xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_device_queue_manager.c (revision fe7fad476ec8153a8b8767a08114e3e4a58a837e)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/ratelimit.h>
26 #include <linux/printk.h>
27 #include <linux/slab.h>
28 #include <linux/list.h>
29 #include <linux/types.h>
30 #include <linux/bitops.h>
31 #include <linux/sched.h>
32 #include "kfd_priv.h"
33 #include "kfd_device_queue_manager.h"
34 #include "kfd_mqd_manager.h"
35 #include "cik_regs.h"
36 #include "kfd_kernel_queue.h"
37 #include "amdgpu_amdkfd.h"
38 #include "amdgpu_reset.h"
39 #include "mes_v11_api_def.h"
40 #include "kfd_debug.h"
41 
42 /* Size of the per-pipe EOP queue */
43 #define CIK_HPD_EOP_BYTES_LOG2 11
44 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
45 
46 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
47 				  u32 pasid, unsigned int vmid);
48 
49 static int execute_queues_cpsch(struct device_queue_manager *dqm,
50 				enum kfd_unmap_queues_filter filter,
51 				uint32_t filter_param,
52 				uint32_t grace_period);
53 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
54 				enum kfd_unmap_queues_filter filter,
55 				uint32_t filter_param,
56 				uint32_t grace_period,
57 				bool reset);
58 
59 static int map_queues_cpsch(struct device_queue_manager *dqm);
60 
61 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
62 				struct queue *q);
63 
64 static inline void deallocate_hqd(struct device_queue_manager *dqm,
65 				struct queue *q);
66 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q);
67 static int allocate_sdma_queue(struct device_queue_manager *dqm,
68 				struct queue *q, const uint32_t *restore_sdma_id);
69 static void kfd_process_hw_exception(struct work_struct *work);
70 
71 static inline
72 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
73 {
74 	if (type == KFD_QUEUE_TYPE_SDMA || type == KFD_QUEUE_TYPE_SDMA_XGMI)
75 		return KFD_MQD_TYPE_SDMA;
76 	return KFD_MQD_TYPE_CP;
77 }
78 
79 static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe)
80 {
81 	int i;
82 	int pipe_offset = (mec * dqm->dev->kfd->shared_resources.num_pipe_per_mec
83 		+ pipe) * dqm->dev->kfd->shared_resources.num_queue_per_pipe;
84 
85 	/* queue is available for KFD usage if bit is 1 */
86 	for (i = 0; i <  dqm->dev->kfd->shared_resources.num_queue_per_pipe; ++i)
87 		if (test_bit(pipe_offset + i,
88 			      dqm->dev->kfd->shared_resources.cp_queue_bitmap))
89 			return true;
90 	return false;
91 }
92 
93 unsigned int get_cp_queues_num(struct device_queue_manager *dqm)
94 {
95 	return bitmap_weight(dqm->dev->kfd->shared_resources.cp_queue_bitmap,
96 				AMDGPU_MAX_QUEUES);
97 }
98 
99 unsigned int get_queues_per_pipe(struct device_queue_manager *dqm)
100 {
101 	return dqm->dev->kfd->shared_resources.num_queue_per_pipe;
102 }
103 
104 unsigned int get_pipes_per_mec(struct device_queue_manager *dqm)
105 {
106 	return dqm->dev->kfd->shared_resources.num_pipe_per_mec;
107 }
108 
109 static unsigned int get_num_all_sdma_engines(struct device_queue_manager *dqm)
110 {
111 	return kfd_get_num_sdma_engines(dqm->dev) +
112 		kfd_get_num_xgmi_sdma_engines(dqm->dev);
113 }
114 
115 unsigned int get_num_sdma_queues(struct device_queue_manager *dqm)
116 {
117 	return kfd_get_num_sdma_engines(dqm->dev) *
118 		dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
119 }
120 
121 unsigned int get_num_xgmi_sdma_queues(struct device_queue_manager *dqm)
122 {
123 	return kfd_get_num_xgmi_sdma_engines(dqm->dev) *
124 		dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
125 }
126 
127 static void init_sdma_bitmaps(struct device_queue_manager *dqm)
128 {
129 	bitmap_zero(dqm->sdma_bitmap, KFD_MAX_SDMA_QUEUES);
130 	bitmap_set(dqm->sdma_bitmap, 0, get_num_sdma_queues(dqm));
131 
132 	bitmap_zero(dqm->xgmi_sdma_bitmap, KFD_MAX_SDMA_QUEUES);
133 	bitmap_set(dqm->xgmi_sdma_bitmap, 0, get_num_xgmi_sdma_queues(dqm));
134 
135 	/* Mask out the reserved queues */
136 	bitmap_andnot(dqm->sdma_bitmap, dqm->sdma_bitmap,
137 		      dqm->dev->kfd->device_info.reserved_sdma_queues_bitmap,
138 		      KFD_MAX_SDMA_QUEUES);
139 }
140 
141 void program_sh_mem_settings(struct device_queue_manager *dqm,
142 					struct qcm_process_device *qpd)
143 {
144 	uint32_t xcc_mask = dqm->dev->xcc_mask;
145 	int xcc_id;
146 
147 	for_each_inst(xcc_id, xcc_mask)
148 		dqm->dev->kfd2kgd->program_sh_mem_settings(
149 			dqm->dev->adev, qpd->vmid, qpd->sh_mem_config,
150 			qpd->sh_mem_ape1_base, qpd->sh_mem_ape1_limit,
151 			qpd->sh_mem_bases, xcc_id);
152 }
153 
154 static void kfd_hws_hang(struct device_queue_manager *dqm)
155 {
156 	struct device_process_node *cur;
157 	struct qcm_process_device *qpd;
158 	struct queue *q;
159 
160 	/* Mark all device queues as reset. */
161 	list_for_each_entry(cur, &dqm->queues, list) {
162 		qpd = cur->qpd;
163 		list_for_each_entry(q, &qpd->queues_list, list) {
164 			struct kfd_process_device *pdd = qpd_to_pdd(qpd);
165 
166 			pdd->has_reset_queue = true;
167 		}
168 	}
169 
170 	/*
171 	 * Issue a GPU reset if HWS is unresponsive
172 	 */
173 	schedule_work(&dqm->hw_exception_work);
174 }
175 
176 static int convert_to_mes_queue_type(int queue_type)
177 {
178 	int mes_queue_type;
179 
180 	switch (queue_type) {
181 	case KFD_QUEUE_TYPE_COMPUTE:
182 		mes_queue_type = MES_QUEUE_TYPE_COMPUTE;
183 		break;
184 	case KFD_QUEUE_TYPE_SDMA:
185 		mes_queue_type = MES_QUEUE_TYPE_SDMA;
186 		break;
187 	default:
188 		WARN(1, "Invalid queue type %d", queue_type);
189 		mes_queue_type = -EINVAL;
190 		break;
191 	}
192 
193 	return mes_queue_type;
194 }
195 
196 static int add_queue_mes(struct device_queue_manager *dqm, struct queue *q,
197 			 struct qcm_process_device *qpd)
198 {
199 	struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
200 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
201 	struct mes_add_queue_input queue_input;
202 	int r, queue_type;
203 	uint64_t wptr_addr_off;
204 
205 	if (!dqm->sched_running || dqm->sched_halt)
206 		return 0;
207 	if (!down_read_trylock(&adev->reset_domain->sem))
208 		return -EIO;
209 
210 	if (!pdd->proc_ctx_cpu_ptr) {
211 		r = amdgpu_amdkfd_alloc_gtt_mem(adev,
212 				AMDGPU_MES_PROC_CTX_SIZE,
213 				&pdd->proc_ctx_bo,
214 				&pdd->proc_ctx_gpu_addr,
215 				&pdd->proc_ctx_cpu_ptr,
216 				false);
217 		if (r) {
218 			dev_err(adev->dev,
219 				"failed to allocate process context bo\n");
220 			return r;
221 		}
222 		memset(pdd->proc_ctx_cpu_ptr, 0, AMDGPU_MES_PROC_CTX_SIZE);
223 	}
224 
225 	memset(&queue_input, 0x0, sizeof(struct mes_add_queue_input));
226 	queue_input.process_id = pdd->pasid;
227 	queue_input.page_table_base_addr =  qpd->page_table_base;
228 	queue_input.process_va_start = 0;
229 	queue_input.process_va_end = adev->vm_manager.max_pfn - 1;
230 	/* MES unit for quantum is 100ns */
231 	queue_input.process_quantum = KFD_MES_PROCESS_QUANTUM;  /* Equivalent to 10ms. */
232 	queue_input.process_context_addr = pdd->proc_ctx_gpu_addr;
233 	queue_input.gang_quantum = KFD_MES_GANG_QUANTUM; /* Equivalent to 1ms */
234 	queue_input.gang_context_addr = q->gang_ctx_gpu_addr;
235 	queue_input.inprocess_gang_priority = q->properties.priority;
236 	queue_input.gang_global_priority_level =
237 					AMDGPU_MES_PRIORITY_LEVEL_NORMAL;
238 	queue_input.doorbell_offset = q->properties.doorbell_off;
239 	queue_input.mqd_addr = q->gart_mqd_addr;
240 	queue_input.wptr_addr = (uint64_t)q->properties.write_ptr;
241 
242 	wptr_addr_off = (uint64_t)q->properties.write_ptr & (PAGE_SIZE - 1);
243 	queue_input.wptr_mc_addr = amdgpu_bo_gpu_offset(q->properties.wptr_bo) + wptr_addr_off;
244 
245 	queue_input.is_kfd_process = 1;
246 	queue_input.is_aql_queue = (q->properties.format == KFD_QUEUE_FORMAT_AQL);
247 	queue_input.queue_size = q->properties.queue_size >> 2;
248 
249 	queue_input.paging = false;
250 	queue_input.tba_addr = qpd->tba_addr;
251 	queue_input.tma_addr = qpd->tma_addr;
252 	queue_input.trap_en = !kfd_dbg_has_cwsr_workaround(q->device);
253 	queue_input.skip_process_ctx_clear =
254 		qpd->pqm->process->runtime_info.runtime_state == DEBUG_RUNTIME_STATE_ENABLED &&
255 						(qpd->pqm->process->debug_trap_enabled ||
256 						 kfd_dbg_has_ttmps_always_setup(q->device));
257 
258 	queue_type = convert_to_mes_queue_type(q->properties.type);
259 	if (queue_type < 0) {
260 		dev_err(adev->dev, "Queue type not supported with MES, queue:%d\n",
261 			q->properties.type);
262 		up_read(&adev->reset_domain->sem);
263 		return -EINVAL;
264 	}
265 	queue_input.queue_type = (uint32_t)queue_type;
266 
267 	queue_input.exclusively_scheduled = q->properties.is_gws;
268 
269 	amdgpu_mes_lock(&adev->mes);
270 	r = adev->mes.funcs->add_hw_queue(&adev->mes, &queue_input);
271 	amdgpu_mes_unlock(&adev->mes);
272 	up_read(&adev->reset_domain->sem);
273 	if (r) {
274 		dev_err(adev->dev, "failed to add hardware queue to MES, doorbell=0x%x\n",
275 			q->properties.doorbell_off);
276 		dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
277 		kfd_hws_hang(dqm);
278 	}
279 
280 	return r;
281 }
282 
283 static int remove_queue_mes(struct device_queue_manager *dqm, struct queue *q,
284 			struct qcm_process_device *qpd)
285 {
286 	struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
287 	int r;
288 	struct mes_remove_queue_input queue_input;
289 
290 	if (!dqm->sched_running || dqm->sched_halt)
291 		return 0;
292 	if (!down_read_trylock(&adev->reset_domain->sem))
293 		return -EIO;
294 
295 	memset(&queue_input, 0x0, sizeof(struct mes_remove_queue_input));
296 	queue_input.doorbell_offset = q->properties.doorbell_off;
297 	queue_input.gang_context_addr = q->gang_ctx_gpu_addr;
298 
299 	amdgpu_mes_lock(&adev->mes);
300 	r = adev->mes.funcs->remove_hw_queue(&adev->mes, &queue_input);
301 	amdgpu_mes_unlock(&adev->mes);
302 	up_read(&adev->reset_domain->sem);
303 
304 	if (r) {
305 		dev_err(adev->dev, "failed to remove hardware queue from MES, doorbell=0x%x\n",
306 			q->properties.doorbell_off);
307 		dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
308 		kfd_hws_hang(dqm);
309 	}
310 
311 	return r;
312 }
313 
314 static int remove_all_kfd_queues_mes(struct device_queue_manager *dqm)
315 {
316 	struct device_process_node *cur;
317 	struct device *dev = dqm->dev->adev->dev;
318 	struct qcm_process_device *qpd;
319 	struct queue *q;
320 	int retval = 0;
321 
322 	list_for_each_entry(cur, &dqm->queues, list) {
323 		qpd = cur->qpd;
324 		list_for_each_entry(q, &qpd->queues_list, list) {
325 			if (q->properties.is_active) {
326 				retval = remove_queue_mes(dqm, q, qpd);
327 				if (retval) {
328 					dev_err(dev, "%s: Failed to remove queue %d for dev %d",
329 						__func__,
330 						q->properties.queue_id,
331 						dqm->dev->id);
332 					return retval;
333 				}
334 			}
335 		}
336 	}
337 
338 	return retval;
339 }
340 
341 static int add_all_kfd_queues_mes(struct device_queue_manager *dqm)
342 {
343 	struct device_process_node *cur;
344 	struct device *dev = dqm->dev->adev->dev;
345 	struct qcm_process_device *qpd;
346 	struct queue *q;
347 	int retval = 0;
348 
349 	list_for_each_entry(cur, &dqm->queues, list) {
350 		qpd = cur->qpd;
351 		list_for_each_entry(q, &qpd->queues_list, list) {
352 			if (!q->properties.is_active)
353 				continue;
354 			retval = add_queue_mes(dqm, q, qpd);
355 			if (retval) {
356 				dev_err(dev, "%s: Failed to add queue %d for dev %d",
357 					__func__,
358 					q->properties.queue_id,
359 					dqm->dev->id);
360 				return retval;
361 			}
362 		}
363 	}
364 
365 	return retval;
366 }
367 
368 static int suspend_all_queues_mes(struct device_queue_manager *dqm)
369 {
370 	struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
371 	int r = 0;
372 
373 	if (!down_read_trylock(&adev->reset_domain->sem))
374 		return -EIO;
375 
376 	r = amdgpu_mes_suspend(adev);
377 	up_read(&adev->reset_domain->sem);
378 
379 	if (r) {
380 		dev_err(adev->dev, "failed to suspend gangs from MES\n");
381 		dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
382 		kfd_hws_hang(dqm);
383 	}
384 
385 	return r;
386 }
387 
388 static int resume_all_queues_mes(struct device_queue_manager *dqm)
389 {
390 	struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
391 	int r = 0;
392 
393 	if (!down_read_trylock(&adev->reset_domain->sem))
394 		return -EIO;
395 
396 	r = amdgpu_mes_resume(adev);
397 	up_read(&adev->reset_domain->sem);
398 
399 	if (r) {
400 		dev_err(adev->dev, "failed to resume gangs from MES\n");
401 		dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
402 		kfd_hws_hang(dqm);
403 	}
404 
405 	return r;
406 }
407 
408 static void increment_queue_count(struct device_queue_manager *dqm,
409 				  struct qcm_process_device *qpd,
410 				  struct queue *q)
411 {
412 	dqm->active_queue_count++;
413 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
414 	    q->properties.type == KFD_QUEUE_TYPE_DIQ)
415 		dqm->active_cp_queue_count++;
416 
417 	if (q->properties.is_gws) {
418 		dqm->gws_queue_count++;
419 		qpd->mapped_gws_queue = true;
420 	}
421 }
422 
423 static void decrement_queue_count(struct device_queue_manager *dqm,
424 				  struct qcm_process_device *qpd,
425 				  struct queue *q)
426 {
427 	dqm->active_queue_count--;
428 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
429 	    q->properties.type == KFD_QUEUE_TYPE_DIQ)
430 		dqm->active_cp_queue_count--;
431 
432 	if (q->properties.is_gws) {
433 		dqm->gws_queue_count--;
434 		qpd->mapped_gws_queue = false;
435 	}
436 }
437 
438 /*
439  * Allocate a doorbell ID to this queue.
440  * If doorbell_id is passed in, make sure requested ID is valid then allocate it.
441  */
442 static int allocate_doorbell(struct qcm_process_device *qpd,
443 			     struct queue *q,
444 			     uint32_t const *restore_id)
445 {
446 	struct kfd_node *dev = qpd->dqm->dev;
447 
448 	if (!KFD_IS_SOC15(dev)) {
449 		/* On pre-SOC15 chips we need to use the queue ID to
450 		 * preserve the user mode ABI.
451 		 */
452 
453 		if (restore_id && *restore_id != q->properties.queue_id)
454 			return -EINVAL;
455 
456 		q->doorbell_id = q->properties.queue_id;
457 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
458 			q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
459 		/* For SDMA queues on SOC15 with 8-byte doorbell, use static
460 		 * doorbell assignments based on the engine and queue id.
461 		 * The doobell index distance between RLC (2*i) and (2*i+1)
462 		 * for a SDMA engine is 512.
