1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2014-2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/ratelimit.h> 26 #include <linux/printk.h> 27 #include <linux/slab.h> 28 #include <linux/list.h> 29 #include <linux/types.h> 30 #include <linux/bitops.h> 31 #include <linux/sched.h> 32 #include "kfd_priv.h" 33 #include "kfd_device_queue_manager.h" 34 #include "kfd_mqd_manager.h" 35 #include "cik_regs.h" 36 #include "kfd_kernel_queue.h" 37 #include "amdgpu_amdkfd.h" 38 #include "mes_api_def.h" 39 40 /* Size of the per-pipe EOP queue */ 41 #define CIK_HPD_EOP_BYTES_LOG2 11 42 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2) 43 44 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm, 45 u32 pasid, unsigned int vmid); 46 47 static int execute_queues_cpsch(struct device_queue_manager *dqm, 48 enum kfd_unmap_queues_filter filter, 49 uint32_t filter_param); 50 static int unmap_queues_cpsch(struct device_queue_manager *dqm, 51 enum kfd_unmap_queues_filter filter, 52 uint32_t filter_param, bool reset); 53 54 static int map_queues_cpsch(struct device_queue_manager *dqm); 55 56 static void deallocate_sdma_queue(struct device_queue_manager *dqm, 57 struct queue *q); 58 59 static inline void deallocate_hqd(struct device_queue_manager *dqm, 60 struct queue *q); 61 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q); 62 static int allocate_sdma_queue(struct device_queue_manager *dqm, 63 struct queue *q, const uint32_t *restore_sdma_id); 64 static void kfd_process_hw_exception(struct work_struct *work); 65 66 static inline 67 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type) 68 { 69 if (type == KFD_QUEUE_TYPE_SDMA || type == KFD_QUEUE_TYPE_SDMA_XGMI) 70 return KFD_MQD_TYPE_SDMA; 71 return KFD_MQD_TYPE_CP; 72 } 73 74 static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe) 75 { 76 int i; 77 int pipe_offset = (mec * dqm->dev->shared_resources.num_pipe_per_mec 78 + pipe) * dqm->dev->shared_resources.num_queue_per_pipe; 79 80 /* queue is available for KFD usage if bit is 1 */ 81 for (i = 0; i < dqm->dev->shared_resources.num_queue_per_pipe; ++i) 82 if (test_bit(pipe_offset + i, 83 dqm->dev->shared_resources.cp_queue_bitmap)) 84 return true; 85 return false; 86 } 87 88 unsigned int get_cp_queues_num(struct device_queue_manager *dqm) 89 { 90 return bitmap_weight(dqm->dev->shared_resources.cp_queue_bitmap, 91 KGD_MAX_QUEUES); 92 } 93 94 unsigned int get_queues_per_pipe(struct device_queue_manager *dqm) 95 { 96 return dqm->dev->shared_resources.num_queue_per_pipe; 97 } 98 99 unsigned int get_pipes_per_mec(struct device_queue_manager *dqm) 100 { 101 return dqm->dev->shared_resources.num_pipe_per_mec; 102 } 103 104 static unsigned int get_num_all_sdma_engines(struct device_queue_manager *dqm) 105 { 106 return kfd_get_num_sdma_engines(dqm->dev) + 107 kfd_get_num_xgmi_sdma_engines(dqm->dev); 108 } 109 110 unsigned int get_num_sdma_queues(struct device_queue_manager *dqm) 111 { 112 return kfd_get_num_sdma_engines(dqm->dev) * 113 dqm->dev->device_info.num_sdma_queues_per_engine; 114 } 115 116 unsigned int get_num_xgmi_sdma_queues(struct device_queue_manager *dqm) 117 { 118 return kfd_get_num_xgmi_sdma_engines(dqm->dev) * 119 dqm->dev->device_info.num_sdma_queues_per_engine; 120 } 121 122 static inline uint64_t