1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2014-2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/ratelimit.h> 26 #include <linux/printk.h> 27 #include <linux/slab.h> 28 #include <linux/list.h> 29 #include <linux/types.h> 30 #include <linux/bitops.h> 31 #include <linux/sched.h> 32 #include "kfd_priv.h" 33 #include "kfd_device_queue_manager.h" 34 #include "kfd_mqd_manager.h" 35 #include "cik_regs.h" 36 #include "kfd_kernel_queue.h" 37 #include "amdgpu_amdkfd.h" 38 #include "amdgpu_reset.h" 39 #include "amdgpu_sdma.h" 40 #include "mes_v11_api_def.h" 41 #include "kfd_debug.h" 42 43 /* Size of the per-pipe EOP queue */ 44 #define CIK_HPD_EOP_BYTES_LOG2 11 45 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2) 46 /* See unmap_queues_cpsch() */ 47 #define USE_DEFAULT_GRACE_PERIOD 0xffffffff 48 49 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm, 50 u32 pasid, unsigned int vmid); 51 52 static int execute_queues_cpsch(struct device_queue_manager *dqm, 53 enum kfd_unmap_queues_filter filter, 54 uint32_t filter_param, 55 uint32_t grace_period); 56 static int unmap_queues_cpsch(struct device_queue_manager *dqm, 57 enum kfd_unmap_queues_filter filter, 58 uint32_t filter_param, 59 uint32_t grace_period, 60 bool reset); 61 62 static int map_queues_cpsch(struct device_queue_manager *dqm); 63 64 static void deallocate_sdma_queue(struct device_queue_manager *dqm, 65 struct queue *q); 66 67 static inline void deallocate_hqd(struct device_queue_manager *dqm, 68 struct queue *q); 69 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q); 70 static int allocate_sdma_queue(struct device_queue_manager *dqm, 71 struct queue *q, const uint32_t *restore_sdma_id); 72 73 static int reset_queues_on_hws_hang(struct device_queue_manager *dqm, bool is_sdma); 74 75 static inline 76 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type) 77 { 78 if (type == KFD_QUEUE_TYPE_SDMA || type == KFD_QUEUE_TYPE_SDMA_XGMI) 79 return KFD_MQD_TYPE_SDMA; 80 return KFD_MQD_TYPE_CP; 81 } 82 83 static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe) 84 { 85 int i; 86 int pipe_offset = (mec * dqm->dev->kfd->shared_resources.num_pipe_per_mec 87 + pipe) * dqm->dev->kfd->shared_resources.num_queue_per_pipe; 88 89 /* queue is available for KFD usage if bit is 1 */ 90 for (i = 0; i < dqm->dev->kfd->shared_resources.num_queue_per_pipe; ++i) 91 if (test_bit(pipe_offset + i, 92 dqm->dev->kfd->shared_resources.cp_queue_bitmap)) 93 return true; 94 return false; 95 } 96 97 unsigned int get_cp_queues_num(struct device_queue_manager *dqm) 98 { 99 return bitmap_weight(dqm->dev->kfd->shared_resources.cp_queue_bitmap, 100 AMDGPU_MAX_QUEUES); 101 } 102 103 unsigned int get_queues_per_pipe(struct device_queue_manager *dqm) 104 { 105 return dqm->dev->kfd->shared_resources.num_queue_per_pipe; 106 } 107 108 unsigned int get_pipes_per_mec(struct device_queue_manager *dqm) 109 { 110 return dqm->dev->kfd->shared_resources.num_pipe_per_mec; 111 } 112 113 static unsigned int get_num_all_sdma_engines(struct device_queue_manager *dqm) 114 { 115 return kfd_get_num_sdma_engines(dqm->dev) + 116 kfd_get_num_xgmi_sdma_engines(dqm->dev); 117 } 118 119 unsigned int get_num_sdma_queues(struct device_queue_manager *dqm) 120 { 121 return kfd_get_num_sdma_engines(dqm->dev) * 122 dqm->dev->kfd->device_info.num_sdma_queues_per_engine; 123 } 124 125 unsigned int get_num_xgmi_sdma_queues(struct device_queue_manager *dqm) 126 { 127 return kfd_get_num_xgmi_sdma_engines(dqm->dev) * 128 dqm->dev->kfd->device_info.num_sdma_queues_per_engine; 129 } 130 131 static void init_sdma_bitmaps(struct device_queue_manager *dqm) 132 { 133 bitmap_zero(dqm->sdma_bitmap, KFD_MAX_SDMA_QUEUES); 134 bitmap_set(dqm->sdma_bitmap, 0, get_num_sdma_queues(dqm)); 135 136 bitmap_zero(dqm->xgmi_sdma_bitmap, KFD_MAX_SDMA_QUEUES); 137 bitmap_set(dqm->xgmi_sdma_bitmap, 0, get_num_xgmi_sdma_queues(dqm)); 138 139 /* Mask out the reserved queues */ 140 bitmap_andnot(dqm->sdma_bitmap, dqm->sdma_bitmap, 141 dqm->dev->kfd->device_info.reserved_sdma_queues_bitmap, 142 KFD_MAX_SDMA_QUEUES); 143 } 144 145 void program_sh_mem_settings(struct device_queue_manager *dqm, 146 struct qcm_process_device *qpd) 147 { 148 uint32_t xcc_mask = dqm->dev->xcc_mask; 149 int xcc_id; 150 151 for_each_inst(xcc_id, xcc_mask) 152 dqm->dev->kfd2kgd->program_sh_mem_settings( 153 dqm->dev->adev, qpd->vmid, qpd->sh_mem_config, 154 qpd->sh_mem_ape1_base, qpd->sh_mem_ape1_limit, 155 qpd->sh_mem_bases, xcc_id); 156 } 157 158 static void kfd_hws_hang(struct device_queue_manager *dqm) 159 { 160 struct device_process_node *cur; 161 struct qcm_process_device *qpd; 162 struct queue *q; 163 164 /* Mark all device queues as reset. */ 165 list_for_each_entry(cur, &dqm->queues, list) { 166 qpd = cur->qpd; 167 list_for_each_entry(q, &qpd->queues_list, list) { 168 struct kfd_process_device *pdd = qpd_to_pdd(qpd); 169 170 pdd->has_reset_queue = true; 171 } 172 } 173 174 /* 175 * Issue a GPU reset if HWS is unresponsive 176 */ 177 amdgpu_amdkfd_gpu_reset(dqm->dev->adev); 178 } 179 180 static int convert_to_mes_queue_type(int queue_type) 181 { 182 int mes_queue_type; 183 184 switch (queue_type) { 185 case KFD_QUEUE_TYPE_COMPUTE: 186 mes_queue_type = MES_QUEUE_TYPE_COMPUTE; 187 break; 188 case KFD_QUEUE_TYPE_SDMA: 189 mes_queue_type = MES_QUEUE_TYPE_SDMA; 190 break; 191 default: 192 WARN(1, "Invalid queue type %d", queue_type); 193 mes_queue_type = -EINVAL; 194 break; 195 } 196 197 return mes_queue_type; 198 } 199 200 static int add_queue_mes(struct device_queue_manager *dqm, struct queue *q, 201 struct qcm_process_device *qpd) 202 { 203 struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev; 204 struct kfd_process_device *pdd = qpd_to_pdd(qpd); 205 struct mes_add_queue_input queue_input; 206 int r, queue_type; 207 uint64_t wptr_addr_off; 208 209 if (!dqm->sched_running || dqm->sched_halt) 210 return 0; 211 if (!down_read_trylock(&adev->reset_domain->sem)) 212 return -EIO; 213 214 memset(&queue_input, 0x0, sizeof(struct mes_add_queue_input)); 215 queue_input.process_id = pdd->pasid; 216 queue_input.page_table_base_addr = qpd->page_table_base; 217 queue_input.process_va_start = 0; 218 queue_input.process_va_end = adev->vm_manager.max_pfn - 1; 219 /* MES unit for quantum is 100ns */ 220 queue_input.process_quantum = KFD_MES_PROCESS_QUANTUM; /* Equivalent to 10ms. */ 221 queue_input.process_context_addr = pdd->proc_ctx_gpu_addr; 222 queue_input.gang_quantum = KFD_MES_GANG_QUANTUM; /* Equivalent to 1ms */ 223 queue_input.gang_context_addr = q->gang_ctx_gpu_addr; 224 queue_input.inprocess_gang_priority = q->properties.priority; 225 queue_input.gang_global_priority_level = 226 AMDGPU_MES_PRIORITY_LEVEL_NORMAL; 227 queue_input.doorbell_offset = q->properties.doorbell_off; 228 queue_input.mqd_addr = q->gart_mqd_addr; 229 queue_input.wptr_addr = (uint64_t)q->properties.write_ptr; 230 231 wptr_addr_off = (uint64_t)q->properties.write_ptr & (PAGE_SIZE - 1); 232 queue_input.wptr_mc_addr = amdgpu_bo_gpu_offset(q->properties.wptr_bo) + wptr_addr_off; 233 234 queue_input.is_kfd_process = 1; 235 queue_input.is_aql_queue = (q->properties.format == KFD_QUEUE_FORMAT_AQL); 236 queue_input.queue_size = q->properties.queue_size >> 2; 237 238 queue_input.paging = false; 239 queue_input.tba_addr = qpd->tba_addr; 240 queue_input.tma_addr = qpd->tma_addr; 241 queue_input.trap_en = !kfd_dbg_has_cwsr_workaround(q->device); 242 queue_input.skip_process_ctx_clear = 243 qpd->pqm->process->runtime_info.runtime_state == DEBUG_RUNTIME_STATE_ENABLED && 244 (qpd->pqm->process->debug_trap_enabled || 245 kfd_dbg_has_ttmps_always_setup(q->device)); 246 247 queue_type = convert_to_mes_queue_type(q->properties.type); 248 if (queue_type < 0) { 249 dev_err(adev->dev, "Queue type not supported with MES, queue:%d\n", 250 q->properties.type); 251 up_read(&adev->reset_domain->sem); 252 return -EINVAL; 253 } 254 queue_input.queue_type = (uint32_t)queue_type; 255 256 queue_input.exclusively_scheduled = q->properties.is_gws; 257 258 amdgpu_mes_lock(&adev->mes); 259 r = adev->mes.funcs->add_hw_queue(&adev->mes, &queue_input); 260 amdgpu_mes_unlock(&adev->mes); 261 up_read(&adev->reset_domain->sem); 262 if (r) { 263 dev_err(adev->dev, "failed to add hardware queue to MES, doorbell=0x%x\n", 264 q->properties.doorbell_off); 265 dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n"); 266 kfd_hws_hang(dqm); 267 } 268 269 return r; 270 } 271 272 static int remove_queue_mes(struct device_queue_manager *dqm, struct queue *q, 273 struct qcm_process_device *qpd) 274 { 275 struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev; 276 int r; 277 struct mes_remove_queue_input queue_input; 278 279 if (!dqm->sched_running || dqm->sched_halt) 280 return 0; 281 if (!down_read_trylock(&adev->reset_domain->sem)) 282 return -EIO; 283 284 memset(&queue_input, 0x0, sizeof(struct mes_remove_queue_input)); 285 queue_input.doorbell_offset = q->properties.doorbell_off; 286 queue_input.gang_context_addr = q->gang_ctx_gpu_addr; 287 288 amdgpu_mes_lock(&adev->mes); 289 r = adev->mes.funcs->remove_hw_queue(&adev->mes, &queue_input); 290 amdgpu_mes_unlock(&adev->mes); 291 up_read(&adev->reset_domain->sem); 292 293 if (r) { 294 dev_err(adev->dev, "failed to remove hardware queue from MES, doorbell=0x%x\n", 295 q->properties.doorbell_off); 296 dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n"); 297 kfd_hws_hang(dqm); 298 } 299 300 return r; 301 } 302 303 static int remove_all_kfd_queues_mes(struct device_queue_manager *dqm) 304 { 305 struct device_process_node *cur; 306 struct device *dev = dqm->dev->adev->dev; 307 struct qcm_process_device *qpd; 308 struct queue *q; 309 int retval = 0; 310 311 list_for_each_entry(cur, &dqm->queues, list) { 312 qpd = cur->qpd; 313 list_for_each_entry(q, &qpd->queues_list, list) { 314 if (q->properties.is_active) { 315 retval = remove_queue_mes(dqm, q, qpd); 316 if (retval) { 317 dev_err(dev, "%s: Failed to remove queue %d for dev %d", 318 __func__, 319 q->properties.queue_id, 320 dqm->dev->id); 321 return retval; 322 } 323 } 324 } 325 } 326 327 return retval; 328 } 329 330 static int add_all_kfd_queues_mes(struct device_queue_manager *dqm) 331 { 332 struct device_process_node *cur; 333 struct device *dev = dqm->dev->adev->dev; 334 struct qcm_process_device *qpd; 335 struct queue *q; 336 int retval = 0; 337 338 list_for_each_entry(cur, &dqm->queues, list) { 339 qpd = cur->qpd; 340 list_for_each_entry(q, &qpd->queues_list, list) { 341 if (!q->properties.is_active) 342 continue; 343 retval = add_queue_mes(dqm, q, qpd); 344 if (retval) { 345 dev_err(dev, "%s: Failed to add queue %d for dev %d", 346 __func__, 347 q->properties.queue_id, 348 dqm->dev->id); 349 return retval; 350 } 351 } 352 } 353 354 return retval; 355 } 356 357 static int suspend_all_queues_mes(struct device_queue_manager *dqm) 358 { 359 struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev; 360 int r = 0; 361 362 if (!down_read_trylock(&adev->reset_domain->sem)) 363 return -EIO; 364 365 r = amdgpu_mes_suspend(adev); 366 up_read(&adev->reset_domain->sem); 367 368 if (r) { 369 dev_err(adev->dev, "failed to suspend gangs from MES\n"); 370 dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n"); 371 kfd_hws_hang(dqm); 372 } 373 374 return r; 375 } 376 377 static int resume_all_queues_mes(struct device_queue_manager *dqm) 378 { 379 struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev; 380 int r = 0; 381 382 if (!down_read_trylock(&adev->reset_domain->sem)) 383 return -EIO; 384 385 r = amdgpu_mes_resume(adev); 386 up_read(&adev->reset_domain->sem); 387 388 if (r) { 389 dev_err(adev->dev, "failed to resume gangs from MES\n"); 390 dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n"); 391 kfd_hws_hang(dqm); 392 } 393 394 return r; 395 } 396 397 static void increment_queue_count(struct device_queue_manager *dqm, 398 struct qcm_process_device *qpd, 399 struct queue *q) 400 { 401 dqm->active_queue_count++; 402 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE || 403 q->properties.type == KFD_QUEUE_TYPE_DIQ) 404 dqm->active_cp_queue_count++; 405 406 if (q->properties.is_gws) { 407 dqm->gws_queue_count++; 408 qpd->mapped_gws_queue = true; 409 } 410 } 411 412 static void decrement_queue_count(struct device_queue_manager *dqm, 413 struct qcm_process_device *qpd, 414 struct queue *q) 415 { 416 dqm->active_queue_count--; 417 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE || 418 q->properties.type == KFD_QUEUE_TYPE_DIQ) 419 dqm->active_cp_queue_count--; 420 421 if (q->properties.is_gws) { 422 dqm->gws_queue_count--; 423 qpd->mapped_gws_queue = false; 424 } 425 } 426 427 /* 428 * Allocate a doorbell ID to this queue. 429 * If doorbell_id is passed in, make sure requested ID is valid then allocate it. 430 */ 431 static int allocate_doorbell(struct qcm_process_device *qpd, 432 struct queue *q, 433 uint32_t const *restore_id) 434 { 435 struct kfd_node *dev = qpd->dqm->dev; 436 437 if (!KFD_IS_SOC15(dev)) { 438 /* On pre-SOC15 chips we need to use the queue ID to 439 * preserve the user mode ABI. 440 */ 441 442 if (restore_id && *restore_id != q->properties.queue_id) 443 return -EINVAL; 444 445 q->doorbell_id = q->properties.queue_id; 446 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 447 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 448 /* For SDMA queues on SOC15 with 8-byte doorbell, use static 449 * doorbell assignments based on the engine and queue id. 450 * The doobell index distance between RLC (2*i) and (2*i+1) 451 * for a SDMA engine is 512. 452 */ 453 454 uint32_t *idx_offset = dev->kfd->shared_resources.sdma_doorbell_idx; 455 456 /* 457 * q->properties.sdma_engine_id corresponds to the virtual 458 * sdma engine number. However, for doorbell allocation, 459 * we need the physical sdma engine id in order to get the 460 * correct doorbell offset. 