463 		 */
464 
465 		uint32_t *idx_offset = dev->kfd->shared_resources.sdma_doorbell_idx;
466 
467 		/*
468 		 * q->properties.sdma_engine_id corresponds to the virtual
469 		 * sdma engine number. However, for doorbell allocation,
470 		 * we need the physical sdma engine id in order to get the
471 		 * correct doorbell offset.
472 		 */
473 		uint32_t valid_id = idx_offset[qpd->dqm->dev->node_id *
474 					       get_num_all_sdma_engines(qpd->dqm) +
475 					       q->properties.sdma_engine_id]
476 						+ (q->properties.sdma_queue_id & 1)
477 						* KFD_QUEUE_DOORBELL_MIRROR_OFFSET
478 						+ (q->properties.sdma_queue_id >> 1);
479 
480 		if (restore_id && *restore_id != valid_id)
481 			return -EINVAL;
482 		q->doorbell_id = valid_id;
483 	} else {
484 		/* For CP queues on SOC15 */
485 		if (restore_id) {
486 			/* make sure that ID is free  */
487 			if (__test_and_set_bit(*restore_id, qpd->doorbell_bitmap))
488 				return -EINVAL;
489 
490 			q->doorbell_id = *restore_id;
491 		} else {
492 			/* or reserve a free doorbell ID */
493 			unsigned int found;
494 
495 			found = find_first_zero_bit(qpd->doorbell_bitmap,
496 						    KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
497 			if (found >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) {
498 				pr_debug("No doorbells available");
499 				return -EBUSY;
500 			}
501 			set_bit(found, qpd->doorbell_bitmap);
502 			q->doorbell_id = found;
503 		}
504 	}
505 
506 	q->properties.doorbell_off = amdgpu_doorbell_index_on_bar(dev->adev,
507 								  qpd->proc_doorbells,
508 								  q->doorbell_id,
509 								  dev->kfd->device_info.doorbell_size);
510 	return 0;
511 }
512 
513 static void deallocate_doorbell(struct qcm_process_device *qpd,
514 				struct queue *q)
515 {
516 	unsigned int old;
517 	struct kfd_node *dev = qpd->dqm->dev;
518 
519 	if (!KFD_IS_SOC15(dev) ||
520 	    q->properties.type == KFD_QUEUE_TYPE_SDMA ||
521 	    q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
522 		return;
523 
524 	old = test_and_clear_bit(q->doorbell_id, qpd->doorbell_bitmap);
525 	WARN_ON(!old);
526 }
527 
528 static void program_trap_handler_settings(struct device_queue_manager *dqm,
529 				struct qcm_process_device *qpd)
530 {
531 	uint32_t xcc_mask = dqm->dev->xcc_mask;
532 	int xcc_id;
533 
534 	if (dqm->dev->kfd2kgd->program_trap_handler_settings)
535 		for_each_inst(xcc_id, xcc_mask)
536 			dqm->dev->kfd2kgd->program_trap_handler_settings(
537 				dqm->dev->adev, qpd->vmid, qpd->tba_addr,
538 				qpd->tma_addr, xcc_id);
539 }
540 
541 static int allocate_vmid(struct device_queue_manager *dqm,
542 			struct qcm_process_device *qpd,
543 			struct queue *q)
544 {
545 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
546 	struct device *dev = dqm->dev->adev->dev;
547 	int allocated_vmid = -1, i;
548 
549 	for (i = dqm->dev->vm_info.first_vmid_kfd;
550 			i <= dqm->dev->vm_info.last_vmid_kfd; i++) {
551 		if (!dqm->vmid_pasid[i]) {
552 			allocated_vmid = i;
553 			break;
554 		}
555 	}
556 
557 	if (allocated_vmid < 0) {
558 		dev_err(dev, "no more vmid to allocate\n");
559 		return -ENOSPC;
560 	}
561 
562 	pr_debug("vmid allocated: %d\n", allocated_vmid);
563 
564 	dqm->vmid_pasid[allocated_vmid] = pdd->pasid;
565 
566 	set_pasid_vmid_mapping(dqm, pdd->pasid, allocated_vmid);
567 
568 	qpd->vmid = allocated_vmid;
569 	q->properties.vmid = allocated_vmid;
570 
571 	program_sh_mem_settings(dqm, qpd);
572 
573 	if (KFD_IS_SOC15(dqm->dev) && dqm->dev->kfd->cwsr_enabled)
574 		program_trap_handler_settings(dqm, qpd);
575 
576 	/* qpd->page_table_base is set earlier when register_process()
577 	 * is called, i.e. when the first queue is created.
578 	 */
579 	dqm->dev->kfd2kgd->set_vm_context_page_table_base(dqm->dev->adev,
580 			qpd->vmid,
581 			qpd->page_table_base);
582 	/* invalidate the VM context after pasid and vmid mapping is set up */
583 	kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY);
584 
585 	if (dqm->dev->kfd2kgd->set_scratch_backing_va)
586 		dqm->dev->kfd2kgd->set_scratch_backing_va(dqm->dev->adev,
587 				qpd->sh_hidden_private_base, qpd->vmid);
588 
589 	return 0;
590 }
591 
592 static int flush_texture_cache_nocpsch(struct kfd_node *kdev,
593 				struct qcm_process_device *qpd)
594 {
595 	const struct packet_manager_funcs *pmf = qpd->dqm->packet_mgr.pmf;
596 	int ret;
597 
598 	if (!qpd->ib_kaddr)
599 		return -ENOMEM;
600 
601 	ret = pmf->release_mem(qpd->ib_base, (uint32_t *)qpd->ib_kaddr);
602 	if (ret)
603 		return ret;
604 
605 	return amdgpu_amdkfd_submit_ib(kdev->adev, KGD_ENGINE_MEC1, qpd->vmid,
606 				qpd->ib_base, (uint32_t *)qpd->ib_kaddr,
607 				pmf->release_mem_size / sizeof(uint32_t));
608 }
609 
610 static void deallocate_vmid(struct device_queue_manager *dqm,
611 				struct qcm_process_device *qpd,
612 				struct queue *q)
613 {
614 	struct device *dev = dqm->dev->adev->dev;
615 
616 	/* On GFX v7, CP doesn't flush TC at dequeue */
617 	if (q->device->adev->asic_type == CHIP_HAWAII)
618 		if (flush_texture_cache_nocpsch(q->device, qpd))
619 			dev_err(dev, "Failed to flush TC\n");
620 
621 	kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY);
622 
623 	/* Release the vmid mapping */
624 	set_pasid_vmid_mapping(dqm, 0, qpd->vmid);
625 	dqm->vmid_pasid[qpd->vmid] = 0;
626 
627 	qpd->vmid = 0;
628 	q->properties.vmid = 0;
629 }
630 
631 static int create_queue_nocpsch(struct device_queue_manager *dqm,
632 				struct queue *q,
633 				struct qcm_process_device *qpd,
634 				const struct kfd_criu_queue_priv_data *qd,
635 				const void *restore_mqd, const void *restore_ctl_stack)
636 {
637 	struct mqd_manager *mqd_mgr;
638 	int retval;
639 
640 	dqm_lock(dqm);
641 
642 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
643 		pr_warn("Can't create new usermode queue because %d queues were already created\n",
644 				dqm->total_queue_count);
645 		retval = -EPERM;
646 		goto out_unlock;
647 	}
648 
649 	if (list_empty(&qpd->queues_list)) {
650 		retval = allocate_vmid(dqm, qpd, q);
651 		if (retval)
652 			goto out_unlock;
653 	}
654 	q->properties.vmid = qpd->vmid;
655 	/*
656 	 * Eviction state logic: mark all queues as evicted, even ones
657 	 * not currently active. Restoring inactive queues later only
658 	 * updates the is_evicted flag but is a no-op otherwise.
659 	 */
660 	q->properties.is_evicted = !!qpd->evicted;
661 
662 	q->properties.tba_addr = qpd->tba_addr;
663 	q->properties.tma_addr = qpd->tma_addr;
664 
665 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
666 			q->properties.type)];
667 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
668 		retval = allocate_hqd(dqm, q);
669 		if (retval)
670 			goto deallocate_vmid;
671 		pr_debug("Loading mqd to hqd on pipe %d, queue %d\n",
672 			q->pipe, q->queue);
673 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
674 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
675 		retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL);
676 		if (retval)
677 			goto deallocate_vmid;
678 		dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
679 	}
680 
681 	retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL);
682 	if (retval)
683 		goto out_deallocate_hqd;
684 
685 	/* Temporarily release dqm lock to avoid a circular lock dependency */
686 	dqm_unlock(dqm);
687 	q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
688 	dqm_lock(dqm);
689 
690 	if (!q->mqd_mem_obj) {
691 		retval = -ENOMEM;
692 		goto out_deallocate_doorbell;
693 	}
694 
695 	if (qd)
696 		mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr,
697 				     &q->properties, restore_mqd, restore_ctl_stack,
698 				     qd->ctl_stack_size);
699 	else
700 		mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
701 					&q->gart_mqd_addr, &q->properties);
702 
703 	if (q->properties.is_active) {
704 		if (!dqm->sched_running) {
705 			WARN_ONCE(1, "Load non-HWS mqd while stopped\n");
706 			goto add_queue_to_list;
707 		}
708 
709 		if (WARN(q->process->mm != current->mm,
710 					"should only run in user thread"))
711 			retval = -EFAULT;
712 		else
713 			retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
714 					q->queue, &q->properties, current->mm);
715 		if (retval)
716 			goto out_free_mqd;
717 	}
718 
719 add_queue_to_list:
720 	list_add(&q->list, &qpd->queues_list);
721 	qpd->queue_count++;
722 	if (q->properties.is_active)
723 		increment_queue_count(dqm, qpd, q);
724 
725 	/*
726 	 * Unconditionally increment this counter, regardless of the queue's
727 	 * type or whether the queue is active.
728 	 */
729 	dqm->total_queue_count++;
730 	pr_debug("Total of %d queues are accountable so far\n",
731 			dqm->total_queue_count);
732 	goto out_unlock;
733 
734 out_free_mqd:
735 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
736 out_deallocate_doorbell:
737 	deallocate_doorbell(qpd, q);
738 out_deallocate_hqd:
739 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
740 		deallocate_hqd(dqm, q);
741 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
742 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
743 		deallocate_sdma_queue(dqm, q);
744 deallocate_vmid:
745 	if (list_empty(&qpd->queues_list))
746 		deallocate_vmid(dqm, qpd, q);
747 out_unlock:
748 	dqm_unlock(dqm);
749 	return retval;
750 }
751 
752 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
753 {
754 	bool set;
755 	int pipe, bit, i;
756 
757 	set = false;
758 
759 	for (pipe = dqm->next_pipe_to_allocate, i = 0;
760 			i < get_pipes_per_mec(dqm);
761 			pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) {
762 
763 		if (!is_pipe_enabled(dqm, 0, pipe))
764 			continue;
765 
766 		if (dqm->allocated_queues[pipe] != 0) {
767 			bit = ffs(dqm->allocated_queues[pipe]) - 1;
768 			dqm->allocated_queues[pipe] &= ~(1 << bit);
769 			q->pipe = pipe;
770 			q->queue = bit;
771 			set = true;
772 			break;
773 		}
774 	}
775 
776 	if (!set)
777 		return -EBUSY;
778 
779 	pr_debug("hqd slot - pipe %d, queue %d\n", q->pipe, q->queue);
780 	/* horizontal hqd allocation */
781 	dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm);
782 
783 	return 0;
784 }
785 
786 static inline void deallocate_hqd(struct device_queue_manager *dqm,
787 				struct queue *q)
788 {
789 	dqm->allocated_queues[q->pipe] |= (1 << q->queue);
790 }
791 
792 #define SQ_IND_CMD_CMD_KILL		0x00000003
793 #define SQ_IND_CMD_MODE_BROADCAST	0x00000001
794 
795 static int dbgdev_wave_reset_wavefronts(struct kfd_node *dev, struct kfd_process *p)
796 {
797 	int status = 0;
798 	unsigned int vmid;
799 	uint16_t queried_pasid;
800 	union SQ_CMD_BITS reg_sq_cmd;
801 	union GRBM_GFX_INDEX_BITS reg_gfx_index;
802 	struct kfd_process_device *pdd;
803 	int first_vmid_to_scan = dev->vm_info.first_vmid_kfd;
804 	int last_vmid_to_scan = dev->vm_info.last_vmid_kfd;
805 	uint32_t xcc_mask = dev->xcc_mask;
806 	int xcc_id;
807 
808 	reg_sq_cmd.u32All = 0;
809 	reg_gfx_index.u32All = 0;
810 
811 	pr_debug("Killing all process wavefronts\n");
812 
813 	if (!dev->kfd2kgd->get_atc_vmid_pasid_mapping_info) {
814 		dev_err(dev->adev->dev, "no vmid pasid mapping supported\n");
815 		return -EOPNOTSUPP;
816 	}
817 
818 	/* taking the VMID for that process on the safe way using PDD */
819 	pdd = kfd_get_process_device_data(dev, p);
820 	if (!pdd)
821 		return -EFAULT;
822 
823 	/* Scan all registers in the range ATC_VMID8_PASID_MAPPING ..
824 	 * ATC_VMID15_PASID_MAPPING
825 	 * to check which VMID the current process is mapped to.
826 	 */
827 
828 	for (vmid = first_vmid_to_scan; vmid <= last_vmid_to_scan; vmid++) {
829 		status = dev->kfd2kgd->get_atc_vmid_pasid_mapping_info
830 				(dev->adev, vmid, &queried_pasid);
831 
832 		if (status && queried_pasid == pdd->pasid) {
833 			pr_debug("Killing wave fronts of vmid %d and process pid %d\n",
834 					vmid, p->lead_thread->pid);
835 			break;
836 		}
837 	}
838 
839 	if (vmid > last_vmid_to_scan) {
840 		dev_err(dev->adev->dev, "Didn't find vmid for process pid %d\n",
841 				p->lead_thread->pid);
842 		return -EFAULT;
843 	}
844 
845 	reg_gfx_index.bits.sh_broadcast_writes = 1;
846 	reg_gfx_index.bits.se_broadcast_writes = 1;
847 	reg_gfx_index.bits.instance_broadcast_writes = 1;
848 	reg_sq_cmd.bits.mode = SQ_IND_CMD_MODE_BROADCAST;
849 	reg_sq_cmd.bits.cmd = SQ_IND_CMD_CMD_KILL;
850 	reg_sq_cmd.bits.vm_id = vmid;
851 
852 	for_each_inst(xcc_id, xcc_mask)
853 		dev->kfd2kgd->wave_control_execute(
854 			dev->adev, reg_gfx_index.u32All,
855 			reg_sq_cmd.u32All, xcc_id);
856 
857 	return 0;
858 }
859 
860 /* Access to DQM has to be locked before calling destroy_queue_nocpsch_locked
861  * to avoid asynchronized access
862  */
863 static int destroy_queue_nocpsch_locked(struct device_queue_manager *dqm,
864 				struct qcm_process_device *qpd,
865 				struct queue *q)
866 {
867 	int retval;
868 	struct mqd_manager *mqd_mgr;
869 
870 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
871 			q->properties.type)];
872 
873 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
874 		deallocate_hqd(dqm, q);
875 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
876 		deallocate_sdma_queue(dqm, q);
877 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
878 		deallocate_sdma_queue(dqm, q);
879 	else {
880 		pr_debug("q->properties.type %d is invalid\n",
881 				q->properties.type);
882 		return -EINVAL;
883 	}
884 	dqm->total_queue_count--;
885 
886 	deallocate_doorbell(qpd, q);
887 
888 	if (!dqm->sched_running) {
889 		WARN_ONCE(1, "Destroy non-HWS queue while stopped\n");
890 		return 0;
891 	}
892 
893 	retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
894 				KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
895 				KFD_UNMAP_LATENCY_MS,
896 				q->pipe, q->queue);
897 	if (retval == -ETIME)
898 		qpd->reset_wavefronts = true;
899 
900 	list_del(&q->list);
901 	if (list_empty(&qpd->queues_list)) {
902 		if (qpd->reset_wavefronts) {
903 			pr_warn("Resetting wave fronts (nocpsch) on dev %p\n",
904 					dqm->dev);
905 			/* dbgdev_wave_reset_wavefronts has to be called before
906 			 * deallocate_vmid(), i.e. when vmid is still in use.
