; i++) { 618 waiter = &event_waiters[i]; 619 event = waiter->event; 620 if (waiter->activated && event->type == KFD_EVENT_TYPE_MEMORY) { 621 dst = &data[i].memory_exception_data; 622 src = &event->memory_exception_data; 623 if (copy_to_user(dst, src, 624 sizeof(struct kfd_hsa_memory_exception_data))) 625 return -EFAULT; 626 } 627 } 628 629 return 0; 630 631 } 632 633 634 635 static long user_timeout_to_jiffies(uint32_t user_timeout_ms) 636 { 637 if (user_timeout_ms == KFD_EVENT_TIMEOUT_IMMEDIATE) 638 return 0; 639 640 if (user_timeout_ms == KFD_EVENT_TIMEOUT_INFINITE) 641 return MAX_SCHEDULE_TIMEOUT; 642 643 /* 644 * msecs_to_jiffies interprets all values above 2^31-1 as infinite, 645 * but we consider them finite. 646 * This hack is wrong, but nobody is likely to notice. 647 */ 648 user_timeout_ms = min_t(uint32_t, user_timeout_ms, 0x7FFFFFFF); 649 650 return msecs_to_jiffies(user_timeout_ms) + 1; 651 } 652 653 static void free_waiters(uint32_t num_events, struct kfd_event_waiter *waiters) 654 { 655 uint32_t i; 656 657 for (i = 0; i < num_events; i++) 658 if (waiters[i].event) 659 remove_wait_queue(&waiters[i].event->wq, 660 &waiters[i].wait); 661 662 kfree(waiters); 663 } 664 665 int kfd_wait_on_events(struct kfd_process *p, 666 uint32_t num_events, void __user *data, 667 bool all, uint32_t user_timeout_ms, 668 uint32_t *wait_result) 669 { 670 struct kfd_event_data __user *events = 671 (struct kfd_event_data __user *) data; 672 uint32_t i; 673 int ret = 0; 674 675 struct kfd_event_waiter *event_waiters = NULL; 676 long timeout = user_timeout_to_jiffies(user_timeout_ms); 677 678 event_waiters = alloc_event_waiters(num_events); 679 if (!event_waiters) { 680 ret = -ENOMEM; 681 goto out; 682 } 683 684 mutex_lock(&p->event_mutex); 685 686 for (i = 0; i < num_events; i++) { 687 struct kfd_event_data event_data; 688 689 if (copy_from_user(&event_data, &events[i], 690 sizeof(struct kfd_event_data))) { 691 ret = -EFAULT; 692 goto out_unlock; 693 } 694 695 ret = init_event_waiter_get_status(p, &event_waiters[i], 696 event_data.event_id); 697 if (ret) 698 goto out_unlock; 699 } 700 701 /* Check condition once. */ 702 *wait_result = test_event_condition(all, num_events, event_waiters); 703 if (*wait_result == KFD_IOC_WAIT_RESULT_COMPLETE) { 704 ret = copy_signaled_event_data(num_events, 705 event_waiters, events); 706 goto out_unlock; 707 } else if (WARN_ON(*wait_result == KFD_IOC_WAIT_RESULT_FAIL)) { 708 /* This should not happen. Events shouldn't be 709 * destroyed while we're holding the event_mutex 710 */ 711 goto out_unlock; 712 } 713 714 /* Add to wait lists if we need to wait. */ 715 for (i = 0; i < num_events; i++) 716 init_event_waiter_add_to_waitlist(&event_waiters[i]); 717 718 mutex_unlock(&p->event_mutex); 719 720 while (true) { 721 if (fatal_signal_pending(current)) { 722 ret = -EINTR; 723 break; 724 } 725 726 if (signal_pending(current)) { 727 /* 728 * This is wrong when a nonzero, non-infinite timeout 729 * is specified. We need to use 730 * ERESTARTSYS_RESTARTBLOCK, but struct restart_block 731 * contains a union with data for each user and it's 732 * in generic kernel code that I don't want to 733 * touch yet. 734 */ 735 ret = -ERESTARTSYS; 736 break; 737 } 738 739 /* Set task state to interruptible sleep before 740 * checking wake-up conditions. A concurrent wake-up 741 * will put the task back into runnable state. In that 742 * case schedule_timeout will not put the task to 743 * sleep and we'll get a chance to re-check the 744 * updated conditions almost immediately. Otherwise, 745 * this race condition would lead to a soft hang or a 746 * very long sleep. 