get_reserved_sdma_queues_bitmap(struct device_queue_manager *dqm) 123 { 124 return dqm->dev->device_info.reserved_sdma_queues_bitmap; 125 } 126 127 void program_sh_mem_settings(struct device_queue_manager *dqm, 128 struct qcm_process_device *qpd) 129 { 130 return dqm->dev->kfd2kgd->program_sh_mem_settings( 131 dqm->dev->adev, qpd->vmid, 132 qpd->sh_mem_config, 133 qpd->sh_mem_ape1_base, 134 qpd->sh_mem_ape1_limit, 135 qpd->sh_mem_bases); 136 } 137 138 static void kfd_hws_hang(struct device_queue_manager *dqm) 139 { 140 /* 141 * Issue a GPU reset if HWS is unresponsive 142 */ 143 dqm->is_hws_hang = true; 144 145 /* It's possible we're detecting a HWS hang in the 146 * middle of a GPU reset. No need to schedule another 147 * reset in this case. 148 */ 149 if (!dqm->is_resetting) 150 schedule_work(&dqm->hw_exception_work); 151 } 152 153 static int convert_to_mes_queue_type(int queue_type) 154 { 155 int mes_queue_type; 156 157 switch (queue_type) { 158 case KFD_QUEUE_TYPE_COMPUTE: 159 mes_queue_type = MES_QUEUE_TYPE_COMPUTE; 160 break; 161 case KFD_QUEUE_TYPE_SDMA: 162 mes_queue_type = MES_QUEUE_TYPE_SDMA; 163 break; 164 default: 165 WARN(1, "Invalid queue type %d", queue_type); 166 mes_queue_type = -EINVAL; 167 break; 168 } 169 170 return mes_queue_type; 171 } 172 173 static int add_queue_mes(struct device_queue_manager *dqm, struct queue *q, 174 struct qcm_process_device *qpd) 175 { 176 struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev; 177 struct kfd_process_device *pdd = qpd_to_pdd(qpd); 178 struct mes_add_queue_input queue_input; 179 int r; 180 181 if (dqm->is_hws_hang) 182 return -EIO; 183 184 memset(&queue_input, 0x0, sizeof(struct mes_add_queue_input)); 185 queue_input.process_id = qpd->pqm->process->pasid; 186 queue_input.page_table_base_addr = qpd->page_table_base; 187 queue_input.process_va_start = 0; 188 queue_input.process_va_end = adev->vm_manager.max_pfn - 1; 189 /* MES unit for quantum is 100ns */ 190 queue_input.process_quantum = KFD_MES_PROCESS_QUANTUM; /* Equivalent to 10ms. */ 191 queue_input.process_context_addr = pdd->proc_ctx_gpu_addr; 192 queue_input.gang_quantum = KFD_MES_GANG_QUANTUM; /* Equivalent to 1ms */ 193 queue_input.gang_context_addr = q->gang_ctx_gpu_addr; 194 queue_input.inprocess_gang_priority = q->properties.priority; 195 queue_input.gang_global_priority_level = 196 AMDGPU_MES_PRIORITY_LEVEL_NORMAL; 197 queue_input.doorbell_offset = q->properties.doorbell_off; 198 queue_input.mqd_addr = q->gart_mqd_addr; 199 queue_input.wptr_addr = (uint64_t)q->properties.write_ptr; 200 queue_input.paging = false; 201 queue_input.tba_addr = qpd->tba_addr; 202 queue_input.tma_addr = qpd->tma_addr; 203 204 queue_input.queue_type = convert_to_mes_queue_type(q->properties.type); 205 if (queue_input.queue_type < 0) { 206 pr_err("Queue type not supported with MES, queue:%d\n", 207 q->properties.type); 208 return -EINVAL; 209 } 210 211 if (q->gws) { 212 queue_input.gws_base = 0; 213 queue_input.gws_size = qpd->num_gws; 214 } 215 216 amdgpu_mes_lock(&adev->mes); 217 r = adev->mes.funcs->add_hw_queue(&adev->mes, &queue_input); 218 amdgpu_mes_unlock(&adev->mes); 219 if (r) { 220 pr_err("failed to add hardware queue to MES, doorbell=0x%x\n", 221 q->properties.doorbell_off); 222 pr_err("MES might be in