1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2014-2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/ratelimit.h> 26 #include <linux/printk.h> 27 #include <linux/slab.h> 28 #include <linux/list.h> 29 #include <linux/types.h> 30 #include <linux/bitops.h> 31 #include <linux/sched.h> 32 #include "kfd_priv.h" 33 #include "kfd_device_queue_manager.h" 34 #include "kfd_mqd_manager.h" 35 #include "cik_regs.h" 36 #include "kfd_kernel_queue.h" 37 #include "amdgpu_amdkfd.h" 38 #include "amdgpu_reset.h" 39 #include "amdgpu_sdma.h" 40 #include "mes_v11_api_def.h" 41 #include "kfd_debug.h" 42 43 /* Size of the per-pipe EOP queue */ 44 #define CIK_HPD_EOP_BYTES_LOG2 11 45 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2) 46 /* See unmap_queues_cpsch() */ 47 #define USE_DEFAULT_GRACE_PERIOD 0xffffffff 48 49 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm, 50 u32 pasid, unsigned int vmid); 51 52 static int execute_queues_cpsch(struct device_queue_manager *dqm, 53 enum kfd_unmap_queues_filter filter, 54 uint32_t filter_param, 55 uint32_t grace_period); 56 static int unmap_queues_cpsch(struct device_queue_manager *dqm, 57 enum kfd_unmap_queues_filter filter, 58 uint32_t filter_param, 59 uint32_t grace_period, 60 bool reset); 61 62 static int map_queues_cpsch(struct device_queue_manager *dqm); 63 64 static void deallocate_sdma_queue(struct device_queue_manager *dqm, 65 struct queue *q); 66 67 static inline void deallocate_hqd(struct device_queue_manager *dqm, 68 struct queue *q); 69 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q); 70 static int allocate_sdma_queue(struct device_queue_manager *dqm, 71 struct queue *q, const uint32_t *restore_sdma_id); 72 73 static int reset_queues_on_hws_hang(struct device_queue_manager *dqm, bool is_sdma); 74 75 static inline 76 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type) 77 { 78 if (type == KFD_QUEUE_TYPE_SDMA || type == KFD_QUEUE_TYPE_SDMA_XGMI) 79 return KFD_MQD_TYPE_SDMA; 80 return KFD_MQD_TYPE_CP; 81 } 82 83 static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe) 84 { 85 int i; 86 int pipe_offset = (mec * dqm->dev->kfd->shared_resources.num_pipe_per_mec 87 + pipe) * dqm->dev->kfd->shared_resources.num_queue_per_pipe; 88 89 /* queue is available for KFD usage if bit is 1 */ 90 for (i = 0; i < dqm->dev->kfd->shared_resources.num_queue_per_pipe; ++i) 91 if (test_bit(pipe_offset + i, 92 dqm->dev->kfd->shared_resources.cp_queue_bitmap)) 93 return true; 94 return false; 95 } 96 97 unsigned int get_cp_queues_num(struct device_queue_manager *dqm) 98 { 99 return bitmap_weight(dqm->dev->kfd->shared_resources.cp_queue_bitmap, 100 AMDGPU_MAX_QUEUES); 101 } 102 103 unsigned int get_queues_per_pipe(struct device_queue_manager *dqm) 104 { 105 return dqm->dev->kfd->shared_resources.num_queue_per_pipe; 106 } 107 108 unsigned int get_pipes_per_mec(struct device_queue_manager *dqm) 109 { 110 return dqm->dev->kfd->shared_resources.num_pipe_per_mec; 111 } 112 113 static unsigned int get_num_all_sdma_engines(struct device_queue_manager *dqm) 114 { 115 return kfd_get_num_sdma_engines(dqm->dev) + 116 kfd_get_num_xgmi_sdma_engines(dqm->dev); 117 } 118 119 unsigned int get_num_sdma_queues(struct device_queue_manager *dqm) 120 { 121 return kfd_get_num_sdma_engines(dqm->dev) * 122 dqm->dev->kfd->device_info.num_sdma_queues_per_engine; 123 } 124 125 unsigned int get_num_xgmi_sdma_queues(struct device_queue_manager *dqm) 126 { 127 return kfd_get_num_xgmi_sdma_engines(dqm->dev) * 128 dqm->dev->kfd->device_info.num_sdma_queues_per_engine; 129 } 130 131 static void init_sdma_bitmaps(struct device_queue_manager *dqm) 132 { 133 bitmap_zero(dqm->sdma_bitmap, KFD_MAX_SDMA_QUEUES); 134 bitmap_set(dqm->sdma_bitmap, 0, get_num_sdma_queues(dqm)); 135 136 bitmap_zero(dqm->xgmi_sdma_bitmap, KFD_MAX_SDMA_QUEUES); 137 bitmap_set(dqm->xgmi_sdma_bitmap, 0, get_num_xgmi_sdma_queues(dqm)); 138 139 /* Mask out the reserved queues */ 140 bitmap_clear(dqm->sdma_bitmap, 0, kfd_get_num_sdma_engines(dqm->dev) * 141 dqm->dev->kfd->device_info.num_reserved_sdma_queues_per_engine); 142 bitmap_clear(dqm->xgmi_sdma_bitmap, 0, kfd_get_num_xgmi_sdma_engines(dqm->dev) * 143 dqm->dev->kfd->device_info.num_reserved_sdma_queues_per_engine); 144 } 145 146 void program_sh_mem_settings(struct device_queue_manager *dqm, 147 struct qcm_process_device *qpd) 148 { 149 uint32_t xcc_mask = dqm->dev->xcc_mask; 150 int xcc_id; 151 152 for_each_inst(xcc_id, xcc_mask) 153 dqm->dev->kfd2kgd->program_sh_mem_settings( 154 dqm->dev->adev, qpd->vmid, qpd->sh_mem_config, 155 qpd->sh_mem_ape1_base, qpd->sh_mem_ape1_limit, 156 qpd->sh_mem_bases, xcc_id); 157 } 158 159 static void kfd_hws_hang(struct device_queue_manager *dqm) 160 { 161 struct device_process_node *cur; 162 struct qcm_process_device *qpd; 163 struct queue *q; 164 165 /* Mark all device queues as reset. */ 166 list_for_each_entry(cur, &dqm->queues, list) { 167 qpd = cur->qpd; 168 list_for_each_entry(q, &qpd->queues_list, list) { 169 struct kfd_process_device *pdd = qpd_to_pdd(qpd); 170 171 pdd->has_reset_queue = true; 172 } 173 } 174 175 /* 176 * Issue a GPU reset if HWS is unresponsive 177 */ 178 amdgpu_amdkfd_gpu_reset(dqm->dev->adev); 179 } 180 181 static int convert_to_mes_queue_type(int queue_type) 182 { 183 int mes_queue_type; 184 185 switch (queue_type) { 186 case KFD_QUEUE_TYPE_COMPUTE: 187 mes_queue_type = MES_QUEUE_TYPE_COMPUTE; 188 break; 189 case KFD_QUEUE_TYPE_SDMA: 190 mes_queue_type = MES_QUEUE_TYPE_SDMA; 191 break; 192 default: 193 WARN(1, "Invalid queue type %d", queue_type); 194 mes_queue_type = -EINVAL; 195 break; 196 } 197 198 return mes_queue_type; 199 } 200 201 static int add_queue_mes(struct device_queue_manager *dqm, struct queue *q, 202 struct qcm_process_device *qpd) 203 { 204 struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev; 205 struct kfd_process_device *pdd = qpd_to_pdd(qpd); 206 struct mes_add_queue_input queue_input; 207 int r, queue_type; 208 uint64_t wptr_addr_off; 209 210 if (!dqm->sched_running || dqm->sched_halt) 211 return 0; 212 if (!down_read_trylock(&adev->reset_domain->sem)) 213 return -EIO; 214 215 memset(&queue_input, 0x0, sizeof(struct mes_add_queue_input)); 216 queue_input.process_id = pdd->pasid; 217 queue_input.page_table_base_addr = qpd->page_table_base; 218 queue_input.process_va_start = 0; 219 queue_input.process_va_end = adev->vm_manager.max_pfn - 1; 220 /* MES unit for quantum is 100ns */ 221 queue_input.process_quantum = KFD_MES_PROCESS_QUANTUM; /* Equivalent to 10ms. */ 222 queue_input.process_context_addr = pdd->proc_ctx_gpu_addr; 223 queue_input.gang_quantum = KFD_MES_GANG_QUANTUM; /* Equivalent to 1ms */ 224 queue_input.gang_context_addr = q->gang_ctx_gpu_addr; 225 queue_input.inprocess_gang_priority = q->properties.priority; 226 queue_input.gang_global_priority_level = 227 AMDGPU_MES_PRIORITY_LEVEL_NORMAL; 228 queue_input.doorbell_offset = q->properties.doorbell_off; 229 queue_input.mqd_addr = q->gart_mqd_addr; 230 queue_input.wptr_addr = (uint64_t)q->properties.write_ptr; 231 232 wptr_addr_off = (uint64_t)q->properties.write_ptr & (PAGE_SIZE - 1); 233 queue_input.wptr_mc_addr = amdgpu_bo_gpu_offset(q->properties.wptr_bo) + wptr_addr_off; 234 235 queue_input.is_kfd_process = 1; 236 queue_input.is_aql_queue = (q->properties.format == KFD_QUEUE_FORMAT_AQL); 237 queue_input.queue_size = q->properties.queue_size >> 2; 238 239 queue_input.paging = false; 240 queue_input.tba_addr = qpd->tba_addr; 241 queue_input.tma_addr = qpd->tma_addr; 242 queue_input.trap_en = !kfd_dbg_has_cwsr_workaround(q->device); 243 queue_input.skip_process_ctx_clear = 244 qpd->pqm->process->runtime_info.runtime_state == DEBUG_RUNTIME_STATE_ENABLED && 245 (qpd->pqm->process->debug_trap_enabled || 246 kfd_dbg_has_ttmps_always_setup(q->device)); 247 248 queue_type = convert_to_mes_queue_type(q->properties.type); 249 if (queue_type < 0) { 250 dev_err(adev->dev, "Queue type not supported with MES, queue:%d\n", 251 q->properties.type); 252 up_read(&adev->reset_domain->sem); 253 return -EINVAL; 254 } 255 queue_input.queue_type = (uint32_t)queue_type; 256 257 queue_input.exclusively_scheduled = q->properties.is_gws; 258 259 amdgpu_mes_lock(&adev->mes); 260 r = adev->mes.funcs->add_hw_queue(&adev->mes, &queue_input); 261 amdgpu_mes_unlock(&adev->mes); 262 up_read(&adev->reset_domain->sem); 263 if (r) { 264 dev_err(adev->dev, "failed to add hardware queue to MES, doorbell=0x%x\n", 265 q->properties.doorbell_off); 266 dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n"); 267 kfd_hws_hang(dqm); 268 } 269 270 return r; 271 } 272 273 static int remove_queue_mes(struct device_queue_manager *dqm, struct queue *q, 274 struct qcm_process_device *qpd) 275 { 276 struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev; 277 int r; 278 struct mes_remove_queue_input queue_input; 279 280 if (!dqm->sched_running || dqm->sched_halt) 281 return 0; 282 if (!down_read_trylock(&adev->reset_domain->sem)) 283 return -EIO; 284 285 memset(&queue_input, 0x0, sizeof(struct mes_remove_queue_input)); 286 queue_input.doorbell_offset = q->properties.doorbell_off; 287 queue_input.gang_context_addr = q->gang_ctx_gpu_addr; 288 289 amdgpu_mes_lock(&adev->mes); 290 r = adev->mes.funcs->remove_hw_queue(&adev->mes, &queue_input); 291 amdgpu_mes_unlock(&adev->mes); 292 up_read(&adev->reset_domain->sem); 293 294 if (r) { 295 dev_err(adev->dev, "failed to remove hardware queue from MES, doorbell=0x%x\n", 296 q->properties.doorbell_off); 297 dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n"); 298 kfd_hws_hang(dqm); 299 } 300 301 return r; 302 } 303 304 static int remove_all_kfd_queues_mes(struct device_queue_manager *dqm) 305 { 306 struct device_process_node *cur; 307 struct device *dev = dqm->dev->adev->dev; 308 struct qcm_process_device *qpd; 309 struct queue *q; 310 int retval = 0; 311 312 list_for_each_entry(cur, &dqm->queues, list) { 313 qpd = cur->qpd; 314 list_for_each_entry(q, &qpd->queues_list, list) { 315 if (q->properties.is_active) { 316 retval = remove_queue_mes(dqm, q, qpd); 317 if (retval) { 318 dev_err(dev, "%s: Failed to remove queue %d for dev %d", 319 __func__, 320 q->properties.queue_id, 321 dqm->dev->id); 322 return retval; 323 } 324 } 325 } 326 } 327 328 return retval; 329 } 330 331 static int add_all_kfd_queues_mes(struct device_queue_manager *dqm) 332 { 333 struct device_process_node *cur; 334 struct device *dev = dqm->dev->adev->dev; 335 struct qcm_process_device *qpd; 336 struct queue *q; 337 int retval = 0; 338 339 list_for_each_entry(cur, &dqm->queues, list) { 340 qpd = cur->qpd; 341 list_for_each_entry(q, &qpd->queues_list, list) { 342 if (!q->properties.is_active) 343 continue; 344 retval = add_queue_mes(dqm, q, qpd); 345 if (retval) { 346 dev_err(dev, "%s: Failed to add queue %d for dev %d", 347 __func__, 348 q->properties.queue_id, 349 dqm->dev->id); 350 return retval; 351 } 352 } 353 } 354 355 return retval; 356 } 357 358 static int suspend_all_queues_mes(struct device_queue_manager *dqm) 359 { 360 struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev; 361 int r = 0; 362 363 if (!down_read_trylock(&adev->reset_domain->sem)) 364 return -EIO; 365 366 r = amdgpu_mes_suspend(adev); 367 up_read(&adev->reset_domain->sem); 368 369 if (r) { 370 dev_err(adev->dev, "failed to suspend gangs from MES\n"); 371 dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n"); 372 kfd_hws_hang(dqm); 373 } 374 375 return r; 376 } 377 378 static int resume_all_queues_mes(struct device_queue_manager *dqm) 379 { 380 struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev; 381 int r = 0; 382 383 if (!down_read_trylock(&adev->reset_domain->sem)) 384 return -EIO; 385 386 r = amdgpu_mes_resume(adev); 387 up_read(&adev->reset_domain->sem); 388 389 if (r) { 390 dev_err(adev->dev, "failed to resume gangs from MES\n"); 391 dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n"); 392 kfd_hws_hang(dqm); 393 } 394 395 return r; 396 } 397 398 static void increment_queue_count(struct device_queue_manager *dqm, 399 struct qcm_process_device *qpd, 400 struct queue *q) 401 { 402 dqm->active_queue_count++; 403 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE || 404 q->properties.type == KFD_QUEUE_TYPE_DIQ) 405 dqm->active_cp_queue_count++; 406 407 if (q->properties.is_gws) { 408 dqm->gws_queue_count++; 409 qpd->mapped_gws_queue = true; 410 } 411 } 412 413 static void decrement_queue_count(struct device_queue_manager *dqm, 414 struct qcm_process_device *qpd, 415 struct queue *q) 416 { 417 dqm->active_queue_count--; 418 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE || 419 q->properties.type == KFD_QUEUE_TYPE_DIQ) 420 dqm->active_cp_queue_count--; 421 422 if (q->properties.is_gws) { 423 dqm->gws_queue_count--; 424 qpd->mapped_gws_queue = false; 425 } 426 } 427 428 /* 429 * Allocate a doorbell ID to this queue. 430 * If doorbell_id is passed in, make sure requested ID is valid then allocate it. 431 */ 432 static int allocate_doorbell(struct qcm_process_device *qpd, 433 struct queue *q, 434 uint32_t const *restore_id) 435 { 436 struct kfd_node *dev = qpd->dqm->dev; 437 438 if (!KFD_IS_SOC15(dev)) { 439 /* On pre-SOC15 chips we need to use the queue ID to 440 * preserve the user mode ABI. 441 */ 442 443 if (restore_id && *restore_id != q->properties.queue_id) 444 return -EINVAL; 445 446 q->doorbell_id = q->properties.queue_id; 447 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 448 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 449 /* For SDMA queues on SOC15 with 8-byte doorbell, use static 450 * doorbell assignments based on the engine and queue id. 451 * The doobell index distance between RLC (2*i) and (2*i+1) 452 * for a SDMA engine is 512. 453 */ 454 455 uint32_t *idx_offset = dev->kfd->shared_resources.sdma_doorbell_idx; 456 457 /* 458 * q->properties.sdma_engine_id corresponds to the virtual 459 * sdma engine number. However, for doorbell allocation, 460 * we need the physical sdma engine id in order to get the 461 * correct doorbell offset. 