461 */ 462 uint32_t valid_id = idx_offset[qpd->dqm->dev->node_id * 463 get_num_all_sdma_engines(qpd->dqm) + 464 q->properties.sdma_engine_id] 465 + (q->properties.sdma_queue_id & 1) 466 * KFD_QUEUE_DOORBELL_MIRROR_OFFSET 467 + (q->properties.sdma_queue_id >> 1); 468 469 if (restore_id && *restore_id != valid_id) 470 return -EINVAL; 471 q->doorbell_id = valid_id; 472 } else { 473 /* For CP queues on SOC15 */ 474 if (restore_id) { 475 /* make sure that ID is free */ 476 if (__test_and_set_bit(*restore_id, qpd->doorbell_bitmap)) 477 return -EINVAL; 478 479 q->doorbell_id = *restore_id; 480 } else { 481 /* or reserve a free doorbell ID */ 482 unsigned int found; 483 484 found = find_first_zero_bit(qpd->doorbell_bitmap, 485 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS); 486 if (found >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) { 487 pr_debug("No doorbells available"); 488 return -EBUSY; 489 } 490 set_bit(found, qpd->doorbell_bitmap); 491 q->doorbell_id = found; 492 } 493 } 494 495 q->properties.doorbell_off = amdgpu_doorbell_index_on_bar(dev->adev, 496 qpd->proc_doorbells, 497 q->doorbell_id, 498 dev->kfd->device_info.doorbell_size); 499 return 0; 500 } 501 502 static void deallocate_doorbell(struct qcm_process_device *qpd, 503 struct queue *q) 504 { 505 unsigned int old; 506 struct kfd_node *dev = qpd->dqm->dev; 507 508 if (!KFD_IS_SOC15(dev) || 509 q->properties.type == KFD_QUEUE_TYPE_SDMA || 510 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 511 return; 512 513 old = test_and_clear_bit(q->doorbell_id, qpd->doorbell_bitmap); 514 WARN_ON(!old); 515 } 516 517 static void program_trap_handler_settings(struct device_queue_manager *dqm, 518 struct qcm_process_device *qpd) 519 { 520 uint32_t xcc_mask = dqm->dev->xcc_mask; 521 int xcc_id; 522 523 if (dqm->dev->kfd2kgd->program_trap_handler_settings) 524 for_each_inst(xcc_id, xcc_mask) 525 dqm->dev->kfd2kgd->program_trap_handler_settings( 526 dqm->dev->adev, qpd->vmid, qpd->tba_addr, 527 qpd->tma_addr, xcc_id); 528 } 529 530 static int allocate_vmid(struct device_queue_manager *dqm, 531 struct qcm_process_device *qpd, 532 struct queue *q) 533 { 534 struct kfd_process_device *pdd = qpd_to_pdd(qpd); 535 struct device *dev = dqm->dev->adev->dev; 536 int allocated_vmid = -1, i; 537 538 for (i = dqm->dev->vm_info.first_vmid_kfd; 539 i <= dqm->dev->vm_info.last_vmid_kfd; i++) { 540 if (!dqm->vmid_pasid[i]) { 541 allocated_vmid = i; 542 break; 543 } 544 } 545 546 if (allocated_vmid < 0) { 547 dev_err(dev, "no more vmid to allocate\n"); 548 return -ENOSPC; 549 } 550 551 pr_debug("vmid allocated: %d\n", allocated_vmid); 552 553 dqm->vmid_pasid[allocated_vmid] = pdd->pasid; 554 555 set_pasid_vmid_mapping(dqm, pdd->pasid, allocated_vmid); 556 557 qpd->vmid = allocated_vmid; 558 q->properties.vmid = allocated_vmid; 559 560 program_sh_mem_settings(dqm, qpd); 561 562 if (KFD_IS_SOC15(dqm->dev) && dqm->dev->kfd->cwsr_enabled) 563 program_trap_handler_settings(dqm, qpd); 564 565 /* qpd->page_table_base is set earlier when register_process() 566 * is called, i.e. when the first queue is created. 567 */ 568 dqm->dev->kfd2kgd->set_vm_context_page_table_base(dqm->dev->adev, 569 qpd->vmid, 570 qpd->page_table_base); 571 /* invalidate the VM context after pasid and vmid mapping is set up */ 572 kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY); 573 574 if (dqm->dev->kfd2kgd->set_scratch_backing_va) 575 dqm->dev->kfd2kgd->set_scratch_backing_va(dqm->dev->adev, 576 qpd->sh_hidden_private_base, qpd->vmid); 577 578 return 0; 579 } 580 581 static int flush_texture_cache_nocpsch(struct kfd_node *kdev, 582 struct qcm_process_device *qpd) 583 { 584 const struct packet_manager_funcs *pmf = qpd->dqm->packet_mgr.pmf; 585 int ret; 586 587 if (!qpd->ib_kaddr) 588 return -ENOMEM; 589 590 ret = pmf->release_mem(qpd->ib_base, (uint32_t *)qpd->ib_kaddr); 591 if (ret) 592 return ret; 593 594 return amdgpu_amdkfd_submit_ib(kdev->adev, KGD_ENGINE_MEC1, qpd->vmid, 595 qpd->ib_base, (uint32_t *)qpd->ib_kaddr, 596 pmf->release_mem_size / sizeof(uint32_t)); 597 } 598 599 static void deallocate_vmid(struct device_queue_manager *dqm, 600 struct qcm_process_device *qpd, 601 struct queue *q) 602 { 603 struct device *dev = dqm->dev->adev->dev; 604 605 /* On GFX v7, CP doesn't flush TC at dequeue */ 606 if (q->device->adev->asic_type == CHIP_HAWAII) 607 if (flush_texture_cache_nocpsch(q->device, qpd)) 608 dev_err(dev, "Failed to flush TC\n"); 609 610 kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY); 611 612 /* Release the vmid mapping */ 613 set_pasid_vmid_mapping(dqm, 0, qpd->vmid); 614 dqm->vmid_pasid[qpd->vmid] = 0; 615 616 qpd->vmid = 0; 617 q->properties.vmid = 0; 618 } 619 620 static int create_queue_nocpsch(struct device_queue_manager *dqm, 621 struct queue *q, 622 struct qcm_process_device *qpd, 623 const struct kfd_criu_queue_priv_data *qd, 624 const void *restore_mqd, const void *restore_ctl_stack) 625 { 626 struct mqd_manager *mqd_mgr; 627 int retval; 628 629 dqm_lock(dqm); 630 631 if (dqm->total_queue_count >= max_num_of_queues_per_device) { 632 pr_warn("Can't create new usermode queue because %d queues were already created\n", 633 dqm->total_queue_count); 634 retval = -EPERM; 635 goto out_unlock; 636 } 637 638 if (list_empty(&qpd->queues_list)) { 639 retval = allocate_vmid(dqm, qpd, q); 640 if (retval) 641 goto out_unlock; 642 } 643 q->properties.vmid = qpd->vmid; 644 /* 645 * Eviction state logic: mark all queues as evicted, even ones 646 * not currently active. Restoring inactive queues later only 647 * updates the is_evicted flag but is a no-op otherwise. 648 */ 649 q->properties.is_evicted = !!qpd->evicted; 650 651 q->properties.tba_addr = qpd->tba_addr; 652 q->properties.tma_addr = qpd->tma_addr; 653 654 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 655 q->properties.type)]; 656 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) { 657 retval = allocate_hqd(dqm, q); 658 if (retval) 659 goto deallocate_vmid; 660 pr_debug("Loading mqd to hqd on pipe %d, queue %d\n", 661 q->pipe, q->queue); 662 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 663 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 664 retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL); 665 if (retval) 666 goto deallocate_vmid; 667 dqm->asic_ops.init_sdma_vm(dqm, q, qpd); 668 } 669 670 retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL); 671 if (retval) 672 goto out_deallocate_hqd; 673 674 /* Temporarily release dqm lock to avoid a circular lock dependency */ 675 dqm_unlock(dqm); 676 q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties); 677 dqm_lock(dqm); 678 679 if (!q->mqd_mem_obj) { 680 retval = -ENOMEM; 681 goto out_deallocate_doorbell; 682 } 683 684 if (qd) 685 mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr, 686 &q->properties, restore_mqd, restore_ctl_stack, 687 qd->ctl_stack_size); 688 else 689 mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, 690 &q->gart_mqd_addr, &q->properties); 691 692 if (q->properties.is_active) { 693 if (!dqm->sched_running) { 694 WARN_ONCE(1, "Load non-HWS mqd while stopped\n"); 695 goto add_queue_to_list; 696 } 697 698 if (WARN(q->process->mm != current->mm, 699 "should only run in user thread")) 700 retval = -EFAULT; 701 else 702 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe, 703 q->queue, &q->properties, current->mm); 704 if (retval) 705 goto out_free_mqd; 706 } 707 708 add_queue_to_list: 709 list_add(&q->list, &qpd->queues_list); 710 qpd->queue_count++; 711 if (q->properties.is_active) 712 increment_queue_count(dqm, qpd, q); 713 714 /* 715 * Unconditionally increment this counter, regardless of the queue's 716 * type or whether the queue is active. 717 */ 718 dqm->total_queue_count++; 719 pr_debug("Total of %d queues are accountable so far\n", 720 dqm->total_queue_count); 721 goto out_unlock; 722 723 out_free_mqd: 724 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 725 out_deallocate_doorbell: 726 deallocate_doorbell(qpd, q); 727 out_deallocate_hqd: 728 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) 729 deallocate_hqd(dqm, q); 730 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 731 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 732 deallocate_sdma_queue(dqm, q); 733 deallocate_vmid: 734 if (list_empty(&qpd->queues_list)) 735 deallocate_vmid(dqm, qpd, q); 736 out_unlock: 737 dqm_unlock(dqm); 738 return retval; 739 } 740 741 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q) 742 { 743 bool set; 744 int pipe, bit, i; 745 746 set = false; 747 748 for (pipe = dqm->next_pipe_to_allocate, i = 0; 749 i < get_pipes_per_mec(dqm); 750 pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) { 751 752 if (!is_pipe_enabled(dqm, 0, pipe)) 753 continue; 754 755 if (dqm->allocated_queues[pipe] != 0) { 756 bit = ffs(dqm->allocated_queues[pipe]) - 1; 757 dqm->allocated_queues[pipe] &= ~(1 << bit); 758 q->pipe = pipe; 759 q->queue = bit; 760 set = true; 761 break; 762 } 763 } 764 765 if (!set) 766 return -EBUSY; 767 768 pr_debug("hqd slot - pipe %d, queue %d\n", q->pipe, q->queue); 769 /* horizontal hqd allocation */ 770 dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm); 771 772 return 0; 773 } 774 775 static inline void deallocate_hqd(struct device_queue_manager *dqm, 776 struct queue *q) 777 { 778 dqm->allocated_queues[q->pipe] |= (1 << q->queue); 779 } 780 781 #define SQ_IND_CMD_CMD_KILL 0x00000003 782 #define SQ_IND_CMD_MODE_BROADCAST 0x00000001 783 784 static int dbgdev_wave_reset_wavefronts(struct kfd_node *dev, struct kfd_process *p) 785 { 786 int status = 0; 787 unsigned int vmid; 788 uint16_t queried_pasid; 789 union SQ_CMD_BITS reg_sq_cmd; 790 union GRBM_GFX_INDEX_BITS reg_gfx_index; 791 struct kfd_process_device *pdd; 792 int first_vmid_to_scan = dev->vm_info.first_vmid_kfd; 793 int last_vmid_to_scan = dev->vm_info.last_vmid_kfd; 794 uint32_t xcc_mask = dev->xcc_mask; 795 int xcc_id; 796 797 reg_sq_cmd.u32All = 0; 798 reg_gfx_index.u32All = 0; 799 800 pr_debug("Killing all process wavefronts\n"); 801 802 if (!dev->kfd2kgd->get_atc_vmid_pasid_mapping_info) { 803 dev_err(dev->adev->dev, "no vmid pasid mapping supported\n"); 804 return -EOPNOTSUPP; 805 } 806 807 /* taking the VMID for that process on the safe way using PDD */ 808 pdd = kfd_get_process_device_data(dev, p); 809 if (!pdd) 810 return -EFAULT; 811 812 /* Scan all registers in the range ATC_VMID8_PASID_MAPPING .. 813 * ATC_VMID15_PASID_MAPPING 814 * to check which VMID the current process is mapped to. 815 */ 816 817 for (vmid = first_vmid_to_scan; vmid <= last_vmid_to_scan; vmid++) { 818 status = dev->kfd2kgd->get_atc_vmid_pasid_mapping_info 819 (dev->adev, vmid, &queried_pasid); 820 821 if (status && queried_pasid == pdd->pasid) { 822 pr_debug("Killing wave fronts of vmid %d and process pid %d\n", 823 vmid, p->lead_thread->pid); 824 break; 825 } 826 } 827 828 if (vmid > last_vmid_to_scan) { 829 dev_err(dev->adev->dev, "Didn't find vmid for process pid %d\n", 830 p->lead_thread->pid); 831 return -EFAULT; 832 } 833 834 reg_gfx_index.bits.sh_broadcast_writes = 1; 835 reg_gfx_index.bits.se_broadcast_writes = 1; 836 reg_gfx_index.bits.instance_broadcast_writes = 1; 837 reg_sq_cmd.bits.mode = SQ_IND_CMD_MODE_BROADCAST; 838 reg_sq_cmd.bits.cmd = SQ_IND_CMD_CMD_KILL; 839 reg_sq_cmd.bits.vm_id = vmid; 840 841 for_each_inst(xcc_id, xcc_mask) 842 dev->kfd2kgd->wave_control_execute( 843 dev->adev, reg_gfx_index.u32All, 844 reg_sq_cmd.u32All, xcc_id); 845 846 return 0; 847 } 848 849 /* Access to DQM has to be locked before calling destroy_queue_nocpsch_locked 850 * to avoid asynchronized access 851 */ 852 static int destroy_queue_nocpsch_locked(struct device_queue_manager *dqm, 853 struct qcm_process_device *qpd, 854 struct queue *q) 855 { 856 int retval; 857 struct mqd_manager *mqd_mgr; 858 859 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 860 q->properties.type)]; 861 862 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) 863 deallocate_hqd(dqm, q); 864 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA) 865 deallocate_sdma_queue(dqm, q); 866 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 867 deallocate_sdma_queue(dqm, q); 868 else { 869 pr_debug("q->properties.type %d is invalid\n", 870 q->properties.type); 871 return -EINVAL; 872 } 873 dqm->total_queue_count--; 874 875 deallocate_doorbell(qpd, q); 876 877 if (!dqm->sched_running) { 878 WARN_ONCE(1, "Destroy non-HWS queue while stopped\n"); 879 return 0; 880 } 881 882 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd, 883 KFD_PREEMPT_TYPE_WAVEFRONT_RESET, 884 KFD_UNMAP_LATENCY_MS, 885 q->pipe, q->queue); 886 if (retval == -ETIME) 887 qpd->reset_wavefronts = true; 888 889 list_del(&q->list); 890 if (list_empty(&qpd->queues_list)) { 891 if (qpd->reset_wavefronts) { 892 pr_warn("Resetting wave fronts (nocpsch) on dev %p\n", 893 dqm->dev); 894 /* dbgdev_wave_reset_wavefronts has to be called before 895 * deallocate_vmid(), i.e. when vmid is still in use. 896 */ 897 dbgdev_wave_reset_wavefronts(dqm->dev, 898 qpd->pqm->process); 899 qpd->reset_wavefronts = false; 900 } 901 902 deallocate_vmid(dqm, qpd, q); 903 } 904 qpd->queue_count--; 905 if (q->properties.is_active) 906 decrement_queue_count(dqm, qpd, q); 907 908 return retval; 909 } 910 911 static int destroy_queue_nocpsch(struct device_queue_manager *dqm, 912 struct qcm_process_device *qpd, 913 struct queue *q) 914 { 915 int retval; 916 uint64_t sdma_val = 0; 917 struct device *dev = dqm->dev->adev->dev; 918 struct kfd_process_device *pdd = qpd_to_pdd(qpd); 919 struct mqd_manager *mqd_mgr = 920 dqm->mqd_mgrs[get_mqd_type_from_queue_type(q->properties.type)]; 921 922 /* Get the SDMA queue stats */ 923 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) || 924 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { 925 retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr, 926 &sdma_val); 927 if (retval) 928 dev_err(dev, "Failed to read SDMA queue counter for queue: %d\n", 929 q->properties.queue_id); 930 } 931 932 dqm_lock(dqm); 933 retval = destroy_queue_nocpsch_locked(dqm, qpd, q); 934 if (!retval) 935 pdd->sdma_past_activity_counter += sdma_val; 936 dqm_unlock(dqm); 937 938 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 939 940 return retval; 941 } 942 943 static int update_queue(struct device_queue_manager *dqm, struct queue *q, 944 struct mqd_update_info *minfo) 945 { 946 int retval = 0; 947 struct device *dev = dqm->dev->adev->dev; 948 struct mqd_manager *mqd_mgr; 949 struct kfd_process_device *pdd; 950 bool prev_active = false; 951 952 dqm_lock(dqm); 953 pdd = kfd_get_process_device_data(q->device, q->process); 954 if (!pdd) { 955 retval = -ENODEV; 956 goto out_unlock; 957 } 958 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 959 q->properties.type)]; 960 961 /* Save previous activity state for counters */ 962 prev_active = q->properties.is_active; 963 964 /* Make sure the queue is unmapped before updating the MQD */ 965 if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) { 966 if (!dqm->dev->kfd->shared_resources.enable_mes) 967 retval = unmap_queues_cpsch(dqm, 968 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD, false); 969 else if (prev_active) 970 retval = remove_queue_mes(dqm, q, &pdd->qpd); 971 972 /* queue is reset so inaccessable */ 973 if (pdd->has_reset_queue) { 974 retval = -EACCES; 975 goto out_unlock; 976 } 977 978 if (retval) { 979 dev_err(dev, "unmap queue failed\n"); 980 goto out_unlock; 981 } 982 } else if (prev_active && 983 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE || 984 q->properties.type == KFD_QUEUE_TYPE_SDMA || 985 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { 986 987 if (!dqm->sched_running) { 988 WARN_ONCE(1, "Update non-HWS queue while stopped\n"); 989 goto out_unlock; 990 } 991 992 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd, 993 (dqm->dev->kfd->cwsr_enabled ? 