unrecoverable state, issue a GPU reset\n"); 223 kfd_hws_hang(dqm); 224 } 225 226 return r; 227 } 228 229 static int remove_queue_mes(struct device_queue_manager *dqm, struct queue *q, 230 struct qcm_process_device *qpd) 231 { 232 struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev; 233 int r; 234 struct mes_remove_queue_input queue_input; 235 236 if (dqm->is_hws_hang) 237 return -EIO; 238 239 memset(&queue_input, 0x0, sizeof(struct mes_remove_queue_input)); 240 queue_input.doorbell_offset = q->properties.doorbell_off; 241 queue_input.gang_context_addr = q->gang_ctx_gpu_addr; 242 243 amdgpu_mes_lock(&adev->mes); 244 r = adev->mes.funcs->remove_hw_queue(&adev->mes, &queue_input); 245 amdgpu_mes_unlock(&adev->mes); 246 247 if (r) { 248 pr_err("failed to remove hardware queue from MES, doorbell=0x%x\n", 249 q->properties.doorbell_off); 250 pr_err("MES might be in unrecoverable state, issue a GPU reset\n"); 251 kfd_hws_hang(dqm); 252 } 253 254 return r; 255 } 256 257 static int remove_all_queues_mes(struct device_queue_manager *dqm) 258 { 259 struct device_process_node *cur; 260 struct qcm_process_device *qpd; 261 struct queue *q; 262 int retval = 0; 263 264 list_for_each_entry(cur, &dqm->queues, list) { 265 qpd = cur->qpd; 266 list_for_each_entry(q, &qpd->queues_list, list) { 267 if (q->properties.is_active) { 268 retval = remove_queue_mes(dqm, q, qpd); 269 if (retval) { 270 pr_err("%s: Failed to remove queue %d for dev %d", 271 __func__, 272 q->properties.queue_id, 273 dqm->dev->id); 274 return retval; 275 } 276 } 277 } 278 } 279 280 return retval; 281 } 282 283 static void increment_queue_count(struct device_queue_manager *dqm, 284 struct qcm_process_device *qpd, 285 struct queue *q) 286 { 287 dqm->active_queue_count++; 288 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE || 289 q->properties.type == KFD_QUEUE_TYPE_DIQ) 290 dqm->active_cp_queue_count++; 291 292 if (q->properties.is_gws) { 293 dqm->gws_queue_count++; 294 qpd->mapped_gws_queue = true; 295 } 296 } 297 298 static void decrement_queue_count(struct device_queue_manager *dqm, 299 struct qcm_process_device *qpd, 300 struct queue *q) 301 { 302 dqm->active_queue_count--; 303 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE || 304 q->properties.type == KFD_QUEUE_TYPE_DIQ) 305 dqm->active_cp_queue_count--; 306 307 if (q->properties.is_gws) { 308 dqm->gws_queue_count--; 309 qpd->mapped_gws_queue = false; 310 } 311 } 312 313 /* 314 * Allocate a doorbell ID to this queue. 315 * If doorbell_id is passed in, make sure requested ID is valid then allocate it. 316 */ 317 static int allocate_doorbell(struct qcm_process_device *qpd, 318 struct queue *q, 319 uint32_t const *restore_id) 320 { 321 struct kfd_dev *dev = qpd->dqm->dev; 322 323 if (!KFD_IS_SOC15(dev)) { 324 /* On pre-SOC15 chips we need to use the queue ID to 325 * preserve the user mode ABI. 326 */ 327 328 if (restore_id && *restore_id != q->properties.queue_id) 329 return -EINVAL; 330 331 q->doorbell_id = q->properties.queue_id; 332 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 333 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 334 /* For SDMA queues on SOC15 with 8-byte doorbell, use static 335 * doorbell assignments based on the engine and queue id. 336 * The doobell index distance between RLC (2*i) and (2*i+1) 337 * for a SDMA engine is 512. 