462 */ 463 uint32_t valid_id = idx_offset[qpd->dqm->dev->node_id * 464 get_num_all_sdma_engines(qpd->dqm) + 465 q->properties.sdma_engine_id] 466 + (q->properties.sdma_queue_id & 1) 467 * KFD_QUEUE_DOORBELL_MIRROR_OFFSET 468 + (q->properties.sdma_queue_id >> 1); 469 470 if (restore_id && *restore_id != valid_id) 471 return -EINVAL; 472 q->doorbell_id = valid_id; 473 } else { 474 /* For CP queues on SOC15 */ 475 if (restore_id) { 476 /* make sure that ID is free */ 477 if (__test_and_set_bit(*restore_id, qpd->doorbell_bitmap)) 478 return -EINVAL; 479 480 q->doorbell_id = *restore_id; 481 } else { 482 /* or reserve a free doorbell ID */ 483 unsigned int found; 484 485 found = find_first_zero_bit(qpd->doorbell_bitmap, 486 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS); 487 if (found >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) { 488 pr_debug("No doorbells available"); 489 return -EBUSY; 490 } 491 set_bit(found, qpd->doorbell_bitmap); 492 q->doorbell_id = found; 493 } 494 } 495 496 q->properties.doorbell_off = amdgpu_doorbell_index_on_bar(dev->adev, 497 qpd->proc_doorbells, 498 q->doorbell_id, 499 dev->kfd->device_info.doorbell_size); 500 return 0; 501 } 502 503 static void deallocate_doorbell(struct qcm_process_device *qpd, 504 struct queue *q) 505 { 506 unsigned int old; 507 struct kfd_node *dev = qpd->dqm->dev; 508 509 if (!KFD_IS_SOC15(dev) || 510 q->properties.type == KFD_QUEUE_TYPE_SDMA || 511 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 512 return; 513 514 old = test_and_clear_bit(q->doorbell_id, qpd->doorbell_bitmap); 515 WARN_ON(!old); 516 } 517 518 static void program_trap_handler_settings(struct device_queue_manager *dqm, 519 struct qcm_process_device *qpd) 520 { 521 uint32_t xcc_mask = dqm->dev->xcc_mask; 522 int xcc_id; 523 524 if (dqm->dev->kfd2kgd->program_trap_handler_settings) 525 for_each_inst(xcc_id, xcc_mask) 526 dqm->dev->kfd2kgd->program_trap_handler_settings( 527 dqm->dev->adev, qpd->vmid, qpd->tba_addr, 528 qpd->tma_addr, xcc_id); 529 } 530 531 static int allocate_vmid(struct device_queue_manager *dqm, 532 struct qcm_process_device *qpd, 533 struct queue *q) 534 { 535 struct kfd_process_device *pdd = qpd_to_pdd(qpd); 536 struct device *dev = dqm->dev->adev->dev; 537 int allocated_vmid = -1, i; 538 539 for (i = dqm->dev->vm_info.first_vmid_kfd; 540 i <= dqm->dev->vm_info.last_vmid_kfd; i++) { 541 if (!dqm->vmid_pasid[i]) { 542 allocated_vmid = i; 543 break; 544 } 545 } 546 547 if (allocated_vmid < 0) { 548 dev_err(dev, "no more vmid to allocate\n"); 549 return -ENOSPC; 550 } 551 552 pr_debug("vmid allocated: %d\n", allocated_vmid); 553 554 dqm->vmid_pasid[allocated_vmid] = pdd->pasid; 555 556 set_pasid_vmid_mapping(dqm, pdd->pasid, allocated_vmid); 557 558 qpd->vmid = allocated_vmid; 559 q->properties.vmid = allocated_vmid; 560 561 program_sh_mem_settings(dqm, qpd); 562 563 if (KFD_IS_SOC15(dqm->dev) && dqm->dev->kfd->cwsr_enabled) 564 program_trap_handler_settings(dqm, qpd); 565 566 /* qpd->page_table_base is set earlier when register_process() 567 * is called, i.e. when the first queue is created. 568 */ 569 dqm->dev->kfd2kgd->set_vm_context_page_table_base(dqm->dev->adev, 570 qpd->vmid, 571 qpd->page_table_base); 572 /* invalidate the VM context after pasid and vmid mapping is set up */ 573 kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY); 574 575 if (dqm->dev->kfd2kgd->set_scratch_backing_va) 576 dqm->dev->kfd2kgd->set_scratch_backing_va(dqm->dev->adev, 577 qpd->sh_hidden_private_base, qpd->vmid); 578 579 return 0; 580 } 581 582 static int flush_texture_cache_nocpsch(struct kfd_node *kdev, 583 struct qcm_process_device *qpd) 584 { 585 const struct packet_manager_funcs *pmf = qpd->dqm->packet_mgr.pmf; 586 int ret; 587 588 if (!qpd->ib_kaddr) 589 return -ENOMEM; 590 591 ret = pmf->release_mem(qpd->ib_base, (uint32_t *)qpd->ib_kaddr); 592 if (ret) 593 return ret; 594 595 return amdgpu_amdkfd_submit_ib(kdev->adev, KGD_ENGINE_MEC1, qpd->vmid, 596 qpd->ib_base, (uint32_t *)qpd->ib_kaddr, 597 pmf->release_mem_size / sizeof(uint32_t)); 598 } 599 600 static void deallocate_vmid(struct device_queue_manager *dqm, 601 struct qcm_process_device *qpd, 602 struct queue *q) 603 { 604 struct device *dev = dqm->dev->adev->dev; 605 606 /* On GFX v7, CP doesn't flush TC at dequeue */ 607 if (q->device->adev->asic_type == CHIP_HAWAII) 608 if (flush_texture_cache_nocpsch(q->device, qpd)) 609 dev_err(dev, "Failed to flush TC\n"); 610 611 kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY); 612 613 /* Release the vmid mapping */ 614 set_pasid_vmid_mapping(dqm, 0, qpd->vmid); 615 dqm->vmid_pasid[qpd->vmid] = 0; 616 617 qpd->vmid = 0; 618 q->properties.vmid = 0; 619 } 620 621 static int create_queue_nocpsch(struct device_queue_manager *dqm, 622 struct queue *q, 623 struct qcm_process_device *qpd, 624 const struct kfd_criu_queue_priv_data *qd, 625 const void *restore_mqd, const void *restore_ctl_stack) 626 { 627 struct mqd_manager *mqd_mgr; 628 int retval; 629 630 dqm_lock(dqm); 631 632 if (dqm->total_queue_count >= max_num_of_queues_per_device) { 633 pr_warn("Can't create new usermode queue because %d queues were already created\n", 634 dqm->total_queue_count); 635 retval = -EPERM; 636 goto out_unlock; 637 } 638 639 if (list_empty(&qpd->queues_list)) { 640 retval = allocate_vmid(dqm, qpd, q); 641 if (retval) 642 goto out_unlock; 643 } 644 q->properties.vmid = qpd->vmid; 645 /* 646 * Eviction state logic: mark all queues as evicted, even ones 647 * not currently active. Restoring inactive queues later only 648 * updates the is_evicted flag but is a no-op otherwise. 649 */ 650 q->properties.is_evicted = !!qpd->evicted; 651 652 q->properties.tba_addr = qpd->tba_addr; 653 q->properties.tma_addr = qpd->tma_addr; 654 655 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 656 q->properties.type)]; 657 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) { 658 retval = allocate_hqd(dqm, q); 659 if (retval) 660 goto deallocate_vmid; 661 pr_debug("Loading mqd to hqd on pipe %d, queue %d\n", 662 q->pipe, q->queue); 663 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 664 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 665 retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL); 666 if (retval) 667 goto deallocate_vmid; 668 dqm->asic_ops.init_sdma_vm(dqm, q, qpd); 669 } 670 671 retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL); 672 if (retval) 673 goto out_deallocate_hqd; 674 675 /* Temporarily release dqm lock to avoid a circular lock dependency */ 676 dqm_unlock(dqm); 677 q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties); 678 dqm_lock(dqm); 679 680 if (!q->mqd_mem_obj) { 681 retval = -ENOMEM; 682 goto out_deallocate_doorbell; 683 } 684 685 if (qd) 686 mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr, 687 &q->properties, restore_mqd, restore_ctl_stack, 688 qd->ctl_stack_size); 689 else 690 mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, 691 &q->gart_mqd_addr, &q->properties); 692 693 if (q->properties.is_active) { 694 if (!dqm->sched_running) { 695 WARN_ONCE(1, "Load non-HWS mqd while stopped\n"); 696 goto add_queue_to_list; 697 } 698 699 if (WARN(q->process->mm != current->mm, 700 "should only run in user thread")) 701 retval = -EFAULT; 702 else 703 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe, 704 q->queue, &q->properties, current->mm); 705 if (retval) 706 goto out_free_mqd; 707 } 708 709 add_queue_to_list: 710 list_add(&q->list, &qpd->queues_list); 711 qpd->queue_count++; 712 if (q->properties.is_active) 713 increment_queue_count(dqm, qpd, q); 714 715 /* 716 * Unconditionally increment this counter, regardless of the queue's 717 * type or whether the queue is active. 718 */ 719 dqm->total_queue_count++; 720 pr_debug("Total of %d queues are accountable so far\n", 721 dqm->total_queue_count); 722 goto out_unlock; 723 724 out_free_mqd: 725 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 726 out_deallocate_doorbell: 727 deallocate_doorbell(qpd, q); 728 out_deallocate_hqd: 729 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) 730 deallocate_hqd(dqm, q); 731 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 732 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 733 deallocate_sdma_queue(dqm, q); 734 deallocate_vmid: 735 if (list_empty(&qpd->queues_list)) 736 deallocate_vmid(dqm, qpd, q); 737 out_unlock: 738 dqm_unlock(dqm); 739 return retval; 740 } 741 742 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q) 743 { 744 bool set; 745 int pipe, bit, i; 746 747 set = false; 748 749 for (pipe = dqm->next_pipe_to_allocate, i = 0; 750 i < get_pipes_per_mec(dqm); 751 pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) { 752 753 if (!is_pipe_enabled(dqm, 0, pipe)) 754 continue; 755 756 if (dqm->allocated_queues[pipe] != 0) { 757 bit = ffs(dqm->allocated_queues[pipe]) - 1; 758 dqm->allocated_queues[pipe] &= ~(1 << bit); 759 q->pipe = pipe; 760 q->queue = bit; 761 set = true; 762 break; 763 } 764 } 765 766 if (!set) 767 return -EBUSY; 768 769 pr_debug("hqd slot - pipe %d, queue %d\n", q->pipe, q->queue); 770 /* horizontal hqd allocation */ 771 dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm); 772 773 return 0; 774 } 775 776 static inline void deallocate_hqd(struct device_queue_manager *dqm, 777 struct queue *q) 778 { 779 dqm->allocated_queues[q->pipe] |= (1 << q->queue); 780 } 781 782 #define SQ_IND_CMD_CMD_KILL 0x00000003 783 #define SQ_IND_CMD_MODE_BROADCAST 0x00000001 784 785 static int dbgdev_wave_reset_wavefronts(struct kfd_node *dev, struct kfd_process *p) 786 { 787 int status = 0; 788 unsigned int vmid; 789 uint16_t queried_pasid; 790 union SQ_CMD_BITS reg_sq_cmd; 791 union GRBM_GFX_INDEX_BITS reg_gfx_index; 792 struct kfd_process_device *pdd; 793 int first_vmid_to_scan = dev->vm_info.first_vmid_kfd; 794 int last_vmid_to_scan = dev->vm_info.last_vmid_kfd; 795 uint32_t xcc_mask = dev->xcc_mask; 796 int xcc_id; 797 798 reg_sq_cmd.u32All = 0; 799 reg_gfx_index.u32All = 0; 800 801 pr_debug("Killing all process wavefronts\n"); 802 803 if (!dev->kfd2kgd->get_atc_vmid_pasid_mapping_info) { 804 dev_err(dev->adev->dev, "no vmid pasid mapping supported\n"); 805 return -EOPNOTSUPP; 806 } 807 808 /* taking the VMID for that process on the safe way using PDD */ 809 pdd = kfd_get_process_device_data(dev, p); 810 if (!pdd) 811 return -EFAULT; 812 813 /* Scan all registers in the range ATC_VMID8_PASID_MAPPING .. 814 * ATC_VMID15_PASID_MAPPING 815 * to check which VMID the current process is mapped to. 816 */ 817 818 for (vmid = first_vmid_to_scan; vmid <= last_vmid_to_scan; vmid++) { 819 status = dev->kfd2kgd->get_atc_vmid_pasid_mapping_info 820 (dev->adev, vmid, &queried_pasid); 821 822 if (status && queried_pasid == pdd->pasid) { 823 pr_debug("Killing wave fronts of vmid %d and process pid %d\n", 824 vmid, p->lead_thread->pid); 825 break; 826 } 827 } 828 829 if (vmid > last_vmid_to_scan) { 830 dev_err(dev->adev->dev, "Didn't find vmid for process pid %d\n", 831 p->lead_thread->pid); 832 return -EFAULT; 833 } 834 835 reg_gfx_index.bits.sh_broadcast_writes = 1; 836 reg_gfx_index.bits.se_broadcast_writes = 1; 837 reg_gfx_index.bits.instance_broadcast_writes = 1; 838 reg_sq_cmd.bits.mode = SQ_IND_CMD_MODE_BROADCAST; 839 reg_sq_cmd.bits.cmd = SQ_IND_CMD_CMD_KILL; 840 reg_sq_cmd.bits.vm_id = vmid; 841 842 for_each_inst(xcc_id, xcc_mask) 843 dev->kfd2kgd->wave_control_execute( 844 dev->adev, reg_gfx_index.u32All, 845 reg_sq_cmd.u32All, xcc_id); 846 847 return 0; 848 } 849 850 /* Access to DQM has to be locked before calling destroy_queue_nocpsch_locked 851 * to avoid asynchronized access 852 */ 853 static int destroy_queue_nocpsch_locked(struct device_queue_manager *dqm, 854 struct qcm_process_device *qpd, 855 struct queue *q) 856 { 857 int retval; 858 struct mqd_manager *mqd_mgr; 859 860 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 861 q->properties.type)]; 862 863 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) 864 deallocate_hqd(dqm, q); 865 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA) 866 deallocate_sdma_queue(dqm, q); 867 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 868 deallocate_sdma_queue(dqm, q); 869 else { 870 pr_debug("q->properties.type %d is invalid\n", 871 q->properties.type); 872 return -EINVAL; 873 } 874 dqm->total_queue_count--; 875 876 deallocate_doorbell(qpd, q); 877 878 if (!dqm->sched_running) { 879 WARN_ONCE(1, "Destroy non-HWS queue while stopped\n"); 880 return 0; 881 } 882 883 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd, 884 KFD_PREEMPT_TYPE_WAVEFRONT_RESET, 885 KFD_UNMAP_LATENCY_MS, 886 q->pipe, q->queue); 887 if (retval == -ETIME) 888 qpd->reset_wavefronts = true; 889 890 list_del(&q->list); 891 if (list_empty(&qpd->queues_list)) { 892 if (qpd->reset_wavefronts) { 893 pr_warn("Resetting wave fronts (nocpsch) on dev %p\n", 894 dqm->dev); 895 /* dbgdev_wave_reset_wavefronts has to be called before 896 * deallocate_vmid(), i.e. when vmid is still in use. 897 */ 898 dbgdev_wave_reset_wavefronts(dqm->dev, 899 qpd->pqm->process); 900 qpd->reset_wavefronts = false; 901 } 902 903 deallocate_vmid(dqm, qpd, q); 904 } 905 qpd->queue_count--; 906 if (q->properties.is_active) 907 decrement_queue_count(dqm, qpd, q); 908 909 return retval; 910 } 911 912 static int destroy_queue_nocpsch(struct device_queue_manager *dqm, 913 struct qcm_process_device *qpd, 914 struct queue *q) 915 { 916 int retval; 917 uint64_t sdma_val = 0; 918 struct device *dev = dqm->dev->adev->dev; 919 struct kfd_process_device *pdd = qpd_to_pdd(qpd); 920 struct mqd_manager *mqd_mgr = 921 dqm->mqd_mgrs[get_mqd_type_from_queue_type(q->properties.type)]; 922 923 /* Get the SDMA queue stats */ 924 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) || 