907 			 */
908 			dbgdev_wave_reset_wavefronts(dqm->dev,
909 					qpd->pqm->process);
910 			qpd->reset_wavefronts = false;
911 		}
912 
913 		deallocate_vmid(dqm, qpd, q);
914 	}
915 	qpd->queue_count--;
916 	if (q->properties.is_active)
917 		decrement_queue_count(dqm, qpd, q);
918 
919 	return retval;
920 }
921 
922 static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
923 				struct qcm_process_device *qpd,
924 				struct queue *q)
925 {
926 	int retval;
927 	uint64_t sdma_val = 0;
928 	struct device *dev = dqm->dev->adev->dev;
929 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
930 	struct mqd_manager *mqd_mgr =
931 		dqm->mqd_mgrs[get_mqd_type_from_queue_type(q->properties.type)];
932 
933 	/* Get the SDMA queue stats */
934 	if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
935 	    (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
936 		retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr,
937 							&sdma_val);
938 		if (retval)
939 			dev_err(dev, "Failed to read SDMA queue counter for queue: %d\n",
940 				q->properties.queue_id);
941 	}
942 
943 	dqm_lock(dqm);
944 	retval = destroy_queue_nocpsch_locked(dqm, qpd, q);
945 	if (!retval)
946 		pdd->sdma_past_activity_counter += sdma_val;
947 	dqm_unlock(dqm);
948 
949 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
950 
951 	return retval;
952 }
953 
954 static int update_queue(struct device_queue_manager *dqm, struct queue *q,
955 			struct mqd_update_info *minfo)
956 {
957 	int retval = 0;
958 	struct device *dev = dqm->dev->adev->dev;
959 	struct mqd_manager *mqd_mgr;
960 	struct kfd_process_device *pdd;
961 	bool prev_active = false;
962 
963 	dqm_lock(dqm);
964 	pdd = kfd_get_process_device_data(q->device, q->process);
965 	if (!pdd) {
966 		retval = -ENODEV;
967 		goto out_unlock;
968 	}
969 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
970 			q->properties.type)];
971 
972 	/* Save previous activity state for counters */
973 	prev_active = q->properties.is_active;
974 
975 	/* Make sure the queue is unmapped before updating the MQD */
976 	if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
977 		if (!dqm->dev->kfd->shared_resources.enable_mes)
978 			retval = unmap_queues_cpsch(dqm,
979 						    KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD, false);
980 		else if (prev_active)
981 			retval = remove_queue_mes(dqm, q, &pdd->qpd);
982 
983 		/* queue is reset so inaccessable  */
984 		if (pdd->has_reset_queue) {
985 			retval = -EACCES;
986 			goto out_unlock;
987 		}
988 
989 		if (retval) {
990 			dev_err(dev, "unmap queue failed\n");
991 			goto out_unlock;
992 		}
993 	} else if (prev_active &&
994 		   (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
995 		    q->properties.type == KFD_QUEUE_TYPE_SDMA ||
996 		    q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
997 
998 		if (!dqm->sched_running) {
999 			WARN_ONCE(1, "Update non-HWS queue while stopped\n");
1000 			goto out_unlock;
1001 		}
1002 
1003 		retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
1004 				(dqm->dev->kfd->cwsr_enabled ?
1005 				 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE :
1006 				 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN),
1007 				KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
1008 		if (retval) {
1009 			dev_err(dev, "destroy mqd failed\n");
1010 			goto out_unlock;
1011 		}
1012 	}
1013 
1014 	mqd_mgr->update_mqd(mqd_mgr, q->mqd, &q->properties, minfo);
1015 
1016 	/*
1017 	 * check active state vs. the previous state and modify
1018 	 * counter accordingly. map_queues_cpsch uses the
1019 	 * dqm->active_queue_count to determine whether a new runlist must be
1020 	 * uploaded.
1021 	 */
1022 	if (q->properties.is_active && !prev_active) {
1023 		increment_queue_count(dqm, &pdd->qpd, q);
1024 	} else if (!q->properties.is_active && prev_active) {
1025 		decrement_queue_count(dqm, &pdd->qpd, q);
1026 	} else if (q->gws && !q->properties.is_gws) {
1027 		if (q->properties.is_active) {
1028 			dqm->gws_queue_count++;
1029 			pdd->qpd.mapped_gws_queue = true;
1030 		}
1031 		q->properties.is_gws = true;
1032 	} else if (!q->gws && q->properties.is_gws) {
1033 		if (q->properties.is_active) {
1034 			dqm->gws_queue_count--;
1035 			pdd->qpd.mapped_gws_queue = false;
1036 		}
1037 		q->properties.is_gws = false;
1038 	}
1039 
1040 	if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
1041 		if (!dqm->dev->kfd->shared_resources.enable_mes)
1042 			retval = map_queues_cpsch(dqm);
1043 		else if (q->properties.is_active)
1044 			retval = add_queue_mes(dqm, q, &pdd->qpd);
1045 	} else if (q->properties.is_active &&
1046 		 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
1047 		  q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1048 		  q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
1049 		if (WARN(q->process->mm != current->mm,
1050 			 "should only run in user thread"))
1051 			retval = -EFAULT;
1052 		else
1053 			retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd,
1054 						   q->pipe, q->queue,
1055 						   &q->properties, current->mm);
1056 	}
1057 
1058 out_unlock:
1059 	dqm_unlock(dqm);
1060 	return retval;
1061 }
1062 
1063 /* suspend_single_queue does not lock the dqm like the
1064  * evict_process_queues_cpsch or evict_process_queues_nocpsch. You should
1065  * lock the dqm before calling, and unlock after calling.
1066  *
1067  * The reason we don't lock the dqm is because this function may be
1068  * called on multiple queues in a loop, so rather than locking/unlocking
1069  * multiple times, we will just keep the dqm locked for all of the calls.
1070  */
1071 static int suspend_single_queue(struct device_queue_manager *dqm,
1072 				      struct kfd_process_device *pdd,
1073 				      struct queue *q)
1074 {
1075 	bool is_new;
1076 
1077 	if (q->properties.is_suspended)
1078 		return 0;
1079 
1080 	pr_debug("Suspending process pid %d queue [%i]\n",
1081 			pdd->process->lead_thread->pid,
1082 			q->properties.queue_id);
1083 
1084 	is_new = q->properties.exception_status & KFD_EC_MASK(EC_QUEUE_NEW);
1085 
1086 	if (is_new || q->properties.is_being_destroyed) {
1087 		pr_debug("Suspend: skip %s queue id %i\n",
1088 				is_new ? "new" : "destroyed",
1089 				q->properties.queue_id);
1090 		return -EBUSY;
1091 	}
1092 
1093 	q->properties.is_suspended = true;
1094 	if (q->properties.is_active) {
1095 		if (dqm->dev->kfd->shared_resources.enable_mes) {
1096 			int r = remove_queue_mes(dqm, q, &pdd->qpd);
1097 
1098 			if (r)
1099 				return r;
1100 		}
1101 
1102 		decrement_queue_count(dqm, &pdd->qpd, q);
1103 		q->properties.is_active = false;
1104 	}
1105 
1106 	return 0;
1107 }
1108 
1109 /* resume_single_queue does not lock the dqm like the functions
1110  * restore_process_queues_cpsch or restore_process_queues_nocpsch. You should
1111  * lock the dqm before calling, and unlock after calling.
1112  *
1113  * The reason we don't lock the dqm is because this function may be
1114  * called on multiple queues in a loop, so rather than locking/unlocking
1115  * multiple times, we will just keep the dqm locked for all of the calls.
1116  */
1117 static int resume_single_queue(struct device_queue_manager *dqm,
1118 				      struct qcm_process_device *qpd,
1119 				      struct queue *q)
1120 {
1121 	struct kfd_process_device *pdd;
1122 
1123 	if (!q->properties.is_suspended)
1124 		return 0;
1125 
1126 	pdd = qpd_to_pdd(qpd);
1127 
1128 	pr_debug("Restoring from suspend process pid %d queue [%i]\n",
1129 			    pdd->process->lead_thread->pid,
1130 			    q->properties.queue_id);
1131 
1132 	q->properties.is_suspended = false;
1133 
1134 	if (QUEUE_IS_ACTIVE(q->properties)) {
1135 		if (dqm->dev->kfd->shared_resources.enable_mes) {
1136 			int r = add_queue_mes(dqm, q, &pdd->qpd);
1137 
1138 			if (r)
1139 				return r;
1140 		}
1141 
1142 		q->properties.is_active = true;
1143 		increment_queue_count(dqm, qpd, q);
1144 	}
1145 
1146 	return 0;
1147 }
1148 
1149 static int evict_process_queues_nocpsch(struct device_queue_manager *dqm,
1150 					struct qcm_process_device *qpd)
1151 {
1152 	struct queue *q;
1153 	struct mqd_manager *mqd_mgr;
1154 	struct kfd_process_device *pdd;
1155 	int retval, ret = 0;
1156 
1157 	dqm_lock(dqm);
1158 	if (qpd->evicted++ > 0) /* already evicted, do nothing */
1159 		goto out;
1160 
1161 	pdd = qpd_to_pdd(qpd);
1162 	pr_debug_ratelimited("Evicting process pid %d queues\n",
1163 			    pdd->process->lead_thread->pid);
1164 
1165 	pdd->last_evict_timestamp = get_jiffies_64();
1166 	/* Mark all queues as evicted. Deactivate all active queues on
1167 	 * the qpd.
1168 	 */
1169 	list_for_each_entry(q, &qpd->queues_list, list) {
1170 		q->properties.is_evicted = true;
1171 		if (!q->properties.is_active)
1172 			continue;
1173 
1174 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1175 				q->properties.type)];
1176 		q->properties.is_active = false;
1177 		decrement_queue_count(dqm, qpd, q);
1178 
1179 		if (WARN_ONCE(!dqm->sched_running, "Evict when stopped\n"))
1180 			continue;
1181 
1182 		retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
1183 				(dqm->dev->kfd->cwsr_enabled ?
1184 				 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE :
1185 				 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN),
1186 				KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
1187 		if (retval && !ret)
1188 			/* Return the first error, but keep going to
1189 			 * maintain a consistent eviction state
1190 			 */
1191 			ret = retval;
1192 	}
1193 
1194 out:
1195 	dqm_unlock(dqm);
1196 	return ret;
1197 }
1198 
1199 static int evict_process_queues_cpsch(struct device_queue_manager *dqm,
1200 				      struct qcm_process_device *qpd)
1201 {
1202 	struct queue *q;
1203 	struct device *dev = dqm->dev->adev->dev;
1204 	struct kfd_process_device *pdd;
1205 	int retval = 0;
1206 
1207 	dqm_lock(dqm);
1208 	if (qpd->evicted++ > 0) /* already evicted, do nothing */
1209 		goto out;
1210 
1211 	pdd = qpd_to_pdd(qpd);
1212 
1213 	/* The debugger creates processes that temporarily have not acquired
1214 	 * all VMs for all devices and has no VMs itself.
1215 	 * Skip queue eviction on process eviction.
1216 	 */
1217 	if (!pdd->drm_priv)
1218 		goto out;
1219 
1220 	pr_debug_ratelimited("Evicting process pid %d queues\n",
1221 			    pdd->process->lead_thread->pid);
1222 
1223 	/* Mark all queues as evicted. Deactivate all active queues on
1224 	 * the qpd.
1225 	 */
1226 	list_for_each_entry(q, &qpd->queues_list, list) {
1227 		q->properties.is_evicted = true;
1228 		if (!q->properties.is_active)
1229 			continue;
1230 
1231 		q->properties.is_active = false;
1232 		decrement_queue_count(dqm, qpd, q);
1233 
1234 		if (dqm->dev->kfd->shared_resources.enable_mes) {
1235 			retval = remove_queue_mes(dqm, q, qpd);
1236 			if (retval) {
1237 				dev_err(dev, "Failed to evict queue %d\n",
1238 					q->properties.queue_id);
1239 				goto out;
1240 			}
1241 		}
1242 	}
1243 	pdd->last_evict_timestamp = get_jiffies_64();
1244 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1245 		retval = execute_queues_cpsch(dqm,
1246 					      qpd->is_debug ?
1247 					      KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES :
1248 					      KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
1249 					      USE_DEFAULT_GRACE_PERIOD);
1250 
1251 out:
1252 	dqm_unlock(dqm);
1253 	return retval;
1254 }
1255 
1256 static int restore_process_queues_nocpsch(struct device_queue_manager *dqm,
1257 					  struct qcm_process_device *qpd)
1258 {
1259 	struct mm_struct *mm = NULL;
1260 	struct queue *q;
1261 	struct mqd_manager *mqd_mgr;
1262 	struct kfd_process_device *pdd;
1263 	uint64_t pd_base;
1264 	uint64_t eviction_duration;
1265 	int retval, ret = 0;
1266 
1267 	pdd = qpd_to_pdd(qpd);
1268 	/* Retrieve PD base */
1269 	pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1270 
1271 	dqm_lock(dqm);
1272 	if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
1273 		goto out;
1274 	if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
1275 		qpd->evicted--;
1276 		goto out;
1277 	}
1278 
1279 	pr_debug_ratelimited("Restoring process pid %d queues\n",
1280 			    pdd->process->lead_thread->pid);
1281 
1282 	/* Update PD Base in QPD */
1283 	qpd->page_table_base = pd_base;
1284 	pr_debug("Updated PD address to 0x%llx\n", pd_base);
1285 
1286 	if (!list_empty(&qpd->queues_list)) {
1287 		dqm->dev->kfd2kgd->set_vm_context_page_table_base(
1288 				dqm->dev->adev,
1289 				qpd->vmid,
1290 				qpd->page_table_base);
1291 		kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
1292 	}
1293 
1294 	/* Take a safe reference to the mm_struct, which may otherwise
1295 	 * disappear even while the kfd_process is still referenced.
1296 	 */
1297 	mm = get_task_mm(pdd->process->lead_thread);
1298 	if (!mm) {
1299 		ret = -EFAULT;
1300 		goto out;
1301 	}
1302 
1303 	/* Remove the eviction flags. Activate queues that are not
1304 	 * inactive for other reasons.
1305 	 */
1306 	list_for_each_entry(q, &qpd->queues_list, list) {
1307 		q->properties.is_evicted = false;
1308 		if (!QUEUE_IS_ACTIVE(q->properties))
1309 			continue;
1310 
1311 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1312 				q->properties.type)];
1313 		q->properties.is_active = true;
1314 		increment_queue_count(dqm, qpd, q);
1315 
1316 		if (WARN_ONCE(!dqm->sched_running, "Restore when stopped\n"))
1317 			continue;
1318 
1319 		retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
1320 				       q->queue, &q->properties, mm);
1321 		if (retval && !ret)
1322 			/* Return the first error, but keep going to
1323 			 * maintain a consistent eviction state
1324 			 */
1325 			ret = retval;
1326 	}
1327 	qpd->evicted = 0;
1328 	eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp;
1329 	atomic64_add(eviction_duration, &pdd->evict_duration_counter);
1330 out:
1331 	if (mm)
1332 		mmput(mm);
1333 	dqm_unlock(dqm);
1334 	return ret;
1335 }
1336 
1337 static int restore_process_queues_cpsch(struct device_queue_manager *dqm,
1338 					struct qcm_process_device *qpd)
1339 {
1340 	struct queue *q;
1341 	struct device *dev = dqm->dev->adev->dev;
1342 	struct kfd_process_device *pdd;
1343 	uint64_t eviction_duration;
1344 	int retval = 0;
1345 
1346 	pdd = qpd_to_pdd(qpd);
1347 
1348 	dqm_lock(dqm);
1349 	if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
1350 		goto out;
1351 	if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
1352 		qpd->evicted--;
1353 		goto out;
1354 	}
1355 
1356 	/* The debugger creates processes that temporarily have not acquired
1357 	 * all VMs for all devices and has no VMs itself.
1358 	 * Skip queue restore on process restore.
1359 	 */
1360 	if (!pdd->drm_priv)
1361 		goto vm_not_acquired;
1362 
1363 	pr_debug_ratelimited("Restoring process pid %d queues\n",
1364 			    pdd->process->lead_thread->pid);
1365 
1366 	/* Update PD Base in QPD */
1367 	qpd->page_table_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1368 	pr_debug("Updated PD address to 0x%llx\n", qpd->page_table_base);
1369 
1370 	/* activate all active queues on the qpd */
1371 	list_for_each_entry(q, &qpd->queues_list, list) {
1372 		q->properties.is_evicted = false;
1373 		if (!QUEUE_IS_ACTIVE(q->properties))
1374 			continue;
1375 
1376 		q->properties.is_active = true;
1377 		increment_queue_count(dqm, &pdd->qpd, q);
1378 
1379 		if (dqm->dev->kfd->shared_resources.enable_mes) {
1380 			retval = add_queue_mes(dqm, q, qpd);
1381 			if (retval) {
1382 				dev_err(dev, "Failed to restore queue %d\n",
1383 					q->properties.queue_id);
1384 				goto out;
1385 			}
1386 		}
1387 	}
1388 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1389 		retval = execute_queues_cpsch(dqm,
1390 					      KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
1391 	eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp;
1392 	atomic64_add(eviction_duration, &pdd->evict_duration_counter);
1393 vm_not_acquired:
1394 	qpd->evicted = 0;
1395 out:
1396 	dqm_unlock(dqm);
1397 	return retval;
1398 }
1399 
1400 static int register_process(struct device_queue_manager *dqm,
1401 					struct qcm_process_device *qpd)
1402 {
1403 	struct device_process_node *n;
1404 	struct kfd_process_device *pdd;
1405 	uint64_t pd_base;
1406 	int retval;
1407 
1408 	n = kzalloc(sizeof(*n), GFP_KERNEL);
1409 	if (!n)
1410 		return -ENOMEM;
1411 
1412 	n->qpd = qpd;
1413 
1414 	pdd = qpd_to_pdd(qpd);
1415 	/* Retrieve PD base */
1416 	pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1417 
1418 	dqm_lock(dqm);
1419 	list_add(&n->list, &dqm->queues);
1420 
1421 	/* Update PD Base in QPD */
1422 	qpd->page_table_base = pd_base;
1423 	pr_debug("Updated PD address to 0x%llx\n", pd_base);
1424 
1425 	retval = dqm->asic_ops.update_qpd(dqm, qpd);
1426 
1427 	dqm->processes_count++;
1428 
1429 	dqm_unlock(dqm);
1430 
1431 	/* Outside the DQM lock because under the DQM lock we can't do
1432 	 * reclaim or take other locks that others hold while reclaiming.