747 */ 748 set_current_state(TASK_INTERRUPTIBLE); 749 750 *wait_result = test_event_condition(all, num_events, 751 event_waiters); 752 if (*wait_result != KFD_IOC_WAIT_RESULT_TIMEOUT) 753 break; 754 755 if (timeout <= 0) 756 break; 757 758 timeout = schedule_timeout(timeout); 759 } 760 __set_current_state(TASK_RUNNING); 761 762 /* copy_signaled_event_data may sleep. So this has to happen 763 * after the task state is set back to RUNNING. 764 */ 765 if (!ret && *wait_result == KFD_IOC_WAIT_RESULT_COMPLETE) 766 ret = copy_signaled_event_data(num_events, 767 event_waiters, events); 768 769 mutex_lock(&p->event_mutex); 770 out_unlock: 771 free_waiters(num_events, event_waiters); 772 mutex_unlock(&p->event_mutex); 773 out: 774 if (ret) 775 *wait_result = KFD_IOC_WAIT_RESULT_FAIL; 776 else if (*wait_result == KFD_IOC_WAIT_RESULT_FAIL) 777 ret = -EIO; 778 779 return ret; 780 } 781 782 int kfd_event_mmap(struct kfd_process *p, struct vm_area_struct *vma) 783 { 784 unsigned long pfn; 785 struct kfd_signal_page *page; 786 int ret; 787 788 /* check required size doesn't exceed the allocated size */ 789 if (get_order(KFD_SIGNAL_EVENT_LIMIT * 8) < 790 get_order(vma->vm_end - vma->vm_start)) { 791 pr_err("Event page mmap requested illegal size\n"); 792 return -EINVAL; 793 } 794 795 page = p->signal_page; 796 if (!page) { 797 /* Probably KFD bug, but mmap is user-accessible. */ 798 pr_debug("Signal page could not be found\n"); 799 return -EINVAL; 800 } 801 802 pfn = __pa(page->kernel_address); 803 pfn >>= PAGE_SHIFT; 804 805 vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE 806 | VM_DONTDUMP | VM_PFNMAP; 807 808 pr_debug("Mapping signal page\n"); 809 pr_debug(" start user address == 0x%08lx\n", vma->vm_start); 810 pr_debug(" end user address == 0x%08lx\n", vma->vm_end); 811 pr_debug(" pfn == 0x%016lX\n", pfn); 812 pr_debug(" vm_flags == 0x%08lX\n", vma->vm_flags); 813 pr_debug(" size == 0x%08lX\n", 814 vma->vm_end - vma->vm_start); 815 816 page->user_address = (uint64_t __user *)vma->vm_start; 817 818 /* mapping the page to user process */ 819 ret = remap_pfn_range(vma, vma->vm_start, pfn, 820 vma->vm_end - vma->vm_start, vma->vm_page_prot); 821 if (!ret) 822 p->signal_mapped_size = vma->vm_end - vma->vm_start; 823 824 return ret; 825 } 826 827 /* 828 * Assumes that p->event_mutex is held and of course 829 * that p is not going away (current or locked). 830 */ 831 static void lookup_events_by_type_and_signal(struct kfd_process *p, 832 int type, void *event_data) 833 { 834 struct kfd_hsa_memory_exception_data *ev_data; 835 struct kfd_event *ev; 836 uint32_t id; 837 bool send_signal = true; 838 839 ev_data = (struct kfd_hsa_memory_exception_data *) event_data; 840 841 id = KFD_FIRST_NONSIGNAL_EVENT_ID; 842 idr_for_each_entry_continue(&p->event_idr, ev, id) 843 if (ev->type == type) { 844 send_signal = false; 845 dev_dbg(kfd_device, 846 "Event found: id %X type %d", 847 ev->event_id, ev->type); 848 set_event(ev); 849 if (ev->type == KFD_EVENT_TYPE_MEMORY && ev_data) 