925 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { 926 retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr, 927 &sdma_val); 928 if (retval) 929 dev_err(dev, "Failed to read SDMA queue counter for queue: %d\n", 930 q->properties.queue_id); 931 } 932 933 dqm_lock(dqm); 934 retval = destroy_queue_nocpsch_locked(dqm, qpd, q); 935 if (!retval) 936 pdd->sdma_past_activity_counter += sdma_val; 937 dqm_unlock(dqm); 938 939 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 940 941 return retval; 942 } 943 944 static int update_queue(struct device_queue_manager *dqm, struct queue *q, 945 struct mqd_update_info *minfo) 946 { 947 int retval = 0; 948 struct device *dev = dqm->dev->adev->dev; 949 struct mqd_manager *mqd_mgr; 950 struct kfd_process_device *pdd; 951 bool prev_active = false; 952 953 dqm_lock(dqm); 954 pdd = kfd_get_process_device_data(q->device, q->process); 955 if (!pdd) { 956 retval = -ENODEV; 957 goto out_unlock; 958 } 959 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 960 q->properties.type)]; 961 962 /* Save previous activity state for counters */ 963 prev_active = q->properties.is_active; 964 965 /* Make sure the queue is unmapped before updating the MQD */ 966 if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) { 967 if (!dqm->dev->kfd->shared_resources.enable_mes) 968 retval = unmap_queues_cpsch(dqm, 969 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD, false); 970 else if (prev_active) 971 retval = remove_queue_mes(dqm, q, &pdd->qpd); 972 973 /* queue is reset so inaccessable */ 974 if (pdd->has_reset_queue) { 975 retval = -EACCES; 976 goto out_unlock; 977 } 978 979 if (retval) { 980 dev_err(dev, "unmap queue failed\n"); 981 goto out_unlock; 982 } 983 } else if (prev_active && 984 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE || 985 q->properties.type == KFD_QUEUE_TYPE_SDMA || 986 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { 987 988 if (!dqm->sched_running) { 989 WARN_ONCE(1, "Update non-HWS queue while stopped\n"); 990 goto out_unlock; 991 } 992 993 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd, 994 (dqm->dev->kfd->cwsr_enabled ? 995 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE : 996 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN), 997 KFD_UNMAP_LATENCY_MS, q->pipe, q->queue); 998 if (retval) { 999 dev_err(dev, "destroy mqd failed\n"); 1000 goto out_unlock; 1001 } 1002 } 1003 1004 mqd_mgr->update_mqd(mqd_mgr, q->mqd, &q->properties, minfo); 1005 1006 /* 1007 * check active state vs. the previous state and modify 1008 * counter accordingly. map_queues_cpsch uses the 1009 * dqm->active_queue_count to determine whether a new runlist must be 1010 * uploaded. 1011 */ 1012 if (q->properties.is_active && !prev_active) { 1013 increment_queue_count(dqm, &pdd->qpd, q); 1014 } else if (!q->properties.is_active && prev_active) { 1015 decrement_queue_count(dqm, &pdd->qpd, q); 1016 } else if (q->gws && !q->properties.is_gws) { 1017 if (q->properties.is_active) { 1018 dqm->gws_queue_count++; 1019 pdd->qpd.mapped_gws_queue = true; 1020 } 1021 q->properties.is_gws = true; 1022 } else if (!q->gws && q->properties.is_gws) { 1023 if (q->properties.is_active) { 1024 dqm->gws_queue_count--; 1025 pdd->qpd.mapped_gws_queue = false; 1026 } 1027 q->properties.is_gws = false; 1028 } 1029 1030 if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) { 1031 if (!dqm->dev->kfd->shared_resources.enable_mes) 1032 retval = map_queues_cpsch(dqm); 1033 else if (q->properties.is_active) 1034 retval = add_queue_mes(dqm, q, &pdd->qpd); 1035 } else if (q->properties.is_active && 1036 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE || 1037 q->properties.type == KFD_QUEUE_TYPE_SDMA || 1038 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { 1039 if (WARN(q->process->mm != current->mm, 1040 "should only run in user thread")) 1041 retval = -EFAULT; 1042 else 1043 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, 1044 q->pipe, q->queue, 1045 &q->properties, current->mm); 1046 } 1047 1048 out_unlock: 1049 dqm_unlock(dqm); 1050 return retval; 1051 } 1052 1053 /* suspend_single_queue does not lock the dqm like the 1054 * evict_process_queues_cpsch or evict_process_queues_nocpsch. You should 1055 * lock the dqm before calling, and unlock after calling. 1056 * 1057 * The reason we don't lock the dqm is because this function may be 1058 * called on multiple queues in a loop, so rather than locking/unlocking 1059 * multiple times, we will just keep the dqm locked for all of the calls. 1060 */ 1061 static int suspend_single_queue(struct device_queue_manager *dqm, 1062 struct kfd_process_device *pdd, 1063 struct queue *q) 1064 { 1065 bool is_new; 1066 1067 if (q->properties.is_suspended) 1068 return 0; 1069 1070 pr_debug("Suspending process pid %d queue [%i]\n", 1071 pdd->process->lead_thread->pid, 1072 q->properties.queue_id); 1073 1074 is_new = q->properties.exception_status & KFD_EC_MASK(EC_QUEUE_NEW); 1075 1076 if (is_new || q->properties.is_being_destroyed) { 1077 pr_debug("Suspend: skip %s queue id %i\n", 1078 is_new ? "new" : "destroyed", 1079 q->properties.queue_id); 1080 return -EBUSY; 1081 } 1082 1083 q->properties.is_suspended = true; 1084 if (q->properties.is_active) { 1085 if (dqm->dev->kfd->shared_resources.enable_mes) { 1086 int r = remove_queue_mes(dqm, q, &pdd->qpd); 1087 1088 if (r) 1089 return r; 1090 } 1091 1092 decrement_queue_count(dqm, &pdd->qpd, q); 1093 q->properties.is_active = false; 1094 } 1095 1096 return 0; 1097 } 1098 1099 /* resume_single_queue does not lock the dqm like the functions 1100 * restore_process_queues_cpsch or restore_process_queues_nocpsch. You should 1101 * lock the dqm before calling, and unlock after calling. 1102 * 1103 * The reason we don't lock the dqm is because this function may be 1104 * called on multiple queues in a loop, so rather than locking/unlocking 1105 * multiple times, we will just keep the dqm locked for all of the calls. 1106 */ 1107 static int resume_single_queue(struct device_queue_manager *dqm, 1108 struct qcm_process_device *qpd, 1109 struct queue *q) 1110 { 1111 struct kfd_process_device *pdd; 1112 1113 if (!q->properties.is_suspended) 1114 return 0; 1115 1116 pdd = qpd_to_pdd(qpd); 1117 1118 pr_debug("Restoring from suspend process pid %d queue [%i]\n", 1119 pdd->process->lead_thread->pid, 1120 q->properties.queue_id); 1121 1122 q->properties.is_suspended = false; 1123 1124 if (QUEUE_IS_ACTIVE(q->properties)) { 1125 if (dqm->dev->kfd->shared_resources.enable_mes) { 1126 int r = add_queue_mes(dqm, q, &pdd->qpd); 1127 1128 if (r) 1129 return r; 1130 } 1131 1132 q->properties.is_active = true; 1133 increment_queue_count(dqm, qpd, q); 1134 } 1135 1136 return 0; 1137 } 1138 1139 static int evict_process_queues_nocpsch(struct device_queue_manager *dqm, 1140 struct qcm_process_device *qpd) 1141 { 1142 struct queue *q; 1143 struct mqd_manager *mqd_mgr; 1144 struct kfd_process_device *pdd; 1145 int retval, ret = 0; 1146 1147 dqm_lock(dqm); 1148 if (qpd->evicted++ > 0) /* already evicted, do nothing */ 1149 goto out; 1150 1151 pdd = qpd_to_pdd(qpd); 1152 pr_debug_ratelimited("Evicting process pid %d queues\n", 1153 pdd->process->lead_thread->pid); 1154 1155 pdd->last_evict_timestamp = get_jiffies_64(); 1156 /* Mark all queues as evicted. Deactivate all active queues on 1157 * the qpd. 1158 */ 1159 list_for_each_entry(q, &qpd->queues_list, list) { 1160 q->properties.is_evicted = true; 1161 if (!q->properties.is_active) 1162 continue; 1163 1164 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 1165 q->properties.type)]; 1166 q->properties.is_active = false; 1167 decrement_queue_count(dqm, qpd, q); 1168 1169 if (WARN_ONCE(!dqm->sched_running, "Evict when stopped\n")) 1170 continue; 1171 1172 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd, 1173 (dqm->dev->kfd->cwsr_enabled ? 1174 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE : 1175 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN), 1176 KFD_UNMAP_LATENCY_MS, q->pipe, q->queue); 1177 if (retval && !ret) 1178 /* Return the first error, but keep going to 1179 * maintain a consistent eviction state 1180 */ 1181 ret = retval; 1182 } 1183 1184 out: 1185 dqm_unlock(dqm); 1186 return ret; 1187 } 1188 1189 static int evict_process_queues_cpsch(struct device_queue_manager *dqm, 1190 struct qcm_process_device *qpd) 1191 { 1192 struct queue *q; 1193 struct device *dev = dqm->dev->adev->dev; 1194 struct kfd_process_device *pdd; 1195 int retval = 0; 1196 1197 dqm_lock(dqm); 1198 if (qpd->evicted++ > 0) /* already evicted, do nothing */ 1199 goto out; 1200 1201 pdd = qpd_to_pdd(qpd); 1202 1203 /* The debugger creates processes that temporarily have not acquired 1204 * all VMs for all devices and has no VMs itself. 1205 * Skip queue eviction on process eviction. 1206 */ 1207 if (!pdd->drm_priv) 1208 goto out; 1209 1210 pr_debug_ratelimited("Evicting process pid %d queues\n", 1211 pdd->process->lead_thread->pid); 1212 1213 if (dqm->dev->kfd->shared_resources.enable_mes) { 1214 pdd->last_evict_timestamp = get_jiffies_64(); 1215 retval = suspend_all_queues_mes(dqm); 1216 if (retval) { 1217 dev_err(dev, "Suspending all queues failed"); 1218 goto out; 1219 } 1220 } 1221 1222 /* Mark all queues as evicted. Deactivate all active queues on 1223 * the qpd. 1224 */ 1225 list_for_each_entry(q, &qpd->queues_list, list) { 1226 q->properties.is_evicted = true; 1227 if (!q->properties.is_active) 1228 continue; 1229 1230 q->properties.is_active = false; 1231 decrement_queue_count(dqm, qpd, q); 1232 1233 if (dqm->dev->kfd->shared_resources.enable_mes) { 1234 retval = remove_queue_mes(dqm, q, qpd); 1235 if (retval) { 1236 dev_err(dev, "Failed to evict queue %d\n", 1237 q->properties.queue_id); 1238 goto out; 1239 } 1240 } 1241 } 1242 1243 if (!dqm->dev->kfd->shared_resources.enable_mes) { 1244 pdd->last_evict_timestamp = get_jiffies_64(); 1245 retval = execute_queues_cpsch(dqm, 1246 qpd->is_debug ? 1247 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES : 1248 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, 1249 USE_DEFAULT_GRACE_PERIOD); 1250 } else { 1251 retval = resume_all_queues_mes(dqm); 1252 if (retval) 1253 dev_err(dev, "Resuming all queues failed"); 1254 } 1255 1256 out: 1257 dqm_unlock(dqm); 1258 return retval; 1259 } 1260 1261 static int restore_process_queues_nocpsch(struct device_queue_manager *dqm, 1262 struct qcm_process_device *qpd) 1263 { 1264 struct mm_struct *mm = NULL; 1265 struct queue *q; 1266 struct mqd_manager *mqd_mgr; 1267 struct kfd_process_device *pdd; 1268 uint64_t pd_base; 1269 uint64_t eviction_duration; 1270 int retval, ret = 0; 1271 1272 pdd = qpd_to_pdd(qpd); 1273 /* Retrieve PD base */ 1274 pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv); 1275 1276 dqm_lock(dqm); 1277 if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */ 1278 goto out; 1279 if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */ 1280 qpd->evicted--; 1281 goto out; 1282 } 1283 1284 pr_debug_ratelimited("Restoring process pid %d queues\n", 1285 pdd->process->lead_thread->pid); 1286 1287 /* Update PD Base in QPD */ 1288 qpd->page_table_base = pd_base; 1289 pr_debug("Updated PD address to 0x%llx\n", pd_base); 1290 1291 if (!list_empty(&qpd->queues_list)) { 1292 dqm->dev->kfd2kgd->set_vm_context_page_table_base( 1293 dqm->dev->adev, 1294 qpd->vmid, 1295 qpd->page_table_base); 1296 kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY); 1297 } 1298 1299 /* Take a safe reference to the mm_struct, which may otherwise 1300 * disappear even while the kfd_process is still referenced. 1301 */ 1302 mm = get_task_mm(pdd->process->lead_thread); 1303 if (!mm) { 1304 ret = -EFAULT; 1305 goto out; 1306 } 1307 1308 /* Remove the eviction flags. Activate queues that are not 1309 * inactive for other reasons. 1310 */ 1311 list_for_each_entry(q, &qpd->queues_list, list) { 1312 q->properties.is_evicted = false; 1313 if (!QUEUE_IS_ACTIVE(q->properties)) 1314 continue; 1315 1316 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 1317 q->properties.type)]; 1318 q->properties.is_active = true; 1319 increment_queue_count(dqm, qpd, q); 1320 1321 if (WARN_ONCE(!dqm->sched_running, "Restore when stopped\n")) 1322 continue; 1323 1324 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe, 1325 q->queue, &q->properties, mm); 1326 if (retval && !ret) 1327 /* Return the first error, but keep going to 1328 * maintain a consistent eviction state 1329 */ 1330 ret = retval; 1331 } 1332 qpd->evicted = 0; 1333 eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp; 1334 atomic64_add(eviction_duration, &pdd->evict_duration_counter); 1335 out: 1336 if (mm) 1337 mmput(mm); 1338 dqm_unlock(dqm); 1339 return ret; 1340 } 1341 1342 static int restore_process_queues_cpsch(struct device_queue_manager *dqm, 1343 struct qcm_process_device *qpd) 1344 { 1345 struct queue *q; 1346 struct device *dev = dqm->dev->adev->dev; 1347 struct kfd_process_device *pdd; 1348 uint64_t eviction_duration; 1349 int retval = 0; 1350 1351 pdd = qpd_to_pdd(qpd); 1352 1353 dqm_lock(dqm); 1354 if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */ 1355 goto out; 1356 if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */ 1357 qpd->evicted--; 1358 goto out; 1359 } 1360 1361 /* The debugger creates processes that temporarily have not acquired 1362 * all VMs for all devices and has no VMs itself. 1363 * Skip queue restore on process restore. 