994 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE : 995 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN), 996 KFD_UNMAP_LATENCY_MS, q->pipe, q->queue); 997 if (retval) { 998 dev_err(dev, "destroy mqd failed\n"); 999 goto out_unlock; 1000 } 1001 } 1002 1003 mqd_mgr->update_mqd(mqd_mgr, q->mqd, &q->properties, minfo); 1004 1005 /* 1006 * check active state vs. the previous state and modify 1007 * counter accordingly. map_queues_cpsch uses the 1008 * dqm->active_queue_count to determine whether a new runlist must be 1009 * uploaded. 1010 */ 1011 if (q->properties.is_active && !prev_active) { 1012 increment_queue_count(dqm, &pdd->qpd, q); 1013 } else if (!q->properties.is_active && prev_active) { 1014 decrement_queue_count(dqm, &pdd->qpd, q); 1015 } else if (q->gws && !q->properties.is_gws) { 1016 if (q->properties.is_active) { 1017 dqm->gws_queue_count++; 1018 pdd->qpd.mapped_gws_queue = true; 1019 } 1020 q->properties.is_gws = true; 1021 } else if (!q->gws && q->properties.is_gws) { 1022 if (q->properties.is_active) { 1023 dqm->gws_queue_count--; 1024 pdd->qpd.mapped_gws_queue = false; 1025 } 1026 q->properties.is_gws = false; 1027 } 1028 1029 if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) { 1030 if (!dqm->dev->kfd->shared_resources.enable_mes) 1031 retval = map_queues_cpsch(dqm); 1032 else if (q->properties.is_active) 1033 retval = add_queue_mes(dqm, q, &pdd->qpd); 1034 } else if (q->properties.is_active && 1035 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE || 1036 q->properties.type == KFD_QUEUE_TYPE_SDMA || 1037 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { 1038 if (WARN(q->process->mm != current->mm, 1039 "should only run in user thread")) 1040 retval = -EFAULT; 1041 else 1042 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, 1043 q->pipe, q->queue, 1044 &q->properties, current->mm); 1045 } 1046 1047 out_unlock: 1048 dqm_unlock(dqm); 1049 return retval; 1050 } 1051 1052 /* suspend_single_queue does not lock the dqm like the 1053 * evict_process_queues_cpsch or evict_process_queues_nocpsch. You should 1054 * lock the dqm before calling, and unlock after calling. 1055 * 1056 * The reason we don't lock the dqm is because this function may be 1057 * called on multiple queues in a loop, so rather than locking/unlocking 1058 * multiple times, we will just keep the dqm locked for all of the calls. 1059 */ 1060 static int suspend_single_queue(struct device_queue_manager *dqm, 1061 struct kfd_process_device *pdd, 1062 struct queue *q) 1063 { 1064 bool is_new; 1065 1066 if (q->properties.is_suspended) 1067 return 0; 1068 1069 pr_debug("Suspending process pid %d queue [%i]\n", 1070 pdd->process->lead_thread->pid, 1071 q->properties.queue_id); 1072 1073 is_new = q->properties.exception_status & KFD_EC_MASK(EC_QUEUE_NEW); 1074 1075 if (is_new || q->properties.is_being_destroyed) { 1076 pr_debug("Suspend: skip %s queue id %i\n", 1077 is_new ? "new" : "destroyed", 1078 q->properties.queue_id); 1079 return -EBUSY; 1080 } 1081 1082 q->properties.is_suspended = true; 1083 if (q->properties.is_active) { 1084 if (dqm->dev->kfd->shared_resources.enable_mes) { 1085 int r = remove_queue_mes(dqm, q, &pdd->qpd); 1086 1087 if (r) 1088 return r; 1089 } 1090 1091 decrement_queue_count(dqm, &pdd->qpd, q); 1092 q->properties.is_active = false; 1093 } 1094 1095 return 0; 1096 } 1097 1098 /* resume_single_queue does not lock the dqm like the functions 1099 * restore_process_queues_cpsch or restore_process_queues_nocpsch. You should 1100 * lock the dqm before calling, and unlock after calling. 1101 * 1102 * The reason we don't lock the dqm is because this function may be 1103 * called on multiple queues in a loop, so rather than locking/unlocking 1104 * multiple times, we will just keep the dqm locked for all of the calls. 1105 */ 1106 static int resume_single_queue(struct device_queue_manager *dqm, 1107 struct qcm_process_device *qpd, 1108 struct queue *q) 1109 { 1110 struct kfd_process_device *pdd; 1111 1112 if (!q->properties.is_suspended) 1113 return 0; 1114 1115 pdd = qpd_to_pdd(qpd); 1116 1117 pr_debug("Restoring from suspend process pid %d queue [%i]\n", 1118 pdd->process->lead_thread->pid, 1119 q->properties.queue_id); 1120 1121 q->properties.is_suspended = false; 1122 1123 if (QUEUE_IS_ACTIVE(q->properties)) { 1124 if (dqm->dev->kfd->shared_resources.enable_mes) { 1125 int r = add_queue_mes(dqm, q, &pdd->qpd); 1126 1127 if (r) 1128 return r; 1129 } 1130 1131 q->properties.is_active = true; 1132 increment_queue_count(dqm, qpd, q); 1133 } 1134 1135 return 0; 1136 } 1137 1138 static int evict_process_queues_nocpsch(struct device_queue_manager *dqm, 1139 struct qcm_process_device *qpd) 1140 { 1141 struct queue *q; 1142 struct mqd_manager *mqd_mgr; 1143 struct kfd_process_device *pdd; 1144 int retval, ret = 0; 1145 1146 dqm_lock(dqm); 1147 if (qpd->evicted++ > 0) /* already evicted, do nothing */ 1148 goto out; 1149 1150 pdd = qpd_to_pdd(qpd); 1151 pr_debug_ratelimited("Evicting process pid %d queues\n", 1152 pdd->process->lead_thread->pid); 1153 1154 pdd->last_evict_timestamp = get_jiffies_64(); 1155 /* Mark all queues as evicted. Deactivate all active queues on 1156 * the qpd. 1157 */ 1158 list_for_each_entry(q, &qpd->queues_list, list) { 1159 q->properties.is_evicted = true; 1160 if (!q->properties.is_active) 1161 continue; 1162 1163 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 1164 q->properties.type)]; 1165 q->properties.is_active = false; 1166 decrement_queue_count(dqm, qpd, q); 1167 1168 if (WARN_ONCE(!dqm->sched_running, "Evict when stopped\n")) 1169 continue; 1170 1171 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd, 1172 (dqm->dev->kfd->cwsr_enabled ? 1173 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE : 1174 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN), 1175 KFD_UNMAP_LATENCY_MS, q->pipe, q->queue); 1176 if (retval && !ret) 1177 /* Return the first error, but keep going to 1178 * maintain a consistent eviction state 1179 */ 1180 ret = retval; 1181 } 1182 1183 out: 1184 dqm_unlock(dqm); 1185 return ret; 1186 } 1187 1188 static int evict_process_queues_cpsch(struct device_queue_manager *dqm, 1189 struct qcm_process_device *qpd) 1190 { 1191 struct queue *q; 1192 struct device *dev = dqm->dev->adev->dev; 1193 struct kfd_process_device *pdd; 1194 int retval = 0; 1195 1196 dqm_lock(dqm); 1197 if (qpd->evicted++ > 0) /* already evicted, do nothing */ 1198 goto out; 1199 1200 pdd = qpd_to_pdd(qpd); 1201 1202 /* The debugger creates processes that temporarily have not acquired 1203 * all VMs for all devices and has no VMs itself. 1204 * Skip queue eviction on process eviction. 1205 */ 1206 if (!pdd->drm_priv) 1207 goto out; 1208 1209 pr_debug_ratelimited("Evicting process pid %d queues\n", 1210 pdd->process->lead_thread->pid); 1211 1212 /* Mark all queues as evicted. Deactivate all active queues on 1213 * the qpd. 1214 */ 1215 list_for_each_entry(q, &qpd->queues_list, list) { 1216 q->properties.is_evicted = true; 1217 if (!q->properties.is_active) 1218 continue; 1219 1220 q->properties.is_active = false; 1221 decrement_queue_count(dqm, qpd, q); 1222 1223 if (dqm->dev->kfd->shared_resources.enable_mes) { 1224 retval = remove_queue_mes(dqm, q, qpd); 1225 if (retval) { 1226 dev_err(dev, "Failed to evict queue %d\n", 1227 q->properties.queue_id); 1228 goto out; 1229 } 1230 } 1231 } 1232 pdd->last_evict_timestamp = get_jiffies_64(); 1233 if (!dqm->dev->kfd->shared_resources.enable_mes) 1234 retval = execute_queues_cpsch(dqm, 1235 qpd->is_debug ? 1236 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES : 1237 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, 1238 USE_DEFAULT_GRACE_PERIOD); 1239 1240 out: 1241 dqm_unlock(dqm); 1242 return retval; 1243 } 1244 1245 static int restore_process_queues_nocpsch(struct device_queue_manager *dqm, 1246 struct qcm_process_device *qpd) 1247 { 1248 struct mm_struct *mm = NULL; 1249 struct queue *q; 1250 struct mqd_manager *mqd_mgr; 1251 struct kfd_process_device *pdd; 1252 uint64_t pd_base; 1253 uint64_t eviction_duration; 1254 int retval, ret = 0; 1255 1256 pdd = qpd_to_pdd(qpd); 1257 /* Retrieve PD base */ 1258 pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv); 1259 1260 dqm_lock(dqm); 1261 if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */ 1262 goto out; 1263 if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */ 1264 qpd->evicted--; 1265 goto out; 1266 } 1267 1268 pr_debug_ratelimited("Restoring process pid %d queues\n", 1269 pdd->process->lead_thread->pid); 1270 1271 /* Update PD Base in QPD */ 1272 qpd->page_table_base = pd_base; 1273 pr_debug("Updated PD address to 0x%llx\n", pd_base); 1274 1275 if (!list_empty(&qpd->queues_list)) { 1276 dqm->dev->kfd2kgd->set_vm_context_page_table_base( 1277 dqm->dev->adev, 1278 qpd->vmid, 1279 qpd->page_table_base); 1280 kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY); 1281 } 1282 1283 /* Take a safe reference to the mm_struct, which may otherwise 1284 * disappear even while the kfd_process is still referenced. 1285 */ 1286 mm = get_task_mm(pdd->process->lead_thread); 1287 if (!mm) { 1288 ret = -EFAULT; 1289 goto out; 1290 } 1291 1292 /* Remove the eviction flags. Activate queues that are not 1293 * inactive for other reasons. 1294 */ 1295 list_for_each_entry(q, &qpd->queues_list, list) { 1296 q->properties.is_evicted = false; 1297 if (!QUEUE_IS_ACTIVE(q->properties)) 1298 continue; 1299 1300 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 1301 q->properties.type)]; 1302 q->properties.is_active = true; 1303 increment_queue_count(dqm, qpd, q); 1304 1305 if (WARN_ONCE(!dqm->sched_running, "Restore when stopped\n")) 1306 continue; 1307 1308 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe, 1309 q->queue, &q->properties, mm); 1310 if (retval && !ret) 1311 /* Return the first error, but keep going to 1312 * maintain a consistent eviction state 1313 */ 1314 ret = retval; 1315 } 1316 qpd->evicted = 0; 1317 eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp; 1318 atomic64_add(eviction_duration, &pdd->evict_duration_counter); 1319 out: 1320 if (mm) 1321 mmput(mm); 1322 dqm_unlock(dqm); 1323 return ret; 1324 } 1325 1326 static int restore_process_queues_cpsch(struct device_queue_manager *dqm, 1327 struct qcm_process_device *qpd) 1328 { 1329 struct queue *q; 1330 struct device *dev = dqm->dev->adev->dev; 1331 struct kfd_process_device *pdd; 1332 uint64_t eviction_duration; 1333 int retval = 0; 1334 1335 pdd = qpd_to_pdd(qpd); 1336 1337 dqm_lock(dqm); 1338 if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */ 1339 goto out; 1340 if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */ 1341 qpd->evicted--; 1342 goto out; 1343 } 1344 1345 /* The debugger creates processes that temporarily have not acquired 1346 * all VMs for all devices and has no VMs itself. 1347 * Skip queue restore on process restore. 