850 ev->memory_exception_data = *ev_data; 851 } 852 853 if (type == KFD_EVENT_TYPE_MEMORY) { 854 dev_warn(kfd_device, 855 "Sending SIGSEGV to HSA Process with PID %d ", 856 p->lead_thread->pid); 857 send_sig(SIGSEGV, p->lead_thread, 0); 858 } 859 860 /* Send SIGTERM no event of type "type" has been found*/ 861 if (send_signal) { 862 if (send_sigterm) { 863 dev_warn(kfd_device, 864 "Sending SIGTERM to HSA Process with PID %d ", 865 p->lead_thread->pid); 866 send_sig(SIGTERM, p->lead_thread, 0); 867 } else { 868 dev_err(kfd_device, 869 "HSA Process (PID %d) got unhandled exception", 870 p->lead_thread->pid); 871 } 872 } 873 } 874 875 #ifdef KFD_SUPPORT_IOMMU_V2 876 void kfd_signal_iommu_event(struct kfd_dev *dev, unsigned int pasid, 877 unsigned long address, bool is_write_requested, 878 bool is_execute_requested) 879 { 880 struct kfd_hsa_memory_exception_data memory_exception_data; 881 struct vm_area_struct *vma; 882 883 /* 884 * Because we are called from arbitrary context (workqueue) as opposed 885 * to process context, kfd_process could attempt to exit while we are 886 * running so the lookup function increments the process ref count. 887 */ 888 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); 889 struct mm_struct *mm; 890 891 if (!p) 892 return; /* Presumably process exited. */ 893 894 /* Take a safe reference to the mm_struct, which may otherwise 895 * disappear even while the kfd_process is still referenced. 896 */ 897 mm = get_task_mm(p->lead_thread); 898 if (!mm) { 899 kfd_unref_process(p); 900 return; /* Process is exiting */ 901 } 902 903 memset(&memory_exception_data, 0, sizeof(memory_exception_data)); 904 905 down_read(&mm->mmap_sem); 906 vma = find_vma(mm, address); 907 908 memory_exception_data.gpu_id = dev->id; 909 memory_exception_data.va = address; 910 /* Set failure reason */ 911 memory_exception_data.failure.NotPresent = 1; 912 memory_exception_data.failure.NoExecute = 0; 913 memory_exception_data.failure.ReadOnly = 0; 914 if (vma && address >= vma->vm_start) { 915 memory_exception_data.failure.NotPresent = 0; 916 917 if (is_write_requested && !(vma->vm_flags & VM_WRITE)) 918 memory_exception_data.failure.ReadOnly = 1; 919 else 920 memory_exception_data.failure.ReadOnly = 0; 921 922 if (is_execute_requested && !(vma->vm_flags & VM_EXEC)) 923 memory_exception_data.failure.NoExecute = 1; 924 else 925 memory_exception_data.failure.NoExecute = 0; 926 } 927 928 up_read(&mm->mmap_sem); 929 mmput(mm); 930 931 pr_debug("notpresent %d, noexecute %d, readonly %d\n", 932 memory_exception_data.failure.NotPresent, 933 memory_exception_data.failure.NoExecute, 934 memory_exception_data.failure.ReadOnly); 935 936 /* Workaround on Raven to not kill the process when memory is freed 937 * before IOMMU is able to finish processing all the excessive PPRs 938 */ 939 if (dev->device_info->asic_family != CHIP_RAVEN) { 940 mutex_lock(&p->event_mutex); 941 942 /* Lookup events by type and signal them */ 943 lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_MEMORY, 944 &memory_exception_data); 945 946 mutex_unlock(&p->event_mutex); 947 } 948 949 kfd_unref_process(p); 950 } 951 #endif /* KFD_SUPPORT_IOMMU_V2 */ 952 953 void kfd_signal_hw_exception_event(unsigned int pasid) 954 { 955 /* 956 * Because we are called from arbitrary context (workqueue) as opposed 957 * to process context, kfd_process could attempt to exit while we are 958 * running so the lookup function increments the process ref count. 