1364 */ 1365 if (!pdd->drm_priv) 1366 goto vm_not_acquired; 1367 1368 pr_debug_ratelimited("Restoring process pid %d queues\n", 1369 pdd->process->lead_thread->pid); 1370 1371 /* Update PD Base in QPD */ 1372 qpd->page_table_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv); 1373 pr_debug("Updated PD address to 0x%llx\n", qpd->page_table_base); 1374 1375 /* activate all active queues on the qpd */ 1376 list_for_each_entry(q, &qpd->queues_list, list) { 1377 q->properties.is_evicted = false; 1378 if (!QUEUE_IS_ACTIVE(q->properties)) 1379 continue; 1380 1381 q->properties.is_active = true; 1382 increment_queue_count(dqm, &pdd->qpd, q); 1383 1384 if (dqm->dev->kfd->shared_resources.enable_mes) { 1385 retval = add_queue_mes(dqm, q, qpd); 1386 if (retval) { 1387 dev_err(dev, "Failed to restore queue %d\n", 1388 q->properties.queue_id); 1389 goto out; 1390 } 1391 } 1392 } 1393 if (!dqm->dev->kfd->shared_resources.enable_mes) 1394 retval = execute_queues_cpsch(dqm, 1395 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD); 1396 eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp; 1397 atomic64_add(eviction_duration, &pdd->evict_duration_counter); 1398 vm_not_acquired: 1399 qpd->evicted = 0; 1400 out: 1401 dqm_unlock(dqm); 1402 return retval; 1403 } 1404 1405 static int register_process(struct device_queue_manager *dqm, 1406 struct qcm_process_device *qpd) 1407 { 1408 struct device_process_node *n; 1409 struct kfd_process_device *pdd; 1410 uint64_t pd_base; 1411 int retval; 1412 1413 n = kzalloc(sizeof(*n), GFP_KERNEL); 1414 if (!n) 1415 return -ENOMEM; 1416 1417 n->qpd = qpd; 1418 1419 pdd = qpd_to_pdd(qpd); 1420 /* Retrieve PD base */ 1421 pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv); 1422 1423 dqm_lock(dqm); 1424 list_add(&n->list, &dqm->queues); 1425 1426 /* Update PD Base in QPD */ 1427 qpd->page_table_base = pd_base; 1428 pr_debug("Updated PD address to 0x%llx\n", pd_base); 1429 1430 retval = dqm->asic_ops.update_qpd(dqm, qpd); 1431 1432 dqm->processes_count++; 1433 1434 dqm_unlock(dqm); 1435 1436 /* Outside the DQM lock because under the DQM lock we can't do 1437 * reclaim or take other locks that others hold while reclaiming. 1438 */ 1439 kfd_inc_compute_active(dqm->dev); 1440 1441 return retval; 1442 } 1443 1444 static int unregister_process(struct device_queue_manager *dqm, 1445 struct qcm_process_device *qpd) 1446 { 1447 int retval; 1448 struct device_process_node *cur, *next; 1449 1450 pr_debug("qpd->queues_list is %s\n", 1451 list_empty(&qpd->queues_list) ? "empty" : "not empty"); 1452 1453 retval = 0; 1454 dqm_lock(dqm); 1455 1456 list_for_each_entry_safe(cur, next, &dqm->queues, list) { 1457 if (qpd == cur->qpd) { 1458 list_del(&cur->list); 1459 kfree(cur); 1460 dqm->processes_count--; 1461 goto out; 1462 } 1463 } 1464 /* qpd not found in dqm list */ 1465 retval = 1; 1466 out: 1467 dqm_unlock(dqm); 1468 1469 /* Outside the DQM lock because under the DQM lock we can't do 1470 * reclaim or take other locks that others hold while reclaiming. 1471 */ 1472 if (!retval) 1473 kfd_dec_compute_active(dqm->dev); 1474 1475 return retval; 1476 } 1477 1478 static int 1479 set_pasid_vmid_mapping(struct device_queue_manager *dqm, u32 pasid, 1480 unsigned int vmid) 1481 { 1482 uint32_t xcc_mask = dqm->dev->xcc_mask; 1483 int xcc_id, ret; 1484 1485 for_each_inst(xcc_id, xcc_mask) { 1486 ret = dqm->dev->kfd2kgd->set_pasid_vmid_mapping( 1487 dqm->dev->adev, pasid, vmid, xcc_id); 1488 if (ret) 1489 break; 1490 } 1491 1492 return ret; 1493 } 1494 1495 static void init_interrupts(struct device_queue_manager *dqm) 1496 { 1497 uint32_t xcc_mask = dqm->dev->xcc_mask; 1498 unsigned int i, xcc_id; 1499 1500 for_each_inst(xcc_id, xcc_mask) { 1501 for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++) { 1502 if (is_pipe_enabled(dqm, 0, i)) { 1503 dqm->dev->kfd2kgd->init_interrupts( 1504 dqm->dev->adev, i, xcc_id); 1505 } 1506 } 1507 } 1508 } 1509 1510 static int initialize_nocpsch(struct device_queue_manager *dqm) 1511 { 1512 int pipe, queue; 1513 1514 pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm)); 1515 1516 dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm), 1517 sizeof(unsigned int), GFP_KERNEL); 1518 if (!dqm->allocated_queues) 1519 return -ENOMEM; 1520 1521 mutex_init(&dqm->lock_hidden); 1522 INIT_LIST_HEAD(&dqm->queues); 1523 dqm->active_queue_count = dqm->next_pipe_to_allocate = 0; 1524 dqm->active_cp_queue_count = 0; 1525 dqm->gws_queue_count = 0; 1526 1527 for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) { 1528 int pipe_offset = pipe * get_queues_per_pipe(dqm); 1529 1530 for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) 1531 if (test_bit(pipe_offset + queue, 1532 dqm->dev->kfd->shared_resources.cp_queue_bitmap)) 1533 dqm->allocated_queues[pipe] |= 1 << queue; 1534 } 1535 1536 memset(dqm->vmid_pasid, 0, sizeof(dqm->vmid_pasid)); 1537 1538 init_sdma_bitmaps(dqm); 1539 1540 return 0; 1541 } 1542 1543 static void uninitialize(struct device_queue_manager *dqm) 1544 { 1545 int i; 1546 1547 WARN_ON(dqm->active_queue_count > 0 || dqm->processes_count > 0); 1548 1549 kfree(dqm->allocated_queues); 1550 for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++) 1551 kfree(dqm->mqd_mgrs[i]); 1552 mutex_destroy(&dqm->lock_hidden); 1553 } 1554 1555 static int start_nocpsch(struct device_queue_manager *dqm) 1556 { 1557 int r = 0; 1558 1559 pr_info("SW scheduler is used"); 1560 init_interrupts(dqm); 1561 1562 if (dqm->dev->adev->asic_type == CHIP_HAWAII) 1563 r = pm_init(&dqm->packet_mgr, dqm); 1564 if (!r) 1565 dqm->sched_running = true; 1566 1567 return r; 1568 } 1569 1570 static int stop_nocpsch(struct device_queue_manager *dqm) 1571 { 1572 dqm_lock(dqm); 1573 if (!dqm->sched_running) { 1574 dqm_unlock(dqm); 1575 return 0; 1576 } 1577 1578 if (dqm->dev->adev->asic_type == CHIP_HAWAII) 1579 pm_uninit(&dqm->packet_mgr); 1580 dqm->sched_running = false; 1581 dqm_unlock(dqm); 1582 1583 return 0; 1584 } 1585 1586 static int allocate_sdma_queue(struct device_queue_manager *dqm, 1587 struct queue *q, const uint32_t *restore_sdma_id) 1588 { 1589 struct device *dev = dqm->dev->adev->dev; 1590 int bit; 1591 1592 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) { 1593 if (bitmap_empty(dqm->sdma_bitmap, get_num_sdma_queues(dqm))) { 1594 dev_warn(dev, "No more SDMA queue to allocate (%d total queues)\n", 1595 get_num_sdma_queues(dqm)); 1596 return -ENOMEM; 1597 } 1598 1599 if (restore_sdma_id) { 1600 /* Re-use existing sdma_id */ 1601 if (!test_bit(*restore_sdma_id, dqm->sdma_bitmap)) { 1602 dev_err(dev, "SDMA queue already in use\n"); 1603 return -EBUSY; 1604 } 1605 clear_bit(*restore_sdma_id, dqm->sdma_bitmap); 1606 q->sdma_id = *restore_sdma_id; 1607 } else { 1608 /* Find first available sdma_id */ 1609 bit = find_first_bit(dqm->sdma_bitmap, 1610 get_num_sdma_queues(dqm)); 1611 clear_bit(bit, dqm->sdma_bitmap); 1612 q->sdma_id = bit; 1613 } 1614 1615 q->properties.sdma_engine_id = 1616 q->sdma_id % kfd_get_num_sdma_engines(dqm->dev); 1617 q->properties.sdma_queue_id = q->sdma_id / 1618 kfd_get_num_sdma_engines(dqm->dev); 1619 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 1620 if (bitmap_empty(dqm->xgmi_sdma_bitmap, get_num_xgmi_sdma_queues(dqm))) { 1621 dev_warn(dev, "No more XGMI SDMA queue to allocate (%d total queues)\n", 1622 get_num_xgmi_sdma_queues(dqm)); 1623 return -ENOMEM; 1624 } 1625 if (restore_sdma_id) { 1626 /* Re-use existing sdma_id */ 1627 if (!test_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap)) { 1628 dev_err(dev, "SDMA queue already in use\n"); 1629 return -EBUSY; 1630 } 1631 clear_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap); 1632 q->sdma_id = *restore_sdma_id; 1633 } else { 1634 bit = find_first_bit(dqm->xgmi_sdma_bitmap, 1635 get_num_xgmi_sdma_queues(dqm)); 1636 clear_bit(bit, dqm->xgmi_sdma_bitmap); 1637 q->sdma_id = bit; 1638 } 1639 /* sdma_engine_id is sdma id including 1640 * both PCIe-optimized SDMAs and XGMI- 1641 * optimized SDMAs. The calculation below 1642 * assumes the first N engines are always 1643 * PCIe-optimized ones 1644 */ 1645 q->properties.sdma_engine_id = 1646 kfd_get_num_sdma_engines(dqm->dev) + 1647 q->sdma_id % kfd_get_num_xgmi_sdma_engines(dqm->dev); 1648 q->properties.sdma_queue_id = q->sdma_id / 1649 kfd_get_num_xgmi_sdma_engines(dqm->dev); 1650 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_BY_ENG_ID) { 1651 int i, num_queues, num_engines, eng_offset = 0, start_engine; 1652 bool free_bit_found = false, is_xgmi = false; 1653 1654 if (q->properties.sdma_engine_id < kfd_get_num_sdma_engines(dqm->dev)) { 1655 num_queues = get_num_sdma_queues(dqm); 1656 num_engines = kfd_get_num_sdma_engines(dqm->dev); 1657 q->properties.type = KFD_QUEUE_TYPE_SDMA; 1658 } else { 1659 num_queues = get_num_xgmi_sdma_queues(dqm); 1660 num_engines = kfd_get_num_xgmi_sdma_engines(dqm->dev); 1661 eng_offset = kfd_get_num_sdma_engines(dqm->dev); 1662 q->properties.type = KFD_QUEUE_TYPE_SDMA_XGMI; 1663 is_xgmi = true; 1664 } 1665 1666 /* Scan available bit based on target engine ID. */ 1667 start_engine = q->properties.sdma_engine_id - eng_offset; 1668 for (i = start_engine; i < num_queues; i += num_engines) { 1669 1670 if (!test_bit(i, is_xgmi ? dqm->xgmi_sdma_bitmap : dqm->sdma_bitmap)) 1671 continue; 1672 1673 clear_bit(i, is_xgmi ? dqm->xgmi_sdma_bitmap : dqm->sdma_bitmap); 1674 q->sdma_id = i; 1675 q->properties.sdma_queue_id = q->sdma_id / num_engines; 1676 free_bit_found = true; 1677 break; 1678 } 1679 1680 if (!free_bit_found) { 1681 dev_warn(dev, "No more SDMA queue to allocate for target ID %i (%d total queues)\n", 1682 q->properties.sdma_engine_id, num_queues); 1683 return -ENOMEM; 1684 } 1685 } 1686 1687 pr_debug("SDMA engine id: %d\n", q->properties.sdma_engine_id); 1688 pr_debug("SDMA queue id: %d\n", q->properties.sdma_queue_id); 1689 1690 return 0; 1691 } 1692 1693 static void deallocate_sdma_queue(struct device_queue_manager *dqm, 1694 struct queue *q) 1695 { 1696 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) { 1697 if (q->sdma_id >= get_num_sdma_queues(dqm)) 1698 return; 1699 set_bit(q->sdma_id, dqm->sdma_bitmap); 1700 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 1701 if (q->sdma_id >= get_num_xgmi_sdma_queues(dqm)) 1702 return; 1703 set_bit(q->sdma_id, dqm->xgmi_sdma_bitmap); 1704 } 1705 } 1706 1707 /* 1708 * Device Queue Manager implementation for cp scheduler 1709 */ 1710 1711 static int set_sched_resources(struct device_queue_manager *dqm) 1712 { 1713 int i, mec; 1714 struct scheduling_resources res; 1715 struct device *dev = dqm->dev->adev->dev; 1716 1717 res.vmid_mask = dqm->dev->compute_vmid_bitmap; 1718 1719 res.queue_mask = 0; 1720 for (i = 0; i < AMDGPU_MAX_QUEUES; ++i) { 1721 mec = (i / dqm->dev->kfd->shared_resources.num_queue_per_pipe) 1722 / dqm->dev->kfd->shared_resources.num_pipe_per_mec; 1723 1724 if (!test_bit(i, dqm->dev->kfd->shared_resources.cp_queue_bitmap)) 1725 continue; 1726 1727 /* only acquire queues from the first MEC */ 1728 if (mec > 0) 1729 continue; 1730 1731 /* This situation may be hit in the future if a new HW 1732 * generation exposes more than 64 queues. If so, the 1733 * definition of res.queue_mask needs updating 1734 */ 1735 if (WARN_ON(i >= (sizeof(res.queue_mask)*8))) { 1736 dev_err(dev, "Invalid queue enabled by amdgpu: %d\n", i); 1737 break; 1738 } 1739 1740 res.queue_mask |= 1ull 1741 << amdgpu_queue_mask_bit_to_set_resource_bit( 1742 dqm->dev->adev, i); 1743 } 1744 res.gws_mask = ~0ull; 1745 res.oac_mask = res.gds_heap_base = res.gds_heap_size = 0; 1746 1747 pr_debug("Scheduling resources:\n" 1748 "vmid mask: 0x%8X\n" 1749 "queue mask: 0x%8llX\n", 1750 res.vmid_mask, res.queue_mask); 1751 1752 return pm_send_set_resources(&dqm->packet_mgr, &res); 1753 } 1754 1755 static int initialize_cpsch(struct device_queue_manager *dqm) 1756 { 1757 pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm)); 1758 1759 mutex_init(&dqm->lock_hidden); 1760 INIT_LIST_HEAD(&dqm->queues); 1761 dqm->active_queue_count = dqm->processes_count = 0; 1762 dqm->active_cp_queue_count = 0; 1763 dqm->gws_queue_count = 0; 1764 dqm->active_runlist = false; 1765 dqm->trap_debug_vmid = 0; 1766 1767 init_sdma_bitmaps(dqm); 1768 1769 update_dqm_wait_times(dqm); 1770 return 0; 1771 } 1772 1773 /* halt_cpsch: 1774 * Unmap queues so the schedule doesn't continue remaining jobs in the queue. 1775 * Then set dqm->sched_halt so queues don't map to runlist until unhalt_cpsch 1776 * is called. 1777 */ 1778 static int halt_cpsch(struct device_queue_manager *dqm) 1779 { 1780 int ret = 0; 1781 1782 dqm_lock(dqm); 1783 if (!dqm->sched_running) { 1784 dqm_unlock(dqm); 1785 return 0; 1786 } 1787 1788 WARN_ONCE(dqm->sched_halt, "Scheduling is already on halt\n"); 1789 1790 if (!dqm->is_hws_hang) { 1791 if (!dqm->dev->kfd->shared_resources.enable_mes) 1792 ret = unmap_queues_cpsch(dqm, 1793 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, 1794 USE_DEFAULT_GRACE_PERIOD, false); 1795 else 1796 ret = remove_all_kfd_queues_mes(dqm); 1797 } 1798 dqm->sched_halt = true; 1799 dqm_unlock(dqm); 1800 1801 return ret; 1802 } 1803 1804 /* unhalt_cpsch 1805 * Unset dqm->sched_halt and map queues back to runlist 1806 */ 1807 static int unhalt_cpsch(struct device_queue_manager *dqm) 1808 { 1809 int ret = 0; 1810 1811 dqm_lock(dqm); 1812 if (!dqm->sched_running || !dqm->sched_halt) { 1813 WARN_ONCE(!dqm->sched_halt, "Scheduling is not on halt.