1348 */ 1349 if (!pdd->drm_priv) 1350 goto vm_not_acquired; 1351 1352 pr_debug_ratelimited("Restoring process pid %d queues\n", 1353 pdd->process->lead_thread->pid); 1354 1355 /* Update PD Base in QPD */ 1356 qpd->page_table_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv); 1357 pr_debug("Updated PD address to 0x%llx\n", qpd->page_table_base); 1358 1359 /* activate all active queues on the qpd */ 1360 list_for_each_entry(q, &qpd->queues_list, list) { 1361 q->properties.is_evicted = false; 1362 if (!QUEUE_IS_ACTIVE(q->properties)) 1363 continue; 1364 1365 q->properties.is_active = true; 1366 increment_queue_count(dqm, &pdd->qpd, q); 1367 1368 if (dqm->dev->kfd->shared_resources.enable_mes) { 1369 retval = add_queue_mes(dqm, q, qpd); 1370 if (retval) { 1371 dev_err(dev, "Failed to restore queue %d\n", 1372 q->properties.queue_id); 1373 goto out; 1374 } 1375 } 1376 } 1377 if (!dqm->dev->kfd->shared_resources.enable_mes) 1378 retval = execute_queues_cpsch(dqm, 1379 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD); 1380 eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp; 1381 atomic64_add(eviction_duration, &pdd->evict_duration_counter); 1382 vm_not_acquired: 1383 qpd->evicted = 0; 1384 out: 1385 dqm_unlock(dqm); 1386 return retval; 1387 } 1388 1389 static int register_process(struct device_queue_manager *dqm, 1390 struct qcm_process_device *qpd) 1391 { 1392 struct device_process_node *n; 1393 struct kfd_process_device *pdd; 1394 uint64_t pd_base; 1395 int retval; 1396 1397 n = kzalloc(sizeof(*n), GFP_KERNEL); 1398 if (!n) 1399 return -ENOMEM; 1400 1401 n->qpd = qpd; 1402 1403 pdd = qpd_to_pdd(qpd); 1404 /* Retrieve PD base */ 1405 pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv); 1406 1407 dqm_lock(dqm); 1408 list_add(&n->list, &dqm->queues); 1409 1410 /* Update PD Base in QPD */ 1411 qpd->page_table_base = pd_base; 1412 pr_debug("Updated PD address to 0x%llx\n", pd_base); 1413 1414 retval = dqm->asic_ops.update_qpd(dqm, qpd); 1415 1416 dqm->processes_count++; 1417 1418 dqm_unlock(dqm); 1419 1420 /* Outside the DQM lock because under the DQM lock we can't do 1421 * reclaim or take other locks that others hold while reclaiming. 1422 */ 1423 kfd_inc_compute_active(dqm->dev); 1424 1425 return retval; 1426 } 1427 1428 static int unregister_process(struct device_queue_manager *dqm, 1429 struct qcm_process_device *qpd) 1430 { 1431 int retval; 1432 struct device_process_node *cur, *next; 1433 1434 pr_debug("qpd->queues_list is %s\n", 1435 list_empty(&qpd->queues_list) ? "empty" : "not empty"); 1436 1437 retval = 0; 1438 dqm_lock(dqm); 1439 1440 list_for_each_entry_safe(cur, next, &dqm->queues, list) { 1441 if (qpd == cur->qpd) { 1442 list_del(&cur->list); 1443 kfree(cur); 1444 dqm->processes_count--; 1445 goto out; 1446 } 1447 } 1448 /* qpd not found in dqm list */ 1449 retval = 1; 1450 out: 1451 dqm_unlock(dqm); 1452 1453 /* Outside the DQM lock because under the DQM lock we can't do 1454 * reclaim or take other locks that others hold while reclaiming. 1455 */ 1456 if (!retval) 1457 kfd_dec_compute_active(dqm->dev); 1458 1459 return retval; 1460 } 1461 1462 static int 1463 set_pasid_vmid_mapping(struct device_queue_manager *dqm, u32 pasid, 1464 unsigned int vmid) 1465 { 1466 uint32_t xcc_mask = dqm->dev->xcc_mask; 1467 int xcc_id, ret; 1468 1469 for_each_inst(xcc_id, xcc_mask) { 1470 ret = dqm->dev->kfd2kgd->set_pasid_vmid_mapping( 1471 dqm->dev->adev, pasid, vmid, xcc_id); 1472 if (ret) 1473 break; 1474 } 1475 1476 return ret; 1477 } 1478 1479 static void init_interrupts(struct device_queue_manager *dqm) 1480 { 1481 uint32_t xcc_mask = dqm->dev->xcc_mask; 1482 unsigned int i, xcc_id; 1483 1484 for_each_inst(xcc_id, xcc_mask) { 1485 for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++) { 1486 if (is_pipe_enabled(dqm, 0, i)) { 1487 dqm->dev->kfd2kgd->init_interrupts( 1488 dqm->dev->adev, i, xcc_id); 1489 } 1490 } 1491 } 1492 } 1493 1494 static int initialize_nocpsch(struct device_queue_manager *dqm) 1495 { 1496 int pipe, queue; 1497 1498 pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm)); 1499 1500 dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm), 1501 sizeof(unsigned int), GFP_KERNEL); 1502 if (!dqm->allocated_queues) 1503 return -ENOMEM; 1504 1505 mutex_init(&dqm->lock_hidden); 1506 INIT_LIST_HEAD(&dqm->queues); 1507 dqm->active_queue_count = dqm->next_pipe_to_allocate = 0; 1508 dqm->active_cp_queue_count = 0; 1509 dqm->gws_queue_count = 0; 1510 1511 for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) { 1512 int pipe_offset = pipe * get_queues_per_pipe(dqm); 1513 1514 for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) 1515 if (test_bit(pipe_offset + queue, 1516 dqm->dev->kfd->shared_resources.cp_queue_bitmap)) 1517 dqm->allocated_queues[pipe] |= 1 << queue; 1518 } 1519 1520 memset(dqm->vmid_pasid, 0, sizeof(dqm->vmid_pasid)); 1521 1522 init_sdma_bitmaps(dqm); 1523 1524 return 0; 1525 } 1526 1527 static void uninitialize(struct device_queue_manager *dqm) 1528 { 1529 int i; 1530 1531 WARN_ON(dqm->active_queue_count > 0 || dqm->processes_count > 0); 1532 1533 kfree(dqm->allocated_queues); 1534 for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++) 1535 kfree(dqm->mqd_mgrs[i]); 1536 mutex_destroy(&dqm->lock_hidden); 1537 } 1538 1539 static int start_nocpsch(struct device_queue_manager *dqm) 1540 { 1541 int r = 0; 1542 1543 pr_info("SW scheduler is used"); 1544 init_interrupts(dqm); 1545 1546 if (dqm->dev->adev->asic_type == CHIP_HAWAII) 1547 r = pm_init(&dqm->packet_mgr, dqm); 1548 if (!r) 1549 dqm->sched_running = true; 1550 1551 return r; 1552 } 1553 1554 static int stop_nocpsch(struct device_queue_manager *dqm) 1555 { 1556 dqm_lock(dqm); 1557 if (!dqm->sched_running) { 1558 dqm_unlock(dqm); 1559 return 0; 1560 } 1561 1562 if (dqm->dev->adev->asic_type == CHIP_HAWAII) 1563 pm_uninit(&dqm->packet_mgr); 1564 dqm->sched_running = false; 1565 dqm_unlock(dqm); 1566 1567 return 0; 1568 } 1569 1570 static int allocate_sdma_queue(struct device_queue_manager *dqm, 1571 struct queue *q, const uint32_t *restore_sdma_id) 1572 { 1573 struct device *dev = dqm->dev->adev->dev; 1574 int bit; 1575 1576 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) { 1577 if (bitmap_empty(dqm->sdma_bitmap, KFD_MAX_SDMA_QUEUES)) { 1578 dev_err(dev, "No more SDMA queue to allocate\n"); 1579 return -ENOMEM; 1580 } 1581 1582 if (restore_sdma_id) { 1583 /* Re-use existing sdma_id */ 1584 if (!test_bit(*restore_sdma_id, dqm->sdma_bitmap)) { 1585 dev_err(dev, "SDMA queue already in use\n"); 1586 return -EBUSY; 1587 } 1588 clear_bit(*restore_sdma_id, dqm->sdma_bitmap); 1589 q->sdma_id = *restore_sdma_id; 1590 } else { 1591 /* Find first available sdma_id */ 1592 bit = find_first_bit(dqm->sdma_bitmap, 1593 get_num_sdma_queues(dqm)); 1594 clear_bit(bit, dqm->sdma_bitmap); 1595 q->sdma_id = bit; 1596 } 1597 1598 q->properties.sdma_engine_id = 1599 q->sdma_id % kfd_get_num_sdma_engines(dqm->dev); 1600 q->properties.sdma_queue_id = q->sdma_id / 1601 kfd_get_num_sdma_engines(dqm->dev); 1602 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 1603 if (bitmap_empty(dqm->xgmi_sdma_bitmap, KFD_MAX_SDMA_QUEUES)) { 1604 dev_err(dev, "No more XGMI SDMA queue to allocate\n"); 1605 return -ENOMEM; 1606 } 1607 if (restore_sdma_id) { 1608 /* Re-use existing sdma_id */ 1609 if (!test_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap)) { 1610 dev_err(dev, "SDMA queue already in use\n"); 1611 return -EBUSY; 1612 } 1613 clear_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap); 1614 q->sdma_id = *restore_sdma_id; 1615 } else { 1616 bit = find_first_bit(dqm->xgmi_sdma_bitmap, 1617 get_num_xgmi_sdma_queues(dqm)); 1618 clear_bit(bit, dqm->xgmi_sdma_bitmap); 1619 q->sdma_id = bit; 1620 } 1621 /* sdma_engine_id is sdma id including 1622 * both PCIe-optimized SDMAs and XGMI- 1623 * optimized SDMAs. The calculation below 1624 * assumes the first N engines are always 1625 * PCIe-optimized ones 1626 */ 1627 q->properties.sdma_engine_id = 1628 kfd_get_num_sdma_engines(dqm->dev) + 1629 q->sdma_id % kfd_get_num_xgmi_sdma_engines(dqm->dev); 1630 q->properties.sdma_queue_id = q->sdma_id / 1631 kfd_get_num_xgmi_sdma_engines(dqm->dev); 1632 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_BY_ENG_ID) { 1633 int i, num_queues, num_engines, eng_offset = 0, start_engine; 1634 bool free_bit_found = false, is_xgmi = false; 1635 1636 if (q->properties.sdma_engine_id < kfd_get_num_sdma_engines(dqm->dev)) { 1637 num_queues = get_num_sdma_queues(dqm); 1638 num_engines = kfd_get_num_sdma_engines(dqm->dev); 1639 q->properties.type = KFD_QUEUE_TYPE_SDMA; 1640 } else { 1641 num_queues = get_num_xgmi_sdma_queues(dqm); 1642 num_engines = kfd_get_num_xgmi_sdma_engines(dqm->dev); 1643 eng_offset = kfd_get_num_sdma_engines(dqm->dev); 1644 q->properties.type = KFD_QUEUE_TYPE_SDMA_XGMI; 1645 is_xgmi = true; 1646 } 1647 1648 /* Scan available bit based on target engine ID. */ 1649 start_engine = q->properties.sdma_engine_id - eng_offset; 1650 for (i = start_engine; i < num_queues; i += num_engines) { 1651 1652 if (!test_bit(i, is_xgmi ? dqm->xgmi_sdma_bitmap : dqm->sdma_bitmap)) 1653 continue; 1654 1655 clear_bit(i, is_xgmi ? dqm->xgmi_sdma_bitmap : dqm->sdma_bitmap); 1656 q->sdma_id = i; 1657 q->properties.sdma_queue_id = q->sdma_id / num_engines; 1658 free_bit_found = true; 1659 break; 1660 } 1661 1662 if (!free_bit_found) { 1663 dev_err(dev, "No more SDMA queue to allocate for target ID %i\n", 1664 q->properties.sdma_engine_id); 1665 return -ENOMEM; 1666 } 1667 } 1668 1669 pr_debug("SDMA engine id: %d\n", q->properties.sdma_engine_id); 1670 pr_debug("SDMA queue id: %d\n", q->properties.sdma_queue_id); 1671 1672 return 0; 1673 } 1674 1675 static void deallocate_sdma_queue(struct device_queue_manager *dqm, 1676 struct queue *q) 1677 { 1678 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) { 1679 if (q->sdma_id >= get_num_sdma_queues(dqm)) 1680 return; 1681 set_bit(q->sdma_id, dqm->sdma_bitmap); 1682 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 1683 if (q->sdma_id >= get_num_xgmi_sdma_queues(dqm)) 1684 return; 1685 set_bit(q->sdma_id, dqm->xgmi_sdma_bitmap); 1686 } 1687 } 1688 1689 /* 1690 * Device Queue Manager implementation for cp scheduler 1691 */ 1692 1693 static int set_sched_resources(struct device_queue_manager *dqm) 1694 { 1695 int i, mec; 1696 struct scheduling_resources res; 1697 struct device *dev = dqm->dev->adev->dev; 1698 1699 res.vmid_mask = dqm->dev->compute_vmid_bitmap; 1700 1701 res.queue_mask = 0; 1702 for (i = 0; i < AMDGPU_MAX_QUEUES; ++i) { 1703 mec = (i / dqm->dev->kfd->shared_resources.num_queue_per_pipe) 1704 / dqm->dev->kfd->shared_resources.num_pipe_per_mec; 1705 1706 if (!test_bit(i, dqm->dev->kfd->shared_resources.cp_queue_bitmap)) 1707 continue; 1708 1709 /* only acquire queues from the first MEC */ 1710 if (mec > 0) 1711 continue; 1712 1713 /* This situation may be hit in the future if a new HW 1714 * generation exposes more than 64 queues. If so, the 1715 * definition of res.queue_mask needs updating 1716 */ 1717 if (WARN_ON(i >= (sizeof(res.queue_mask)*8))) { 1718 dev_err(dev, "Invalid queue enabled by amdgpu: %d\n", i); 1719 break; 1720 } 1721 1722 res.queue_mask |= 1ull 1723 << amdgpu_queue_mask_bit_to_set_resource_bit( 1724 dqm->dev->adev, i); 1725 } 1726 res.gws_mask = ~0ull; 1727 res.oac_mask = res.gds_heap_base = res.gds_heap_size = 0; 1728 1729 pr_debug("Scheduling resources:\n" 1730 "vmid mask: 0x%8X\n" 1731 "queue mask: 0x%8llX\n", 1732 res.vmid_mask, res.queue_mask); 1733 1734 return pm_send_set_resources(&dqm->packet_mgr, &res); 1735 } 1736 1737 static int initialize_cpsch(struct device_queue_manager *dqm) 1738 { 1739 pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm)); 1740 1741 mutex_init(&dqm->lock_hidden); 1742 INIT_LIST_HEAD(&dqm->queues); 1743 dqm->active_queue_count = dqm->processes_count = 0; 1744 dqm->active_cp_queue_count = 0; 1745 dqm->gws_queue_count = 0; 1746 dqm->active_runlist = false; 1747 dqm->trap_debug_vmid = 0; 1748 1749 init_sdma_bitmaps(dqm); 1750 1751 update_dqm_wait_times(dqm); 1752 return 0; 1753 } 1754 1755 /* halt_cpsch: 1756 * Unmap queues so the schedule doesn't continue remaining jobs in the queue. 1757 * Then set dqm->sched_halt so queues don't map to runlist until unhalt_cpsch 1758 * is called. 1759 */ 1760 static int halt_cpsch(struct device_queue_manager *dqm) 1761 { 1762 int ret = 0; 1763 1764 dqm_lock(dqm); 1765 if (!dqm->sched_running) { 1766 dqm_unlock(dqm); 1767 return 0; 1768 } 1769 1770 WARN_ONCE(dqm->sched_halt, "Scheduling is already on halt\n"); 1771 1772 if (!dqm->is_hws_hang) { 1773 if (!dqm->dev->kfd->shared_resources.enable_mes) 1774 ret = unmap_queues_cpsch(dqm, 1775 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, 1776 USE_DEFAULT_GRACE_PERIOD, false); 1777 else 1778 ret = remove_all_kfd_queues_mes(dqm); 1779 } 1780 dqm->sched_halt = true; 1781 dqm_unlock(dqm); 1782 1783 return ret; 1784 } 1785 1786 /* unhalt_cpsch 1787 * Unset dqm->sched_halt and map queues back to runlist 1788 */ 1789 static int unhalt_cpsch(struct device_queue_manager *dqm) 1790 { 1791 int ret = 0; 1792 1793 dqm_lock(dqm); 1794 if (!dqm->sched_running || !dqm->sched_halt) { 1795 WARN_ONCE(!dqm->sched_halt, "Scheduling is not on halt.