1433 	 */
1434 	kfd_inc_compute_active(dqm->dev);
1435 
1436 	return retval;
1437 }
1438 
1439 static int unregister_process(struct device_queue_manager *dqm,
1440 					struct qcm_process_device *qpd)
1441 {
1442 	int retval;
1443 	struct device_process_node *cur, *next;
1444 
1445 	pr_debug("qpd->queues_list is %s\n",
1446 			list_empty(&qpd->queues_list) ? "empty" : "not empty");
1447 
1448 	retval = 0;
1449 	dqm_lock(dqm);
1450 
1451 	list_for_each_entry_safe(cur, next, &dqm->queues, list) {
1452 		if (qpd == cur->qpd) {
1453 			list_del(&cur->list);
1454 			kfree(cur);
1455 			dqm->processes_count--;
1456 			goto out;
1457 		}
1458 	}
1459 	/* qpd not found in dqm list */
1460 	retval = 1;
1461 out:
1462 	dqm_unlock(dqm);
1463 
1464 	/* Outside the DQM lock because under the DQM lock we can't do
1465 	 * reclaim or take other locks that others hold while reclaiming.
1466 	 */
1467 	if (!retval)
1468 		kfd_dec_compute_active(dqm->dev);
1469 
1470 	return retval;
1471 }
1472 
1473 static int
1474 set_pasid_vmid_mapping(struct device_queue_manager *dqm, u32 pasid,
1475 			unsigned int vmid)
1476 {
1477 	uint32_t xcc_mask = dqm->dev->xcc_mask;
1478 	int xcc_id, ret;
1479 
1480 	for_each_inst(xcc_id, xcc_mask) {
1481 		ret = dqm->dev->kfd2kgd->set_pasid_vmid_mapping(
1482 			dqm->dev->adev, pasid, vmid, xcc_id);
1483 		if (ret)
1484 			break;
1485 	}
1486 
1487 	return ret;
1488 }
1489 
1490 static void init_interrupts(struct device_queue_manager *dqm)
1491 {
1492 	uint32_t xcc_mask = dqm->dev->xcc_mask;
1493 	unsigned int i, xcc_id;
1494 
1495 	for_each_inst(xcc_id, xcc_mask) {
1496 		for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++) {
1497 			if (is_pipe_enabled(dqm, 0, i)) {
1498 				dqm->dev->kfd2kgd->init_interrupts(
1499 					dqm->dev->adev, i, xcc_id);
1500 			}
1501 		}
1502 	}
1503 }
1504 
1505 static int initialize_nocpsch(struct device_queue_manager *dqm)
1506 {
1507 	int pipe, queue;
1508 
1509 	pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1510 
1511 	dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm),
1512 					sizeof(unsigned int), GFP_KERNEL);
1513 	if (!dqm->allocated_queues)
1514 		return -ENOMEM;
1515 
1516 	mutex_init(&dqm->lock_hidden);
1517 	INIT_LIST_HEAD(&dqm->queues);
1518 	dqm->active_queue_count = dqm->next_pipe_to_allocate = 0;
1519 	dqm->active_cp_queue_count = 0;
1520 	dqm->gws_queue_count = 0;
1521 
1522 	for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
1523 		int pipe_offset = pipe * get_queues_per_pipe(dqm);
1524 
1525 		for (queue = 0; queue < get_queues_per_pipe(dqm); queue++)
1526 			if (test_bit(pipe_offset + queue,
1527 				     dqm->dev->kfd->shared_resources.cp_queue_bitmap))
1528 				dqm->allocated_queues[pipe] |= 1 << queue;
1529 	}
1530 
1531 	memset(dqm->vmid_pasid, 0, sizeof(dqm->vmid_pasid));
1532 
1533 	init_sdma_bitmaps(dqm);
1534 
1535 	return 0;
1536 }
1537 
1538 static void uninitialize(struct device_queue_manager *dqm)
1539 {
1540 	int i;
1541 
1542 	WARN_ON(dqm->active_queue_count > 0 || dqm->processes_count > 0);
1543 
1544 	kfree(dqm->allocated_queues);
1545 	for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
1546 		kfree(dqm->mqd_mgrs[i]);
1547 	mutex_destroy(&dqm->lock_hidden);
1548 }
1549 
1550 static int start_nocpsch(struct device_queue_manager *dqm)
1551 {
1552 	int r = 0;
1553 
1554 	pr_info("SW scheduler is used");
1555 	init_interrupts(dqm);
1556 
1557 	if (dqm->dev->adev->asic_type == CHIP_HAWAII)
1558 		r = pm_init(&dqm->packet_mgr, dqm);
1559 	if (!r)
1560 		dqm->sched_running = true;
1561 
1562 	return r;
1563 }
1564 
1565 static int stop_nocpsch(struct device_queue_manager *dqm)
1566 {
1567 	dqm_lock(dqm);
1568 	if (!dqm->sched_running) {
1569 		dqm_unlock(dqm);
1570 		return 0;
1571 	}
1572 
1573 	if (dqm->dev->adev->asic_type == CHIP_HAWAII)
1574 		pm_uninit(&dqm->packet_mgr);
1575 	dqm->sched_running = false;
1576 	dqm_unlock(dqm);
1577 
1578 	return 0;
1579 }
1580 
1581 static int allocate_sdma_queue(struct device_queue_manager *dqm,
1582 				struct queue *q, const uint32_t *restore_sdma_id)
1583 {
1584 	struct device *dev = dqm->dev->adev->dev;
1585 	int bit;
1586 
1587 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1588 		if (bitmap_empty(dqm->sdma_bitmap, KFD_MAX_SDMA_QUEUES)) {
1589 			dev_err(dev, "No more SDMA queue to allocate\n");
1590 			return -ENOMEM;
1591 		}
1592 
1593 		if (restore_sdma_id) {
1594 			/* Re-use existing sdma_id */
1595 			if (!test_bit(*restore_sdma_id, dqm->sdma_bitmap)) {
1596 				dev_err(dev, "SDMA queue already in use\n");
1597 				return -EBUSY;
1598 			}
1599 			clear_bit(*restore_sdma_id, dqm->sdma_bitmap);
1600 			q->sdma_id = *restore_sdma_id;
1601 		} else {
1602 			/* Find first available sdma_id */
1603 			bit = find_first_bit(dqm->sdma_bitmap,
1604 					     get_num_sdma_queues(dqm));
1605 			clear_bit(bit, dqm->sdma_bitmap);
1606 			q->sdma_id = bit;
1607 		}
1608 
1609 		q->properties.sdma_engine_id =
1610 			q->sdma_id % kfd_get_num_sdma_engines(dqm->dev);
1611 		q->properties.sdma_queue_id = q->sdma_id /
1612 				kfd_get_num_sdma_engines(dqm->dev);
1613 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1614 		if (bitmap_empty(dqm->xgmi_sdma_bitmap, KFD_MAX_SDMA_QUEUES)) {
1615 			dev_err(dev, "No more XGMI SDMA queue to allocate\n");
1616 			return -ENOMEM;
1617 		}
1618 		if (restore_sdma_id) {
1619 			/* Re-use existing sdma_id */
1620 			if (!test_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap)) {
1621 				dev_err(dev, "SDMA queue already in use\n");
1622 				return -EBUSY;
1623 			}
1624 			clear_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap);
1625 			q->sdma_id = *restore_sdma_id;
1626 		} else {
1627 			bit = find_first_bit(dqm->xgmi_sdma_bitmap,
1628 					     get_num_xgmi_sdma_queues(dqm));
1629 			clear_bit(bit, dqm->xgmi_sdma_bitmap);
1630 			q->sdma_id = bit;
1631 		}
1632 		/* sdma_engine_id is sdma id including
1633 		 * both PCIe-optimized SDMAs and XGMI-
1634 		 * optimized SDMAs. The calculation below
1635 		 * assumes the first N engines are always
1636 		 * PCIe-optimized ones
1637 		 */
1638 		q->properties.sdma_engine_id =
1639 			kfd_get_num_sdma_engines(dqm->dev) +
1640 			q->sdma_id % kfd_get_num_xgmi_sdma_engines(dqm->dev);
1641 		q->properties.sdma_queue_id = q->sdma_id /
1642 			kfd_get_num_xgmi_sdma_engines(dqm->dev);
1643 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_BY_ENG_ID) {
1644 		int i, num_queues, num_engines, eng_offset = 0, start_engine;
1645 		bool free_bit_found = false, is_xgmi = false;
1646 
1647 		if (q->properties.sdma_engine_id < kfd_get_num_sdma_engines(dqm->dev)) {
1648 			num_queues = get_num_sdma_queues(dqm);
1649 			num_engines = kfd_get_num_sdma_engines(dqm->dev);
1650 			q->properties.type = KFD_QUEUE_TYPE_SDMA;
1651 		} else {
1652 			num_queues = get_num_xgmi_sdma_queues(dqm);
1653 			num_engines = kfd_get_num_xgmi_sdma_engines(dqm->dev);
1654 			eng_offset = kfd_get_num_sdma_engines(dqm->dev);
1655 			q->properties.type = KFD_QUEUE_TYPE_SDMA_XGMI;
1656 			is_xgmi = true;
1657 		}
1658 
1659 		/* Scan available bit based on target engine ID. */
1660 		start_engine = q->properties.sdma_engine_id - eng_offset;
1661 		for (i = start_engine; i < num_queues; i += num_engines) {
1662 
1663 			if (!test_bit(i, is_xgmi ? dqm->xgmi_sdma_bitmap : dqm->sdma_bitmap))
1664 				continue;
1665 
1666 			clear_bit(i, is_xgmi ? dqm->xgmi_sdma_bitmap : dqm->sdma_bitmap);
1667 			q->sdma_id = i;
1668 			q->properties.sdma_queue_id = q->sdma_id / num_engines;
1669 			free_bit_found = true;
1670 			break;
1671 		}
1672 
1673 		if (!free_bit_found) {
1674 			dev_err(dev, "No more SDMA queue to allocate for target ID %i\n",
1675 				q->properties.sdma_engine_id);
1676 			return -ENOMEM;
1677 		}
1678 	}
1679 
1680 	pr_debug("SDMA engine id: %d\n", q->properties.sdma_engine_id);
1681 	pr_debug("SDMA queue id: %d\n", q->properties.sdma_queue_id);
1682 
1683 	return 0;
1684 }
1685 
1686 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
1687 				struct queue *q)
1688 {
1689 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1690 		if (q->sdma_id >= get_num_sdma_queues(dqm))
1691 			return;
1692 		set_bit(q->sdma_id, dqm->sdma_bitmap);
1693 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1694 		if (q->sdma_id >= get_num_xgmi_sdma_queues(dqm))
1695 			return;
1696 		set_bit(q->sdma_id, dqm->xgmi_sdma_bitmap);
1697 	}
1698 }
1699 
1700 /*
1701  * Device Queue Manager implementation for cp scheduler
1702  */
1703 
1704 static int set_sched_resources(struct device_queue_manager *dqm)
1705 {
1706 	int i, mec;
1707 	struct scheduling_resources res;
1708 	struct device *dev = dqm->dev->adev->dev;
1709 
1710 	res.vmid_mask = dqm->dev->compute_vmid_bitmap;
1711 
1712 	res.queue_mask = 0;
1713 	for (i = 0; i < AMDGPU_MAX_QUEUES; ++i) {
1714 		mec = (i / dqm->dev->kfd->shared_resources.num_queue_per_pipe)
1715 			/ dqm->dev->kfd->shared_resources.num_pipe_per_mec;
1716 
1717 		if (!test_bit(i, dqm->dev->kfd->shared_resources.cp_queue_bitmap))
1718 			continue;
1719 
1720 		/* only acquire queues from the first MEC */
1721 		if (mec > 0)
1722 			continue;
1723 
1724 		/* This situation may be hit in the future if a new HW
1725 		 * generation exposes more than 64 queues. If so, the
1726 		 * definition of res.queue_mask needs updating
1727 		 */
1728 		if (WARN_ON(i >= (sizeof(res.queue_mask)*8))) {
1729 			dev_err(dev, "Invalid queue enabled by amdgpu: %d\n", i);
1730 			break;
1731 		}
1732 
1733 		res.queue_mask |= 1ull
1734 			<< amdgpu_queue_mask_bit_to_set_resource_bit(
1735 				dqm->dev->adev, i);
1736 	}
1737 	res.gws_mask = ~0ull;
1738 	res.oac_mask = res.gds_heap_base = res.gds_heap_size = 0;
1739 
1740 	pr_debug("Scheduling resources:\n"
1741 			"vmid mask: 0x%8X\n"
1742 			"queue mask: 0x%8llX\n",
1743 			res.vmid_mask, res.queue_mask);
1744 
1745 	return pm_send_set_resources(&dqm->packet_mgr, &res);
1746 }
1747 
1748 static int initialize_cpsch(struct device_queue_manager *dqm)
1749 {
1750 	pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1751 
1752 	mutex_init(&dqm->lock_hidden);
1753 	INIT_LIST_HEAD(&dqm->queues);
1754 	dqm->active_queue_count = dqm->processes_count = 0;
1755 	dqm->active_cp_queue_count = 0;
1756 	dqm->gws_queue_count = 0;
1757 	dqm->active_runlist = false;
1758 	INIT_WORK(&dqm->hw_exception_work, kfd_process_hw_exception);
1759 	dqm->trap_debug_vmid = 0;
1760 
1761 	init_sdma_bitmaps(dqm);
1762 
1763 	if (dqm->dev->kfd2kgd->get_iq_wait_times)
1764 		dqm->dev->kfd2kgd->get_iq_wait_times(dqm->dev->adev,
1765 					&dqm->wait_times,
1766 					ffs(dqm->dev->xcc_mask) - 1);
1767 	return 0;
1768 }
1769 
1770 /* halt_cpsch:
1771  * Unmap queues so the schedule doesn't continue remaining jobs in the queue.
1772  * Then set dqm->sched_halt so queues don't map to runlist until unhalt_cpsch
1773  * is called.
1774  */
1775 static int halt_cpsch(struct device_queue_manager *dqm)
1776 {
1777 	int ret = 0;
1778 
1779 	dqm_lock(dqm);
1780 	if (!dqm->sched_running) {
1781 		dqm_unlock(dqm);
1782 		return 0;
1783 	}
1784 
1785 	WARN_ONCE(dqm->sched_halt, "Scheduling is already on halt\n");
1786 
1787 	if (!dqm->is_hws_hang) {
1788 		if (!dqm->dev->kfd->shared_resources.enable_mes)
1789 			ret = unmap_queues_cpsch(dqm,
1790 						 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
1791 				USE_DEFAULT_GRACE_PERIOD, false);
1792 		else
1793 			ret = remove_all_kfd_queues_mes(dqm);
1794 	}
1795 	dqm->sched_halt = true;
1796 	dqm_unlock(dqm);
1797 
1798 	return ret;
1799 }
1800 
1801 /* unhalt_cpsch
1802  * Unset dqm->sched_halt and map queues back to runlist
1803  */
1804 static int unhalt_cpsch(struct device_queue_manager *dqm)
1805 {
1806 	int ret = 0;
1807 
1808 	dqm_lock(dqm);
1809 	if (!dqm->sched_running || !dqm->sched_halt) {
1810 		WARN_ONCE(!dqm->sched_halt, "Scheduling is not on halt.\n");
1811 		dqm_unlock(dqm);
1812 		return 0;
1813 	}
1814 	dqm->sched_halt = false;
1815 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1816 		ret = execute_queues_cpsch(dqm,
1817 					   KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
1818 			0, USE_DEFAULT_GRACE_PERIOD);
1819 	else
1820 		ret = add_all_kfd_queues_mes(dqm);
1821 
1822 	dqm_unlock(dqm);
1823 
1824 	return ret;
1825 }
1826 
1827 static int start_cpsch(struct device_queue_manager *dqm)
1828 {
1829 	struct device *dev = dqm->dev->adev->dev;
1830 	int retval, num_hw_queue_slots;
1831 
1832 	retval = 0;
1833 
1834 	dqm_lock(dqm);
1835 
1836 	if (!dqm->dev->kfd->shared_resources.enable_mes) {
1837 		retval = pm_init(&dqm->packet_mgr, dqm);
1838 		if (retval)
1839 			goto fail_packet_manager_init;
1840 
1841 		retval = set_sched_resources(dqm);
1842 		if (retval)
1843 			goto fail_set_sched_resources;
1844 	}
1845 	pr_debug("Allocating fence memory\n");
1846 
1847 	/* allocate fence memory on the gart */
1848 	retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
1849 					&dqm->fence_mem);
1850 
1851 	if (retval)
1852 		goto fail_allocate_vidmem;
1853 
1854 	dqm->fence_addr = (uint64_t *)dqm->fence_mem->cpu_ptr;
1855 	dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
1856 
1857 	init_interrupts(dqm);
1858 
1859 	/* clear hang status when driver try to start the hw scheduler */
1860 	dqm->sched_running = true;
1861 
1862 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1863 		execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
1864 
1865 	/* Set CWSR grace period to 1x1000 cycle for GFX9.4.3 APU */
1866 	if (amdgpu_emu_mode == 0 && dqm->dev->adev->gmc.is_app_apu &&
1867 	    (KFD_GC_VERSION(dqm->dev) == IP_VERSION(9, 4, 3))) {
1868 		uint32_t reg_offset = 0;
1869 		uint32_t grace_period = 1;
1870 
1871 		retval = pm_update_grace_period(&dqm->packet_mgr,
1872 						grace_period);
1873 		if (retval)
1874 			dev_err(dev, "Setting grace timeout failed\n");
1875 		else if (dqm->dev->kfd2kgd->build_grace_period_packet_info)
1876 			/* Update dqm->wait_times maintained in software */
1877 			dqm->dev->kfd2kgd->build_grace_period_packet_info(
1878 					dqm->dev->adev,	dqm->wait_times,
1879 					grace_period, &reg_offset,
1880 					&dqm->wait_times);
1881 	}
1882 
1883 	/* setup per-queue reset detection buffer  */
1884 	num_hw_queue_slots =  dqm->dev->kfd->shared_resources.num_queue_per_pipe *
1885 			      dqm->dev->kfd->shared_resources.num_pipe_per_mec *
1886 			      NUM_XCC(dqm->dev->xcc_mask);
1887 
1888 	dqm->detect_hang_info_size = num_hw_queue_slots * sizeof(struct dqm_detect_hang_info);
1889 	dqm->detect_hang_info = kzalloc(dqm->detect_hang_info_size, GFP_KERNEL);
1890 
1891 	if (!dqm->detect_hang_info) {
1892 		retval = -ENOMEM;
1893 		goto fail_detect_hang_buffer;
1894 	}
1895 
1896 	dqm_unlock(dqm);
1897 
1898 	return 0;
1899 fail_detect_hang_buffer:
1900 	kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
1901 fail_allocate_vidmem:
1902 fail_set_sched_resources:
1903 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1904 		pm_uninit(&dqm->packet_mgr);
1905 fail_packet_manager_init:
1906 	dqm_unlock(dqm);
1907 	return retval;
1908 }
1909 
1910 static int stop_cpsch(struct device_queue_manager *dqm)
1911 {
1912 	dqm_lock(dqm);
1913 	if (!dqm->sched_running) {
1914 		dqm_unlock(dqm);
1915 		return 0;
1916 	}
1917 
1918 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1919 		unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD, false);
1920 	else
1921 		remove_all_kfd_queues_mes(dqm);
1922 
1923 	dqm->sched_running = false;
1924 
1925 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1926 		pm_release_ib(&dqm->packet_mgr);
1927 
1928 	kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
1929 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1930 		pm_uninit(&dqm->packet_mgr);
1931 	kfree(dqm->detect_hang_info);
1932 	dqm->detect_hang_info = NULL;
1933 	dqm_unlock(dqm);
1934 
1935 	return 0;
1936 }
1937 
1938 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
1939 					struct kernel_queue *kq,
1940 					struct qcm_process_device *qpd)
1941 {
1942 	dqm_lock(dqm);
1943 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1944 		pr_warn("Can't create new kernel queue because %d queues were already created\n",
1945 				dqm->total_queue_count);
1946 		dqm_unlock(dqm);
1947 		return -EPERM;
1948 	}
1949 
1950 	/*
1951 	 * Unconditionally increment this counter, regardless of the queue's
1952 	 * type or whether the queue is active.