\n"); 1814 dqm_unlock(dqm); 1815 return 0; 1816 } 1817 dqm->sched_halt = false; 1818 if (!dqm->dev->kfd->shared_resources.enable_mes) 1819 ret = execute_queues_cpsch(dqm, 1820 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 1821 0, USE_DEFAULT_GRACE_PERIOD); 1822 else 1823 ret = add_all_kfd_queues_mes(dqm); 1824 1825 dqm_unlock(dqm); 1826 1827 return ret; 1828 } 1829 1830 static int start_cpsch(struct device_queue_manager *dqm) 1831 { 1832 struct device *dev = dqm->dev->adev->dev; 1833 int retval, num_hw_queue_slots; 1834 1835 retval = 0; 1836 1837 dqm_lock(dqm); 1838 1839 if (!dqm->dev->kfd->shared_resources.enable_mes) { 1840 retval = pm_init(&dqm->packet_mgr, dqm); 1841 if (retval) 1842 goto fail_packet_manager_init; 1843 1844 retval = set_sched_resources(dqm); 1845 if (retval) 1846 goto fail_set_sched_resources; 1847 } 1848 pr_debug("Allocating fence memory\n"); 1849 1850 /* allocate fence memory on the gart */ 1851 retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr), 1852 &dqm->fence_mem); 1853 1854 if (retval) 1855 goto fail_allocate_vidmem; 1856 1857 dqm->fence_addr = (uint64_t *)dqm->fence_mem->cpu_ptr; 1858 dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr; 1859 1860 init_interrupts(dqm); 1861 1862 /* clear hang status when driver try to start the hw scheduler */ 1863 dqm->sched_running = true; 1864 1865 if (!dqm->dev->kfd->shared_resources.enable_mes) { 1866 if (pm_config_dequeue_wait_counts(&dqm->packet_mgr, 1867 KFD_DEQUEUE_WAIT_INIT, 0 /* unused */)) 1868 dev_err(dev, "Setting optimized dequeue wait failed. Using default values\n"); 1869 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD); 1870 } 1871 1872 /* setup per-queue reset detection buffer */ 1873 num_hw_queue_slots = dqm->dev->kfd->shared_resources.num_queue_per_pipe * 1874 dqm->dev->kfd->shared_resources.num_pipe_per_mec * 1875 NUM_XCC(dqm->dev->xcc_mask); 1876 1877 dqm->detect_hang_info_size = num_hw_queue_slots * sizeof(struct dqm_detect_hang_info); 1878 dqm->detect_hang_info = kzalloc(dqm->detect_hang_info_size, GFP_KERNEL); 1879 1880 if (!dqm->detect_hang_info) { 1881 retval = -ENOMEM; 1882 goto fail_detect_hang_buffer; 1883 } 1884 1885 dqm_unlock(dqm); 1886 1887 return 0; 1888 fail_detect_hang_buffer: 1889 kfd_gtt_sa_free(dqm->dev, dqm->fence_mem); 1890 fail_allocate_vidmem: 1891 fail_set_sched_resources: 1892 if (!dqm->dev->kfd->shared_resources.enable_mes) 1893 pm_uninit(&dqm->packet_mgr); 1894 fail_packet_manager_init: 1895 dqm_unlock(dqm); 1896 return retval; 1897 } 1898 1899 static int stop_cpsch(struct device_queue_manager *dqm) 1900 { 1901 int ret = 0; 1902 1903 dqm_lock(dqm); 1904 if (!dqm->sched_running) { 1905 dqm_unlock(dqm); 1906 return 0; 1907 } 1908 1909 if (!dqm->dev->kfd->shared_resources.enable_mes) 1910 ret = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 1911 0, USE_DEFAULT_GRACE_PERIOD, false); 1912 else 1913 ret = remove_all_kfd_queues_mes(dqm); 1914 1915 dqm->sched_running = false; 1916 1917 if (!dqm->dev->kfd->shared_resources.enable_mes) 1918 pm_release_ib(&dqm->packet_mgr); 1919 1920 kfd_gtt_sa_free(dqm->dev, dqm->fence_mem); 1921 if (!dqm->dev->kfd->shared_resources.enable_mes) 1922 pm_uninit(&dqm->packet_mgr); 1923 kfree(dqm->detect_hang_info); 1924 dqm->detect_hang_info = NULL; 1925 dqm_unlock(dqm); 1926 1927 return ret; 1928 } 1929 1930 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm, 1931 struct kernel_queue *kq, 1932 struct qcm_process_device *qpd) 1933 { 1934 dqm_lock(dqm); 1935 if (dqm->total_queue_count >= max_num_of_queues_per_device) { 1936 pr_warn("Can't create new kernel queue because %d queues were already created\n", 1937 dqm->total_queue_count); 1938 dqm_unlock(dqm); 1939 return -EPERM; 1940 } 1941 1942 /* 1943 * Unconditionally increment this counter, regardless of the queue's 1944 * type or whether the queue is active. 1945 */ 1946 dqm->total_queue_count++; 1947 pr_debug("Total of %d queues are accountable so far\n", 1948 dqm->total_queue_count); 1949 1950 list_add(&kq->list, &qpd->priv_queue_list); 1951 increment_queue_count(dqm, qpd, kq->queue); 1952 qpd->is_debug = true; 1953 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, 1954 USE_DEFAULT_GRACE_PERIOD); 1955 dqm_unlock(dqm); 1956 1957 return 0; 1958 } 1959 1960 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm, 1961 struct kernel_queue *kq, 1962 struct qcm_process_device *qpd) 1963 { 1964 dqm_lock(dqm); 1965 list_del(&kq->list); 1966 decrement_queue_count(dqm, qpd, kq->queue); 1967 qpd->is_debug = false; 1968 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, 1969 USE_DEFAULT_GRACE_PERIOD); 1970 /* 1971 * Unconditionally decrement this counter, regardless of the queue's 1972 * type. 1973 */ 1974 dqm->total_queue_count--; 1975 pr_debug("Total of %d queues are accountable so far\n", 1976 dqm->total_queue_count); 1977 dqm_unlock(dqm); 1978 } 1979 1980 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q, 1981 struct qcm_process_device *qpd, 1982 const struct kfd_criu_queue_priv_data *qd, 1983 const void *restore_mqd, const void *restore_ctl_stack) 1984 { 1985 int retval; 1986 struct mqd_manager *mqd_mgr; 1987 1988 if (dqm->total_queue_count >= max_num_of_queues_per_device) { 1989 pr_warn("Can't create new usermode queue because %d queues were already created\n", 1990 dqm->total_queue_count); 1991 retval = -EPERM; 1992 goto out; 1993 } 1994 1995 if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 1996 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI || 1997 q->properties.type == KFD_QUEUE_TYPE_SDMA_BY_ENG_ID) { 1998 dqm_lock(dqm); 1999 retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL); 2000 dqm_unlock(dqm); 2001 if (retval) 2002 goto out; 2003 } 2004 2005 retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL); 2006 if (retval) 2007 goto out_deallocate_sdma_queue; 2008 2009 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 2010 q->properties.type)]; 2011 2012 if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 2013 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 2014 dqm->asic_ops.init_sdma_vm(dqm, q, qpd); 2015 q->properties.tba_addr = qpd->tba_addr; 2016 q->properties.tma_addr = qpd->tma_addr; 2017 q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties); 2018 if (!q->mqd_mem_obj) { 2019 retval = -ENOMEM; 2020 goto out_deallocate_doorbell; 2021 } 2022 2023 dqm_lock(dqm); 2024 /* 2025 * Eviction state logic: mark all queues as evicted, even ones 2026 * not currently active. Restoring inactive queues later only 2027 * updates the is_evicted flag but is a no-op otherwise. 2028 */ 2029 q->properties.is_evicted = !!qpd->evicted; 2030 q->properties.is_dbg_wa = qpd->pqm->process->debug_trap_enabled && 2031 kfd_dbg_has_cwsr_workaround(q->device); 2032 2033 if (qd) 2034 mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr, 2035 &q->properties, restore_mqd, restore_ctl_stack, 2036 qd->ctl_stack_size); 2037 else 2038 mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, 2039 &q->gart_mqd_addr, &q->properties); 2040 2041 list_add(&q->list, &qpd->queues_list); 2042 qpd->queue_count++; 2043 2044 if (q->properties.is_active) { 2045 increment_queue_count(dqm, qpd, q); 2046 2047 if (!dqm->dev->kfd->shared_resources.enable_mes) 2048 retval = execute_queues_cpsch(dqm, 2049 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD); 2050 else 2051 retval = add_queue_mes(dqm, q, qpd); 2052 if (retval) 2053 goto cleanup_queue; 2054 } 2055 2056 /* 2057 * Unconditionally increment this counter, regardless of the queue's 2058 * type or whether the queue is active. 2059 */ 2060 dqm->total_queue_count++; 2061 2062 pr_debug("Total of %d queues are accountable so far\n", 2063 dqm->total_queue_count); 2064 2065 dqm_unlock(dqm); 2066 return retval; 2067 2068 cleanup_queue: 2069 qpd->queue_count--; 2070 list_del(&q->list); 2071 if (q->properties.is_active) 2072 decrement_queue_count(dqm, qpd, q); 2073 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 2074 dqm_unlock(dqm); 2075 out_deallocate_doorbell: 2076 deallocate_doorbell(qpd, q); 2077 out_deallocate_sdma_queue: 2078 if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 2079 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 2080 dqm_lock(dqm); 2081 deallocate_sdma_queue(dqm, q); 2082 dqm_unlock(dqm); 2083 } 2084 out: 2085 return retval; 2086 } 2087 2088 int amdkfd_fence_wait_timeout(struct device_queue_manager *dqm, 2089 uint64_t fence_value, 2090 unsigned int timeout_ms) 2091 { 2092 unsigned long end_jiffies = msecs_to_jiffies(timeout_ms) + jiffies; 2093 struct device *dev = dqm->dev->adev->dev; 2094 uint64_t *fence_addr = dqm->fence_addr; 2095 2096 while (*fence_addr != fence_value) { 2097 /* Fatal err detected, this response won't come */ 2098 if (amdgpu_amdkfd_is_fed(dqm->dev->adev) || 2099 amdgpu_in_reset(dqm->dev->adev)) 2100 return -EIO; 2101 2102 if (time_after(jiffies, end_jiffies)) { 2103 dev_err(dev, "qcm fence wait loop timeout expired\n"); 2104 /* In HWS case, this is used to halt the driver thread 2105 * in order not to mess up CP states before doing 2106 * scandumps for FW debugging. 2107 */ 2108 while (halt_if_hws_hang) 2109 schedule(); 2110 2111 return -ETIME; 2112 } 2113 schedule(); 2114 } 2115 2116 return 0; 2117 } 2118 2119 /* dqm->lock mutex has to be locked before calling this function */ 2120 static int map_queues_cpsch(struct device_queue_manager *dqm) 2121 { 2122 struct device *dev = dqm->dev->adev->dev; 2123 int retval; 2124 2125 if (!dqm->sched_running || dqm->sched_halt) 2126 return 0; 2127 if (dqm->active_queue_count <= 0 || dqm->processes_count <= 0) 2128 return 0; 2129 if (dqm->active_runlist) 2130 return 0; 2131 2132 retval = pm_send_runlist(&dqm->packet_mgr, &dqm->queues); 2133 pr_debug("%s sent runlist\n", __func__); 2134 if (retval) { 2135 dev_err(dev, "failed to execute runlist\n"); 2136 return retval; 2137 } 2138 dqm->active_runlist = true; 2139 2140 return retval; 2141 } 2142 2143 static void set_queue_as_reset(struct device_queue_manager *dqm, struct queue *q, 2144 struct qcm_process_device *qpd) 2145 { 2146 struct kfd_process_device *pdd = qpd_to_pdd(qpd); 2147 2148 dev_err(dqm->dev->adev->dev, "queue id 0x%0x at pasid %d is reset\n", 2149 q->properties.queue_id, pdd->process->lead_thread->pid); 2150 2151 pdd->has_reset_queue = true; 2152 if (q->properties.is_active) { 2153 q->properties.is_active = false; 2154 decrement_queue_count(dqm, qpd, q); 2155 } 2156 } 2157 2158 static int detect_queue_hang(struct device_queue_manager *dqm) 2159 { 2160 int i; 2161 2162 /* detect should be used only in dqm locked queue reset */ 2163 if (WARN_ON(dqm->detect_hang_count > 0)) 2164 return 0; 2165 2166 memset(dqm->detect_hang_info, 0, dqm->detect_hang_info_size); 2167 2168 for (i = 0; i < AMDGPU_MAX_QUEUES; ++i) { 2169 uint32_t mec, pipe, queue; 2170 int xcc_id; 2171 2172 mec = (i / dqm->dev->kfd->shared_resources.num_queue_per_pipe) 2173 / dqm->dev->kfd->shared_resources.num_pipe_per_mec; 2174 2175 if (mec || !test_bit(i, dqm->dev->kfd->shared_resources.cp_queue_bitmap)) 2176 continue; 2177 2178 amdgpu_queue_mask_bit_to_mec_queue(dqm->dev->adev, i, &mec, &pipe, &queue); 2179 2180 for_each_inst(xcc_id, dqm->dev->xcc_mask) { 2181 uint64_t queue_addr = dqm->dev->kfd2kgd->hqd_get_pq_addr( 2182 dqm->dev->adev, pipe, queue, xcc_id); 2183 struct dqm_detect_hang_info hang_info; 2184 2185 if (!queue_addr) 2186 continue; 2187 2188 hang_info.pipe_id = pipe; 2189 hang_info.queue_id = queue; 2190 hang_info.xcc_id = xcc_id; 2191 hang_info.queue_address = queue_addr; 2192 2193 dqm->detect_hang_info[dqm->detect_hang_count] = hang_info; 2194 dqm->detect_hang_count++; 2195 } 2196 } 2197 2198 return dqm->detect_hang_count; 2199 } 2200 2201 static struct queue *find_queue_by_address(struct device_queue_manager *dqm, uint64_t queue_address) 2202 { 2203 struct device_process_node *cur; 2204 struct qcm_process_device *qpd; 2205 struct queue *q; 2206 2207 list_for_each_entry(cur, &dqm->queues, list) { 2208 qpd = cur->qpd; 2209 list_for_each_entry(q, &qpd->queues_list, list) { 2210 if (queue_address == q->properties.queue_address) 2211 return q; 2212 } 2213 } 2214 2215 return NULL; 2216 } 2217 2218 static int reset_hung_queues(struct device_queue_manager *dqm) 2219 { 2220 int r = 0, reset_count = 0, i; 2221 2222 if (!dqm->detect_hang_info || dqm->is_hws_hang) 2223 return -EIO; 2224 2225 /* assume dqm locked. */ 2226 if (!detect_queue_hang(dqm)) 2227 return -ENOTRECOVERABLE; 2228 2229 for (i = 0; i < dqm->detect_hang_count; i++) { 2230 struct dqm_detect_hang_info hang_info = dqm->detect_hang_info[i]; 2231 struct queue *q = find_queue_by_address(dqm, hang_info.queue_address); 2232 struct kfd_process_device *pdd; 2233 uint64_t queue_addr = 0; 2234 2235 if (!q) { 2236 r = -ENOTRECOVERABLE; 2237 goto reset_fail; 2238 } 2239 2240 pdd = kfd_get_process_device_data(dqm->dev, q->process); 2241 if (!pdd) { 2242 r = -ENOTRECOVERABLE; 2243 goto reset_fail; 2244 } 2245 2246 queue_addr = dqm->dev->kfd2kgd->hqd_reset(dqm->dev->adev, 2247 hang_info.pipe_id, hang_info.queue_id, hang_info.xcc_id, 2248 KFD_UNMAP_LATENCY_MS); 2249 2250 /* either reset failed or we reset an unexpected queue. */ 2251 if (queue_addr != q->properties.queue_address) { 2252 r = -ENOTRECOVERABLE; 2253 goto reset_fail; 2254 } 2255 2256 set_queue_as_reset(dqm, q, &pdd->qpd); 2257 reset_count++; 2258 } 2259 2260 if (reset_count == dqm->detect_hang_count) 2261 kfd_signal_reset_event(dqm->dev); 2262 else 2263 r = -ENOTRECOVERABLE; 2264 2265 reset_fail: 2266 dqm->detect_hang_count = 0; 2267 2268 return r; 2269 } 2270 2271 static bool sdma_has_hang(struct device_queue_manager *dqm) 2272 { 2273 int engine_start = dqm->dev->node_id * get_num_all_sdma_engines(dqm); 2274 int engine_end = engine_start + get_num_all_sdma_engines(dqm); 2275 int num_queues_per_eng = dqm->dev->kfd->device_info.num_sdma_queues_per_engine; 2276 int i, j; 2277 2278 for (i = engine_start; i < engine_end; i++) { 2279 for (j = 0; j < num_queues_per_eng; j++) { 2280 if (!dqm->dev->kfd2kgd->hqd_sdma_get_doorbell(dqm->dev->adev, i, j)) 2281 continue; 2282 2283 return true; 2284 } 2285 } 2286 2287 return false; 2288 } 2289 2290 static bool set_sdma_queue_as_reset(struct device_queue_manager *dqm, 2291 uint32_t doorbell_off) 2292 { 2293 struct device_process_node *cur; 2294 struct qcm_process_device *qpd; 2295 struct queue *q; 2296 2297 list_for_each_entry(cur, &dqm->queues, list) { 2298 qpd = cur->qpd; 2299 list_for_each_entry(q, &qpd->queues_list, list) { 2300 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA || 2301 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) && 2302 q->properties.doorbell_off == doorbell_off) { 2303 set_queue_as_reset(dqm, q, qpd); 2304 return true; 2305 } 2306 } 2307 } 2308 2309 return false; 2310 } 2311 2312 static int reset_hung_queues_sdma(struct