338 */ 339 340 uint32_t *idx_offset = dev->shared_resources.sdma_doorbell_idx; 341 uint32_t valid_id = idx_offset[q->properties.sdma_engine_id] 342 + (q->properties.sdma_queue_id & 1) 343 * KFD_QUEUE_DOORBELL_MIRROR_OFFSET 344 + (q->properties.sdma_queue_id >> 1); 345 346 if (restore_id && *restore_id != valid_id) 347 return -EINVAL; 348 q->doorbell_id = valid_id; 349 } else { 350 /* For CP queues on SOC15 */ 351 if (restore_id) { 352 /* make sure that ID is free */ 353 if (__test_and_set_bit(*restore_id, qpd->doorbell_bitmap)) 354 return -EINVAL; 355 356 q->doorbell_id = *restore_id; 357 } else { 358 /* or reserve a free doorbell ID */ 359 unsigned int found; 360 361 found = find_first_zero_bit(qpd->doorbell_bitmap, 362 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS); 363 if (found >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) { 364 pr_debug("No doorbells available"); 365 return -EBUSY; 366 } 367 set_bit(found, qpd->doorbell_bitmap); 368 q->doorbell_id = found; 369 } 370 } 371 372 q->properties.doorbell_off = 373 kfd_get_doorbell_dw_offset_in_bar(dev, qpd_to_pdd(qpd), 374 q->doorbell_id); 375 return 0; 376 } 377 378 static void deallocate_doorbell(struct qcm_process_device *qpd, 379 struct queue *q) 380 { 381 unsigned int old; 382 struct kfd_dev *dev = qpd->dqm->dev; 383 384 if (!KFD_IS_SOC15(dev) || 385 q->properties.type == KFD_QUEUE_TYPE_SDMA || 386 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 387 return; 388 389 old = test_and_clear_bit(q->doorbell_id, qpd->doorbell_bitmap); 390 WARN_ON(!old); 391 } 392 393 static void program_trap_handler_settings(struct device_queue_manager *dqm, 394 struct qcm_process_device *qpd) 395 { 396 if (dqm->dev->kfd2kgd->program_trap_handler_settings) 397 dqm->dev->kfd2kgd->program_trap_handler_settings( 398 dqm->dev->adev, qpd->vmid, 399 qpd->tba_addr, qpd->tma_addr); 400 } 401 402 static int allocate_vmid(struct device_queue_manager *dqm, 403 struct qcm_process_device *qpd, 404 struct queue *q) 405 { 406 int allocated_vmid = -1, i; 407 408 for (i = dqm->dev->vm_info.first_vmid_kfd; 409 i <= dqm->dev->vm_info.last_vmid_kfd; i++) { 410 if (!dqm->vmid_pasid[i]) { 411 allocated_vmid = i; 412 break; 413 } 414 } 415 416 if (allocated_vmid < 0) { 417 pr_err("no more vmid to allocate\n"); 418 return -ENOSPC; 419 } 420 421 pr_debug("vmid allocated: %d\n", allocated_vmid); 422 423 dqm->vmid_pasid[allocated_vmid] = q->process->pasid; 424 425 set_pasid_vmid_mapping(dqm, q->process->pasid, allocated_vmid); 426 427 qpd->vmid = allocated_vmid; 428 q->properties.vmid = allocated_vmid; 429 430 program_sh_mem_settings(dqm, qpd); 431 432 if (KFD_IS_SOC15(dqm->dev) && dqm->dev->cwsr_enabled) 433 program_trap_handler_settings(dqm, qpd); 434 435 /* qpd->page_table_base is set earlier when register_process() 436 * is called, i.e. when the first queue is created. 