1953 	 */
1954 	dqm->total_queue_count++;
1955 	pr_debug("Total of %d queues are accountable so far\n",
1956 			dqm->total_queue_count);
1957 
1958 	list_add(&kq->list, &qpd->priv_queue_list);
1959 	increment_queue_count(dqm, qpd, kq->queue);
1960 	qpd->is_debug = true;
1961 	execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
1962 			USE_DEFAULT_GRACE_PERIOD);
1963 	dqm_unlock(dqm);
1964 
1965 	return 0;
1966 }
1967 
1968 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
1969 					struct kernel_queue *kq,
1970 					struct qcm_process_device *qpd)
1971 {
1972 	dqm_lock(dqm);
1973 	list_del(&kq->list);
1974 	decrement_queue_count(dqm, qpd, kq->queue);
1975 	qpd->is_debug = false;
1976 	execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
1977 			USE_DEFAULT_GRACE_PERIOD);
1978 	/*
1979 	 * Unconditionally decrement this counter, regardless of the queue's
1980 	 * type.
1981 	 */
1982 	dqm->total_queue_count--;
1983 	pr_debug("Total of %d queues are accountable so far\n",
1984 			dqm->total_queue_count);
1985 	dqm_unlock(dqm);
1986 }
1987 
1988 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
1989 			struct qcm_process_device *qpd,
1990 			const struct kfd_criu_queue_priv_data *qd,
1991 			const void *restore_mqd, const void *restore_ctl_stack)
1992 {
1993 	int retval;
1994 	struct mqd_manager *mqd_mgr;
1995 
1996 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1997 		pr_warn("Can't create new usermode queue because %d queues were already created\n",
1998 				dqm->total_queue_count);
1999 		retval = -EPERM;
2000 		goto out;
2001 	}
2002 
2003 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
2004 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI ||
2005 		q->properties.type == KFD_QUEUE_TYPE_SDMA_BY_ENG_ID) {
2006 		dqm_lock(dqm);
2007 		retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL);
2008 		dqm_unlock(dqm);
2009 		if (retval)
2010 			goto out;
2011 	}
2012 
2013 	retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL);
2014 	if (retval)
2015 		goto out_deallocate_sdma_queue;
2016 
2017 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2018 			q->properties.type)];
2019 
2020 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
2021 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
2022 		dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
2023 	q->properties.tba_addr = qpd->tba_addr;
2024 	q->properties.tma_addr = qpd->tma_addr;
2025 	q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
2026 	if (!q->mqd_mem_obj) {
2027 		retval = -ENOMEM;
2028 		goto out_deallocate_doorbell;
2029 	}
2030 
2031 	dqm_lock(dqm);
2032 	/*
2033 	 * Eviction state logic: mark all queues as evicted, even ones
2034 	 * not currently active. Restoring inactive queues later only
2035 	 * updates the is_evicted flag but is a no-op otherwise.
2036 	 */
2037 	q->properties.is_evicted = !!qpd->evicted;
2038 	q->properties.is_dbg_wa = qpd->pqm->process->debug_trap_enabled &&
2039 				  kfd_dbg_has_cwsr_workaround(q->device);
2040 
2041 	if (qd)
2042 		mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr,
2043 				     &q->properties, restore_mqd, restore_ctl_stack,
2044 				     qd->ctl_stack_size);
2045 	else
2046 		mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
2047 					&q->gart_mqd_addr, &q->properties);
2048 
2049 	list_add(&q->list, &qpd->queues_list);
2050 	qpd->queue_count++;
2051 
2052 	if (q->properties.is_active) {
2053 		increment_queue_count(dqm, qpd, q);
2054 
2055 		if (!dqm->dev->kfd->shared_resources.enable_mes)
2056 			retval = execute_queues_cpsch(dqm,
2057 					KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
2058 		else
2059 			retval = add_queue_mes(dqm, q, qpd);
2060 		if (retval)
2061 			goto cleanup_queue;
2062 	}
2063 
2064 	/*
2065 	 * Unconditionally increment this counter, regardless of the queue's
2066 	 * type or whether the queue is active.
2067 	 */
2068 	dqm->total_queue_count++;
2069 
2070 	pr_debug("Total of %d queues are accountable so far\n",
2071 			dqm->total_queue_count);
2072 
2073 	dqm_unlock(dqm);
2074 	return retval;
2075 
2076 cleanup_queue:
2077 	qpd->queue_count--;
2078 	list_del(&q->list);
2079 	if (q->properties.is_active)
2080 		decrement_queue_count(dqm, qpd, q);
2081 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2082 	dqm_unlock(dqm);
2083 out_deallocate_doorbell:
2084 	deallocate_doorbell(qpd, q);
2085 out_deallocate_sdma_queue:
2086 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
2087 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
2088 		dqm_lock(dqm);
2089 		deallocate_sdma_queue(dqm, q);
2090 		dqm_unlock(dqm);
2091 	}
2092 out:
2093 	return retval;
2094 }
2095 
2096 int amdkfd_fence_wait_timeout(struct device_queue_manager *dqm,
2097 			      uint64_t fence_value,
2098 			      unsigned int timeout_ms)
2099 {
2100 	unsigned long end_jiffies = msecs_to_jiffies(timeout_ms) + jiffies;
2101 	struct device *dev = dqm->dev->adev->dev;
2102 	uint64_t *fence_addr = dqm->fence_addr;
2103 
2104 	while (*fence_addr != fence_value) {
2105 		/* Fatal err detected, this response won't come */
2106 		if (amdgpu_amdkfd_is_fed(dqm->dev->adev))
2107 			return -EIO;
2108 
2109 		if (time_after(jiffies, end_jiffies)) {
2110 			dev_err(dev, "qcm fence wait loop timeout expired\n");
2111 			/* In HWS case, this is used to halt the driver thread
2112 			 * in order not to mess up CP states before doing
2113 			 * scandumps for FW debugging.
2114 			 */
2115 			while (halt_if_hws_hang)
2116 				schedule();
2117 
2118 			return -ETIME;
2119 		}
2120 		schedule();
2121 	}
2122 
2123 	return 0;
2124 }
2125 
2126 /* dqm->lock mutex has to be locked before calling this function */
2127 static int map_queues_cpsch(struct device_queue_manager *dqm)
2128 {
2129 	struct device *dev = dqm->dev->adev->dev;
2130 	int retval;
2131 
2132 	if (!dqm->sched_running || dqm->sched_halt)
2133 		return 0;
2134 	if (dqm->active_queue_count <= 0 || dqm->processes_count <= 0)
2135 		return 0;
2136 	if (dqm->active_runlist)
2137 		return 0;
2138 
2139 	retval = pm_send_runlist(&dqm->packet_mgr, &dqm->queues);
2140 	pr_debug("%s sent runlist\n", __func__);
2141 	if (retval) {
2142 		dev_err(dev, "failed to execute runlist\n");
2143 		return retval;
2144 	}
2145 	dqm->active_runlist = true;
2146 
2147 	return retval;
2148 }
2149 
2150 static void set_queue_as_reset(struct device_queue_manager *dqm, struct queue *q,
2151 			       struct qcm_process_device *qpd)
2152 {
2153 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
2154 
2155 	dev_err(dqm->dev->adev->dev, "queue id 0x%0x at pasid %d is reset\n",
2156 		q->properties.queue_id, pdd->process->lead_thread->pid);
2157 
2158 	pdd->has_reset_queue = true;
2159 	if (q->properties.is_active) {
2160 		q->properties.is_active = false;
2161 		decrement_queue_count(dqm, qpd, q);
2162 	}
2163 }
2164 
2165 static int detect_queue_hang(struct device_queue_manager *dqm)
2166 {
2167 	int i;
2168 
2169 	/* detect should be used only in dqm locked queue reset */
2170 	if (WARN_ON(dqm->detect_hang_count > 0))
2171 		return 0;
2172 
2173 	memset(dqm->detect_hang_info, 0, dqm->detect_hang_info_size);
2174 
2175 	for (i = 0; i < AMDGPU_MAX_QUEUES; ++i) {
2176 		uint32_t mec, pipe, queue;
2177 		int xcc_id;
2178 
2179 		mec = (i / dqm->dev->kfd->shared_resources.num_queue_per_pipe)
2180 			/ dqm->dev->kfd->shared_resources.num_pipe_per_mec;
2181 
2182 		if (mec || !test_bit(i, dqm->dev->kfd->shared_resources.cp_queue_bitmap))
2183 			continue;
2184 
2185 		amdgpu_queue_mask_bit_to_mec_queue(dqm->dev->adev, i, &mec, &pipe, &queue);
2186 
2187 		for_each_inst(xcc_id, dqm->dev->xcc_mask) {
2188 			uint64_t queue_addr = dqm->dev->kfd2kgd->hqd_get_pq_addr(
2189 						dqm->dev->adev, pipe, queue, xcc_id);
2190 			struct dqm_detect_hang_info hang_info;
2191 
2192 			if (!queue_addr)
2193 				continue;
2194 
2195 			hang_info.pipe_id = pipe;
2196 			hang_info.queue_id = queue;
2197 			hang_info.xcc_id = xcc_id;
2198 			hang_info.queue_address = queue_addr;
2199 
2200 			dqm->detect_hang_info[dqm->detect_hang_count] = hang_info;
2201 			dqm->detect_hang_count++;
2202 		}
2203 	}
2204 
2205 	return dqm->detect_hang_count;
2206 }
2207 
2208 static struct queue *find_queue_by_address(struct device_queue_manager *dqm, uint64_t queue_address)
2209 {
2210 	struct device_process_node *cur;
2211 	struct qcm_process_device *qpd;
2212 	struct queue *q;
2213 
2214 	list_for_each_entry(cur, &dqm->queues, list) {
2215 		qpd = cur->qpd;
2216 		list_for_each_entry(q, &qpd->queues_list, list) {
2217 			if (queue_address == q->properties.queue_address)
2218 				return q;
2219 		}
2220 	}
2221 
2222 	return NULL;
2223 }
2224 
2225 /* only for compute queue */
2226 static int reset_queues_on_hws_hang(struct device_queue_manager *dqm)
2227 {
2228 	int r = 0, reset_count = 0, i;
2229 
2230 	if (!dqm->detect_hang_info || dqm->is_hws_hang)
2231 		return -EIO;
2232 
2233 	/* assume dqm locked. */
2234 	if (!detect_queue_hang(dqm))
2235 		return -ENOTRECOVERABLE;
2236 
2237 	for (i = 0; i < dqm->detect_hang_count; i++) {
2238 		struct dqm_detect_hang_info hang_info = dqm->detect_hang_info[i];
2239 		struct queue *q = find_queue_by_address(dqm, hang_info.queue_address);
2240 		struct kfd_process_device *pdd;
2241 		uint64_t queue_addr = 0;
2242 
2243 		if (!q) {
2244 			r = -ENOTRECOVERABLE;
2245 			goto reset_fail;
2246 		}
2247 
2248 		pdd = kfd_get_process_device_data(dqm->dev, q->process);
2249 		if (!pdd) {
2250 			r = -ENOTRECOVERABLE;
2251 			goto reset_fail;
2252 		}
2253 
2254 		queue_addr = dqm->dev->kfd2kgd->hqd_reset(dqm->dev->adev,
2255 				hang_info.pipe_id, hang_info.queue_id, hang_info.xcc_id,
2256 				KFD_UNMAP_LATENCY_MS);
2257 
2258 		/* either reset failed or we reset an unexpected queue. */
2259 		if (queue_addr != q->properties.queue_address) {
2260 			r = -ENOTRECOVERABLE;
2261 			goto reset_fail;
2262 		}
2263 
2264 		set_queue_as_reset(dqm, q, &pdd->qpd);
2265 		reset_count++;
2266 	}
2267 
2268 	if (reset_count == dqm->detect_hang_count)
2269 		kfd_signal_reset_event(dqm->dev);
2270 	else
2271 		r = -ENOTRECOVERABLE;
2272 
2273 reset_fail:
2274 	dqm->detect_hang_count = 0;
2275 
2276 	return r;
2277 }
2278 
2279 /* dqm->lock mutex has to be locked before calling this function */
2280 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
2281 				enum kfd_unmap_queues_filter filter,
2282 				uint32_t filter_param,
2283 				uint32_t grace_period,
2284 				bool reset)
2285 {
2286 	struct device *dev = dqm->dev->adev->dev;
2287 	struct mqd_manager *mqd_mgr;
2288 	int retval;
2289 
2290 	if (!dqm->sched_running)
2291 		return 0;
2292 	if (!dqm->active_runlist)
2293 		return 0;
2294 	if (!down_read_trylock(&dqm->dev->adev->reset_domain->sem))
2295 		return -EIO;
2296 
2297 	if (grace_period != USE_DEFAULT_GRACE_PERIOD) {
2298 		retval = pm_update_grace_period(&dqm->packet_mgr, grace_period);
2299 		if (retval)
2300 			goto out;
2301 	}
2302 
2303 	retval = pm_send_unmap_queue(&dqm->packet_mgr, filter, filter_param, reset);
2304 	if (retval)
2305 		goto out;
2306 
2307 	*dqm->fence_addr = KFD_FENCE_INIT;
2308 	mb();
2309 	pm_send_query_status(&dqm->packet_mgr, dqm->fence_gpu_addr,
2310 				KFD_FENCE_COMPLETED);
2311 	/* should be timed out */
2312 	retval = amdkfd_fence_wait_timeout(dqm, KFD_FENCE_COMPLETED,
2313 					   queue_preemption_timeout_ms);
2314 	if (retval) {
2315 		dev_err(dev, "The cp might be in an unrecoverable state due to an unsuccessful queues preemption\n");
2316 		kfd_hws_hang(dqm);
2317 		goto out;
2318 	}
2319 
2320 	/* In the current MEC firmware implementation, if compute queue
2321 	 * doesn't response to the preemption request in time, HIQ will
2322 	 * abandon the unmap request without returning any timeout error
2323 	 * to driver. Instead, MEC firmware will log the doorbell of the
2324 	 * unresponding compute queue to HIQ.MQD.queue_doorbell_id fields.