device_queue_manager *dqm) 2313 { 2314 int engine_start = dqm->dev->node_id * get_num_all_sdma_engines(dqm); 2315 int engine_end = engine_start + get_num_all_sdma_engines(dqm); 2316 int num_queues_per_eng = dqm->dev->kfd->device_info.num_sdma_queues_per_engine; 2317 int r = 0, i, j; 2318 2319 if (dqm->is_hws_hang) 2320 return -EIO; 2321 2322 /* Scan for hung HW queues and reset engine. */ 2323 dqm->detect_hang_count = 0; 2324 for (i = engine_start; i < engine_end; i++) { 2325 for (j = 0; j < num_queues_per_eng; j++) { 2326 uint32_t doorbell_off = 2327 dqm->dev->kfd2kgd->hqd_sdma_get_doorbell(dqm->dev->adev, i, j); 2328 2329 if (!doorbell_off) 2330 continue; 2331 2332 /* Reset engine and check. */ 2333 if (amdgpu_sdma_reset_engine(dqm->dev->adev, i, false) || 2334 dqm->dev->kfd2kgd->hqd_sdma_get_doorbell(dqm->dev->adev, i, j) || 2335 !set_sdma_queue_as_reset(dqm, doorbell_off)) { 2336 r = -ENOTRECOVERABLE; 2337 goto reset_fail; 2338 } 2339 2340 /* Should only expect one queue active per engine */ 2341 dqm->detect_hang_count++; 2342 break; 2343 } 2344 } 2345 2346 /* Signal process reset */ 2347 if (dqm->detect_hang_count) 2348 kfd_signal_reset_event(dqm->dev); 2349 else 2350 r = -ENOTRECOVERABLE; 2351 2352 reset_fail: 2353 dqm->detect_hang_count = 0; 2354 2355 return r; 2356 } 2357 2358 static int reset_queues_on_hws_hang(struct device_queue_manager *dqm, bool is_sdma) 2359 { 2360 struct amdgpu_device *adev = dqm->dev->adev; 2361 2362 while (halt_if_hws_hang) 2363 schedule(); 2364 2365 if (adev->debug_disable_gpu_ring_reset) { 2366 dev_info_once(adev->dev, 2367 "%s queue hung, but ring reset disabled", 2368 is_sdma ? "sdma" : "compute"); 2369 2370 return -EPERM; 2371 } 2372 if (!amdgpu_gpu_recovery) 2373 return -ENOTRECOVERABLE; 2374 2375 return is_sdma ? reset_hung_queues_sdma(dqm) : reset_hung_queues(dqm); 2376 } 2377 2378 /* dqm->lock mutex has to be locked before calling this function 2379 * 2380 * @grace_period: If USE_DEFAULT_GRACE_PERIOD then default wait time 2381 * for context switch latency. Lower values are used by debugger 2382 * since context switching are triggered at high frequency. 2383 * This is configured by setting CP_IQ_WAIT_TIME2.SCH_WAVE 2384 * 2385 */ 2386 static int unmap_queues_cpsch(struct device_queue_manager *dqm, 2387 enum kfd_unmap_queues_filter filter, 2388 uint32_t filter_param, 2389 uint32_t grace_period, 2390 bool reset) 2391 { 2392 struct device *dev = dqm->dev->adev->dev; 2393 struct mqd_manager *mqd_mgr; 2394 int retval; 2395 2396 if (!dqm->sched_running) 2397 return 0; 2398 if (!dqm->active_runlist) 2399 return 0; 2400 if (!down_read_trylock(&dqm->dev->adev->reset_domain->sem)) 2401 return -EIO; 2402 2403 if (grace_period != USE_DEFAULT_GRACE_PERIOD) { 2404 retval = pm_config_dequeue_wait_counts(&dqm->packet_mgr, 2405 KFD_DEQUEUE_WAIT_SET_SCH_WAVE, grace_period); 2406 if (retval) 2407 goto out; 2408 } 2409 2410 retval = pm_send_unmap_queue(&dqm->packet_mgr, filter, filter_param, reset); 2411 if (retval) 2412 goto out; 2413 2414 *dqm->fence_addr = KFD_FENCE_INIT; 2415 mb(); 2416 pm_send_query_status(&dqm->packet_mgr, dqm->fence_gpu_addr, 2417 KFD_FENCE_COMPLETED); 2418 /* should be timed out */ 2419 retval = amdkfd_fence_wait_timeout(dqm, KFD_FENCE_COMPLETED, 2420 queue_preemption_timeout_ms); 2421 if (retval) { 2422 dev_err(dev, "The cp might be in an unrecoverable state due to an unsuccessful queues preemption\n"); 2423 kfd_hws_hang(dqm); 2424 goto out; 2425 } 2426 2427 /* In the current MEC firmware implementation, if compute queue 2428 * doesn't response to the preemption request in time, HIQ will 2429 * abandon the unmap request without returning any timeout error 2430 * to driver. Instead, MEC firmware will log the doorbell of the 2431 * unresponding compute queue to HIQ.MQD.queue_doorbell_id fields. 2432 * To make sure the queue unmap was successful, driver need to 2433 * check those fields 2434 */ 2435 mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]; 2436 if (mqd_mgr->check_preemption_failed(mqd_mgr, dqm->packet_mgr.priv_queue->queue->mqd) && 2437 reset_queues_on_hws_hang(dqm, false)) 2438 goto reset_fail; 2439 2440 /* Check for SDMA hang and attempt SDMA reset */ 2441 if (sdma_has_hang(dqm) && reset_queues_on_hws_hang(dqm, true)) 2442 goto reset_fail; 2443 2444 /* We need to reset the grace period value for this device */ 2445 if (grace_period != USE_DEFAULT_GRACE_PERIOD) { 2446 if (pm_config_dequeue_wait_counts(&dqm->packet_mgr, 2447 KFD_DEQUEUE_WAIT_RESET, 0 /* unused */)) 2448 dev_err(dev, "Failed to reset grace period\n"); 2449 } 2450 2451 pm_release_ib(&dqm->packet_mgr); 2452 dqm->active_runlist = false; 2453 out: 2454 up_read(&dqm->dev->adev->reset_domain->sem); 2455 return retval; 2456 2457 reset_fail: 2458 dqm->is_hws_hang = true; 2459 kfd_hws_hang(dqm); 2460 up_read(&dqm->dev->adev->reset_domain->sem); 2461 return -ETIME; 2462 } 2463 2464 /* only for compute queue */ 2465 static int reset_queues_cpsch(struct device_queue_manager *dqm, uint16_t pasid) 2466 { 2467 int retval; 2468 2469 dqm_lock(dqm); 2470 2471 retval = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_BY_PASID, 2472 pasid, USE_DEFAULT_GRACE_PERIOD, true); 2473 2474 dqm_unlock(dqm); 2475 return retval; 2476 } 2477 2478 /* dqm->lock mutex has to be locked before calling this function */ 2479 static int execute_queues_cpsch(struct device_queue_manager *dqm, 2480 enum kfd_unmap_queues_filter filter, 2481 uint32_t filter_param, 2482 uint32_t grace_period) 2483 { 2484 int retval; 2485 2486 if (!down_read_trylock(&dqm->dev->adev->reset_domain->sem)) 2487 return -EIO; 2488 retval = unmap_queues_cpsch(dqm, filter, filter_param, grace_period, false); 2489 if (!retval) 2490 retval = map_queues_cpsch(dqm); 2491 up_read(&dqm->dev->adev->reset_domain->sem); 2492 return retval; 2493 } 2494 2495 static int wait_on_destroy_queue(struct device_queue_manager *dqm, 2496 struct queue *q) 2497 { 2498 struct kfd_process_device *pdd = kfd_get_process_device_data(q->device, 2499 q->process); 2500 int ret = 0; 2501 2502 if (WARN_ON(!pdd)) 2503 return ret; 2504 2505 if (pdd->qpd.is_debug) 2506 return ret; 2507 2508 q->properties.is_being_destroyed = true; 2509 2510 if (pdd->process->debug_trap_enabled && q->properties.is_suspended) { 2511 dqm_unlock(dqm); 2512 mutex_unlock(&q->process->mutex); 2513 ret = wait_event_interruptible(dqm->destroy_wait, 2514 !q->properties.is_suspended); 2515 2516 mutex_lock(&q->process->mutex); 2517 dqm_lock(dqm); 2518 } 2519 2520 return ret; 2521 } 2522 2523 static int destroy_queue_cpsch(struct device_queue_manager *dqm, 2524 struct qcm_process_device *qpd, 2525 struct queue *q) 2526 { 2527 int retval; 2528 struct mqd_manager *mqd_mgr; 2529 uint64_t sdma_val = 0; 2530 struct kfd_process_device *pdd = qpd_to_pdd(qpd); 2531 struct device *dev = dqm->dev->adev->dev; 2532 2533 /* Get the SDMA queue stats */ 2534 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) || 2535 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { 2536 retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr, 2537 &sdma_val); 2538 if (retval) 2539 dev_err(dev, "Failed to read SDMA queue counter for queue: %d\n", 2540 q->properties.queue_id); 2541 } 2542 2543 /* remove queue from list to prevent rescheduling after preemption */ 2544 dqm_lock(dqm); 2545 2546 retval = wait_on_destroy_queue(dqm, q); 2547 2548 if (retval) { 2549 dqm_unlock(dqm); 2550 return retval; 2551 } 2552 2553 if (qpd->is_debug) { 2554 /* 2555 * error, currently we do not allow to destroy a queue 2556 * of a currently debugged process 2557 */ 2558 retval = -EBUSY; 2559 goto failed_try_destroy_debugged_queue; 2560 2561 } 2562 2563 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 2564 q->properties.type)]; 2565 2566 deallocate_doorbell(qpd, q); 2567 2568 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) || 2569 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { 2570 deallocate_sdma_queue(dqm, q); 2571 pdd->sdma_past_activity_counter += sdma_val; 2572 } 2573 2574 if (q->properties.is_active) { 2575 decrement_queue_count(dqm, qpd, q); 2576 q->properties.is_active = false; 2577 if (!dqm->dev->kfd->shared_resources.enable_mes) { 2578 retval = execute_queues_cpsch(dqm, 2579 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, 2580 USE_DEFAULT_GRACE_PERIOD); 2581 if (retval == -ETIME) 2582 qpd->reset_wavefronts = true; 2583 } else { 2584 retval = remove_queue_mes(dqm, q, qpd); 2585 } 2586 } 2587 list_del(&q->list); 2588 qpd->queue_count--; 2589 2590 /* 2591 * Unconditionally decrement this counter, regardless of the queue's 2592 * type 2593 */ 2594 dqm->total_queue_count--; 2595 pr_debug("Total of %d queues are accountable so far\n", 2596 dqm->total_queue_count); 2597 2598 dqm_unlock(dqm); 2599 2600 /* 2601 * Do free_mqd and raise delete event after dqm_unlock(dqm) to avoid 2602 * circular locking 2603 */ 2604 kfd_dbg_ev_raise(KFD_EC_MASK(EC_DEVICE_QUEUE_DELETE), 2605 qpd->pqm->process, q->device, 2606 -1, false, NULL, 0); 2607 2608 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 2609 2610 return retval; 2611 2612 failed_try_destroy_debugged_queue: 2613 2614 dqm_unlock(dqm); 2615 return retval; 2616 } 2617 2618 static bool set_cache_memory_policy(struct device_queue_manager *dqm, 2619 struct qcm_process_device *qpd, 2620 enum cache_policy default_policy, 2621 enum cache_policy alternate_policy, 2622 void __user *alternate_aperture_base, 2623 uint64_t alternate_aperture_size, 2624 u32 misc_process_properties) 2625 { 2626 bool retval = true; 2627 2628 if (!dqm->asic_ops.set_cache_memory_policy) 2629 return retval; 2630 2631 dqm_lock(dqm); 2632 2633 retval = dqm->asic_ops.set_cache_memory_policy( 2634 dqm, 2635 qpd, 2636 default_policy, 2637 alternate_policy, 2638 alternate_aperture_base, 2639 alternate_aperture_size, 2640 misc_process_properties); 2641 2642 if (retval) 2643 goto out; 2644 2645 if ((dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0)) 2646 program_sh_mem_settings(dqm, qpd); 2647 2648 pr_debug("sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n", 2649 qpd->sh_mem_config, qpd->sh_mem_ape1_base, 2650 qpd->sh_mem_ape1_limit); 2651 2652 out: 2653 dqm_unlock(dqm); 2654 return retval; 2655 } 2656 2657 static int process_termination_nocpsch(struct device_queue_manager *dqm, 2658 struct qcm_process_device *qpd) 2659 { 2660 struct queue *q; 2661 struct device_process_node *cur, *next_dpn; 2662 int retval = 0; 2663 bool found = false; 2664 2665 dqm_lock(dqm); 2666 2667 /* Clear all user mode queues */ 2668 while (!list_empty(&qpd->queues_list)) { 2669 struct mqd_manager *mqd_mgr; 2670 int ret; 2671 2672 q = list_first_entry(&qpd->queues_list, struct queue, list); 2673 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 2674 q->properties.type)]; 2675 ret = destroy_queue_nocpsch_locked(dqm, qpd, q); 2676 if (ret) 2677 retval = ret; 2678 dqm_unlock(dqm); 2679 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 2680 dqm_lock(dqm); 2681 } 2682 2683 /* Unregister process */ 2684 list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) { 2685 if (qpd == cur->qpd) { 2686 list_del(&cur->list); 2687 kfree(cur); 2688 dqm->processes_count--; 2689 found = true; 2690 break; 2691 } 2692 } 2693 2694 dqm_unlock(dqm); 2695 2696 /* Outside the DQM lock because under the DQM lock we can't do 2697 * reclaim or take other locks that others hold while reclaiming. 2698 */ 2699 if (found) 2700 kfd_dec_compute_active(dqm->dev); 2701 2702 return retval; 2703 } 2704 2705 static int get_wave_state(struct device_queue_manager *dqm, 2706 struct queue *q, 2707 void __user *ctl_stack, 2708 u32 *ctl_stack_used_size, 2709 u32 *save_area_used_size) 2710 { 2711 struct mqd_manager *mqd_mgr; 2712 2713 dqm_lock(dqm); 2714 2715 mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP]; 2716 2717 if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE || 2718 q->properties.is_active || !q->device->kfd->cwsr_enabled || 2719 !mqd_mgr->get_wave_state) { 2720 dqm_unlock(dqm); 2721 return -EINVAL; 2722 } 2723 2724 dqm_unlock(dqm); 2725 2726 /* 2727 * get_wave_state is outside the dqm lock to prevent circular locking 2728 * and the queue should be protected against destruction by the process 2729 * lock. 2730 */ 2731 return mqd_mgr->get_wave_state(mqd_mgr, q->mqd, &q->properties, 2732 ctl_stack, ctl_stack_used_size, save_area_used_size); 2733 } 2734 2735 static void get_queue_checkpoint_info(struct device_queue_manager *dqm, 2736 const struct queue *q, 2737 u32 *mqd_size, 2738 u32 *ctl_stack_size) 2739 { 2740 struct mqd_manager *mqd_mgr; 2741 enum KFD_MQD_TYPE mqd_type = 2742 get_mqd_type_from_queue_type(q->properties.type); 2743 2744 dqm_lock(dqm); 2745 mqd_mgr = dqm->mqd_mgrs[mqd_type]; 2746 *mqd_size = mqd_mgr->mqd_size * NUM_XCC(mqd_mgr->dev->xcc_mask); 2747 *ctl_stack_size = 0; 2748 2749 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE && mqd_mgr->get_checkpoint_info) 2750 mqd_mgr->get_checkpoint_info(mqd_mgr, q->mqd, ctl_stack_size); 2751 2752 dqm_unlock(dqm); 2753 } 2754 2755 static int checkpoint_mqd(struct device_queue_manager *dqm, 2756 const struct queue *q, 2757 void *mqd, 2758 void *ctl_stack) 2759 { 2760 struct mqd_manager *mqd_mgr; 2761 int r = 0; 2762 enum KFD_MQD_TYPE mqd_type = 2763 get_mqd_type_from_queue_type(q->properties.type); 2764 2765 dqm_lock(dqm); 2766 2767 if (q->properties.is_active || !q->device->kfd->cwsr_enabled) { 2768 r = -EINVAL; 2769 goto dqm_unlock; 2770 } 2771 2772 mqd_mgr = dqm->mqd_mgrs[mqd_type]; 2773 if (!mqd_mgr->checkpoint_mqd) { 2774 r = -EOPNOTSUPP; 2775 goto dqm_unlock; 2776 } 2777 2778 mqd_mgr->checkpoint_mqd(mqd_mgr, q->mqd, mqd, ctl_stack); 2779 2780 dqm_unlock: 2781 dqm_unlock(dqm); 2782 return r; 2783 } 2784 2785 static int process_termination_cpsch(struct device_queue_manager *dqm, 2786 struct qcm_process_device *qpd) 2787 { 2788 int retval; 2789 struct queue *q; 2790 struct device *dev = dqm->dev->adev->dev; 2791 struct kernel_queue *kq, *kq_next; 2792 struct mqd_manager *mqd_mgr; 2793 struct device_process_node *cur, *next_dpn; 2794 enum kfd_unmap_queues_filter filter = 2795 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES; 2796 bool found = false; 2797 2798 retval = 0; 2799 2800 dqm_lock(dqm); 2801 2802 /* Clean all kernel queues */ 2803 list_for_each_entry_safe(kq, kq_next, &qpd->priv_queue_list, list) { 2804 list_del(&kq->list); 2805 decrement_queue_count(dqm, qpd, kq->queue); 2806 qpd->is_debug = false; 2807 dqm->total_queue_count--; 2808 filter = KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES; 2809 } 2810 2811 /* Clear all user mode queues */ 2812 list_for_each_entry(q, &qpd->queues_list, list) { 2813 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) 2814 deallocate_sdma_queue(dqm, q); 2815 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 2816 deallocate_sdma_queue(dqm, q); 2817 2818 if (q->properties.is_active) { 2819 decrement_queue_count(dqm, qpd, q); 2820 2821 if (dqm->dev->kfd->shared_resources.enable_mes) { 2822 retval = remove_queue_mes(dqm, q, qpd); 2823 if (retval) 2824 dev_err(dev, "Failed to remove queue %d\n", 2825 q->properties.queue_id); 2826 } 2827 } 2828 2829 dqm->total_queue_count--; 2830 } 2831 2832 /* Unregister process */ 2833 list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) { 2834 if (qpd == cur->qpd) { 2835 list_del(&cur->list); 2836 kfree(cur); 2837 dqm->processes_count--; 2838 found = true; 2839 break; 2840 } 2841 } 2842 2843 if (!dqm->dev->kfd->shared_resources.enable_mes) 2844 retval = execute_queues_cpsch(dqm, filter, 0, USE_DEFAULT_GRACE_PERIOD); 2845 2846 if ((retval || qpd->reset_wavefronts) && 2847 down_read_trylock(&dqm->dev->adev->reset_domain->sem)) { 2848 pr_warn("Resetting wave fronts (cpsch) on dev %p\n", dqm->dev); 2849 dbgdev_wave_reset_wavefronts(dqm->dev, qpd->pqm->process); 2850 qpd->reset_wavefronts = false; 2851 up_read(&dqm->dev->adev->reset_domain->sem); 2852 } 2853 2854 /* Lastly, free mqd resources. 