\n"); 1796 dqm_unlock(dqm); 1797 return 0; 1798 } 1799 dqm->sched_halt = false; 1800 if (!dqm->dev->kfd->shared_resources.enable_mes) 1801 ret = execute_queues_cpsch(dqm, 1802 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 1803 0, USE_DEFAULT_GRACE_PERIOD); 1804 else 1805 ret = add_all_kfd_queues_mes(dqm); 1806 1807 dqm_unlock(dqm); 1808 1809 return ret; 1810 } 1811 1812 static int start_cpsch(struct device_queue_manager *dqm) 1813 { 1814 struct device *dev = dqm->dev->adev->dev; 1815 int retval, num_hw_queue_slots; 1816 1817 retval = 0; 1818 1819 dqm_lock(dqm); 1820 1821 if (!dqm->dev->kfd->shared_resources.enable_mes) { 1822 retval = pm_init(&dqm->packet_mgr, dqm); 1823 if (retval) 1824 goto fail_packet_manager_init; 1825 1826 retval = set_sched_resources(dqm); 1827 if (retval) 1828 goto fail_set_sched_resources; 1829 } 1830 pr_debug("Allocating fence memory\n"); 1831 1832 /* allocate fence memory on the gart */ 1833 retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr), 1834 &dqm->fence_mem); 1835 1836 if (retval) 1837 goto fail_allocate_vidmem; 1838 1839 dqm->fence_addr = (uint64_t *)dqm->fence_mem->cpu_ptr; 1840 dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr; 1841 1842 init_interrupts(dqm); 1843 1844 /* clear hang status when driver try to start the hw scheduler */ 1845 dqm->sched_running = true; 1846 1847 if (!dqm->dev->kfd->shared_resources.enable_mes) { 1848 if (pm_config_dequeue_wait_counts(&dqm->packet_mgr, 1849 KFD_DEQUEUE_WAIT_INIT, 0 /* unused */)) 1850 dev_err(dev, "Setting optimized dequeue wait failed. Using default values\n"); 1851 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD); 1852 } 1853 1854 /* setup per-queue reset detection buffer */ 1855 num_hw_queue_slots = dqm->dev->kfd->shared_resources.num_queue_per_pipe * 1856 dqm->dev->kfd->shared_resources.num_pipe_per_mec * 1857 NUM_XCC(dqm->dev->xcc_mask); 1858 1859 dqm->detect_hang_info_size = num_hw_queue_slots * sizeof(struct dqm_detect_hang_info); 1860 dqm->detect_hang_info = kzalloc(dqm->detect_hang_info_size, GFP_KERNEL); 1861 1862 if (!dqm->detect_hang_info) { 1863 retval = -ENOMEM; 1864 goto fail_detect_hang_buffer; 1865 } 1866 1867 dqm_unlock(dqm); 1868 1869 return 0; 1870 fail_detect_hang_buffer: 1871 kfd_gtt_sa_free(dqm->dev, dqm->fence_mem); 1872 fail_allocate_vidmem: 1873 fail_set_sched_resources: 1874 if (!dqm->dev->kfd->shared_resources.enable_mes) 1875 pm_uninit(&dqm->packet_mgr); 1876 fail_packet_manager_init: 1877 dqm_unlock(dqm); 1878 return retval; 1879 } 1880 1881 static int stop_cpsch(struct device_queue_manager *dqm) 1882 { 1883 dqm_lock(dqm); 1884 if (!dqm->sched_running) { 1885 dqm_unlock(dqm); 1886 return 0; 1887 } 1888 1889 if (!dqm->dev->kfd->shared_resources.enable_mes) 1890 unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD, false); 1891 else 1892 remove_all_kfd_queues_mes(dqm); 1893 1894 dqm->sched_running = false; 1895 1896 if (!dqm->dev->kfd->shared_resources.enable_mes) 1897 pm_release_ib(&dqm->packet_mgr); 1898 1899 kfd_gtt_sa_free(dqm->dev, dqm->fence_mem); 1900 if (!dqm->dev->kfd->shared_resources.enable_mes) 1901 pm_uninit(&dqm->packet_mgr); 1902 kfree(dqm->detect_hang_info); 1903 dqm->detect_hang_info = NULL; 1904 dqm_unlock(dqm); 1905 1906 return 0; 1907 } 1908 1909 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm, 1910 struct kernel_queue *kq, 1911 struct qcm_process_device *qpd) 1912 { 1913 dqm_lock(dqm); 1914 if (dqm->total_queue_count >= max_num_of_queues_per_device) { 1915 pr_warn("Can't create new kernel queue because %d queues were already created\n", 1916 dqm->total_queue_count); 1917 dqm_unlock(dqm); 1918 return -EPERM; 1919 } 1920 1921 /* 1922 * Unconditionally increment this counter, regardless of the queue's 1923 * type or whether the queue is active. 1924 */ 1925 dqm->total_queue_count++; 1926 pr_debug("Total of %d queues are accountable so far\n", 1927 dqm->total_queue_count); 1928 1929 list_add(&kq->list, &qpd->priv_queue_list); 1930 increment_queue_count(dqm, qpd, kq->queue); 1931 qpd->is_debug = true; 1932 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, 1933 USE_DEFAULT_GRACE_PERIOD); 1934 dqm_unlock(dqm); 1935 1936 return 0; 1937 } 1938 1939 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm, 1940 struct kernel_queue *kq, 1941 struct qcm_process_device *qpd) 1942 { 1943 dqm_lock(dqm); 1944 list_del(&kq->list); 1945 decrement_queue_count(dqm, qpd, kq->queue); 1946 qpd->is_debug = false; 1947 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, 1948 USE_DEFAULT_GRACE_PERIOD); 1949 /* 1950 * Unconditionally decrement this counter, regardless of the queue's 1951 * type. 1952 */ 1953 dqm->total_queue_count--; 1954 pr_debug("Total of %d queues are accountable so far\n", 1955 dqm->total_queue_count); 1956 dqm_unlock(dqm); 1957 } 1958 1959 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q, 1960 struct qcm_process_device *qpd, 1961 const struct kfd_criu_queue_priv_data *qd, 1962 const void *restore_mqd, const void *restore_ctl_stack) 1963 { 1964 int retval; 1965 struct mqd_manager *mqd_mgr; 1966 1967 if (dqm->total_queue_count >= max_num_of_queues_per_device) { 1968 pr_warn("Can't create new usermode queue because %d queues were already created\n", 1969 dqm->total_queue_count); 1970 retval = -EPERM; 1971 goto out; 1972 } 1973 1974 if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 1975 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI || 1976 q->properties.type == KFD_QUEUE_TYPE_SDMA_BY_ENG_ID) { 1977 dqm_lock(dqm); 1978 retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL); 1979 dqm_unlock(dqm); 1980 if (retval) 1981 goto out; 1982 } 1983 1984 retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL); 1985 if (retval) 1986 goto out_deallocate_sdma_queue; 1987 1988 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 1989 q->properties.type)]; 1990 1991 if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 1992 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 1993 dqm->asic_ops.init_sdma_vm(dqm, q, qpd); 1994 q->properties.tba_addr = qpd->tba_addr; 1995 q->properties.tma_addr = qpd->tma_addr; 1996 q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties); 1997 if (!q->mqd_mem_obj) { 1998 retval = -ENOMEM; 1999 goto out_deallocate_doorbell; 2000 } 2001 2002 dqm_lock(dqm); 2003 /* 2004 * Eviction state logic: mark all queues as evicted, even ones 2005 * not currently active. Restoring inactive queues later only 2006 * updates the is_evicted flag but is a no-op otherwise. 2007 */ 2008 q->properties.is_evicted = !!qpd->evicted; 2009 q->properties.is_dbg_wa = qpd->pqm->process->debug_trap_enabled && 2010 kfd_dbg_has_cwsr_workaround(q->device); 2011 2012 if (qd) 2013 mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr, 2014 &q->properties, restore_mqd, restore_ctl_stack, 2015 qd->ctl_stack_size); 2016 else 2017 mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, 2018 &q->gart_mqd_addr, &q->properties); 2019 2020 list_add(&q->list, &qpd->queues_list); 2021 qpd->queue_count++; 2022 2023 if (q->properties.is_active) { 2024 increment_queue_count(dqm, qpd, q); 2025 2026 if (!dqm->dev->kfd->shared_resources.enable_mes) 2027 retval = execute_queues_cpsch(dqm, 2028 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD); 2029 else 2030 retval = add_queue_mes(dqm, q, qpd); 2031 if (retval) 2032 goto cleanup_queue; 2033 } 2034 2035 /* 2036 * Unconditionally increment this counter, regardless of the queue's 2037 * type or whether the queue is active. 2038 */ 2039 dqm->total_queue_count++; 2040 2041 pr_debug("Total of %d queues are accountable so far\n", 2042 dqm->total_queue_count); 2043 2044 dqm_unlock(dqm); 2045 return retval; 2046 2047 cleanup_queue: 2048 qpd->queue_count--; 2049 list_del(&q->list); 2050 if (q->properties.is_active) 2051 decrement_queue_count(dqm, qpd, q); 2052 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 2053 dqm_unlock(dqm); 2054 out_deallocate_doorbell: 2055 deallocate_doorbell(qpd, q); 2056 out_deallocate_sdma_queue: 2057 if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 2058 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 2059 dqm_lock(dqm); 2060 deallocate_sdma_queue(dqm, q); 2061 dqm_unlock(dqm); 2062 } 2063 out: 2064 return retval; 2065 } 2066 2067 int amdkfd_fence_wait_timeout(struct device_queue_manager *dqm, 2068 uint64_t fence_value, 2069 unsigned int timeout_ms) 2070 { 2071 unsigned long end_jiffies = msecs_to_jiffies(timeout_ms) + jiffies; 2072 struct device *dev = dqm->dev->adev->dev; 2073 uint64_t *fence_addr = dqm->fence_addr; 2074 2075 while (*fence_addr != fence_value) { 2076 /* Fatal err detected, this response won't come */ 2077 if (amdgpu_amdkfd_is_fed(dqm->dev->adev)) 2078 return -EIO; 2079 2080 if (time_after(jiffies, end_jiffies)) { 2081 dev_err(dev, "qcm fence wait loop timeout expired\n"); 2082 /* In HWS case, this is used to halt the driver thread 2083 * in order not to mess up CP states before doing 2084 * scandumps for FW debugging. 2085 */ 2086 while (halt_if_hws_hang) 2087 schedule(); 2088 2089 return -ETIME; 2090 } 2091 schedule(); 2092 } 2093 2094 return 0; 2095 } 2096 2097 /* dqm->lock mutex has to be locked before calling this function */ 2098 static int map_queues_cpsch(struct device_queue_manager *dqm) 2099 { 2100 struct device *dev = dqm->dev->adev->dev; 2101 int retval; 2102 2103 if (!dqm->sched_running || dqm->sched_halt) 2104 return 0; 2105 if (dqm->active_queue_count <= 0 || dqm->processes_count <= 0) 2106 return 0; 2107 if (dqm->active_runlist) 2108 return 0; 2109 2110 retval = pm_send_runlist(&dqm->packet_mgr, &dqm->queues); 2111 pr_debug("%s sent runlist\n", __func__); 2112 if (retval) { 2113 dev_err(dev, "failed to execute runlist\n"); 2114 return retval; 2115 } 2116 dqm->active_runlist = true; 2117 2118 return retval; 2119 } 2120 2121 static void set_queue_as_reset(struct device_queue_manager *dqm, struct queue *q, 2122 struct qcm_process_device *qpd) 2123 { 2124 struct kfd_process_device *pdd = qpd_to_pdd(qpd); 2125 2126 dev_err(dqm->dev->adev->dev, "queue id 0x%0x at pasid %d is reset\n", 2127 q->properties.queue_id, pdd->process->lead_thread->pid); 2128 2129 pdd->has_reset_queue = true; 2130 if (q->properties.is_active) { 2131 q->properties.is_active = false; 2132 decrement_queue_count(dqm, qpd, q); 2133 } 2134 } 2135 2136 static int detect_queue_hang(struct device_queue_manager *dqm) 2137 { 2138 int i; 2139 2140 /* detect should be used only in dqm locked queue reset */ 2141 if (WARN_ON(dqm->detect_hang_count > 0)) 2142 return 0; 2143 2144 memset(dqm->detect_hang_info, 0, dqm->detect_hang_info_size); 2145 2146 for (i = 0; i < AMDGPU_MAX_QUEUES; ++i) { 2147 uint32_t mec, pipe, queue; 2148 int xcc_id; 2149 2150 mec = (i / dqm->dev->kfd->shared_resources.num_queue_per_pipe) 2151 / dqm->dev->kfd->shared_resources.num_pipe_per_mec; 2152 2153 if (mec || !test_bit(i, dqm->dev->kfd->shared_resources.cp_queue_bitmap)) 2154 continue; 2155 2156 amdgpu_queue_mask_bit_to_mec_queue(dqm->dev->adev, i, &mec, &pipe, &queue); 2157 2158 for_each_inst(xcc_id, dqm->dev->xcc_mask) { 2159 uint64_t queue_addr = dqm->dev->kfd2kgd->hqd_get_pq_addr( 2160 dqm->dev->adev, pipe, queue, xcc_id); 2161 struct dqm_detect_hang_info hang_info; 2162 2163 if (!queue_addr) 2164 continue; 2165 2166 hang_info.pipe_id = pipe; 2167 hang_info.queue_id = queue; 2168 hang_info.xcc_id = xcc_id; 2169 hang_info.queue_address = queue_addr; 2170 2171 dqm->detect_hang_info[dqm->detect_hang_count] = hang_info; 2172 dqm->detect_hang_count++; 2173 } 2174 } 2175 2176 return dqm->detect_hang_count; 2177 } 2178 2179 static struct queue *find_queue_by_address(struct device_queue_manager *dqm, uint64_t queue_address) 2180 { 2181 struct device_process_node *cur; 2182 struct qcm_process_device *qpd; 2183 struct queue *q; 2184 2185 list_for_each_entry(cur, &dqm->queues, list) { 2186 qpd = cur->qpd; 2187 list_for_each_entry(q, &qpd->queues_list, list) { 2188 if (queue_address == q->properties.queue_address) 2189 return q; 2190 } 2191 } 2192 2193 return NULL; 2194 } 2195 2196 static int reset_hung_queues(struct device_queue_manager *dqm) 2197 { 2198 int r = 0, reset_count = 0, i; 2199 2200 if (!dqm->detect_hang_info || dqm->is_hws_hang) 2201 return -EIO; 2202 2203 /* assume dqm locked. */ 2204 if (!detect_queue_hang(dqm)) 2205 return -ENOTRECOVERABLE; 2206 2207 for (i = 0; i < dqm->detect_hang_count; i++) { 2208 struct dqm_detect_hang_info hang_info = dqm->detect_hang_info[i]; 2209 struct queue *q = find_queue_by_address(dqm, hang_info.queue_address); 2210 struct kfd_process_device *pdd; 2211 uint64_t queue_addr = 0; 2212 2213 if (!q) { 2214 r = -ENOTRECOVERABLE; 2215 goto reset_fail; 2216 } 2217 2218 pdd = kfd_get_process_device_data(dqm->dev, q->process); 2219 if (!pdd) { 2220 r = -ENOTRECOVERABLE; 2221 goto reset_fail; 2222 } 2223 2224 queue_addr = dqm->dev->kfd2kgd->hqd_reset(dqm->dev->adev, 2225 hang_info.pipe_id, hang_info.queue_id, hang_info.xcc_id, 2226 KFD_UNMAP_LATENCY_MS); 2227 2228 /* either reset failed or we reset an unexpected queue. */ 2229 if (queue_addr != q->properties.queue_address) { 2230 r = -ENOTRECOVERABLE; 2231 goto reset_fail; 2232 } 2233 2234 set_queue_as_reset(dqm, q, &pdd->qpd); 2235 reset_count++; 2236 } 2237 2238 if (reset_count == dqm->detect_hang_count) 2239 kfd_signal_reset_event(dqm->dev); 2240 else 2241 r = -ENOTRECOVERABLE; 2242 2243 reset_fail: 2244 dqm->detect_hang_count = 0; 2245 2246 return r; 2247 } 2248 2249 static bool sdma_has_hang(struct device_queue_manager *dqm) 2250 { 2251 int engine_start = dqm->dev->node_id * get_num_all_sdma_engines(dqm); 2252 int engine_end = engine_start + get_num_all_sdma_engines(dqm); 2253 int num_queues_per_eng = dqm->dev->kfd->device_info.num_sdma_queues_per_engine; 2254 int i, j; 2255 2256 for (i = engine_start; i < engine_end; i++) { 2257 for (j = 0; j < num_queues_per_eng; j++) { 2258 if (!dqm->dev->kfd2kgd->hqd_sdma_get_doorbell(dqm->dev->adev, i, j)) 2259 continue; 2260 2261 return true; 2262 } 2263 } 2264 2265 return false; 2266 } 2267 2268 static bool set_sdma_queue_as_reset(struct device_queue_manager *dqm, 2269 uint32_t doorbell_off) 2270 { 2271 struct device_process_node *cur; 2272 struct qcm_process_device *qpd; 2273 struct queue *q; 2274 2275 list_for_each_entry(cur, &dqm->queues, list) { 2276 qpd = cur->qpd; 2277 list_for_each_entry(q, &qpd->queues_list, list) { 2278 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA || 2279 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) && 2280 q->properties.doorbell_off == doorbell_off) { 2281 set_queue_as_reset(dqm, q, qpd); 2282 return true; 2283 } 2284 } 2285 } 2286 2287 return false; 2288 } 2289 2290 static int reset_hung_queues_sdma(struct device_queue_manager *dqm) 2291 { 2292 int engine_start = dqm->dev->node_id * get_num_all_sdma_engines(dqm); 2293 int engine_end = engine_start + get_num_all_sdma_engines(dqm); 2294 int num_queues_per_eng = dqm->dev->kfd->device_info.num_sdma_queues_per_engine; 2295 int r = 0, i, j; 2296 2297 if (dqm->is_hws_hang) 2298 return -EIO; 2299 2300 /* Scan for hung HW queues and reset engine. */ 2301 dqm->detect_hang_count = 0; 2302 for (i = engine_start; i < engine_end; i++) { 2303 for (j = 0; j < num_queues_per_eng; j++) { 2304 uint32_t doorbell_off = 2305 dqm->dev->kfd2kgd->hqd_sdma_get_doorbell(dqm->dev->adev, i, j); 2306 2307 if (!doorbell_off) 2308 continue; 2309 2310 /* Reset engine and check. */ 2311 if (amdgpu_sdma_reset_engine(dqm->dev->adev, i, false) || 2312 dqm->dev->kfd2kgd->hqd_sdma_get_doorbell(dqm->dev->adev, i, j) || 2313 !set_sdma_queue_as_reset(dqm, doorbell_off)) { 2314 r = -ENOTRECOVERABLE; 2315 goto reset_fail; 2316 } 2317 2318 /* Should only expect one queue active per engine */ 2319 dqm->detect_hang_count++; 2320 break; 2321 } 2322 } 2323 2324 /* Signal process reset */ 2325 if (dqm->detect_hang_count) 2326 kfd_signal_reset_event(dqm->dev); 2327 else 2328 r = -ENOTRECOVERABLE; 2329 2330 reset_fail: 2331 dqm->detect_hang_count = 0; 2332 2333 return r; 2334 } 2335 2336 static int reset_queues_on_hws_hang(struct device_queue_manager *dqm, bool is_sdma) 2337 { 2338 while (halt_if_hws_hang) 2339 schedule(); 2340 2341 if (!amdgpu_gpu_recovery) 2342 return -ENOTRECOVERABLE; 2343 2344 return is_sdma ? reset_hung_queues_sdma(dqm) : reset_hung_queues(dqm); 2345 } 2346 2347 /* dqm->lock mutex has to be locked before calling this function 2348 * 2349 * @grace_period: If USE_DEFAULT_GRACE_PERIOD then default wait time 2350 * for context switch latency. Lower values are used by debugger 2351 * since context switching are triggered at high frequency. 