437 */ 438 dqm->dev->kfd2kgd->set_vm_context_page_table_base(dqm->dev->adev, 439 qpd->vmid, 440 qpd->page_table_base); 441 /* invalidate the VM context after pasid and vmid mapping is set up */ 442 kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY); 443 444 if (dqm->dev->kfd2kgd->set_scratch_backing_va) 445 dqm->dev->kfd2kgd->set_scratch_backing_va(dqm->dev->adev, 446 qpd->sh_hidden_private_base, qpd->vmid); 447 448 return 0; 449 } 450 451 static int flush_texture_cache_nocpsch(struct kfd_dev *kdev, 452 struct qcm_process_device *qpd) 453 { 454 const struct packet_manager_funcs *pmf = qpd->dqm->packet_mgr.pmf; 455 int ret; 456 457 if (!qpd->ib_kaddr) 458 return -ENOMEM; 459 460 ret = pmf->release_mem(qpd->ib_base, (uint32_t *)qpd->ib_kaddr); 461 if (ret) 462 return ret; 463 464 return amdgpu_amdkfd_submit_ib(kdev->adev, KGD_ENGINE_MEC1, qpd->vmid, 465 qpd->ib_base, (uint32_t *)qpd->ib_kaddr, 466 pmf->release_mem_size / sizeof(uint32_t)); 467 } 468 469 static void deallocate_vmid(struct device_queue_manager *dqm, 470 struct qcm_process_device *qpd, 471 struct queue *q) 472 { 473 /* On GFX v7, CP doesn't flush TC at dequeue */ 474 if (q->device->adev->asic_type == CHIP_HAWAII) 475 if (flush_texture_cache_nocpsch(q->device, qpd)) 476 pr_err("Failed to flush TC\n"); 477 478 kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY); 479 480 /* Release the vmid mapping */ 481 set_pasid_vmid_mapping(dqm, 0, qpd->vmid); 482 dqm->vmid_pasid[qpd->vmid] = 0; 483 484 qpd->vmid = 0; 485 q->properties.vmid = 0; 486 } 487 488 static int create_queue_nocpsch(struct device_queue_manager *dqm, 489 struct queue *q, 490 struct qcm_process_device *qpd, 491 const struct kfd_criu_queue_priv_data *qd, 492 const void *restore_mqd, const void *restore_ctl_stack) 493 { 494 struct mqd_manager *mqd_mgr; 495 int retval; 496 497 dqm_lock(dqm); 498 499 if (dqm->total_queue_count >= max_num_of_queues_per_device) { 500 pr_warn("Can't create new usermode queue because %d queues were already created\n", 501 dqm->total_queue_count); 502 retval = -EPERM; 503 goto out_unlock; 504 } 505 506 if (list_empty(&qpd->queues_list)) { 507 retval = allocate_vmid(dqm, qpd, q); 508 if (retval) 509 goto out_unlock; 510 } 511 q->properties.vmid = qpd->vmid; 512 /* 513 * Eviction state logic: mark all queues as evicted, even ones 514 * not currently active. Restoring inactive queues later only 515 * updates the is_evicted flag but is a no-op otherwise. 516 */ 517 q->properties.is_evicted = !!qpd->evicted; 518 519 q->properties.tba_addr = qpd->tba_addr; 520 q->properties.tma_addr = qpd->tma_addr; 521 522 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 523 q->properties.type)]; 524 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) { 525 retval = allocate_hqd(dqm, q); 526 if (retval) 527 goto deallocate_vmid; 528 pr_debug("Loading mqd to hqd on pipe %d, queue %d\n", 529 q->pipe, q->queue); 530 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 531 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 532 retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL); 533 if (retval) 534 goto deallocate_vmid; 535 dqm->asic_ops.init_sdma_vm(dqm, q, qpd); 536 } 537 538 retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL); 539 if (retval) 540 goto out_deallocate_hqd; 541 542 /* Temporarily release dqm lock to avoid a circular lock dependency */ 543 dqm_unlock(dqm); 544 q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties); 545 dqm_lock(dqm); 546 547 if (!q->mqd_mem_obj) { 548 retval = -ENOMEM; 549 goto out_deallocate_doorbell; 550 } 551 552 if (qd) 553 mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr, 