2325 	 * To make sure the queue unmap was successful, driver need to
2326 	 * check those fields
2327 	 */
2328 	mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ];
2329 	if (mqd_mgr->check_preemption_failed(mqd_mgr, dqm->packet_mgr.priv_queue->queue->mqd)) {
2330 		while (halt_if_hws_hang)
2331 			schedule();
2332 		if (reset_queues_on_hws_hang(dqm)) {
2333 			dqm->is_hws_hang = true;
2334 			kfd_hws_hang(dqm);
2335 			retval = -ETIME;
2336 			goto out;
2337 		}
2338 	}
2339 
2340 	/* We need to reset the grace period value for this device */
2341 	if (grace_period != USE_DEFAULT_GRACE_PERIOD) {
2342 		if (pm_update_grace_period(&dqm->packet_mgr,
2343 					USE_DEFAULT_GRACE_PERIOD))
2344 			dev_err(dev, "Failed to reset grace period\n");
2345 	}
2346 
2347 	pm_release_ib(&dqm->packet_mgr);
2348 	dqm->active_runlist = false;
2349 
2350 out:
2351 	up_read(&dqm->dev->adev->reset_domain->sem);
2352 	return retval;
2353 }
2354 
2355 /* only for compute queue */
2356 static int reset_queues_cpsch(struct device_queue_manager *dqm, uint16_t pasid)
2357 {
2358 	int retval;
2359 
2360 	dqm_lock(dqm);
2361 
2362 	retval = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_BY_PASID,
2363 			pasid, USE_DEFAULT_GRACE_PERIOD, true);
2364 
2365 	dqm_unlock(dqm);
2366 	return retval;
2367 }
2368 
2369 /* dqm->lock mutex has to be locked before calling this function */
2370 static int execute_queues_cpsch(struct device_queue_manager *dqm,
2371 				enum kfd_unmap_queues_filter filter,
2372 				uint32_t filter_param,
2373 				uint32_t grace_period)
2374 {
2375 	int retval;
2376 
2377 	if (!down_read_trylock(&dqm->dev->adev->reset_domain->sem))
2378 		return -EIO;
2379 	retval = unmap_queues_cpsch(dqm, filter, filter_param, grace_period, false);
2380 	if (!retval)
2381 		retval = map_queues_cpsch(dqm);
2382 	up_read(&dqm->dev->adev->reset_domain->sem);
2383 	return retval;
2384 }
2385 
2386 static int wait_on_destroy_queue(struct device_queue_manager *dqm,
2387 				 struct queue *q)
2388 {
2389 	struct kfd_process_device *pdd = kfd_get_process_device_data(q->device,
2390 								q->process);
2391 	int ret = 0;
2392 
2393 	if (WARN_ON(!pdd))
2394 		return ret;
2395 
2396 	if (pdd->qpd.is_debug)
2397 		return ret;
2398 
2399 	q->properties.is_being_destroyed = true;
2400 
2401 	if (pdd->process->debug_trap_enabled && q->properties.is_suspended) {
2402 		dqm_unlock(dqm);
2403 		mutex_unlock(&q->process->mutex);
2404 		ret = wait_event_interruptible(dqm->destroy_wait,
2405 						!q->properties.is_suspended);
2406 
2407 		mutex_lock(&q->process->mutex);
2408 		dqm_lock(dqm);
2409 	}
2410 
2411 	return ret;
2412 }
2413 
2414 static int destroy_queue_cpsch(struct device_queue_manager *dqm,
2415 				struct qcm_process_device *qpd,
2416 				struct queue *q)
2417 {
2418 	int retval;
2419 	struct mqd_manager *mqd_mgr;
2420 	uint64_t sdma_val = 0;
2421 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
2422 	struct device *dev = dqm->dev->adev->dev;
2423 
2424 	/* Get the SDMA queue stats */
2425 	if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
2426 	    (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
2427 		retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr,
2428 							&sdma_val);
2429 		if (retval)
2430 			dev_err(dev, "Failed to read SDMA queue counter for queue: %d\n",
2431 				q->properties.queue_id);
2432 	}
2433 
2434 	/* remove queue from list to prevent rescheduling after preemption */
2435 	dqm_lock(dqm);
2436 
2437 	retval = wait_on_destroy_queue(dqm, q);
2438 
2439 	if (retval) {
2440 		dqm_unlock(dqm);
2441 		return retval;
2442 	}
2443 
2444 	if (qpd->is_debug) {
2445 		/*
2446 		 * error, currently we do not allow to destroy a queue
2447 		 * of a currently debugged process
2448 		 */
2449 		retval = -EBUSY;
2450 		goto failed_try_destroy_debugged_queue;
2451 
2452 	}
2453 
2454 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2455 			q->properties.type)];
2456 
2457 	deallocate_doorbell(qpd, q);
2458 
2459 	if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
2460 	    (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
2461 		deallocate_sdma_queue(dqm, q);
2462 		pdd->sdma_past_activity_counter += sdma_val;
2463 	}
2464 
2465 	if (q->properties.is_active) {
2466 		decrement_queue_count(dqm, qpd, q);
2467 		q->properties.is_active = false;
2468 		if (!dqm->dev->kfd->shared_resources.enable_mes) {
2469 			retval = execute_queues_cpsch(dqm,
2470 						      KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
2471 						      USE_DEFAULT_GRACE_PERIOD);
2472 			if (retval == -ETIME)
2473 				qpd->reset_wavefronts = true;
2474 		} else {
2475 			retval = remove_queue_mes(dqm, q, qpd);
2476 		}
2477 	}
2478 	list_del(&q->list);
2479 	qpd->queue_count--;
2480 
2481 	/*
2482 	 * Unconditionally decrement this counter, regardless of the queue's
2483 	 * type
2484 	 */
2485 	dqm->total_queue_count--;
2486 	pr_debug("Total of %d queues are accountable so far\n",
2487 			dqm->total_queue_count);
2488 
2489 	dqm_unlock(dqm);
2490 
2491 	/*
2492 	 * Do free_mqd and raise delete event after dqm_unlock(dqm) to avoid
2493 	 * circular locking
2494 	 */
2495 	kfd_dbg_ev_raise(KFD_EC_MASK(EC_DEVICE_QUEUE_DELETE),
2496 				qpd->pqm->process, q->device,
2497 				-1, false, NULL, 0);
2498 
2499 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2500 
2501 	return retval;
2502 
2503 failed_try_destroy_debugged_queue:
2504 
2505 	dqm_unlock(dqm);
2506 	return retval;
2507 }
2508 
2509 /*
2510  * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to
2511  * stay in user mode.
2512  */
2513 #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL
2514 /* APE1 limit is inclusive and 64K aligned. */
2515 #define APE1_LIMIT_ALIGNMENT 0xFFFF
2516 
2517 static bool set_cache_memory_policy(struct device_queue_manager *dqm,
2518 				   struct qcm_process_device *qpd,
2519 				   enum cache_policy default_policy,
2520 				   enum cache_policy alternate_policy,
2521 				   void __user *alternate_aperture_base,
2522 				   uint64_t alternate_aperture_size)
2523 {
2524 	bool retval = true;
2525 
2526 	if (!dqm->asic_ops.set_cache_memory_policy)
2527 		return retval;
2528 
2529 	dqm_lock(dqm);
2530 
2531 	if (alternate_aperture_size == 0) {
2532 		/* base > limit disables APE1 */
2533 		qpd->sh_mem_ape1_base = 1;
2534 		qpd->sh_mem_ape1_limit = 0;
2535 	} else {
2536 		/*
2537 		 * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]},
2538 		 *			SH_MEM_APE1_BASE[31:0], 0x0000 }
2539 		 * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]},
2540 		 *			SH_MEM_APE1_LIMIT[31:0], 0xFFFF }
2541 		 * Verify that the base and size parameters can be
2542 		 * represented in this format and convert them.
2543 		 * Additionally restrict APE1 to user-mode addresses.
2544 		 */
2545 
2546 		uint64_t base = (uintptr_t)alternate_aperture_base;
2547 		uint64_t limit = base + alternate_aperture_size - 1;
2548 
2549 		if (limit <= base || (base & APE1_FIXED_BITS_MASK) != 0 ||
2550 		   (limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT) {
2551 			retval = false;
2552 			goto out;
2553 		}
2554 
2555 		qpd->sh_mem_ape1_base = base >> 16;
2556 		qpd->sh_mem_ape1_limit = limit >> 16;
2557 	}
2558 
2559 	retval = dqm->asic_ops.set_cache_memory_policy(
2560 			dqm,
2561 			qpd,
2562 			default_policy,
2563 			alternate_policy,
2564 			alternate_aperture_base,
2565 			alternate_aperture_size);
2566 
2567 	if ((dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
2568 		program_sh_mem_settings(dqm, qpd);
2569 
2570 	pr_debug("sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
2571 		qpd->sh_mem_config, qpd->sh_mem_ape1_base,
2572 		qpd->sh_mem_ape1_limit);
2573 
2574 out:
2575 	dqm_unlock(dqm);
2576 	return retval;
2577 }
2578 
2579 static int process_termination_nocpsch(struct device_queue_manager *dqm,
2580 		struct qcm_process_device *qpd)
2581 {
2582 	struct queue *q;
2583 	struct device_process_node *cur, *next_dpn;
2584 	int retval = 0;
2585 	bool found = false;
2586 
2587 	dqm_lock(dqm);
2588 
2589 	/* Clear all user mode queues */
2590 	while (!list_empty(&qpd->queues_list)) {
2591 		struct mqd_manager *mqd_mgr;
2592 		int ret;
2593 
2594 		q = list_first_entry(&qpd->queues_list, struct queue, list);
2595 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2596 				q->properties.type)];
2597 		ret = destroy_queue_nocpsch_locked(dqm, qpd, q);
2598 		if (ret)
2599 			retval = ret;
2600 		dqm_unlock(dqm);
2601 		mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2602 		dqm_lock(dqm);
2603 	}
2604 
2605 	/* Unregister process */
2606 	list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
2607 		if (qpd == cur->qpd) {
2608 			list_del(&cur->list);
2609 			kfree(cur);
2610 			dqm->processes_count--;
2611 			found = true;
2612 			break;
2613 		}
2614 	}
2615 
2616 	dqm_unlock(dqm);
2617 
2618 	/* Outside the DQM lock because under the DQM lock we can't do
2619 	 * reclaim or take other locks that others hold while reclaiming.
2620 	 */
2621 	if (found)
2622 		kfd_dec_compute_active(dqm->dev);
2623 
2624 	return retval;
2625 }
2626 
2627 static int get_wave_state(struct device_queue_manager *dqm,
2628 			  struct queue *q,
2629 			  void __user *ctl_stack,
2630 			  u32 *ctl_stack_used_size,
2631 			  u32 *save_area_used_size)
2632 {
2633 	struct mqd_manager *mqd_mgr;
2634 
2635 	dqm_lock(dqm);
2636 
2637 	mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP];
2638 
2639 	if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE ||
2640 	    q->properties.is_active || !q->device->kfd->cwsr_enabled ||
2641 	    !mqd_mgr->get_wave_state) {
2642 		dqm_unlock(dqm);
2643 		return -EINVAL;
2644 	}
2645 
2646 	dqm_unlock(dqm);
2647 
2648 	/*
2649 	 * get_wave_state is outside the dqm lock to prevent circular locking
2650 	 * and the queue should be protected against destruction by the process
2651 	 * lock.
2652 	 */
2653 	return mqd_mgr->get_wave_state(mqd_mgr, q->mqd, &q->properties,
2654 			ctl_stack, ctl_stack_used_size, save_area_used_size);
2655 }
2656 
2657 static void get_queue_checkpoint_info(struct device_queue_manager *dqm,
2658 			const struct queue *q,
2659 			u32 *mqd_size,
2660 			u32 *ctl_stack_size)
2661 {
2662 	struct mqd_manager *mqd_mgr;
2663 	enum KFD_MQD_TYPE mqd_type =
2664 			get_mqd_type_from_queue_type(q->properties.type);
2665 
2666 	dqm_lock(dqm);
2667 	mqd_mgr = dqm->mqd_mgrs[mqd_type];
2668 	*mqd_size = mqd_mgr->mqd_size;
2669 	*ctl_stack_size = 0;
2670 
2671 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE && mqd_mgr->get_checkpoint_info)
2672 		mqd_mgr->get_checkpoint_info(mqd_mgr, q->mqd, ctl_stack_size);
2673 
2674 	dqm_unlock(dqm);
2675 }
2676 
2677 static int checkpoint_mqd(struct device_queue_manager *dqm,
2678 			  const struct queue *q,
2679 			  void *mqd,
2680 			  void *ctl_stack)
2681 {
2682 	struct mqd_manager *mqd_mgr;
2683 	int r = 0;
2684 	enum KFD_MQD_TYPE mqd_type =
2685 			get_mqd_type_from_queue_type(q->properties.type);
2686 
2687 	dqm_lock(dqm);
2688 
2689 	if (q->properties.is_active || !q->device->kfd->cwsr_enabled) {
2690 		r = -EINVAL;
2691 		goto dqm_unlock;
2692 	}
2693 
2694 	mqd_mgr = dqm->mqd_mgrs[mqd_type];
2695 	if (!mqd_mgr->checkpoint_mqd) {
2696 		r = -EOPNOTSUPP;
2697 		goto dqm_unlock;
2698 	}
2699 
2700 	mqd_mgr->checkpoint_mqd(mqd_mgr, q->mqd, mqd, ctl_stack);
2701 
2702 dqm_unlock:
2703 	dqm_unlock(dqm);
2704 	return r;
2705 }
2706 
2707 static int process_termination_cpsch(struct device_queue_manager *dqm,
2708 		struct qcm_process_device *qpd)
2709 {
2710 	int retval;
2711 	struct queue *q;
2712 	struct device *dev = dqm->dev->adev->dev;
2713 	struct kernel_queue *kq, *kq_next;
2714 	struct mqd_manager *mqd_mgr;
2715 	struct device_process_node *cur, *next_dpn;
2716 	enum kfd_unmap_queues_filter filter =
2717 		KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES;
2718 	bool found = false;
2719 
2720 	retval = 0;
2721 
2722 	dqm_lock(dqm);
2723 
2724 	/* Clean all kernel queues */
2725 	list_for_each_entry_safe(kq, kq_next, &qpd->priv_queue_list, list) {
2726 		list_del(&kq->list);
2727 		decrement_queue_count(dqm, qpd, kq->queue);
2728 		qpd->is_debug = false;
2729 		dqm->total_queue_count--;
2730 		filter = KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES;
2731 	}
2732 
2733 	/* Clear all user mode queues */
2734 	list_for_each_entry(q, &qpd->queues_list, list) {
2735 		if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
2736 			deallocate_sdma_queue(dqm, q);
2737 		else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
2738 			deallocate_sdma_queue(dqm, q);
2739 
2740 		if (q->properties.is_active) {
2741 			decrement_queue_count(dqm, qpd, q);
2742 
2743 			if (dqm->dev->kfd->shared_resources.enable_mes) {
2744 				retval = remove_queue_mes(dqm, q, qpd);
2745 				if (retval)
2746 					dev_err(dev, "Failed to remove queue %d\n",
2747 						q->properties.queue_id);
2748 			}
2749 		}
2750 
2751 		dqm->total_queue_count--;
2752 	}
2753 
2754 	/* Unregister process */
2755 	list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
2756 		if (qpd == cur->qpd) {
2757 			list_del(&cur->list);
2758 			kfree(cur);
2759 			dqm->processes_count--;
2760 			found = true;
2761 			break;
2762 		}
2763 	}
2764 
2765 	if (!dqm->dev->kfd->shared_resources.enable_mes)
2766 		retval = execute_queues_cpsch(dqm, filter, 0, USE_DEFAULT_GRACE_PERIOD);
2767 
2768 	if ((retval || qpd->reset_wavefronts) &&
2769 	    down_read_trylock(&dqm->dev->adev->reset_domain->sem)) {
2770 		pr_warn("Resetting wave fronts (cpsch) on dev %p\n", dqm->dev);
2771 		dbgdev_wave_reset_wavefronts(dqm->dev, qpd->pqm->process);
2772 		qpd->reset_wavefronts = false;
2773 		up_read(&dqm->dev->adev->reset_domain->sem);
2774 	}
2775 
2776 	/* Lastly, free mqd resources.
2777 	 * Do free_mqd() after dqm_unlock to avoid circular locking.
2778 	 */
2779 	while (!list_empty(&qpd->queues_list)) {
2780 		q = list_first_entry(&qpd->queues_list, struct queue, list);
2781 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2782 				q->properties.type)];
2783 		list_del(&q->list);
2784 		qpd->queue_count--;
2785 		dqm_unlock(dqm);
2786 		mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2787 		dqm_lock(dqm);
2788 	}
2789 	dqm_unlock(dqm);
2790 
2791 	/* Outside the DQM lock because under the DQM lock we can't do
2792 	 * reclaim or take other locks that others hold while reclaiming.