2352 * This is configured by setting CP_IQ_WAIT_TIME2.SCH_WAVE 2353 * 2354 */ 2355 static int unmap_queues_cpsch(struct device_queue_manager *dqm, 2356 enum kfd_unmap_queues_filter filter, 2357 uint32_t filter_param, 2358 uint32_t grace_period, 2359 bool reset) 2360 { 2361 struct device *dev = dqm->dev->adev->dev; 2362 struct mqd_manager *mqd_mgr; 2363 int retval; 2364 2365 if (!dqm->sched_running) 2366 return 0; 2367 if (!dqm->active_runlist) 2368 return 0; 2369 if (!down_read_trylock(&dqm->dev->adev->reset_domain->sem)) 2370 return -EIO; 2371 2372 if (grace_period != USE_DEFAULT_GRACE_PERIOD) { 2373 retval = pm_config_dequeue_wait_counts(&dqm->packet_mgr, 2374 KFD_DEQUEUE_WAIT_SET_SCH_WAVE, grace_period); 2375 if (retval) 2376 goto out; 2377 } 2378 2379 retval = pm_send_unmap_queue(&dqm->packet_mgr, filter, filter_param, reset); 2380 if (retval) 2381 goto out; 2382 2383 *dqm->fence_addr = KFD_FENCE_INIT; 2384 mb(); 2385 pm_send_query_status(&dqm->packet_mgr, dqm->fence_gpu_addr, 2386 KFD_FENCE_COMPLETED); 2387 /* should be timed out */ 2388 retval = amdkfd_fence_wait_timeout(dqm, KFD_FENCE_COMPLETED, 2389 queue_preemption_timeout_ms); 2390 if (retval) { 2391 dev_err(dev, "The cp might be in an unrecoverable state due to an unsuccessful queues preemption\n"); 2392 kfd_hws_hang(dqm); 2393 goto out; 2394 } 2395 2396 /* In the current MEC firmware implementation, if compute queue 2397 * doesn't response to the preemption request in time, HIQ will 2398 * abandon the unmap request without returning any timeout error 2399 * to driver. Instead, MEC firmware will log the doorbell of the 2400 * unresponding compute queue to HIQ.MQD.queue_doorbell_id fields. 2401 * To make sure the queue unmap was successful, driver need to 2402 * check those fields 2403 */ 2404 mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]; 2405 if (mqd_mgr->check_preemption_failed(mqd_mgr, dqm->packet_mgr.priv_queue->queue->mqd) && 2406 reset_queues_on_hws_hang(dqm, false)) 2407 goto reset_fail; 2408 2409 /* Check for SDMA hang and attempt SDMA reset */ 2410 if (sdma_has_hang(dqm) && reset_queues_on_hws_hang(dqm, true)) 2411 goto reset_fail; 2412 2413 /* We need to reset the grace period value for this device */ 2414 if (grace_period != USE_DEFAULT_GRACE_PERIOD) { 2415 if (pm_config_dequeue_wait_counts(&dqm->packet_mgr, 2416 KFD_DEQUEUE_WAIT_RESET, 0 /* unused */)) 2417 dev_err(dev, "Failed to reset grace period\n"); 2418 } 2419 2420 pm_release_ib(&dqm->packet_mgr); 2421 dqm->active_runlist = false; 2422 out: 2423 up_read(&dqm->dev->adev->reset_domain->sem); 2424 return retval; 2425 2426 reset_fail: 2427 dqm->is_hws_hang = true; 2428 kfd_hws_hang(dqm); 2429 up_read(&dqm->dev->adev->reset_domain->sem); 2430 return -ETIME; 2431 } 2432 2433 /* only for compute queue */ 2434 static int reset_queues_cpsch(struct device_queue_manager *dqm, uint16_t pasid) 2435 { 2436 int retval; 2437 2438 dqm_lock(dqm); 2439 2440 retval = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_BY_PASID, 2441 pasid, USE_DEFAULT_GRACE_PERIOD, true); 2442 2443 dqm_unlock(dqm); 2444 return retval; 2445 } 2446 2447 /* dqm->lock mutex has to be locked before calling this function */ 2448 static int execute_queues_cpsch(struct device_queue_manager *dqm, 2449 enum kfd_unmap_queues_filter filter, 2450 uint32_t filter_param, 2451 uint32_t grace_period) 2452 { 2453 int retval; 2454 2455 if (!down_read_trylock(&dqm->dev->adev->reset_domain->sem)) 2456 return -EIO; 2457 retval = unmap_queues_cpsch(dqm, filter, filter_param, grace_period, false); 2458 if (!retval) 2459 retval = map_queues_cpsch(dqm); 2460 up_read(&dqm->dev->adev->reset_domain->sem); 2461 return retval; 2462 } 2463 2464 static int wait_on_destroy_queue(struct device_queue_manager *dqm, 2465 struct queue *q) 2466 { 2467 struct kfd_process_device *pdd = kfd_get_process_device_data(q->device, 2468 q->process); 2469 int ret = 0; 2470 2471 if (WARN_ON(!pdd)) 2472 return ret; 2473 2474 if (pdd->qpd.is_debug) 2475 return ret; 2476 2477 q->properties.is_being_destroyed = true; 2478 2479 if (pdd->process->debug_trap_enabled && q->properties.is_suspended) { 2480 dqm_unlock(dqm); 2481 mutex_unlock(&q->process->mutex); 2482 ret = wait_event_interruptible(dqm->destroy_wait, 2483 !q->properties.is_suspended); 2484 2485 mutex_lock(&q->process->mutex); 2486 dqm_lock(dqm); 2487 } 2488 2489 return ret; 2490 } 2491 2492 static int destroy_queue_cpsch(struct device_queue_manager *dqm, 2493 struct qcm_process_device *qpd, 2494 struct queue *q) 2495 { 2496 int retval; 2497 struct mqd_manager *mqd_mgr; 2498 uint64_t sdma_val = 0; 2499 struct kfd_process_device *pdd = qpd_to_pdd(qpd); 2500 struct device *dev = dqm->dev->adev->dev; 2501 2502 /* Get the SDMA queue stats */ 2503 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) || 2504 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { 2505 retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr, 2506 &sdma_val); 2507 if (retval) 2508 dev_err(dev, "Failed to read SDMA queue counter for queue: %d\n", 2509 q->properties.queue_id); 2510 } 2511 2512 /* remove queue from list to prevent rescheduling after preemption */ 2513 dqm_lock(dqm); 2514 2515 retval = wait_on_destroy_queue(dqm, q); 2516 2517 if (retval) { 2518 dqm_unlock(dqm); 2519 return retval; 2520 } 2521 2522 if (qpd->is_debug) { 2523 /* 2524 * error, currently we do not allow to destroy a queue 2525 * of a currently debugged process 2526 */ 2527 retval = -EBUSY; 2528 goto failed_try_destroy_debugged_queue; 2529 2530 } 2531 2532 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 2533 q->properties.type)]; 2534 2535 deallocate_doorbell(qpd, q); 2536 2537 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) || 2538 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { 2539 deallocate_sdma_queue(dqm, q); 2540 pdd->sdma_past_activity_counter += sdma_val; 2541 } 2542 2543 if (q->properties.is_active) { 2544 decrement_queue_count(dqm, qpd, q); 2545 q->properties.is_active = false; 2546 if (!dqm->dev->kfd->shared_resources.enable_mes) { 2547 retval = execute_queues_cpsch(dqm, 2548 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, 2549 USE_DEFAULT_GRACE_PERIOD); 2550 if (retval == -ETIME) 2551 qpd->reset_wavefronts = true; 2552 } else { 2553 retval = remove_queue_mes(dqm, q, qpd); 2554 } 2555 } 2556 list_del(&q->list); 2557 qpd->queue_count--; 2558 2559 /* 2560 * Unconditionally decrement this counter, regardless of the queue's 2561 * type 2562 */ 2563 dqm->total_queue_count--; 2564 pr_debug("Total of %d queues are accountable so far\n", 2565 dqm->total_queue_count); 2566 2567 dqm_unlock(dqm); 2568 2569 /* 2570 * Do free_mqd and raise delete event after dqm_unlock(dqm) to avoid 2571 * circular locking 2572 */ 2573 kfd_dbg_ev_raise(KFD_EC_MASK(EC_DEVICE_QUEUE_DELETE), 2574 qpd->pqm->process, q->device, 2575 -1, false, NULL, 0); 2576 2577 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 2578 2579 return retval; 2580 2581 failed_try_destroy_debugged_queue: 2582 2583 dqm_unlock(dqm); 2584 return retval; 2585 } 2586 2587 static bool set_cache_memory_policy(struct device_queue_manager *dqm, 2588 struct qcm_process_device *qpd, 2589 enum cache_policy default_policy, 2590 enum cache_policy alternate_policy, 2591 void __user *alternate_aperture_base, 2592 uint64_t alternate_aperture_size, 2593 u32 misc_process_properties) 2594 { 2595 bool retval = true; 2596 2597 if (!dqm->asic_ops.set_cache_memory_policy) 2598 return retval; 2599 2600 dqm_lock(dqm); 2601 2602 retval = dqm->asic_ops.set_cache_memory_policy( 2603 dqm, 2604 qpd, 2605 default_policy, 2606 alternate_policy, 2607 alternate_aperture_base, 2608 alternate_aperture_size, 2609 misc_process_properties); 2610 2611 if (retval) 2612 goto out; 2613 2614 if ((dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0)) 2615 program_sh_mem_settings(dqm, qpd); 2616 2617 pr_debug("sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n", 2618 qpd->sh_mem_config, qpd->sh_mem_ape1_base, 2619 qpd->sh_mem_ape1_limit); 2620 2621 out: 2622 dqm_unlock(dqm); 2623 return retval; 2624 } 2625 2626 static int process_termination_nocpsch(struct device_queue_manager *dqm, 2627 struct qcm_process_device *qpd) 2628 { 2629 struct queue *q; 2630 struct device_process_node *cur, *next_dpn; 2631 int retval = 0; 2632 bool found = false; 2633 2634 dqm_lock(dqm); 2635 2636 /* Clear all user mode queues */ 2637 while (!list_empty(&qpd->queues_list)) { 2638 struct mqd_manager *mqd_mgr; 2639 int ret; 2640 2641 q = list_first_entry(&qpd->queues_list, struct queue, list); 2642 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 2643 q->properties.type)]; 2644 ret = destroy_queue_nocpsch_locked(dqm, qpd, q); 2645 if (ret) 2646 retval = ret; 2647 dqm_unlock(dqm); 2648 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 2649 dqm_lock(dqm); 2650 } 2651 2652 /* Unregister process */ 2653 list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) { 2654 if (qpd == cur->qpd) { 2655 list_del(&cur->list); 2656 kfree(cur); 2657 dqm->processes_count--; 2658 found = true; 2659 break; 2660 } 2661 } 2662 2663 dqm_unlock(dqm); 2664 2665 /* Outside the DQM lock because under the DQM lock we can't do 2666 * reclaim or take other locks that others hold while reclaiming. 2667 */ 2668 if (found) 2669 kfd_dec_compute_active(dqm->dev); 2670 2671 return retval; 2672 } 2673 2674 static int get_wave_state(struct device_queue_manager *dqm, 2675 struct queue *q, 2676 void __user *ctl_stack, 2677 u32 *ctl_stack_used_size, 2678 u32 *save_area_used_size) 2679 { 2680 struct mqd_manager *mqd_mgr; 2681 2682 dqm_lock(dqm); 2683 2684 mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP]; 2685 2686 if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE || 2687 q->properties.is_active || !q->device->kfd->cwsr_enabled || 2688 !mqd_mgr->get_wave_state) { 2689 dqm_unlock(dqm); 2690 return -EINVAL; 2691 } 2692 2693 dqm_unlock(dqm); 2694 2695 /* 2696 * get_wave_state is outside the dqm lock to prevent circular locking 2697 * and the queue should be protected against destruction by the process 2698 * lock. 2699 */ 2700 return mqd_mgr->get_wave_state(mqd_mgr, q->mqd, &q->properties, 2701 ctl_stack, ctl_stack_used_size, save_area_used_size); 2702 } 2703 2704 static void get_queue_checkpoint_info(struct device_queue_manager *dqm, 2705 const struct queue *q, 2706 u32 *mqd_size, 2707 u32 *ctl_stack_size) 2708 { 2709 struct mqd_manager *mqd_mgr; 2710 enum KFD_MQD_TYPE mqd_type = 2711 get_mqd_type_from_queue_type(q->properties.type); 2712 2713 dqm_lock(dqm); 2714 mqd_mgr = dqm->mqd_mgrs[mqd_type]; 2715 *mqd_size = mqd_mgr->mqd_size; 2716 *ctl_stack_size = 0; 2717 2718 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE && mqd_mgr->get_checkpoint_info) 2719 mqd_mgr->get_checkpoint_info(mqd_mgr, q->mqd, ctl_stack_size); 2720 2721 dqm_unlock(dqm); 2722 } 2723 2724 static int checkpoint_mqd(struct device_queue_manager *dqm, 2725 const struct queue *q, 2726 void *mqd, 2727 void *ctl_stack) 2728 { 2729 struct mqd_manager *mqd_mgr; 2730 int r = 0; 2731 enum KFD_MQD_TYPE mqd_type = 2732 get_mqd_type_from_queue_type(q->properties.type); 2733 2734 dqm_lock(dqm); 2735 2736 if (q->properties.is_active || !q->device->kfd->cwsr_enabled) { 2737 r = -EINVAL; 2738 goto dqm_unlock; 2739 } 2740 2741 mqd_mgr = dqm->mqd_mgrs[mqd_type]; 2742 if (!mqd_mgr->checkpoint_mqd) { 2743 r = -EOPNOTSUPP; 2744 goto dqm_unlock; 2745 } 2746 2747 mqd_mgr->checkpoint_mqd(mqd_mgr, q->mqd, mqd, ctl_stack); 2748 2749 dqm_unlock: 2750 dqm_unlock(dqm); 2751 return r; 2752 } 2753 2754 static int process_termination_cpsch(struct device_queue_manager *dqm, 2755 struct qcm_process_device *qpd) 2756 { 2757 int retval; 2758 struct queue *q; 2759 struct device *dev = dqm->dev->adev->dev; 2760 struct kernel_queue *kq, *kq_next; 2761 struct mqd_manager *mqd_mgr; 2762 struct device_process_node *cur, *next_dpn; 2763 enum kfd_unmap_queues_filter filter = 2764 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES; 2765 bool found = false; 2766 2767 retval = 0; 2768 2769 dqm_lock(dqm); 2770 2771 /* Clean all kernel queues */ 2772 list_for_each_entry_safe(kq, kq_next, &qpd->priv_queue_list, list) { 2773 list_del(&kq->list); 2774 decrement_queue_count(dqm, qpd, kq->queue); 2775 qpd->is_debug = false; 2776 dqm->total_queue_count--; 2777 filter = KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES; 2778 } 2779 2780 /* Clear all user mode queues */ 2781 list_for_each_entry(q, &qpd->queues_list, list) { 2782 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) 2783 deallocate_sdma_queue(dqm, q); 2784 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 2785 deallocate_sdma_queue(dqm, q); 2786 2787 if (q->properties.is_active) { 2788 decrement_queue_count(dqm, qpd, q); 2789 2790 if (dqm->dev->kfd->shared_resources.enable_mes) { 2791 retval = remove_queue_mes(dqm, q, qpd); 2792 if (retval) 2793 dev_err(dev, "Failed to remove queue %d\n", 2794 q->properties.queue_id); 2795 } 2796 } 2797 2798 dqm->total_queue_count--; 2799 } 2800 2801 /* Unregister process */ 2802 list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) { 2803 if (qpd == cur->qpd) { 2804 list_del(&cur->list); 2805 kfree(cur); 2806 dqm->processes_count--; 2807 found = true; 2808 break; 2809 } 2810 } 2811 2812 if (!dqm->dev->kfd->shared_resources.enable_mes) 2813 retval = execute_queues_cpsch(dqm, filter, 0, USE_DEFAULT_GRACE_PERIOD); 2814 2815 if ((retval || qpd->reset_wavefronts) && 2816 down_read_trylock(&dqm->dev->adev->reset_domain->sem)) { 2817 pr_warn("Resetting wave fronts (cpsch) on dev %p\n", dqm->dev); 2818 dbgdev_wave_reset_wavefronts(dqm->dev, qpd->pqm->process); 2819 qpd->reset_wavefronts = false; 2820 up_read(&dqm->dev->adev->reset_domain->sem); 2821 } 2822 2823 /* Lastly, free mqd resources. 