554 &q->properties, restore_mqd, restore_ctl_stack, 555 qd->ctl_stack_size); 556 else 557 mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, 558 &q->gart_mqd_addr, &q->properties); 559 560 if (q->properties.is_active) { 561 if (!dqm->sched_running) { 562 WARN_ONCE(1, "Load non-HWS mqd while stopped\n"); 563 goto add_queue_to_list; 564 } 565 566 if (WARN(q->process->mm != current->mm, 567 "should only run in user thread")) 568 retval = -EFAULT; 569 else 570 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe, 571 q->queue, &q->properties, current->mm); 572 if (retval) 573 goto out_free_mqd; 574 } 575 576 add_queue_to_list: 577 list_add(&q->list, &qpd->queues_list); 578 qpd->queue_count++; 579 if (q->properties.is_active) 580 increment_queue_count(dqm, qpd, q); 581 582 /* 583 * Unconditionally increment this counter, regardless of the queue's 584 * type or whether the queue is active. 585 */ 586 dqm->total_queue_count++; 587 pr_debug("Total of %d queues are accountable so far\n", 588 dqm->total_queue_count); 589 goto out_unlock; 590 591 out_free_mqd: 592 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 593 out_deallocate_doorbell: 594 deallocate_doorbell(qpd, q); 595 out_deallocate_hqd: 596 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) 597 deallocate_hqd(dqm, q); 598 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 599 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 600 deallocate_sdma_queue(dqm, q); 601 deallocate_vmid: 602 if (list_empty(&qpd->queues_list)) 603 deallocate_vmid(dqm, qpd, q); 604 out_unlock: 605 dqm_unlock(dqm); 606 return retval; 607 } 608 609 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q) 610 { 611 bool set; 612 int pipe, bit, i; 613 614 set = false; 615 616 for (pipe = dqm->next_pipe_to_allocate, i = 0; 617 i < get_pipes_per_mec(dqm); 618 pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) { 619 620 if (!is_pipe_enabled(dqm, 0, pipe)) 621 continue; 622 623 if (dqm->allocated_queues[pipe] != 0) { 624 bit = ffs(dqm->allocated_queues[pipe]) - 1; 625 dqm->allocated_queues[pipe] &= ~(1 << bit); 626 q->pipe = pipe; 627 q->queue = bit; 628 set = true; 629 break; 630 } 631 } 632 633 if (!set) 634 return -EBUSY; 635 636 pr_debug("hqd slot - pipe %d, queue %d\n", q->pipe, q->queue); 637 /* horizontal hqd allocation */ 638 dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm); 639 640 return 0; 641 } 642 643 static inline void deallocate_hqd(struct device_queue_manager *dqm, 644 struct queue *q) 645 { 646 dqm->allocated_queues[q->pipe] |= (1 << q->queue); 647 } 648 649 #define SQ_IND_CMD_CMD_KILL 0x00000003 650 #define SQ_IND_CMD_MODE_BROADCAST 0x00000001 651 652 static int dbgdev_wave_reset_wavefronts(struct kfd_dev *dev, struct kfd_process *p) 653 { 654 int status = 0; 655 unsigned int vmid; 656 uint16_t queried_pasid; 657 union SQ_CMD_BITS reg_sq_cmd; 658 union GRBM_GFX_INDEX_BITS reg_gfx_index; 659 struct kfd_process_device *pdd; 660 int first_vmid_to_scan = dev->vm_info.first_vmid_kfd; 661 int last_vmid_to_scan = dev->vm_info.last_vmid_kfd; 662 663 reg_sq_cmd.u32All = 0; 664 reg_gfx_index.u32All = 0; 665 666 pr_debug("Killing all process wavefronts\n"); 667 668 if (!dev->kfd2kgd->get_atc_vmid_pasid_mapping_info) { 669 pr_err("no vmid pasid mapping supported \n"); 670 return -EOPNOTSUPP; 671 } 672 673 /* Scan all registers in the range ATC_VMID8_PASID_MAPPING .. 