2793 	 */
2794 	if (found)
2795 		kfd_dec_compute_active(dqm->dev);
2796 
2797 	return retval;
2798 }
2799 
2800 static int init_mqd_managers(struct device_queue_manager *dqm)
2801 {
2802 	int i, j;
2803 	struct device *dev = dqm->dev->adev->dev;
2804 	struct mqd_manager *mqd_mgr;
2805 
2806 	for (i = 0; i < KFD_MQD_TYPE_MAX; i++) {
2807 		mqd_mgr = dqm->asic_ops.mqd_manager_init(i, dqm->dev);
2808 		if (!mqd_mgr) {
2809 			dev_err(dev, "mqd manager [%d] initialization failed\n", i);
2810 			goto out_free;
2811 		}
2812 		dqm->mqd_mgrs[i] = mqd_mgr;
2813 	}
2814 
2815 	return 0;
2816 
2817 out_free:
2818 	for (j = 0; j < i; j++) {
2819 		kfree(dqm->mqd_mgrs[j]);
2820 		dqm->mqd_mgrs[j] = NULL;
2821 	}
2822 
2823 	return -ENOMEM;
2824 }
2825 
2826 /* Allocate one hiq mqd (HWS) and all SDMA mqd in a continuous trunk*/
2827 static int allocate_hiq_sdma_mqd(struct device_queue_manager *dqm)
2828 {
2829 	int retval;
2830 	struct kfd_node *dev = dqm->dev;
2831 	struct kfd_mem_obj *mem_obj = &dqm->hiq_sdma_mqd;
2832 	uint32_t size = dqm->mqd_mgrs[KFD_MQD_TYPE_SDMA]->mqd_size *
2833 		get_num_all_sdma_engines(dqm) *
2834 		dev->kfd->device_info.num_sdma_queues_per_engine +
2835 		(dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]->mqd_size *
2836 		NUM_XCC(dqm->dev->xcc_mask));
2837 
2838 	retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev, size,
2839 		&(mem_obj->gtt_mem), &(mem_obj->gpu_addr),
2840 		(void *)&(mem_obj->cpu_ptr), false);
2841 
2842 	return retval;
2843 }
2844 
2845 struct device_queue_manager *device_queue_manager_init(struct kfd_node *dev)
2846 {
2847 	struct device_queue_manager *dqm;
2848 
2849 	pr_debug("Loading device queue manager\n");
2850 
2851 	dqm = kzalloc(sizeof(*dqm), GFP_KERNEL);
2852 	if (!dqm)
2853 		return NULL;
2854 
2855 	switch (dev->adev->asic_type) {
2856 	/* HWS is not available on Hawaii. */
2857 	case CHIP_HAWAII:
2858 	/* HWS depends on CWSR for timely dequeue. CWSR is not
2859 	 * available on Tonga.
2860 	 *
2861 	 * FIXME: This argument also applies to Kaveri.
2862 	 */
2863 	case CHIP_TONGA:
2864 		dqm->sched_policy = KFD_SCHED_POLICY_NO_HWS;
2865 		break;
2866 	default:
2867 		dqm->sched_policy = sched_policy;
2868 		break;
2869 	}
2870 
2871 	dqm->dev = dev;
2872 	switch (dqm->sched_policy) {
2873 	case KFD_SCHED_POLICY_HWS:
2874 	case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
2875 		/* initialize dqm for cp scheduling */
2876 		dqm->ops.create_queue = create_queue_cpsch;
2877 		dqm->ops.initialize = initialize_cpsch;
2878 		dqm->ops.start = start_cpsch;
2879 		dqm->ops.stop = stop_cpsch;
2880 		dqm->ops.halt = halt_cpsch;
2881 		dqm->ops.unhalt = unhalt_cpsch;
2882 		dqm->ops.destroy_queue = destroy_queue_cpsch;
2883 		dqm->ops.update_queue = update_queue;
2884 		dqm->ops.register_process = register_process;
2885 		dqm->ops.unregister_process = unregister_process;
2886 		dqm->ops.uninitialize = uninitialize;
2887 		dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
2888 		dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
2889 		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
2890 		dqm->ops.process_termination = process_termination_cpsch;
2891 		dqm->ops.evict_process_queues = evict_process_queues_cpsch;
2892 		dqm->ops.restore_process_queues = restore_process_queues_cpsch;
2893 		dqm->ops.get_wave_state = get_wave_state;
2894 		dqm->ops.reset_queues = reset_queues_cpsch;
2895 		dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info;
2896 		dqm->ops.checkpoint_mqd = checkpoint_mqd;
2897 		break;
2898 	case KFD_SCHED_POLICY_NO_HWS:
2899 		/* initialize dqm for no cp scheduling */
2900 		dqm->ops.start = start_nocpsch;
2901 		dqm->ops.stop = stop_nocpsch;
2902 		dqm->ops.create_queue = create_queue_nocpsch;
2903 		dqm->ops.destroy_queue = destroy_queue_nocpsch;
2904 		dqm->ops.update_queue = update_queue;
2905 		dqm->ops.register_process = register_process;
2906 		dqm->ops.unregister_process = unregister_process;
2907 		dqm->ops.initialize = initialize_nocpsch;
2908 		dqm->ops.uninitialize = uninitialize;
2909 		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
2910 		dqm->ops.process_termination = process_termination_nocpsch;
2911 		dqm->ops.evict_process_queues = evict_process_queues_nocpsch;
2912 		dqm->ops.restore_process_queues =
2913 			restore_process_queues_nocpsch;
2914 		dqm->ops.get_wave_state = get_wave_state;
2915 		dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info;
2916 		dqm->ops.checkpoint_mqd = checkpoint_mqd;
2917 		break;
2918 	default:
2919 		dev_err(dev->adev->dev, "Invalid scheduling policy %d\n", dqm->sched_policy);
2920 		goto out_free;
2921 	}
2922 
2923 	switch (dev->adev->asic_type) {
2924 	case CHIP_KAVERI:
2925 	case CHIP_HAWAII:
2926 		device_queue_manager_init_cik(&dqm->asic_ops);
2927 		break;
2928 
2929 	case CHIP_CARRIZO:
2930 	case CHIP_TONGA:
2931 	case CHIP_FIJI:
2932 	case CHIP_POLARIS10:
2933 	case CHIP_POLARIS11:
2934 	case CHIP_POLARIS12:
2935 	case CHIP_VEGAM:
2936 		device_queue_manager_init_vi(&dqm->asic_ops);
2937 		break;
2938 
2939 	default:
2940 		if (KFD_GC_VERSION(dev) >= IP_VERSION(12, 0, 0))
2941 			device_queue_manager_init_v12(&dqm->asic_ops);
2942 		else if (KFD_GC_VERSION(dev) >= IP_VERSION(11, 0, 0))
2943 			device_queue_manager_init_v11(&dqm->asic_ops);
2944 		else if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
2945 			device_queue_manager_init_v10(&dqm->asic_ops);
2946 		else if (KFD_GC_VERSION(dev) >= IP_VERSION(9, 0, 1))
2947 			device_queue_manager_init_v9(&dqm->asic_ops);
2948 		else {
2949 			WARN(1, "Unexpected ASIC family %u",
2950 			     dev->adev->asic_type);
2951 			goto out_free;
2952 		}
2953 	}
2954 
2955 	if (init_mqd_managers(dqm))
2956 		goto out_free;
2957 
2958 	if (!dev->kfd->shared_resources.enable_mes && allocate_hiq_sdma_mqd(dqm)) {
2959 		dev_err(dev->adev->dev, "Failed to allocate hiq sdma mqd trunk buffer\n");
2960 		goto out_free;
2961 	}
2962 
2963 	if (!dqm->ops.initialize(dqm)) {
2964 		init_waitqueue_head(&dqm->destroy_wait);
2965 		return dqm;
2966 	}
2967 
2968 out_free:
2969 	kfree(dqm);
2970 	return NULL;
2971 }
2972 
2973 static void deallocate_hiq_sdma_mqd(struct kfd_node *dev,
2974 				    struct kfd_mem_obj *mqd)
2975 {
2976 	WARN(!mqd, "No hiq sdma mqd trunk to free");
2977 
2978 	amdgpu_amdkfd_free_gtt_mem(dev->adev, &mqd->gtt_mem);
2979 }
2980 
2981 void device_queue_manager_uninit(struct device_queue_manager *dqm)
2982 {
2983 	dqm->ops.stop(dqm);
2984 	dqm->ops.uninitialize(dqm);
2985 	if (!dqm->dev->kfd->shared_resources.enable_mes)
2986 		deallocate_hiq_sdma_mqd(dqm->dev, &dqm->hiq_sdma_mqd);
2987 	kfree(dqm);
2988 }
2989 
2990 int kfd_dqm_suspend_bad_queue_mes(struct kfd_node *knode, u32 pasid, u32 doorbell_id)
2991 {
2992 	struct kfd_process_device *pdd = NULL;
2993 	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid, &pdd);
2994 	struct device_queue_manager *dqm = knode->dqm;
2995 	struct device *dev = dqm->dev->adev->dev;
2996 	struct qcm_process_device *qpd;
2997 	struct queue *q = NULL;
2998 	int ret = 0;
2999 
3000 	if (!pdd)
3001 		return -EINVAL;
3002 
3003 	dqm_lock(dqm);
3004 
3005 	if (pdd) {
3006 		qpd = &pdd->qpd;
3007 
3008 		list_for_each_entry(q, &qpd->queues_list, list) {
3009 			if (q->doorbell_id == doorbell_id && q->properties.is_active) {
3010 				ret = suspend_all_queues_mes(dqm);
3011 				if (ret) {
3012 					dev_err(dev, "Suspending all queues failed");
3013 					goto out;
3014 				}
3015 
3016 				q->properties.is_evicted = true;
3017 				q->properties.is_active = false;
3018 				decrement_queue_count(dqm, qpd, q);
3019 
3020 				ret = remove_queue_mes(dqm, q, qpd);
3021 				if (ret) {
3022 					dev_err(dev, "Removing bad queue failed");
3023 					goto out;
3024 				}
3025 
3026 				ret = resume_all_queues_mes(dqm);
3027 				if (ret)
3028 					dev_err(dev, "Resuming all queues failed");
3029 
3030 				break;
3031 			}
3032 		}
3033 	}
3034 
3035 out:
3036 	dqm_unlock(dqm);
3037 	kfd_unref_process(p);
3038 	return ret;
3039 }
3040 
3041 static int kfd_dqm_evict_pasid_mes(struct device_queue_manager *dqm,
3042 				   struct qcm_process_device *qpd)
3043 {
3044 	struct device *dev = dqm->dev->adev->dev;
3045 	int ret = 0;
3046 
3047 	/* Check if process is already evicted */
3048 	dqm_lock(dqm);
3049 	if (qpd->evicted) {
3050 		/* Increment the evicted count to make sure the
3051 		 * process stays evicted before its terminated.
3052 		 */
3053 		qpd->evicted++;
3054 		dqm_unlock(dqm);
3055 		goto out;
3056 	}
3057 	dqm_unlock(dqm);
3058 
3059 	ret = suspend_all_queues_mes(dqm);
3060 	if (ret) {
3061 		dev_err(dev, "Suspending all queues failed");
3062 		goto out;
3063 	}
3064 
3065 	ret = dqm->ops.evict_process_queues(dqm, qpd);
3066 	if (ret) {
3067 		dev_err(dev, "Evicting process queues failed");
3068 		goto out;
3069 	}
3070 
3071 	ret = resume_all_queues_mes(dqm);
3072 	if (ret)
3073 		dev_err(dev, "Resuming all queues failed");
3074 
3075 out:
3076 	return ret;
3077 }
3078 
3079 int kfd_evict_process_device(struct kfd_process_device *pdd)
3080 {
3081 	struct device_queue_manager *dqm;
3082 	struct kfd_process *p;
3083 	int ret = 0;
3084 
3085 	p = pdd->process;
3086 	dqm = pdd->dev->dqm;
3087 
3088 	WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
3089 
3090 	if (dqm->dev->kfd->shared_resources.enable_mes)
3091 		ret = kfd_dqm_evict_pasid_mes(dqm, &pdd->qpd);
3092 	else
3093 		ret = dqm->ops.evict_process_queues(dqm, &pdd->qpd);
3094 
3095 	return ret;
3096 }
3097 
3098 static void kfd_process_hw_exception(struct work_struct *work)
3099 {
3100 	struct device_queue_manager *dqm = container_of(work,
3101 			struct device_queue_manager, hw_exception_work);
3102 	amdgpu_amdkfd_gpu_reset(dqm->dev->adev);
3103 }
3104 
3105 int reserve_debug_trap_vmid(struct device_queue_manager *dqm,
3106 				struct qcm_process_device *qpd)
3107 {
3108 	int r;
3109 	struct device *dev = dqm->dev->adev->dev;
3110 	int updated_vmid_mask;
3111 
3112 	if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3113 		dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3114 		return -EINVAL;
3115 	}
3116 
3117 	dqm_lock(dqm);
3118 
3119 	if (dqm->trap_debug_vmid != 0) {
3120 		dev_err(dev, "Trap debug id already reserved\n");
3121 		r = -EBUSY;
3122 		goto out_unlock;
3123 	}
3124 
3125 	r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
3126 			USE_DEFAULT_GRACE_PERIOD, false);
3127 	if (r)
3128 		goto out_unlock;
3129 
3130 	updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap;
3131 	updated_vmid_mask &= ~(1 << dqm->dev->vm_info.last_vmid_kfd);
3132 
3133 	dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask;
3134 	dqm->trap_debug_vmid = dqm->dev->vm_info.last_vmid_kfd;
3135 	r = set_sched_resources(dqm);
3136 	if (r)
3137 		goto out_unlock;
3138 
3139 	r = map_queues_cpsch(dqm);
3140 	if (r)
3141 		goto out_unlock;
3142 
3143 	pr_debug("Reserved VMID for trap debug: %i\n", dqm->trap_debug_vmid);
3144 
3145 out_unlock:
3146 	dqm_unlock(dqm);
3147 	return r;
3148 }
3149 
3150 /*
3151  * Releases vmid for the trap debugger
3152  */
3153 int release_debug_trap_vmid(struct device_queue_manager *dqm,
3154 			struct qcm_process_device *qpd)
3155 {
3156 	struct device *dev = dqm->dev->adev->dev;
3157 	int r;
3158 	int updated_vmid_mask;
3159 	uint32_t trap_debug_vmid;
3160 
3161 	if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3162 		dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3163 		return -EINVAL;
3164 	}
3165 
3166 	dqm_lock(dqm);
3167 	trap_debug_vmid = dqm->trap_debug_vmid;
3168 	if (dqm->trap_debug_vmid == 0) {
3169 		dev_err(dev, "Trap debug id is not reserved\n");
3170 		r = -EINVAL;
3171 		goto out_unlock;
3172 	}
3173 
3174 	r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
3175 			USE_DEFAULT_GRACE_PERIOD, false);
3176 	if (r)
3177 		goto out_unlock;
3178 
3179 	updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap;
3180 	updated_vmid_mask |= (1 << dqm->dev->vm_info.last_vmid_kfd);
3181 
3182 	dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask;
3183 	dqm->trap_debug_vmid = 0;
3184 	r = set_sched_resources(dqm);
3185 	if (r)
3186 		goto out_unlock;
3187 
3188 	r = map_queues_cpsch(dqm);
3189 	if (r)
3190 		goto out_unlock;
3191 
3192 	pr_debug("Released VMID for trap debug: %i\n", trap_debug_vmid);
3193 
3194 out_unlock:
3195 	dqm_unlock(dqm);
3196 	return r;
3197 }
3198 
3199 #define QUEUE_NOT_FOUND		-1
3200 /* invalidate queue operation in array */
3201 static void q_array_invalidate(uint32_t num_queues, uint32_t *queue_ids)
3202 {
3203 	int i;
3204 
3205 	for (i = 0; i < num_queues; i++)
3206 		queue_ids[i] |= KFD_DBG_QUEUE_INVALID_MASK;
3207 }
3208 
3209 /* find queue index in array */
3210 static int q_array_get_index(unsigned int queue_id,
3211 		uint32_t num_queues,
3212 		uint32_t *queue_ids)
3213 {
3214 	int i;
3215 
3216 	for (i = 0; i < num_queues; i++)
3217 		if (queue_id == (queue_ids[i] & ~KFD_DBG_QUEUE_INVALID_MASK))
3218 			return i;
3219 
3220 	return QUEUE_NOT_FOUND;
3221 }
3222 
3223 struct copy_context_work_handler_workarea {
3224 	struct work_struct copy_context_work;
3225 	struct kfd_process *p;
3226 };
3227 
3228 static void copy_context_work_handler(struct work_struct *work)
3229 {
3230 	struct copy_context_work_handler_workarea *workarea;
3231 	struct mqd_manager *mqd_mgr;
3232 	struct queue *q;
3233 	struct mm_struct *mm;
3234 	struct kfd_process *p;
3235 	uint32_t tmp_ctl_stack_used_size, tmp_save_area_used_size;
3236 	int i;
3237 
3238 	workarea = container_of(work,
3239 			struct copy_context_work_handler_workarea,
3240 			copy_context_work);
3241 
3242 	p = workarea->p;
3243 	mm = get_task_mm(p->lead_thread);
3244 
3245 	if (!mm)
3246 		return;
3247 
3248 	kthread_use_mm(mm);
3249 	for (i = 0; i < p->n_pdds; i++) {
3250 		struct kfd_process_device *pdd = p->pdds[i];
3251 		struct device_queue_manager *dqm = pdd->dev->dqm;
3252 		struct qcm_process_device *qpd = &pdd->qpd;
3253 
3254 		list_for_each_entry(q, &qpd->queues_list, list) {
3255 			if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE)
3256 				continue;
3257 
3258 			mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP];
3259 
3260 			/* We ignore the return value from get_wave_state
3261 			 * because
3262 			 * i) right now, it always returns 0, and
3263 			 * ii) if we hit an error, we would continue to the
3264 			 *      next queue anyway.