2824 * Do free_mqd() after dqm_unlock to avoid circular locking. 2825 */ 2826 while (!list_empty(&qpd->queues_list)) { 2827 q = list_first_entry(&qpd->queues_list, struct queue, list); 2828 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 2829 q->properties.type)]; 2830 list_del(&q->list); 2831 qpd->queue_count--; 2832 dqm_unlock(dqm); 2833 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 2834 dqm_lock(dqm); 2835 } 2836 dqm_unlock(dqm); 2837 2838 /* Outside the DQM lock because under the DQM lock we can't do 2839 * reclaim or take other locks that others hold while reclaiming. 2840 */ 2841 if (found) 2842 kfd_dec_compute_active(dqm->dev); 2843 2844 return retval; 2845 } 2846 2847 static int init_mqd_managers(struct device_queue_manager *dqm) 2848 { 2849 int i, j; 2850 struct device *dev = dqm->dev->adev->dev; 2851 struct mqd_manager *mqd_mgr; 2852 2853 for (i = 0; i < KFD_MQD_TYPE_MAX; i++) { 2854 mqd_mgr = dqm->asic_ops.mqd_manager_init(i, dqm->dev); 2855 if (!mqd_mgr) { 2856 dev_err(dev, "mqd manager [%d] initialization failed\n", i); 2857 goto out_free; 2858 } 2859 dqm->mqd_mgrs[i] = mqd_mgr; 2860 } 2861 2862 return 0; 2863 2864 out_free: 2865 for (j = 0; j < i; j++) { 2866 kfree(dqm->mqd_mgrs[j]); 2867 dqm->mqd_mgrs[j] = NULL; 2868 } 2869 2870 return -ENOMEM; 2871 } 2872 2873 /* Allocate one hiq mqd (HWS) and all SDMA mqd in a continuous trunk*/ 2874 static int allocate_hiq_sdma_mqd(struct device_queue_manager *dqm) 2875 { 2876 int retval; 2877 struct kfd_node *dev = dqm->dev; 2878 struct kfd_mem_obj *mem_obj = &dqm->hiq_sdma_mqd; 2879 uint32_t size = dqm->mqd_mgrs[KFD_MQD_TYPE_SDMA]->mqd_size * 2880 get_num_all_sdma_engines(dqm) * 2881 dev->kfd->device_info.num_sdma_queues_per_engine + 2882 (dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]->mqd_size * 2883 NUM_XCC(dqm->dev->xcc_mask)); 2884 2885 retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev, size, 2886 &(mem_obj->gtt_mem), &(mem_obj->gpu_addr), 2887 (void *)&(mem_obj->cpu_ptr), false); 2888 2889 return retval; 2890 } 2891 2892 struct device_queue_manager *device_queue_manager_init(struct kfd_node *dev) 2893 { 2894 struct device_queue_manager *dqm; 2895 2896 pr_debug("Loading device queue manager\n"); 2897 2898 dqm = kzalloc(sizeof(*dqm), GFP_KERNEL); 2899 if (!dqm) 2900 return NULL; 2901 2902 switch (dev->adev->asic_type) { 2903 /* HWS is not available on Hawaii. */ 2904 case CHIP_HAWAII: 2905 /* HWS depends on CWSR for timely dequeue. CWSR is not 2906 * available on Tonga. 2907 * 2908 * FIXME: This argument also applies to Kaveri. 2909 */ 2910 case CHIP_TONGA: 2911 dqm->sched_policy = KFD_SCHED_POLICY_NO_HWS; 2912 break; 2913 default: 2914 dqm->sched_policy = sched_policy; 2915 break; 2916 } 2917 2918 dqm->dev = dev; 2919 switch (dqm->sched_policy) { 2920 case KFD_SCHED_POLICY_HWS: 2921 case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION: 2922 /* initialize dqm for cp scheduling */ 2923 dqm->ops.create_queue = create_queue_cpsch; 2924 dqm->ops.initialize = initialize_cpsch; 2925 dqm->ops.start = start_cpsch; 2926 dqm->ops.stop = stop_cpsch; 2927 dqm->ops.halt = halt_cpsch; 2928 dqm->ops.unhalt = unhalt_cpsch; 2929 dqm->ops.destroy_queue = destroy_queue_cpsch; 2930 dqm->ops.update_queue = update_queue; 2931 dqm->ops.register_process = register_process; 2932 dqm->ops.unregister_process = unregister_process; 2933 dqm->ops.uninitialize = uninitialize; 2934 dqm->ops.create_kernel_queue = create_kernel_queue_cpsch; 2935 dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch; 2936 dqm->ops.set_cache_memory_policy = set_cache_memory_policy; 2937 dqm->ops.process_termination = process_termination_cpsch; 2938 dqm->ops.evict_process_queues = evict_process_queues_cpsch; 2939 dqm->ops.restore_process_queues = restore_process_queues_cpsch; 2940 dqm->ops.get_wave_state = get_wave_state; 2941 dqm->ops.reset_queues = reset_queues_cpsch; 2942 dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info; 2943 dqm->ops.checkpoint_mqd = checkpoint_mqd; 2944 break; 2945 case KFD_SCHED_POLICY_NO_HWS: 2946 /* initialize dqm for no cp scheduling */ 2947 dqm->ops.start = start_nocpsch; 2948 dqm->ops.stop = stop_nocpsch; 2949 dqm->ops.create_queue = create_queue_nocpsch; 2950 dqm->ops.destroy_queue = destroy_queue_nocpsch; 2951 dqm->ops.update_queue = update_queue; 2952 dqm->ops.register_process = register_process; 2953 dqm->ops.unregister_process = unregister_process; 2954 dqm->ops.initialize = initialize_nocpsch; 2955 dqm->ops.uninitialize = uninitialize; 2956 dqm->ops.set_cache_memory_policy = set_cache_memory_policy; 2957 dqm->ops.process_termination = process_termination_nocpsch; 2958 dqm->ops.evict_process_queues = evict_process_queues_nocpsch; 2959 dqm->ops.restore_process_queues = 2960 restore_process_queues_nocpsch; 2961 dqm->ops.get_wave_state = get_wave_state; 2962 dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info; 2963 dqm->ops.checkpoint_mqd = checkpoint_mqd; 2964 break; 2965 default: 2966 dev_err(dev->adev->dev, "Invalid scheduling policy %d\n", dqm->sched_policy); 2967 goto out_free; 2968 } 2969 2970 switch (dev->adev->asic_type) { 2971 case CHIP_KAVERI: 2972 case CHIP_HAWAII: 2973 device_queue_manager_init_cik(&dqm->asic_ops); 2974 break; 2975 2976 case CHIP_CARRIZO: 2977 case CHIP_TONGA: 2978 case CHIP_FIJI: 2979 case CHIP_POLARIS10: 2980 case CHIP_POLARIS11: 2981 case CHIP_POLARIS12: 2982 case CHIP_VEGAM: 2983 device_queue_manager_init_vi(&dqm->asic_ops); 2984 break; 2985 2986 default: 2987 if (KFD_GC_VERSION(dev) >= IP_VERSION(12, 0, 0)) 2988 device_queue_manager_init_v12(&dqm->asic_ops); 2989 else if (KFD_GC_VERSION(dev) >= IP_VERSION(11, 0, 0)) 2990 device_queue_manager_init_v11(&dqm->asic_ops); 2991 else if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1)) 2992 device_queue_manager_init_v10(&dqm->asic_ops); 2993 else if (KFD_GC_VERSION(dev) >= IP_VERSION(9, 0, 1)) 2994 device_queue_manager_init_v9(&dqm->asic_ops); 2995 else { 2996 WARN(1, "Unexpected ASIC family %u", 2997 dev->adev->asic_type); 2998 goto out_free; 2999 } 3000 } 3001 3002 if (init_mqd_managers(dqm)) 3003 goto out_free; 3004 3005 if (!dev->kfd->shared_resources.enable_mes && allocate_hiq_sdma_mqd(dqm)) { 3006 dev_err(dev->adev->dev, "Failed to allocate hiq sdma mqd trunk buffer\n"); 3007 goto out_free; 3008 } 3009 3010 if (!dqm->ops.initialize(dqm)) { 3011 init_waitqueue_head(&dqm->destroy_wait); 3012 return dqm; 3013 } 3014 3015 out_free: 3016 kfree(dqm); 3017 return NULL; 3018 } 3019 3020 static void deallocate_hiq_sdma_mqd(struct kfd_node *dev, 3021 struct kfd_mem_obj *mqd) 3022 { 3023 WARN(!mqd, "No hiq sdma mqd trunk to free"); 3024 3025 amdgpu_amdkfd_free_gtt_mem(dev->adev, &mqd->gtt_mem); 3026 } 3027 3028 void device_queue_manager_uninit(struct device_queue_manager *dqm) 3029 { 3030 dqm->ops.stop(dqm); 3031 dqm->ops.uninitialize(dqm); 3032 if (!dqm->dev->kfd->shared_resources.enable_mes) 3033 deallocate_hiq_sdma_mqd(dqm->dev, &dqm->hiq_sdma_mqd); 3034 kfree(dqm); 3035 } 3036 3037 int kfd_dqm_suspend_bad_queue_mes(struct kfd_node *knode, u32 pasid, u32 doorbell_id) 3038 { 3039 struct kfd_process_device *pdd = NULL; 3040 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid, &pdd); 3041 struct device_queue_manager *dqm = knode->dqm; 3042 struct device *dev = dqm->dev->adev->dev; 3043 struct qcm_process_device *qpd; 3044 struct queue *q = NULL; 3045 int ret = 0; 3046 3047 if (!pdd) 3048 return -EINVAL; 3049 3050 dqm_lock(dqm); 3051 3052 if (pdd) { 3053 qpd = &pdd->qpd; 3054 3055 list_for_each_entry(q, &qpd->queues_list, list) { 3056 if (q->doorbell_id == doorbell_id && q->properties.is_active) { 3057 ret = suspend_all_queues_mes(dqm); 3058 if (ret) { 3059 dev_err(dev, "Suspending all queues failed"); 3060 goto out; 3061 } 3062 3063 q->properties.is_evicted = true; 3064 q->properties.is_active = false; 3065 decrement_queue_count(dqm, qpd, q); 3066 3067 ret = remove_queue_mes(dqm, q, qpd); 3068 if (ret) { 3069 dev_err(dev, "Removing bad queue failed"); 3070 goto out; 3071 } 3072 3073 ret = resume_all_queues_mes(dqm); 3074 if (ret) 3075 dev_err(dev, "Resuming all queues failed"); 3076 3077 break; 3078 } 3079 } 3080 } 3081 3082 out: 3083 dqm_unlock(dqm); 3084 kfd_unref_process(p); 3085 return ret; 3086 } 3087 3088 static int kfd_dqm_evict_pasid_mes(struct device_queue_manager *dqm, 3089 struct qcm_process_device *qpd) 3090 { 3091 struct device *dev = dqm->dev->adev->dev; 3092 int ret = 0; 3093 3094 /* Check if process is already evicted */ 3095 dqm_lock(dqm); 3096 if (qpd->evicted) { 3097 /* Increment the evicted count to make sure the 3098 * process stays evicted before its terminated. 3099 */ 3100 qpd->evicted++; 3101 dqm_unlock(dqm); 3102 goto out; 3103 } 3104 dqm_unlock(dqm); 3105 3106 ret = suspend_all_queues_mes(dqm); 3107 if (ret) { 3108 dev_err(dev, "Suspending all queues failed"); 3109 goto out; 3110 } 3111 3112 ret = dqm->ops.evict_process_queues(dqm, qpd); 3113 if (ret) { 3114 dev_err(dev, "Evicting process queues failed"); 3115 goto out; 3116 } 3117 3118 ret = resume_all_queues_mes(dqm); 3119 if (ret) 3120 dev_err(dev, "Resuming all queues failed"); 3121 3122 out: 3123 return ret; 3124 } 3125 3126 int kfd_evict_process_device(struct kfd_process_device *pdd) 3127 { 3128 struct device_queue_manager *dqm; 3129 struct kfd_process *p; 3130 int ret = 0; 3131 3132 p = pdd->process; 3133 dqm = pdd->dev->dqm; 3134 3135 WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid); 3136 3137 if (dqm->dev->kfd->shared_resources.enable_mes) 3138 ret = kfd_dqm_evict_pasid_mes(dqm, &pdd->qpd); 3139 else 3140 ret = dqm->ops.evict_process_queues(dqm, &pdd->qpd); 3141 3142 return ret; 3143 } 3144 3145 int reserve_debug_trap_vmid(struct device_queue_manager *dqm, 3146 struct qcm_process_device *qpd) 3147 { 3148 int r; 3149 struct device *dev = dqm->dev->adev->dev; 3150 int updated_vmid_mask; 3151 3152 if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) { 3153 dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy); 3154 return -EINVAL; 3155 } 3156 3157 dqm_lock(dqm); 3158 3159 if (dqm->trap_debug_vmid != 0) { 3160 dev_err(dev, "Trap debug id already reserved\n"); 3161 r = -EBUSY; 3162 goto out_unlock; 3163 } 3164 3165 r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, 3166 USE_DEFAULT_GRACE_PERIOD, false); 3167 if (r) 3168 goto out_unlock; 3169 3170 updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap; 3171 updated_vmid_mask &= ~(1 << dqm->dev->vm_info.last_vmid_kfd); 3172 3173 dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask; 3174 dqm->trap_debug_vmid = dqm->dev->vm_info.last_vmid_kfd; 3175 r = set_sched_resources(dqm); 3176 if (r) 3177 goto out_unlock; 3178 3179 r = map_queues_cpsch(dqm); 3180 if (r) 3181 goto out_unlock; 3182 3183 pr_debug("Reserved VMID for trap debug: %i\n", dqm->trap_debug_vmid); 3184 3185 out_unlock: 3186 dqm_unlock(dqm); 3187 return r; 3188 } 3189 3190 /* 3191 * Releases vmid for the trap debugger 3192 */ 3193 int release_debug_trap_vmid(struct device_queue_manager *dqm, 3194 struct qcm_process_device *qpd) 3195 { 3196 struct device *dev = dqm->dev->adev->dev; 3197 int r; 3198 int updated_vmid_mask; 3199 uint32_t trap_debug_vmid; 3200 3201 if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) { 3202 dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy); 3203 return -EINVAL; 3204 } 3205 3206 dqm_lock(dqm); 3207 trap_debug_vmid = dqm->trap_debug_vmid; 3208 if (dqm->trap_debug_vmid == 0) { 3209 dev_err(dev, "Trap debug id is not reserved\n"); 3210 r = -EINVAL; 3211 goto out_unlock; 3212 } 3213 3214 r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, 3215 USE_DEFAULT_GRACE_PERIOD, false); 3216 if (r) 3217 goto out_unlock; 3218 3219 updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap; 3220 updated_vmid_mask |= (1 << dqm->dev->vm_info.last_vmid_kfd); 3221 3222 dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask; 3223 dqm->trap_debug_vmid = 0; 3224 r = set_sched_resources(dqm); 3225 if (r) 3226 goto out_unlock; 3227 3228 r = map_queues_cpsch(dqm); 3229 if (r) 3230 goto out_unlock; 3231 3232 pr_debug("Released VMID for trap debug: %i\n", trap_debug_vmid); 3233 3234 out_unlock: 3235 dqm_unlock(dqm); 3236 return r; 3237 } 3238 3239 #define QUEUE_NOT_FOUND -1 3240 /* invalidate queue operation in array */ 3241 static void q_array_invalidate(uint32_t num_queues, uint32_t *queue_ids) 3242 { 3243 int i; 3244 3245 for (i = 0; i < num_queues; i++) 3246 queue_ids[i] |= KFD_DBG_QUEUE_INVALID_MASK; 3247 } 3248 3249 /* find queue index in array */ 3250 static int q_array_get_index(unsigned int queue_id, 3251 uint32_t num_queues, 3252 uint32_t *queue_ids) 3253 { 3254 int i; 3255 3256 for (i = 0; i < num_queues; i++) 3257 if (queue_id == (queue_ids[i] & ~KFD_DBG_QUEUE_INVALID_MASK)) 3258 return i; 3259 3260 return QUEUE_NOT_FOUND; 3261 } 3262 3263 struct copy_context_work_handler_workarea { 3264 struct work_struct copy_context_work; 3265 struct kfd_process *p; 3266 }; 3267 3268 static void copy_context_work_handler(struct work_struct *work) 3269 { 3270 struct copy_context_work_handler_workarea *workarea; 3271 struct mqd_manager *mqd_mgr; 3272 struct queue *q; 3273 struct mm_struct *mm; 3274 struct kfd_process *p; 3275 uint32_t tmp_ctl_stack_used_size, tmp_save_area_used_size; 3276 int i; 3277 3278 workarea = container_of(work, 3279 struct copy_context_work_handler_workarea, 3280 copy_context_work); 3281 3282 p = workarea->p; 3283 mm = get_task_mm(p->lead_thread); 3284 3285 if (!mm) 3286 return; 3287 3288 kthread_use_mm(mm); 3289 for (i = 0; i < p->n_pdds; i++) { 3290 struct kfd_process_device *pdd = p->pdds[i]; 3291 struct device_queue_manager *dqm = pdd->dev->dqm; 3292 struct qcm_process_device *qpd = &pdd->qpd; 3293 3294 list_for_each_entry(q, &qpd->queues_list, list) { 3295 if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE) 3296 continue; 3297 3298 mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP]; 3299 3300 /* We ignore the return value from get_wave_state 3301 * because 3302 * i) right now, it always returns 0, and 3303 * ii) if we hit an error, we would continue to the 3304 * next queue anyway. 