674 * ATC_VMID15_PASID_MAPPING 675 * to check which VMID the current process is mapped to. 676 */ 677 678 for (vmid = first_vmid_to_scan; vmid <= last_vmid_to_scan; vmid++) { 679 status = dev->kfd2kgd->get_atc_vmid_pasid_mapping_info 680 (dev->adev, vmid, &queried_pasid); 681 682 if (status && queried_pasid == p->pasid) { 683 pr_debug("Killing wave fronts of vmid %d and pasid 0x%x\n", 684 vmid, p->pasid); 685 break; 686 } 687 } 688 689 if (vmid > last_vmid_to_scan) { 690 pr_err("Didn't find vmid for pasid 0x%x\n", p->pasid); 691 return -EFAULT; 692 } 693 694 /* taking the VMID for that process on the safe way using PDD */ 695 pdd = kfd_get_process_device_data(dev, p); 696 if (!pdd) 697 return -EFAULT; 698 699 reg_gfx_index.bits.sh_broadcast_writes = 1; 700 reg_gfx_index.bits.se_broadcast_writes = 1; 701 reg_gfx_index.bits.instance_broadcast_writes = 1; 702 reg_sq_cmd.bits.mode = SQ_IND_CMD_MODE_BROADCAST; 703 reg_sq_cmd.bits.cmd = SQ_IND_CMD_CMD_KILL; 704 reg_sq_cmd.bits.vm_id = vmid; 705 706 dev->kfd2kgd->wave_control_execute(dev->adev, 707 reg_gfx_index.u32All, 708 reg_sq_cmd.u32All); 709 710 return 0; 711 } 712 713 /* Access to DQM has to be locked before calling destroy_queue_nocpsch_locked 714 * to avoid asynchronized access 715 */ 716 static int destroy_queue_nocpsch_locked(struct device_queue_manager *dqm, 717 struct qcm_process_device *qpd, 718 struct queue *q) 719 { 720 int retval; 721 struct mqd_manager *mqd_mgr; 722 723 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 724 q->properties.type)]; 725 726 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) 727 deallocate_hqd(dqm, q); 728 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA) 729 deallocate_sdma_queue(dqm, q); 730 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 731 deallocate_sdma_queue(dqm, q); 732 else { 733 pr_debug("q->properties.type %d is invalid\n", 734 q->properties.type); 735 return -EINVAL; 736 } 737 dqm->total_queue_count--; 738 739 deallocate_doorbell(qpd, q); 740 741 if (!dqm->sched_running) { 742 WARN_ONCE(1, "Destroy non-HWS queue while stopped\n"); 743 return 0; 744 } 745 746 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd, 747 KFD_PREEMPT_TYPE_WAVEFRONT_RESET, 748 KFD_UNMAP_LATENCY_MS, 749 q->pipe, q->queue); 750 if (retval == -ETIME) 751 qpd->reset_wavefronts = true; 752 753 list_del(&q->list); 754 if (list_empty(&qpd->queues_list)) { 755 if (qpd->reset_wavefronts) { 756 pr_warn("Resetting wave fronts (nocpsch) on dev %p\n", 757 dqm->dev); 758 /* dbgdev_wave_reset_wavefronts has to be called before 759 * deallocate_vmid(), i.e. when vmid is still in use. 760 */ 761 dbgdev_wave_reset_wavefronts(dqm->dev, 762 qpd->pqm->process); 763 qpd->reset_wavefronts = false; 764 } 765 766 deallocate_vmid(dqm, qpd, q); 767 } 768 qpd->queue_count--; 769 if (q->properties.is_active) 770 decrement_queue_count(dqm, qpd, q); 771 772 return retval; 773 } 774 775 static int destroy_queue_nocpsch(struct device_queue_manager *dqm, 776 struct qcm_process_device *qpd, 777 struct queue *q) 778 { 779 int retval; 780 uint64_t sdma_val = 0; 781 struct kfd_process_device *pdd = qpd_to_pdd(qpd); 782 struct mqd_manager *mqd_mgr = 783 