2855 * Do free_mqd() after dqm_unlock to avoid circular locking. 2856 */ 2857 while (!list_empty(&qpd->queues_list)) { 2858 q = list_first_entry(&qpd->queues_list, struct queue, list); 2859 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 2860 q->properties.type)]; 2861 list_del(&q->list); 2862 qpd->queue_count--; 2863 dqm_unlock(dqm); 2864 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 2865 dqm_lock(dqm); 2866 } 2867 dqm_unlock(dqm); 2868 2869 /* Outside the DQM lock because under the DQM lock we can't do 2870 * reclaim or take other locks that others hold while reclaiming. 2871 */ 2872 if (found) 2873 kfd_dec_compute_active(dqm->dev); 2874 2875 return retval; 2876 } 2877 2878 static int init_mqd_managers(struct device_queue_manager *dqm) 2879 { 2880 int i, j; 2881 struct device *dev = dqm->dev->adev->dev; 2882 struct mqd_manager *mqd_mgr; 2883 2884 for (i = 0; i < KFD_MQD_TYPE_MAX; i++) { 2885 mqd_mgr = dqm->asic_ops.mqd_manager_init(i, dqm->dev); 2886 if (!mqd_mgr) { 2887 dev_err(dev, "mqd manager [%d] initialization failed\n", i); 2888 goto out_free; 2889 } 2890 dqm->mqd_mgrs[i] = mqd_mgr; 2891 } 2892 2893 return 0; 2894 2895 out_free: 2896 for (j = 0; j < i; j++) { 2897 kfree(dqm->mqd_mgrs[j]); 2898 dqm->mqd_mgrs[j] = NULL; 2899 } 2900 2901 return -ENOMEM; 2902 } 2903 2904 /* Allocate one hiq mqd (HWS) and all SDMA mqd in a continuous trunk*/ 2905 static int allocate_hiq_sdma_mqd(struct device_queue_manager *dqm) 2906 { 2907 int retval; 2908 struct kfd_node *dev = dqm->dev; 2909 struct kfd_mem_obj *mem_obj = &dqm->hiq_sdma_mqd; 2910 uint32_t size = dqm->mqd_mgrs[KFD_MQD_TYPE_SDMA]->mqd_size * 2911 get_num_all_sdma_engines(dqm) * 2912 dev->kfd->device_info.num_sdma_queues_per_engine + 2913 (dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]->mqd_size * 2914 NUM_XCC(dqm->dev->xcc_mask)); 2915 2916 retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev, size, 2917 &(mem_obj->gtt_mem), &(mem_obj->gpu_addr), 2918 (void *)&(mem_obj->cpu_ptr), false); 2919 2920 return retval; 2921 } 2922 2923 struct device_queue_manager *device_queue_manager_init(struct kfd_node *dev) 2924 { 2925 struct device_queue_manager *dqm; 2926 2927 pr_debug("Loading device queue manager\n"); 2928 2929 dqm = kzalloc(sizeof(*dqm), GFP_KERNEL); 2930 if (!dqm) 2931 return NULL; 2932 2933 switch (dev->adev->asic_type) { 2934 /* HWS is not available on Hawaii. */ 2935 case CHIP_HAWAII: 2936 /* HWS depends on CWSR for timely dequeue. CWSR is not 2937 * available on Tonga. 2938 * 2939 * FIXME: This argument also applies to Kaveri. 2940 */ 2941 case CHIP_TONGA: 2942 dqm->sched_policy = KFD_SCHED_POLICY_NO_HWS; 2943 break; 2944 default: 2945 dqm->sched_policy = sched_policy; 2946 break; 2947 } 2948 2949 dqm->dev = dev; 2950 switch (dqm->sched_policy) { 2951 case KFD_SCHED_POLICY_HWS: 2952 case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION: 2953 /* initialize dqm for cp scheduling */ 2954 dqm->ops.create_queue = create_queue_cpsch; 2955 dqm->ops.initialize = initialize_cpsch; 2956 dqm->ops.start = start_cpsch; 2957 dqm->ops.stop = stop_cpsch; 2958 dqm->ops.halt = halt_cpsch; 2959 dqm->ops.unhalt = unhalt_cpsch; 2960 dqm->ops.destroy_queue = destroy_queue_cpsch; 2961 dqm->ops.update_queue = update_queue; 2962 dqm->ops.register_process = register_process; 2963 dqm->ops.unregister_process = unregister_process; 2964 dqm->ops.uninitialize = uninitialize; 2965 dqm->ops.create_kernel_queue = create_kernel_queue_cpsch; 2966 dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch; 2967 dqm->ops.set_cache_memory_policy = set_cache_memory_policy; 2968 dqm->ops.process_termination = process_termination_cpsch; 2969 dqm->ops.evict_process_queues = evict_process_queues_cpsch; 2970 dqm->ops.restore_process_queues = restore_process_queues_cpsch; 2971 dqm->ops.get_wave_state = get_wave_state; 2972 dqm->ops.reset_queues = reset_queues_cpsch; 2973 dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info; 2974 dqm->ops.checkpoint_mqd = checkpoint_mqd; 2975 break; 2976 case KFD_SCHED_POLICY_NO_HWS: 2977 /* initialize dqm for no cp scheduling */ 2978 dqm->ops.start = start_nocpsch; 2979 dqm->ops.stop = stop_nocpsch; 2980 dqm->ops.create_queue = create_queue_nocpsch; 2981 dqm->ops.destroy_queue = destroy_queue_nocpsch; 2982 dqm->ops.update_queue = update_queue; 2983 dqm->ops.register_process = register_process; 2984 dqm->ops.unregister_process = unregister_process; 2985 dqm->ops.initialize = initialize_nocpsch; 2986 dqm->ops.uninitialize = uninitialize; 2987 dqm->ops.set_cache_memory_policy = set_cache_memory_policy; 2988 dqm->ops.process_termination = process_termination_nocpsch; 2989 dqm->ops.evict_process_queues = evict_process_queues_nocpsch; 2990 dqm->ops.restore_process_queues = 2991 restore_process_queues_nocpsch; 2992 dqm->ops.get_wave_state = get_wave_state; 2993 dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info; 2994 dqm->ops.checkpoint_mqd = checkpoint_mqd; 2995 break; 2996 default: 2997 dev_err(dev->adev->dev, "Invalid scheduling policy %d\n", dqm->sched_policy); 2998 goto out_free; 2999 } 3000 3001 switch (dev->adev->asic_type) { 3002 case CHIP_KAVERI: 3003 case CHIP_HAWAII: 3004 device_queue_manager_init_cik(&dqm->asic_ops); 3005 break; 3006 3007 case CHIP_CARRIZO: 3008 case CHIP_TONGA: 3009 case CHIP_FIJI: 3010 case CHIP_POLARIS10: 3011 case CHIP_POLARIS11: 3012 case CHIP_POLARIS12: 3013 case CHIP_VEGAM: 3014 device_queue_manager_init_vi(&dqm->asic_ops); 3015 break; 3016 3017 default: 3018 if (KFD_GC_VERSION(dev) >= IP_VERSION(12, 0, 0)) 3019 device_queue_manager_init_v12(&dqm->asic_ops); 3020 else if (KFD_GC_VERSION(dev) >= IP_VERSION(11, 0, 0)) 3021 device_queue_manager_init_v11(&dqm->asic_ops); 3022 else if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1)) 3023 device_queue_manager_init_v10(&dqm->asic_ops); 3024 else if (KFD_GC_VERSION(dev) >= IP_VERSION(9, 0, 1)) 3025 device_queue_manager_init_v9(&dqm->asic_ops); 3026 else { 3027 WARN(1, "Unexpected ASIC family %u", 3028 dev->adev->asic_type); 3029 goto out_free; 3030 } 3031 } 3032 3033 if (init_mqd_managers(dqm)) 3034 goto out_free; 3035 3036 if (!dev->kfd->shared_resources.enable_mes && allocate_hiq_sdma_mqd(dqm)) { 3037 dev_err(dev->adev->dev, "Failed to allocate hiq sdma mqd trunk buffer\n"); 3038 goto out_free; 3039 } 3040 3041 if (!dqm->ops.initialize(dqm)) { 3042 init_waitqueue_head(&dqm->destroy_wait); 3043 return dqm; 3044 } 3045 3046 out_free: 3047 kfree(dqm); 3048 return NULL; 3049 } 3050 3051 static void deallocate_hiq_sdma_mqd(struct kfd_node *dev, 3052 struct kfd_mem_obj *mqd) 3053 { 3054 WARN(!mqd, "No hiq sdma mqd trunk to free"); 3055 3056 amdgpu_amdkfd_free_gtt_mem(dev->adev, &mqd->gtt_mem); 3057 } 3058 3059 void device_queue_manager_uninit(struct device_queue_manager *dqm) 3060 { 3061 dqm->ops.stop(dqm); 3062 dqm->ops.uninitialize(dqm); 3063 if (!dqm->dev->kfd->shared_resources.enable_mes) 3064 deallocate_hiq_sdma_mqd(dqm->dev, &dqm->hiq_sdma_mqd); 3065 kfree(dqm); 3066 } 3067 3068 int kfd_dqm_suspend_bad_queue_mes(struct kfd_node *knode, u32 pasid, u32 doorbell_id) 3069 { 3070 struct kfd_process_device *pdd = NULL; 3071 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid, &pdd); 3072 struct device_queue_manager *dqm = knode->dqm; 3073 struct device *dev = dqm->dev->adev->dev; 3074 struct qcm_process_device *qpd; 3075 struct queue *q = NULL; 3076 int ret = 0; 3077 3078 if (!pdd) 3079 return -EINVAL; 3080 3081 dqm_lock(dqm); 3082 3083 if (pdd) { 3084 qpd = &pdd->qpd; 3085 3086 list_for_each_entry(q, &qpd->queues_list, list) { 3087 if (q->doorbell_id == doorbell_id && q->properties.is_active) { 3088 ret = suspend_all_queues_mes(dqm); 3089 if (ret) { 3090 dev_err(dev, "Suspending all queues failed"); 3091 goto out; 3092 } 3093 3094 q->properties.is_evicted = true; 3095 q->properties.is_active = false; 3096 decrement_queue_count(dqm, qpd, q); 3097 3098 ret = remove_queue_mes(dqm, q, qpd); 3099 if (ret) { 3100 dev_err(dev, "Removing bad queue failed"); 3101 goto out; 3102 } 3103 3104 ret = resume_all_queues_mes(dqm); 3105 if (ret) 3106 dev_err(dev, "Resuming all queues failed"); 3107 3108 break; 3109 } 3110 } 3111 } 3112 3113 out: 3114 dqm_unlock(dqm); 3115 kfd_unref_process(p); 3116 return ret; 3117 } 3118 3119 int kfd_evict_process_device(struct kfd_process_device *pdd) 3120 { 3121 struct device_queue_manager *dqm; 3122 struct kfd_process *p; 3123 3124 p = pdd->process; 3125 dqm = pdd->dev->dqm; 3126 3127 WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid); 3128 3129 return dqm->ops.evict_process_queues(dqm, &pdd->qpd); 3130 } 3131 3132 int reserve_debug_trap_vmid(struct device_queue_manager *dqm, 3133 struct qcm_process_device *qpd) 3134 { 3135 int r; 3136 struct device *dev = dqm->dev->adev->dev; 3137 int updated_vmid_mask; 3138 3139 if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) { 3140 dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy); 3141 return -EINVAL; 3142 } 3143 3144 dqm_lock(dqm); 3145 3146 if (dqm->trap_debug_vmid != 0) { 3147 dev_err(dev, "Trap debug id already reserved\n"); 3148 r = -EBUSY; 3149 goto out_unlock; 3150 } 3151 3152 r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, 3153 USE_DEFAULT_GRACE_PERIOD, false); 3154 if (r) 3155 goto out_unlock; 3156 3157 updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap; 3158 updated_vmid_mask &= ~(1 << dqm->dev->vm_info.last_vmid_kfd); 3159 3160 dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask; 3161 dqm->trap_debug_vmid = dqm->dev->vm_info.last_vmid_kfd; 3162 r = set_sched_resources(dqm); 3163 if (r) 3164 goto out_unlock; 3165 3166 r = map_queues_cpsch(dqm); 3167 if (r) 3168 goto out_unlock; 3169 3170 pr_debug("Reserved VMID for trap debug: %i\n", dqm->trap_debug_vmid); 3171 3172 out_unlock: 3173 dqm_unlock(dqm); 3174 return r; 3175 } 3176 3177 /* 3178 * Releases vmid for the trap debugger 3179 */ 3180 int release_debug_trap_vmid(struct device_queue_manager *dqm, 3181 struct qcm_process_device *qpd) 3182 { 3183 struct device *dev = dqm->dev->adev->dev; 3184 int r; 3185 int updated_vmid_mask; 3186 uint32_t trap_debug_vmid; 3187 3188 if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) { 3189 dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy); 3190 return -EINVAL; 3191 } 3192 3193 dqm_lock(dqm); 3194 trap_debug_vmid = dqm->trap_debug_vmid; 3195 if (dqm->trap_debug_vmid == 0) { 3196 dev_err(dev, "Trap debug id is not reserved\n"); 3197 r = -EINVAL; 3198 goto out_unlock; 3199 } 3200 3201 r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, 3202 USE_DEFAULT_GRACE_PERIOD, false); 3203 if (r) 3204 goto out_unlock; 3205 3206 updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap; 3207 updated_vmid_mask |= (1 << dqm->dev->vm_info.last_vmid_kfd); 3208 3209 dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask; 3210 dqm->trap_debug_vmid = 0; 3211 r = set_sched_resources(dqm); 3212 if (r) 3213 goto out_unlock; 3214 3215 r = map_queues_cpsch(dqm); 3216 if (r) 3217 goto out_unlock; 3218 3219 pr_debug("Released VMID for trap debug: %i\n", trap_debug_vmid); 3220 3221 out_unlock: 3222 dqm_unlock(dqm); 3223 return r; 3224 } 3225 3226 #define QUEUE_NOT_FOUND -1 3227 /* invalidate queue operation in array */ 3228 static void q_array_invalidate(uint32_t num_queues, uint32_t *queue_ids) 3229 { 3230 int i; 3231 3232 for (i = 0; i < num_queues; i++) 3233 queue_ids[i] |= KFD_DBG_QUEUE_INVALID_MASK; 3234 } 3235 3236 /* find queue index in array */ 3237 static int q_array_get_index(unsigned int queue_id, 3238 uint32_t num_queues, 3239 uint32_t *queue_ids) 3240 { 3241 int i; 3242 3243 for (i = 0; i < num_queues; i++) 3244 if (queue_id == (queue_ids[i] & ~KFD_DBG_QUEUE_INVALID_MASK)) 3245 return i; 3246 3247 return QUEUE_NOT_FOUND; 3248 } 3249 3250 struct copy_context_work_handler_workarea { 3251 struct work_struct copy_context_work; 3252 struct kfd_process *p; 3253 }; 3254 3255 static void copy_context_work_handler(struct work_struct *work) 3256 { 3257 struct copy_context_work_handler_workarea *workarea; 3258 struct mqd_manager *mqd_mgr; 3259 struct queue *q; 3260 struct mm_struct *mm; 3261 struct kfd_process *p; 3262 uint32_t tmp_ctl_stack_used_size, tmp_save_area_used_size; 3263 int i; 3264 3265 workarea = container_of(work, 3266 struct copy_context_work_handler_workarea, 3267 copy_context_work); 3268 3269 p = workarea->p; 3270 mm = get_task_mm(p->lead_thread); 3271 3272 if (!mm) 3273 return; 3274 3275 kthread_use_mm(mm); 3276 for (i = 0; i < p->n_pdds; i++) { 3277 struct kfd_process_device *pdd = p->pdds[i]; 3278 struct device_queue_manager *dqm = pdd->dev->dqm; 3279 struct qcm_process_device *qpd = &pdd->qpd; 3280 3281 list_for_each_entry(q, &qpd->queues_list, list) { 3282 if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE) 3283 continue; 3284 3285 mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP]; 3286 3287 /* We ignore the return value from get_wave_state 3288 * because 3289 * i) right now, it always returns 0, and 3290 * ii) if we hit an error, we would continue to the 3291 * next queue anyway. 