959 */ 960 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); 961 962 if (!p) 963 return; /* Presumably process exited. */ 964 965 mutex_lock(&p->event_mutex); 966 967 /* Lookup events by type and signal them */ 968 lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_HW_EXCEPTION, NULL); 969 970 mutex_unlock(&p->event_mutex); 971 kfd_unref_process(p); 972 } 973 974 void kfd_signal_vm_fault_event(struct kfd_dev *dev, unsigned int pasid, 975 struct kfd_vm_fault_info *info) 976 { 977 struct kfd_event *ev; 978 uint32_t id; 979 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); 980 struct kfd_hsa_memory_exception_data memory_exception_data; 981 982 if (!p) 983 return; /* Presumably process exited. */ 984 memset(&memory_exception_data, 0, sizeof(memory_exception_data)); 985 memory_exception_data.gpu_id = dev->id; 986 memory_exception_data.failure.imprecise = true; 987 /* Set failure reason */ 988 if (info) { 989 memory_exception_data.va = (info->page_addr) << PAGE_SHIFT; 990 memory_exception_data.failure.NotPresent = 991 info->prot_valid ? 1 : 0; 992 memory_exception_data.failure.NoExecute = 993 info->prot_exec ? 1 : 0; 994 memory_exception_data.failure.ReadOnly = 995 info->prot_write ? 1 : 0; 996 memory_exception_data.failure.imprecise = 0; 997 } 998 mutex_lock(&p->event_mutex); 999 1000 id = KFD_FIRST_NONSIGNAL_EVENT_ID; 1001 idr_for_each_entry_continue(&p->event_idr, ev, id) 1002 if (ev->type == KFD_EVENT_TYPE_MEMORY) { 1003 ev->memory_exception_data = memory_exception_data; 1004 set_event(ev); 1005 } 1006 1007 mutex_unlock(&p->event_mutex); 1008 kfd_unref_process(p); 1009 } 1010 1011 void kfd_signal_reset_event(struct kfd_dev *dev) 1012 { 1013 struct kfd_hsa_hw_exception_data hw_exception_data; 1014 struct kfd_hsa_memory_exception_data memory_exception_data; 1015 struct kfd_process *p; 1016 struct kfd_event *ev; 1017 unsigned int temp; 1018 uint32_t id, idx; 1019 int reset_cause = atomic_read(&dev->sram_ecc_flag) ? 1020 KFD_HW_EXCEPTION_ECC : 1021 KFD_HW_EXCEPTION_GPU_HANG; 1022 1023 /* Whole gpu reset caused by GPU hang and memory is lost */ 1024 memset(&hw_exception_data, 0, sizeof(hw_exception_data)); 1025 hw_exception_data.gpu_id = dev->id; 1026 hw_exception_data.memory_lost = 1; 1027 hw_exception_data.reset_cause = reset_cause; 1028 1029 memset(&memory_exception_data, 0, sizeof(memory_exception_data)); 1030 memory_exception_data.ErrorType = KFD_MEM_ERR_SRAM_ECC; 1031 memory_exception_data.gpu_id = dev->id; 1032 memory_exception_data.failure.imprecise = true; 1033 1034 idx = srcu_read_lock(&kfd_processes_srcu); 1035 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1036 mutex_lock(&p->event_mutex); 1037 id = KFD_FIRST_NONSIGNAL_EVENT_ID; 1038 idr_for_each_entry_continue(&p->event_idr, ev, id) { 1039 if (ev->type == KFD_EVENT_TYPE_HW_EXCEPTION) { 1040 ev->hw_exception_data = hw_exception_data; 1041 set_event(ev); 1042 } 1043 if (ev->type == KFD_EVENT_TYPE_MEMORY && 1044 reset_cause == KFD_HW_EXCEPTION_ECC) { 1045 ev->memory_exception_data = memory_exception_data; 1046 set_event(ev); 1047 } 1048 } 1049 mutex_unlock(&p->event_mutex); 1050 } 1051 srcu_read_unlock(&kfd_processes_srcu, idx); 1052 } 1053