3305 */ 3306 mqd_mgr->get_wave_state(mqd_mgr, 3307 q->mqd, 3308 &q->properties, 3309 (void __user *) q->properties.ctx_save_restore_area_address, 3310 &tmp_ctl_stack_used_size, 3311 &tmp_save_area_used_size); 3312 } 3313 } 3314 kthread_unuse_mm(mm); 3315 mmput(mm); 3316 } 3317 3318 static uint32_t *get_queue_ids(uint32_t num_queues, uint32_t *usr_queue_id_array) 3319 { 3320 size_t array_size = num_queues * sizeof(uint32_t); 3321 3322 if (!usr_queue_id_array) 3323 return NULL; 3324 3325 return memdup_user(usr_queue_id_array, array_size); 3326 } 3327 3328 int resume_queues(struct kfd_process *p, 3329 uint32_t num_queues, 3330 uint32_t *usr_queue_id_array) 3331 { 3332 uint32_t *queue_ids = NULL; 3333 int total_resumed = 0; 3334 int i; 3335 3336 if (usr_queue_id_array) { 3337 queue_ids = get_queue_ids(num_queues, usr_queue_id_array); 3338 3339 if (IS_ERR(queue_ids)) 3340 return PTR_ERR(queue_ids); 3341 3342 /* mask all queues as invalid. unmask per successful request */ 3343 q_array_invalidate(num_queues, queue_ids); 3344 } 3345 3346 for (i = 0; i < p->n_pdds; i++) { 3347 struct kfd_process_device *pdd = p->pdds[i]; 3348 struct device_queue_manager *dqm = pdd->dev->dqm; 3349 struct device *dev = dqm->dev->adev->dev; 3350 struct qcm_process_device *qpd = &pdd->qpd; 3351 struct queue *q; 3352 int r, per_device_resumed = 0; 3353 3354 dqm_lock(dqm); 3355 3356 /* unmask queues that resume or already resumed as valid */ 3357 list_for_each_entry(q, &qpd->queues_list, list) { 3358 int q_idx = QUEUE_NOT_FOUND; 3359 3360 if (queue_ids) 3361 q_idx = q_array_get_index( 3362 q->properties.queue_id, 3363 num_queues, 3364 queue_ids); 3365 3366 if (!queue_ids || q_idx != QUEUE_NOT_FOUND) { 3367 int err = resume_single_queue(dqm, &pdd->qpd, q); 3368 3369 if (queue_ids) { 3370 if (!err) { 3371 queue_ids[q_idx] &= 3372 ~KFD_DBG_QUEUE_INVALID_MASK; 3373 } else { 3374 queue_ids[q_idx] |= 3375 KFD_DBG_QUEUE_ERROR_MASK; 3376 break; 3377 } 3378 } 3379 3380 if (dqm->dev->kfd->shared_resources.enable_mes) { 3381 wake_up_all(&dqm->destroy_wait); 3382 if (!err) 3383 total_resumed++; 3384 } else { 3385 per_device_resumed++; 3386 } 3387 } 3388 } 3389 3390 if (!per_device_resumed) { 3391 dqm_unlock(dqm); 3392 continue; 3393 } 3394 3395 r = execute_queues_cpsch(dqm, 3396 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 3397 0, 3398 USE_DEFAULT_GRACE_PERIOD); 3399 if (r) { 3400 dev_err(dev, "Failed to resume process queues\n"); 3401 if (queue_ids) { 3402 list_for_each_entry(q, &qpd->queues_list, list) { 3403 int q_idx = q_array_get_index( 3404 q->properties.queue_id, 3405 num_queues, 3406 queue_ids); 3407 3408 /* mask queue as error on resume fail */ 3409 if (q_idx != QUEUE_NOT_FOUND) 3410 queue_ids[q_idx] |= 3411 KFD_DBG_QUEUE_ERROR_MASK; 3412 } 3413 } 3414 } else { 3415 wake_up_all(&dqm->destroy_wait); 3416 total_resumed += per_device_resumed; 3417 } 3418 3419 dqm_unlock(dqm); 3420 } 3421 3422 if (queue_ids) { 3423 if (copy_to_user((void __user *)usr_queue_id_array, queue_ids, 3424 num_queues * sizeof(uint32_t))) 3425 pr_err("copy_to_user failed on queue resume\n"); 3426 3427 kfree(queue_ids); 3428 } 3429 3430 return total_resumed; 3431 } 3432 3433 int suspend_queues(struct kfd_process *p, 3434 uint32_t num_queues, 3435 uint32_t grace_period, 3436 uint64_t exception_clear_mask, 3437 uint32_t *usr_queue_id_array) 3438 { 3439 uint32_t *queue_ids = get_queue_ids(num_queues, usr_queue_id_array); 3440 int total_suspended = 0; 3441 int i; 3442 3443 if (IS_ERR(queue_ids)) 3444 return PTR_ERR(queue_ids); 3445 3446 /* mask all queues as invalid. umask on successful request */ 3447 q_array_invalidate(num_queues, queue_ids); 3448 3449 for (i = 0; i < p->n_pdds; i++) { 3450 struct kfd_process_device *pdd = p->pdds[i]; 3451 struct device_queue_manager *dqm = pdd->dev->dqm; 3452 struct device *dev = dqm->dev->adev->dev; 3453 struct qcm_process_device *qpd = &pdd->qpd; 3454 struct queue *q; 3455 int r, per_device_suspended = 0; 3456 3457 mutex_lock(&p->event_mutex); 3458 dqm_lock(dqm); 3459 3460 /* unmask queues that suspend or already suspended */ 3461 list_for_each_entry(q, &qpd->queues_list, list) { 3462 int q_idx = q_array_get_index(q->properties.queue_id, 3463 num_queues, 3464 queue_ids); 3465 3466 if (q_idx != QUEUE_NOT_FOUND) { 3467 int err = suspend_single_queue(dqm, pdd, q); 3468 bool is_mes = dqm->dev->kfd->shared_resources.enable_mes; 3469 3470 if (!err) { 3471 queue_ids[q_idx] &= ~KFD_DBG_QUEUE_INVALID_MASK; 3472 if (exception_clear_mask && is_mes) 3473 q->properties.exception_status &= 3474 ~exception_clear_mask; 3475 3476 if (is_mes) 3477 total_suspended++; 3478 else 3479 per_device_suspended++; 3480 } else if (err != -EBUSY) { 3481 r = err; 3482 queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK; 3483 break; 3484 } 3485 } 3486 } 3487 3488 if (!per_device_suspended) { 3489 dqm_unlock(dqm); 3490 mutex_unlock(&p->event_mutex); 3491 if (total_suspended) 3492 amdgpu_amdkfd_debug_mem_fence(dqm->dev->adev); 3493 continue; 3494 } 3495 3496 r = execute_queues_cpsch(dqm, 3497 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, 3498 grace_period); 3499 3500 if (r) 3501 dev_err(dev, "Failed to suspend process queues.\n"); 3502 else 3503 total_suspended += per_device_suspended; 3504 3505 list_for_each_entry(q, &qpd->queues_list, list) { 3506 int q_idx = q_array_get_index(q->properties.queue_id, 3507 num_queues, queue_ids); 3508 3509 if (q_idx == QUEUE_NOT_FOUND) 3510 continue; 3511 3512 /* mask queue as error on suspend fail */ 3513 if (r) 3514 queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK; 3515 else if (exception_clear_mask) 3516 q->properties.exception_status &= 3517 ~exception_clear_mask; 3518 } 3519 3520 dqm_unlock(dqm); 3521 mutex_unlock(&p->event_mutex); 3522 amdgpu_device_flush_hdp(dqm->dev->adev, NULL); 3523 } 3524 3525 if (total_suspended) { 3526 struct copy_context_work_handler_workarea copy_context_worker; 3527 3528 INIT_WORK_ONSTACK( 3529 ©_context_worker.copy_context_work, 3530 copy_context_work_handler); 3531 3532 copy_context_worker.p = p; 3533 3534 schedule_work(©_context_worker.copy_context_work); 3535 3536 3537 flush_work(©_context_worker.copy_context_work); 3538 destroy_work_on_stack(©_context_worker.copy_context_work); 3539 } 3540 3541 if (copy_to_user((void __user *)usr_queue_id_array, queue_ids, 3542 num_queues * sizeof(uint32_t))) 3543 pr_err("copy_to_user failed on queue suspend\n"); 3544 3545 kfree(queue_ids); 3546 3547 return total_suspended; 3548 } 3549 3550 static uint32_t set_queue_type_for_user(struct queue_properties *q_props) 3551 { 3552 switch (q_props->type) { 3553 case KFD_QUEUE_TYPE_COMPUTE: 3554 return q_props->format == KFD_QUEUE_FORMAT_PM4 3555 ? KFD_IOC_QUEUE_TYPE_COMPUTE 3556 : KFD_IOC_QUEUE_TYPE_COMPUTE_AQL; 3557 case KFD_QUEUE_TYPE_SDMA: 3558 return KFD_IOC_QUEUE_TYPE_SDMA; 3559 case KFD_QUEUE_TYPE_SDMA_XGMI: 3560 return KFD_IOC_QUEUE_TYPE_SDMA_XGMI; 3561 default: 3562 WARN_ONCE(true, "queue type not recognized!"); 3563 return 0xffffffff; 3564 }; 3565 } 3566 3567 void set_queue_snapshot_entry(struct queue *q, 3568 uint64_t exception_clear_mask, 3569 struct kfd_queue_snapshot_entry *qss_entry) 3570 { 3571 qss_entry->ring_base_address = q->properties.queue_address; 3572 qss_entry->write_pointer_address = (uint64_t)q->properties.write_ptr; 3573 qss_entry->read_pointer_address = (uint64_t)q->properties.read_ptr; 3574 qss_entry->ctx_save_restore_address = 3575 q->properties.ctx_save_restore_area_address; 3576 qss_entry->ctx_save_restore_area_size = 3577 q->properties.ctx_save_restore_area_size; 3578 qss_entry->exception_status = q->properties.exception_status; 3579 qss_entry->queue_id = q->properties.queue_id; 3580 qss_entry->gpu_id = q->device->id; 3581 qss_entry->ring_size = (uint32_t)q->properties.queue_size; 3582 qss_entry->queue_type = set_queue_type_for_user(&q->properties); 3583 q->properties.exception_status &= ~exception_clear_mask; 3584 } 3585 3586 int debug_lock_and_unmap(struct device_queue_manager *dqm) 3587 { 3588 struct device *dev = dqm->dev->adev->dev; 3589 int r; 3590 3591 if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) { 3592 dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy); 3593 return -EINVAL; 3594 } 3595 3596 if (!kfd_dbg_is_per_vmid_supported(dqm->dev)) 3597 return 0; 3598 3599 dqm_lock(dqm); 3600 3601 r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, 0, false); 3602 if (r) 3603 dqm_unlock(dqm); 3604 3605 return r; 3606 } 3607 3608 int debug_map_and_unlock(struct device_queue_manager *dqm) 3609 { 3610 struct device *dev = dqm->dev->adev->dev; 3611 int r; 3612 3613 if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) { 3614 dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy); 3615 return -EINVAL; 3616 } 3617 3618 if (!kfd_dbg_is_per_vmid_supported(dqm->dev)) 3619 return 0; 3620 3621 r = map_queues_cpsch(dqm); 3622 3623 dqm_unlock(dqm); 3624 3625 return r; 3626 } 3627 3628 int debug_refresh_runlist(struct device_queue_manager *dqm) 3629 { 3630 int r = debug_lock_and_unmap(dqm); 3631 3632 if (r) 3633 return r; 3634 3635 return debug_map_and_unlock(dqm); 3636 } 3637 3638 bool kfd_dqm_is_queue_in_process(struct device_queue_manager *dqm, 3639 struct qcm_process_device *qpd, 3640 int doorbell_off, u32 *queue_format) 3641 { 3642 struct queue *q; 3643 bool r = false; 3644 3645 if (!queue_format) 3646 return r; 3647 3648 dqm_lock(dqm); 3649 3650 list_for_each_entry(q, &qpd->queues_list, list) { 3651 if (q->properties.doorbell_off == doorbell_off) { 3652 *queue_format = q->properties.format; 3653 r = true; 3654 goto out; 3655 } 3656 } 3657 3658 out: 3659 dqm_unlock(dqm); 3660 return r; 3661 } 3662 #if defined(CONFIG_DEBUG_FS) 3663 3664 static void seq_reg_dump(struct seq_file *m, 3665 uint32_t (*dump)[2], uint32_t n_regs) 3666 { 3667 uint32_t i, count; 3668 3669 for (i = 0, count = 0; i < n_regs; i++) { 3670 if (count == 0 || 3671 dump[i-1][0] + sizeof(uint32_t) != dump[i][0]) { 3672 seq_printf(m, "%s %08x: %08x", 3673 i ? "\n" : "", 3674 dump[i][0], dump[i][1]); 3675 count = 7; 3676 } else { 3677 seq_printf(m, " %08x", dump[i][1]); 3678 count--; 3679 } 3680 } 3681 3682 seq_puts(m, "\n"); 3683 } 3684 3685 int dqm_debugfs_hqds(struct seq_file *m, void *data) 3686 { 3687 struct device_queue_manager *dqm = data; 3688 uint32_t xcc_mask = dqm->dev->xcc_mask; 3689 uint32_t (*dump)[2], n_regs; 3690 int pipe, queue; 3691 int r = 0, xcc_id; 3692 uint32_t sdma_engine_start; 3693 3694 if (!dqm->sched_running) { 3695 seq_puts(m, " Device is stopped\n"); 3696 return 0; 3697 } 3698 3699 for_each_inst(xcc_id, xcc_mask) { 3700 r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev, 3701 KFD_CIK_HIQ_PIPE, 3702 KFD_CIK_HIQ_QUEUE, &dump, 3703 &n_regs, xcc_id); 3704 if (!r) { 3705 seq_printf( 3706 m, 3707 " Inst %d, HIQ on MEC %d Pipe %d Queue %d\n", 3708 xcc_id, 3709 KFD_CIK_HIQ_PIPE / get_pipes_per_mec(dqm) + 1, 3710 KFD_CIK_HIQ_PIPE % get_pipes_per_mec(dqm), 3711 KFD_CIK_HIQ_QUEUE); 3712 seq_reg_dump(m, dump, n_regs); 3713 3714 kfree(dump); 3715 } 3716 3717 for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) { 3718 int pipe_offset = pipe * get_queues_per_pipe(dqm); 3719 3720 for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) { 3721 if (!test_bit(pipe_offset + queue, 3722 dqm->dev->kfd->shared_resources.cp_queue_bitmap)) 3723 continue; 3724 3725 r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev, 3726 pipe, queue, 3727 &dump, &n_regs, 3728 xcc_id); 3729 if (r) 3730 break; 3731 3732 seq_printf(m, 3733 " Inst %d, CP Pipe %d, Queue %d\n", 3734 xcc_id, pipe, queue); 3735 seq_reg_dump(m, dump, n_regs); 3736 3737 kfree(dump); 3738 } 3739 } 3740 } 3741 3742 sdma_engine_start = dqm->dev->node_id * get_num_all_sdma_engines(dqm); 3743 for (pipe = sdma_engine_start; 3744 pipe < (sdma_engine_start + get_num_all_sdma_engines(dqm)); 3745 pipe++) { 3746 for (queue = 0; 3747 queue < dqm->dev->kfd->device_info.num_sdma_queues_per_engine; 3748 queue++) { 3749 r = dqm->dev->kfd2kgd->hqd_sdma_dump( 3750 dqm->dev->adev, pipe, queue, &dump, &n_regs); 3751 if (r) 3752 break; 3753 3754 seq_printf(m, " SDMA Engine %d, RLC %d\n", 3755 pipe, queue); 3756 seq_reg_dump(m, dump, n_regs); 3757 3758 kfree(dump); 3759 } 3760 } 3761 3762 return r; 3763 } 3764 3765 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm) 3766 { 3767 int r = 0; 3768 3769 dqm_lock(dqm); 3770 r = pm_debugfs_hang_hws(&dqm->packet_mgr); 3771 if (r) { 3772 dqm_unlock(dqm); 3773 return r; 3774 } 3775 dqm->active_runlist = true; 3776 r = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 3777 0, USE_DEFAULT_GRACE_PERIOD); 3778 dqm_unlock(dqm); 3779 3780 return r; 3781 } 3782 3783 #endif 3784