3292 */ 3293 mqd_mgr->get_wave_state(mqd_mgr, 3294 q->mqd, 3295 &q->properties, 3296 (void __user *) q->properties.ctx_save_restore_area_address, 3297 &tmp_ctl_stack_used_size, 3298 &tmp_save_area_used_size); 3299 } 3300 } 3301 kthread_unuse_mm(mm); 3302 mmput(mm); 3303 } 3304 3305 static uint32_t *get_queue_ids(uint32_t num_queues, uint32_t *usr_queue_id_array) 3306 { 3307 size_t array_size = num_queues * sizeof(uint32_t); 3308 3309 if (!usr_queue_id_array) 3310 return NULL; 3311 3312 return memdup_user(usr_queue_id_array, array_size); 3313 } 3314 3315 int resume_queues(struct kfd_process *p, 3316 uint32_t num_queues, 3317 uint32_t *usr_queue_id_array) 3318 { 3319 uint32_t *queue_ids = NULL; 3320 int total_resumed = 0; 3321 int i; 3322 3323 if (usr_queue_id_array) { 3324 queue_ids = get_queue_ids(num_queues, usr_queue_id_array); 3325 3326 if (IS_ERR(queue_ids)) 3327 return PTR_ERR(queue_ids); 3328 3329 /* mask all queues as invalid. unmask per successful request */ 3330 q_array_invalidate(num_queues, queue_ids); 3331 } 3332 3333 for (i = 0; i < p->n_pdds; i++) { 3334 struct kfd_process_device *pdd = p->pdds[i]; 3335 struct device_queue_manager *dqm = pdd->dev->dqm; 3336 struct device *dev = dqm->dev->adev->dev; 3337 struct qcm_process_device *qpd = &pdd->qpd; 3338 struct queue *q; 3339 int r, per_device_resumed = 0; 3340 3341 dqm_lock(dqm); 3342 3343 /* unmask queues that resume or already resumed as valid */ 3344 list_for_each_entry(q, &qpd->queues_list, list) { 3345 int q_idx = QUEUE_NOT_FOUND; 3346 3347 if (queue_ids) 3348 q_idx = q_array_get_index( 3349 q->properties.queue_id, 3350 num_queues, 3351 queue_ids); 3352 3353 if (!queue_ids || q_idx != QUEUE_NOT_FOUND) { 3354 int err = resume_single_queue(dqm, &pdd->qpd, q); 3355 3356 if (queue_ids) { 3357 if (!err) { 3358 queue_ids[q_idx] &= 3359 ~KFD_DBG_QUEUE_INVALID_MASK; 3360 } else { 3361 queue_ids[q_idx] |= 3362 KFD_DBG_QUEUE_ERROR_MASK; 3363 break; 3364 } 3365 } 3366 3367 if (dqm->dev->kfd->shared_resources.enable_mes) { 3368 wake_up_all(&dqm->destroy_wait); 3369 if (!err) 3370 total_resumed++; 3371 } else { 3372 per_device_resumed++; 3373 } 3374 } 3375 } 3376 3377 if (!per_device_resumed) { 3378 dqm_unlock(dqm); 3379 continue; 3380 } 3381 3382 r = execute_queues_cpsch(dqm, 3383 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 3384 0, 3385 USE_DEFAULT_GRACE_PERIOD); 3386 if (r) { 3387 dev_err(dev, "Failed to resume process queues\n"); 3388 if (queue_ids) { 3389 list_for_each_entry(q, &qpd->queues_list, list) { 3390 int q_idx = q_array_get_index( 3391 q->properties.queue_id, 3392 num_queues, 3393 queue_ids); 3394 3395 /* mask queue as error on resume fail */ 3396 if (q_idx != QUEUE_NOT_FOUND) 3397 queue_ids[q_idx] |= 3398 KFD_DBG_QUEUE_ERROR_MASK; 3399 } 3400 } 3401 } else { 3402 wake_up_all(&dqm->destroy_wait); 3403 total_resumed += per_device_resumed; 3404 } 3405 3406 dqm_unlock(dqm); 3407 } 3408 3409 if (queue_ids) { 3410 if (copy_to_user((void __user *)usr_queue_id_array, queue_ids, 3411 num_queues * sizeof(uint32_t))) 3412 pr_err("copy_to_user failed on queue resume\n"); 3413 3414 kfree(queue_ids); 3415 } 3416 3417 return total_resumed; 3418 } 3419 3420 int suspend_queues(struct kfd_process *p, 3421 uint32_t num_queues, 3422 uint32_t grace_period, 3423 uint64_t exception_clear_mask, 3424 uint32_t *usr_queue_id_array) 3425 { 3426 uint32_t *queue_ids = get_queue_ids(num_queues, usr_queue_id_array); 3427 int total_suspended = 0; 3428 int i; 3429 3430 if (IS_ERR(queue_ids)) 3431 return PTR_ERR(queue_ids); 3432 3433 /* mask all queues as invalid. umask on successful request */ 3434 q_array_invalidate(num_queues, queue_ids); 3435 3436 for (i = 0; i < p->n_pdds; i++) { 3437 struct kfd_process_device *pdd = p->pdds[i]; 3438 struct device_queue_manager *dqm = pdd->dev->dqm; 3439 struct device *dev = dqm->dev->adev->dev; 3440 struct qcm_process_device *qpd = &pdd->qpd; 3441 struct queue *q; 3442 int r, per_device_suspended = 0; 3443 3444 mutex_lock(&p->event_mutex); 3445 dqm_lock(dqm); 3446 3447 /* unmask queues that suspend or already suspended */ 3448 list_for_each_entry(q, &qpd->queues_list, list) { 3449 int q_idx = q_array_get_index(q->properties.queue_id, 3450 num_queues, 3451 queue_ids); 3452 3453 if (q_idx != QUEUE_NOT_FOUND) { 3454 int err = suspend_single_queue(dqm, pdd, q); 3455 bool is_mes = dqm->dev->kfd->shared_resources.enable_mes; 3456 3457 if (!err) { 3458 queue_ids[q_idx] &= ~KFD_DBG_QUEUE_INVALID_MASK; 3459 if (exception_clear_mask && is_mes) 3460 q->properties.exception_status &= 3461 ~exception_clear_mask; 3462 3463 if (is_mes) 3464 total_suspended++; 3465 else 3466 per_device_suspended++; 3467 } else if (err != -EBUSY) { 3468 r = err; 3469 queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK; 3470 break; 3471 } 3472 } 3473 } 3474 3475 if (!per_device_suspended) { 3476 dqm_unlock(dqm); 3477 mutex_unlock(&p->event_mutex); 3478 if (total_suspended) 3479 amdgpu_amdkfd_debug_mem_fence(dqm->dev->adev); 3480 continue; 3481 } 3482 3483 r = execute_queues_cpsch(dqm, 3484 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, 3485 grace_period); 3486 3487 if (r) 3488 dev_err(dev, "Failed to suspend process queues.\n"); 3489 else 3490 total_suspended += per_device_suspended; 3491 3492 list_for_each_entry(q, &qpd->queues_list, list) { 3493 int q_idx = q_array_get_index(q->properties.queue_id, 3494 num_queues, queue_ids); 3495 3496 if (q_idx == QUEUE_NOT_FOUND) 3497 continue; 3498 3499 /* mask queue as error on suspend fail */ 3500 if (r) 3501 queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK; 3502 else if (exception_clear_mask) 3503 q->properties.exception_status &= 3504 ~exception_clear_mask; 3505 } 3506 3507 dqm_unlock(dqm); 3508 mutex_unlock(&p->event_mutex); 3509 amdgpu_device_flush_hdp(dqm->dev->adev, NULL); 3510 } 3511 3512 if (total_suspended) { 3513 struct copy_context_work_handler_workarea copy_context_worker; 3514 3515 INIT_WORK_ONSTACK( 3516 ©_context_worker.copy_context_work, 3517 copy_context_work_handler); 3518 3519 copy_context_worker.p = p; 3520 3521 schedule_work(©_context_worker.copy_context_work); 3522 3523 3524 flush_work(©_context_worker.copy_context_work); 3525 destroy_work_on_stack(©_context_worker.copy_context_work); 3526 } 3527 3528 if (copy_to_user((void __user *)usr_queue_id_array, queue_ids, 3529 num_queues * sizeof(uint32_t))) 3530 pr_err("copy_to_user failed on queue suspend\n"); 3531 3532 kfree(queue_ids); 3533 3534 return total_suspended; 3535 } 3536 3537 static uint32_t set_queue_type_for_user(struct queue_properties *q_props) 3538 { 3539 switch (q_props->type) { 3540 case KFD_QUEUE_TYPE_COMPUTE: 3541 return q_props->format == KFD_QUEUE_FORMAT_PM4 3542 ? KFD_IOC_QUEUE_TYPE_COMPUTE 3543 : KFD_IOC_QUEUE_TYPE_COMPUTE_AQL; 3544 case KFD_QUEUE_TYPE_SDMA: 3545 return KFD_IOC_QUEUE_TYPE_SDMA; 3546 case KFD_QUEUE_TYPE_SDMA_XGMI: 3547 return KFD_IOC_QUEUE_TYPE_SDMA_XGMI; 3548 default: 3549 WARN_ONCE(true, "queue type not recognized!"); 3550 return 0xffffffff; 3551 }; 3552 } 3553 3554 void set_queue_snapshot_entry(struct queue *q, 3555 uint64_t exception_clear_mask, 3556 struct kfd_queue_snapshot_entry *qss_entry) 3557 { 3558 qss_entry->ring_base_address = q->properties.queue_address; 3559 qss_entry->write_pointer_address = (uint64_t)q->properties.write_ptr; 3560 qss_entry->read_pointer_address = (uint64_t)q->properties.read_ptr; 3561 qss_entry->ctx_save_restore_address = 3562 q->properties.ctx_save_restore_area_address; 3563 qss_entry->ctx_save_restore_area_size = 3564 q->properties.ctx_save_restore_area_size; 3565 qss_entry->exception_status = q->properties.exception_status; 3566 qss_entry->queue_id = q->properties.queue_id; 3567 qss_entry->gpu_id = q->device->id; 3568 qss_entry->ring_size = (uint32_t)q->properties.queue_size; 3569 qss_entry->queue_type = set_queue_type_for_user(&q->properties); 3570 q->properties.exception_status &= ~exception_clear_mask; 3571 } 3572 3573 int debug_lock_and_unmap(struct device_queue_manager *dqm) 3574 { 3575 struct device *dev = dqm->dev->adev->dev; 3576 int r; 3577 3578 if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) { 3579 dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy); 3580 return -EINVAL; 3581 } 3582 3583 if (!kfd_dbg_is_per_vmid_supported(dqm->dev)) 3584 return 0; 3585 3586 dqm_lock(dqm); 3587 3588 r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, 0, false); 3589 if (r) 3590 dqm_unlock(dqm); 3591 3592 return r; 3593 } 3594 3595 int debug_map_and_unlock(struct device_queue_manager *dqm) 3596 { 3597 struct device *dev = dqm->dev->adev->dev; 3598 int r; 3599 3600 if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) { 3601 dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy); 3602 return -EINVAL; 3603 } 3604 3605 if (!kfd_dbg_is_per_vmid_supported(dqm->dev)) 3606 return 0; 3607 3608 r = map_queues_cpsch(dqm); 3609 3610 dqm_unlock(dqm); 3611 3612 return r; 3613 } 3614 3615 int debug_refresh_runlist(struct device_queue_manager *dqm) 3616 { 3617 int r = debug_lock_and_unmap(dqm); 3618 3619 if (r) 3620 return r; 3621 3622 return debug_map_and_unlock(dqm); 3623 } 3624 3625 bool kfd_dqm_is_queue_in_process(struct device_queue_manager *dqm, 3626 struct qcm_process_device *qpd, 3627 int doorbell_off, u32 *queue_format) 3628 { 3629 struct queue *q; 3630 bool r = false; 3631 3632 if (!queue_format) 3633 return r; 3634 3635 dqm_lock(dqm); 3636 3637 list_for_each_entry(q, &qpd->queues_list, list) { 3638 if (q->properties.doorbell_off == doorbell_off) { 3639 *queue_format = q->properties.format; 3640 r = true; 3641 goto out; 3642 } 3643 } 3644 3645 out: 3646 dqm_unlock(dqm); 3647 return r; 3648 } 3649 #if defined(CONFIG_DEBUG_FS) 3650 3651 static void seq_reg_dump(struct seq_file *m, 3652 uint32_t (*dump)[2], uint32_t n_regs) 3653 { 3654 uint32_t i, count; 3655 3656 for (i = 0, count = 0; i < n_regs; i++) { 3657 if (count == 0 || 3658 dump[i-1][0] + sizeof(uint32_t) != dump[i][0]) { 3659 seq_printf(m, "%s %08x: %08x", 3660 i ? "\n" : "", 3661 dump[i][0], dump[i][1]); 3662 count = 7; 3663 } else { 3664 seq_printf(m, " %08x", dump[i][1]); 3665 count--; 3666 } 3667 } 3668 3669 seq_puts(m, "\n"); 3670 } 3671 3672 int dqm_debugfs_hqds(struct seq_file *m, void *data) 3673 { 3674 struct device_queue_manager *dqm = data; 3675 uint32_t xcc_mask = dqm->dev->xcc_mask; 3676 uint32_t (*dump)[2], n_regs; 3677 int pipe, queue; 3678 int r = 0, xcc_id; 3679 uint32_t sdma_engine_start; 3680 3681 if (!dqm->sched_running) { 3682 seq_puts(m, " Device is stopped\n"); 3683 return 0; 3684 } 3685 3686 for_each_inst(xcc_id, xcc_mask) { 3687 r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev, 3688 KFD_CIK_HIQ_PIPE, 3689 KFD_CIK_HIQ_QUEUE, &dump, 3690 &n_regs, xcc_id); 3691 if (!r) { 3692 seq_printf( 3693 m, 3694 " Inst %d, HIQ on MEC %d Pipe %d Queue %d\n", 3695 xcc_id, 3696 KFD_CIK_HIQ_PIPE / get_pipes_per_mec(dqm) + 1, 3697 KFD_CIK_HIQ_PIPE % get_pipes_per_mec(dqm), 3698 KFD_CIK_HIQ_QUEUE); 3699 seq_reg_dump(m, dump, n_regs); 3700 3701 kfree(dump); 3702 } 3703 3704 for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) { 3705 int pipe_offset = pipe * get_queues_per_pipe(dqm); 3706 3707 for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) { 3708 if (!test_bit(pipe_offset + queue, 3709 dqm->dev->kfd->shared_resources.cp_queue_bitmap)) 3710 continue; 3711 3712 r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev, 3713 pipe, queue, 3714 &dump, &n_regs, 3715 xcc_id); 3716 if (r) 3717 break; 3718 3719 seq_printf(m, 3720 " Inst %d, CP Pipe %d, Queue %d\n", 3721 xcc_id, pipe, queue); 3722 seq_reg_dump(m, dump, n_regs); 3723 3724 kfree(dump); 3725 } 3726 } 3727 } 3728 3729 sdma_engine_start = dqm->dev->node_id * get_num_all_sdma_engines(dqm); 3730 for (pipe = sdma_engine_start; 3731 pipe < (sdma_engine_start + get_num_all_sdma_engines(dqm)); 3732 pipe++) { 3733 for (queue = 0; 3734 queue < dqm->dev->kfd->device_info.num_sdma_queues_per_engine; 3735 queue++) { 3736 r = dqm->dev->kfd2kgd->hqd_sdma_dump( 3737 dqm->dev->adev, pipe, queue, &dump, &n_regs); 3738 if (r) 3739 break; 3740 3741 seq_printf(m, " SDMA Engine %d, RLC %d\n", 3742 pipe, queue); 3743 seq_reg_dump(m, dump, n_regs); 3744 3745 kfree(dump); 3746 } 3747 } 3748 3749 return r; 3750 } 3751 3752 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm) 3753 { 3754 int r = 0; 3755 3756 dqm_lock(dqm); 3757 r = pm_debugfs_hang_hws(&dqm->packet_mgr); 3758 if (r) { 3759 dqm_unlock(dqm); 3760 return r; 3761 } 3762 dqm->active_runlist = true; 3763 r = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 3764 0, USE_DEFAULT_GRACE_PERIOD); 3765 dqm_unlock(dqm); 3766 3767 return r; 3768 } 3769 3770 #endif 3771