3265 			 */
3266 			mqd_mgr->get_wave_state(mqd_mgr,
3267 					q->mqd,
3268 					&q->properties,
3269 					(void __user *)	q->properties.ctx_save_restore_area_address,
3270 					&tmp_ctl_stack_used_size,
3271 					&tmp_save_area_used_size);
3272 		}
3273 	}
3274 	kthread_unuse_mm(mm);
3275 	mmput(mm);
3276 }
3277 
3278 static uint32_t *get_queue_ids(uint32_t num_queues, uint32_t *usr_queue_id_array)
3279 {
3280 	size_t array_size = num_queues * sizeof(uint32_t);
3281 
3282 	if (!usr_queue_id_array)
3283 		return NULL;
3284 
3285 	return memdup_user(usr_queue_id_array, array_size);
3286 }
3287 
3288 int resume_queues(struct kfd_process *p,
3289 		uint32_t num_queues,
3290 		uint32_t *usr_queue_id_array)
3291 {
3292 	uint32_t *queue_ids = NULL;
3293 	int total_resumed = 0;
3294 	int i;
3295 
3296 	if (usr_queue_id_array) {
3297 		queue_ids = get_queue_ids(num_queues, usr_queue_id_array);
3298 
3299 		if (IS_ERR(queue_ids))
3300 			return PTR_ERR(queue_ids);
3301 
3302 		/* mask all queues as invalid.  unmask per successful request */
3303 		q_array_invalidate(num_queues, queue_ids);
3304 	}
3305 
3306 	for (i = 0; i < p->n_pdds; i++) {
3307 		struct kfd_process_device *pdd = p->pdds[i];
3308 		struct device_queue_manager *dqm = pdd->dev->dqm;
3309 		struct device *dev = dqm->dev->adev->dev;
3310 		struct qcm_process_device *qpd = &pdd->qpd;
3311 		struct queue *q;
3312 		int r, per_device_resumed = 0;
3313 
3314 		dqm_lock(dqm);
3315 
3316 		/* unmask queues that resume or already resumed as valid */
3317 		list_for_each_entry(q, &qpd->queues_list, list) {
3318 			int q_idx = QUEUE_NOT_FOUND;
3319 
3320 			if (queue_ids)
3321 				q_idx = q_array_get_index(
3322 						q->properties.queue_id,
3323 						num_queues,
3324 						queue_ids);
3325 
3326 			if (!queue_ids || q_idx != QUEUE_NOT_FOUND) {
3327 				int err = resume_single_queue(dqm, &pdd->qpd, q);
3328 
3329 				if (queue_ids) {
3330 					if (!err) {
3331 						queue_ids[q_idx] &=
3332 							~KFD_DBG_QUEUE_INVALID_MASK;
3333 					} else {
3334 						queue_ids[q_idx] |=
3335 							KFD_DBG_QUEUE_ERROR_MASK;
3336 						break;
3337 					}
3338 				}
3339 
3340 				if (dqm->dev->kfd->shared_resources.enable_mes) {
3341 					wake_up_all(&dqm->destroy_wait);
3342 					if (!err)
3343 						total_resumed++;
3344 				} else {
3345 					per_device_resumed++;
3346 				}
3347 			}
3348 		}
3349 
3350 		if (!per_device_resumed) {
3351 			dqm_unlock(dqm);
3352 			continue;
3353 		}
3354 
3355 		r = execute_queues_cpsch(dqm,
3356 					KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
3357 					0,
3358 					USE_DEFAULT_GRACE_PERIOD);
3359 		if (r) {
3360 			dev_err(dev, "Failed to resume process queues\n");
3361 			if (queue_ids) {
3362 				list_for_each_entry(q, &qpd->queues_list, list) {
3363 					int q_idx = q_array_get_index(
3364 							q->properties.queue_id,
3365 							num_queues,
3366 							queue_ids);
3367 
3368 					/* mask queue as error on resume fail */
3369 					if (q_idx != QUEUE_NOT_FOUND)
3370 						queue_ids[q_idx] |=
3371 							KFD_DBG_QUEUE_ERROR_MASK;
3372 				}
3373 			}
3374 		} else {
3375 			wake_up_all(&dqm->destroy_wait);
3376 			total_resumed += per_device_resumed;
3377 		}
3378 
3379 		dqm_unlock(dqm);
3380 	}
3381 
3382 	if (queue_ids) {
3383 		if (copy_to_user((void __user *)usr_queue_id_array, queue_ids,
3384 				num_queues * sizeof(uint32_t)))
3385 			pr_err("copy_to_user failed on queue resume\n");
3386 
3387 		kfree(queue_ids);
3388 	}
3389 
3390 	return total_resumed;
3391 }
3392 
3393 int suspend_queues(struct kfd_process *p,
3394 			uint32_t num_queues,
3395 			uint32_t grace_period,
3396 			uint64_t exception_clear_mask,
3397 			uint32_t *usr_queue_id_array)
3398 {
3399 	uint32_t *queue_ids = get_queue_ids(num_queues, usr_queue_id_array);
3400 	int total_suspended = 0;
3401 	int i;
3402 
3403 	if (IS_ERR(queue_ids))
3404 		return PTR_ERR(queue_ids);
3405 
3406 	/* mask all queues as invalid.  umask on successful request */
3407 	q_array_invalidate(num_queues, queue_ids);
3408 
3409 	for (i = 0; i < p->n_pdds; i++) {
3410 		struct kfd_process_device *pdd = p->pdds[i];
3411 		struct device_queue_manager *dqm = pdd->dev->dqm;
3412 		struct device *dev = dqm->dev->adev->dev;
3413 		struct qcm_process_device *qpd = &pdd->qpd;
3414 		struct queue *q;
3415 		int r, per_device_suspended = 0;
3416 
3417 		mutex_lock(&p->event_mutex);
3418 		dqm_lock(dqm);
3419 
3420 		/* unmask queues that suspend or already suspended */
3421 		list_for_each_entry(q, &qpd->queues_list, list) {
3422 			int q_idx = q_array_get_index(q->properties.queue_id,
3423 							num_queues,
3424 							queue_ids);
3425 
3426 			if (q_idx != QUEUE_NOT_FOUND) {
3427 				int err = suspend_single_queue(dqm, pdd, q);
3428 				bool is_mes = dqm->dev->kfd->shared_resources.enable_mes;
3429 
3430 				if (!err) {
3431 					queue_ids[q_idx] &= ~KFD_DBG_QUEUE_INVALID_MASK;
3432 					if (exception_clear_mask && is_mes)
3433 						q->properties.exception_status &=
3434 							~exception_clear_mask;
3435 
3436 					if (is_mes)
3437 						total_suspended++;
3438 					else
3439 						per_device_suspended++;
3440 				} else if (err != -EBUSY) {
3441 					r = err;
3442 					queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK;
3443 					break;
3444 				}
3445 			}
3446 		}
3447 
3448 		if (!per_device_suspended) {
3449 			dqm_unlock(dqm);
3450 			mutex_unlock(&p->event_mutex);
3451 			if (total_suspended)
3452 				amdgpu_amdkfd_debug_mem_fence(dqm->dev->adev);
3453 			continue;
3454 		}
3455 
3456 		r = execute_queues_cpsch(dqm,
3457 			KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
3458 			grace_period);
3459 
3460 		if (r)
3461 			dev_err(dev, "Failed to suspend process queues.\n");
3462 		else
3463 			total_suspended += per_device_suspended;
3464 
3465 		list_for_each_entry(q, &qpd->queues_list, list) {
3466 			int q_idx = q_array_get_index(q->properties.queue_id,
3467 						num_queues, queue_ids);
3468 
3469 			if (q_idx == QUEUE_NOT_FOUND)
3470 				continue;
3471 
3472 			/* mask queue as error on suspend fail */
3473 			if (r)
3474 				queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK;
3475 			else if (exception_clear_mask)
3476 				q->properties.exception_status &=
3477 							~exception_clear_mask;
3478 		}
3479 
3480 		dqm_unlock(dqm);
3481 		mutex_unlock(&p->event_mutex);
3482 		amdgpu_device_flush_hdp(dqm->dev->adev, NULL);
3483 	}
3484 
3485 	if (total_suspended) {
3486 		struct copy_context_work_handler_workarea copy_context_worker;
3487 
3488 		INIT_WORK_ONSTACK(
3489 				&copy_context_worker.copy_context_work,
3490 				copy_context_work_handler);
3491 
3492 		copy_context_worker.p = p;
3493 
3494 		schedule_work(&copy_context_worker.copy_context_work);
3495 
3496 
3497 		flush_work(&copy_context_worker.copy_context_work);
3498 		destroy_work_on_stack(&copy_context_worker.copy_context_work);
3499 	}
3500 
3501 	if (copy_to_user((void __user *)usr_queue_id_array, queue_ids,
3502 			num_queues * sizeof(uint32_t)))
3503 		pr_err("copy_to_user failed on queue suspend\n");
3504 
3505 	kfree(queue_ids);
3506 
3507 	return total_suspended;
3508 }
3509 
3510 static uint32_t set_queue_type_for_user(struct queue_properties *q_props)
3511 {
3512 	switch (q_props->type) {
3513 	case KFD_QUEUE_TYPE_COMPUTE:
3514 		return q_props->format == KFD_QUEUE_FORMAT_PM4
3515 					? KFD_IOC_QUEUE_TYPE_COMPUTE
3516 					: KFD_IOC_QUEUE_TYPE_COMPUTE_AQL;
3517 	case KFD_QUEUE_TYPE_SDMA:
3518 		return KFD_IOC_QUEUE_TYPE_SDMA;
3519 	case KFD_QUEUE_TYPE_SDMA_XGMI:
3520 		return KFD_IOC_QUEUE_TYPE_SDMA_XGMI;
3521 	default:
3522 		WARN_ONCE(true, "queue type not recognized!");
3523 		return 0xffffffff;
3524 	};
3525 }
3526 
3527 void set_queue_snapshot_entry(struct queue *q,
3528 			      uint64_t exception_clear_mask,
3529 			      struct kfd_queue_snapshot_entry *qss_entry)
3530 {
3531 	qss_entry->ring_base_address = q->properties.queue_address;
3532 	qss_entry->write_pointer_address = (uint64_t)q->properties.write_ptr;
3533 	qss_entry->read_pointer_address = (uint64_t)q->properties.read_ptr;
3534 	qss_entry->ctx_save_restore_address =
3535 				q->properties.ctx_save_restore_area_address;
3536 	qss_entry->ctx_save_restore_area_size =
3537 				q->properties.ctx_save_restore_area_size;
3538 	qss_entry->exception_status = q->properties.exception_status;
3539 	qss_entry->queue_id = q->properties.queue_id;
3540 	qss_entry->gpu_id = q->device->id;
3541 	qss_entry->ring_size = (uint32_t)q->properties.queue_size;
3542 	qss_entry->queue_type = set_queue_type_for_user(&q->properties);
3543 	q->properties.exception_status &= ~exception_clear_mask;
3544 }
3545 
3546 int debug_lock_and_unmap(struct device_queue_manager *dqm)
3547 {
3548 	struct device *dev = dqm->dev->adev->dev;
3549 	int r;
3550 
3551 	if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3552 		dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3553 		return -EINVAL;
3554 	}
3555 
3556 	if (!kfd_dbg_is_per_vmid_supported(dqm->dev))
3557 		return 0;
3558 
3559 	dqm_lock(dqm);
3560 
3561 	r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, 0, false);
3562 	if (r)
3563 		dqm_unlock(dqm);
3564 
3565 	return r;
3566 }
3567 
3568 int debug_map_and_unlock(struct device_queue_manager *dqm)
3569 {
3570 	struct device *dev = dqm->dev->adev->dev;
3571 	int r;
3572 
3573 	if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3574 		dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3575 		return -EINVAL;
3576 	}
3577 
3578 	if (!kfd_dbg_is_per_vmid_supported(dqm->dev))
3579 		return 0;
3580 
3581 	r = map_queues_cpsch(dqm);
3582 
3583 	dqm_unlock(dqm);
3584 
3585 	return r;
3586 }
3587 
3588 int debug_refresh_runlist(struct device_queue_manager *dqm)
3589 {
3590 	int r = debug_lock_and_unmap(dqm);
3591 
3592 	if (r)
3593 		return r;
3594 
3595 	return debug_map_and_unlock(dqm);
3596 }
3597 
3598 bool kfd_dqm_is_queue_in_process(struct device_queue_manager *dqm,
3599 				 struct qcm_process_device *qpd,
3600 				 int doorbell_off, u32 *queue_format)
3601 {
3602 	struct queue *q;
3603 	bool r = false;
3604 
3605 	if (!queue_format)
3606 		return r;
3607 
3608 	dqm_lock(dqm);
3609 
3610 	list_for_each_entry(q, &qpd->queues_list, list) {
3611 		if (q->properties.doorbell_off == doorbell_off) {
3612 			*queue_format = q->properties.format;
3613 			r = true;
3614 			goto out;
3615 		}
3616 	}
3617 
3618 out:
3619 	dqm_unlock(dqm);
3620 	return r;
3621 }
3622 #if defined(CONFIG_DEBUG_FS)
3623 
3624 static void seq_reg_dump(struct seq_file *m,
3625 			 uint32_t (*dump)[2], uint32_t n_regs)
3626 {
3627 	uint32_t i, count;
3628 
3629 	for (i = 0, count = 0; i < n_regs; i++) {
3630 		if (count == 0 ||
3631 		    dump[i-1][0] + sizeof(uint32_t) != dump[i][0]) {
3632 			seq_printf(m, "%s    %08x: %08x",
3633 				   i ? "\n" : "",
3634 				   dump[i][0], dump[i][1]);
3635 			count = 7;
3636 		} else {
3637 			seq_printf(m, " %08x", dump[i][1]);
3638 			count--;
3639 		}
3640 	}
3641 
3642 	seq_puts(m, "\n");
3643 }
3644 
3645 int dqm_debugfs_hqds(struct seq_file *m, void *data)
3646 {
3647 	struct device_queue_manager *dqm = data;
3648 	uint32_t xcc_mask = dqm->dev->xcc_mask;
3649 	uint32_t (*dump)[2], n_regs;
3650 	int pipe, queue;
3651 	int r = 0, xcc_id;
3652 	uint32_t sdma_engine_start;
3653 
3654 	if (!dqm->sched_running) {
3655 		seq_puts(m, " Device is stopped\n");
3656 		return 0;
3657 	}
3658 
3659 	for_each_inst(xcc_id, xcc_mask) {
3660 		r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev,
3661 						KFD_CIK_HIQ_PIPE,
3662 						KFD_CIK_HIQ_QUEUE, &dump,
3663 						&n_regs, xcc_id);
3664 		if (!r) {
3665 			seq_printf(
3666 				m,
3667 				"   Inst %d, HIQ on MEC %d Pipe %d Queue %d\n",
3668 				xcc_id,
3669 				KFD_CIK_HIQ_PIPE / get_pipes_per_mec(dqm) + 1,
3670 				KFD_CIK_HIQ_PIPE % get_pipes_per_mec(dqm),
3671 				KFD_CIK_HIQ_QUEUE);
3672 			seq_reg_dump(m, dump, n_regs);
3673 
3674 			kfree(dump);
3675 		}
3676 
3677 		for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
3678 			int pipe_offset = pipe * get_queues_per_pipe(dqm);
3679 
3680 			for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) {
3681 				if (!test_bit(pipe_offset + queue,
3682 				      dqm->dev->kfd->shared_resources.cp_queue_bitmap))
3683 					continue;
3684 
3685 				r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev,
3686 								pipe, queue,
3687 								&dump, &n_regs,
3688 								xcc_id);
3689 				if (r)
3690 					break;
3691 
3692 				seq_printf(m,
3693 					   " Inst %d,  CP Pipe %d, Queue %d\n",
3694 					   xcc_id, pipe, queue);
3695 				seq_reg_dump(m, dump, n_regs);
3696 
3697 				kfree(dump);
3698 			}
3699 		}
3700 	}
3701 
3702 	sdma_engine_start = dqm->dev->node_id * get_num_all_sdma_engines(dqm);
3703 	for (pipe = sdma_engine_start;
3704 	     pipe < (sdma_engine_start + get_num_all_sdma_engines(dqm));
3705 	     pipe++) {
3706 		for (queue = 0;
3707 		     queue < dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
3708 		     queue++) {
3709 			r = dqm->dev->kfd2kgd->hqd_sdma_dump(
3710 				dqm->dev->adev, pipe, queue, &dump, &n_regs);
3711 			if (r)
3712 				break;
3713 
3714 			seq_printf(m, "  SDMA Engine %d, RLC %d\n",
3715 				  pipe, queue);
3716 			seq_reg_dump(m, dump, n_regs);
3717 
3718 			kfree(dump);
3719 		}
3720 	}
3721 
3722 	return r;
3723 }
3724 
3725 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm)
3726 {
3727 	int r = 0;
3728 
3729 	dqm_lock(dqm);
3730 	r = pm_debugfs_hang_hws(&dqm->packet_mgr);
3731 	if (r) {
3732 		dqm_unlock(dqm);
3733 		return r;
3734 	}
3735 	dqm->active_runlist = true;
3736 	r = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES,
3737 				0, USE_DEFAULT_GRACE_PERIOD);
3738 	dqm_unlock(dqm);
3739 
3740 	return r;
3741 }
3742 
3743 #endif
3744