dqm->mqd_mgrs[get_mqd_type_from_queue_type(q->properties.type)]; 784 785 /* Get the SDMA queue stats */ 786 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) || 787 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { 788 retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr, 789 &sdma_val); 790 if (retval) 791 pr_err("Failed to read SDMA queue counter for queue: %d\n", 792 q->properties.queue_id); 793 } 794 795 dqm_lock(dqm); 796 retval = destroy_queue_nocpsch_locked(dqm, qpd, q); 797 if (!retval) 798 pdd->sdma_past_activity_counter += sdma_val; 799 dqm_unlock(dqm); 800 801 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 802 803 return retval; 804 } 805 806 static int update_queue(struct device_queue_manager *dqm, struct queue *q, 807 struct mqd_update_info *minfo) 808 { 809 int retval = 0; 810 struct mqd_manager *mqd_mgr; 811 struct kfd_process_device *pdd; 812 bool prev_active = false; 813 bool add_queue = false; 814 815 dqm_lock(dqm); 816 pdd = kfd_get_process_device_data(q->device, q->process); 817 if (!pdd) { 818 retval = -ENODEV; 819 goto out_unlock; 820 } 821 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 822 q->properties.type)]; 823 824 /* Save previous activity state for counters */ 825 prev_active = q->properties.is_active; 826 827 /* Make sure the queue is unmapped before updating the MQD */ 828 if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) { 829 if (!dqm->dev->shared_resources.enable_mes) 830 retval = unmap_queues_cpsch(dqm, 831 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, false); 832 else if (prev_active) 833 retval = remove_queue_mes(dqm, q, &pdd->qpd); 834 835 if (retval) { 836 pr_err("unmap queue failed\n"); 837 goto out_unlock; 838 } 839 } else if (prev_active && 840 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE || 841 q->properties.type == KFD_QUEUE_TYPE_SDMA || 842 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { 843 844 if (!dqm->sched_running) { 845 WARN_ONCE(1, "Update non-HWS queue while stopped\n"); 846 goto out_unlock; 847 } 848 849 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd, 850 (dqm->dev->cwsr_enabled ? 851 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE : 852 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN), 853 KFD_UNMAP_LATENCY_MS, q->pipe, q->queue); 854 if (retval) { 855 pr_err("destroy mqd failed\n"); 856 goto out_unlock; 857 } 858 } 859 860 mqd_mgr->update_mqd(mqd_mgr, q->mqd, &q->properties, minfo); 861 862 /* 863 * check active state vs. the previous state and modify 864 * counter accordingly. map_queues_cpsch uses the 865 * dqm->active_queue_count to determine whether a new runlist must be 866 * uploaded. 867 */ 868 if (q->properties.is_active && !prev_active) { 869 increment_queue_count(dqm, &pdd->qpd, q); 870 } else if (!q->properties.is_active && prev_active) { 871 decrement_queue_count(dqm, &pdd->qpd, q); 872 } else if (q->gws && !q->properties.is_gws) { 873 if (q->properties.is_active) { 874 dqm->gws_queue_count++; 875 pdd->qpd.mapped_gws_queue = true; 876 } 877 q->properties.is_gws = true; 878 } else if (!q->gws && q->properties.is_gws) { 879 if (q->properties.is_active) { 880 dqm->gws_queue_count--; 881 pdd->qpd.mapped_gws_queue = false; 882 } 883 q->properties.is_gws = false; 884 } 885 886 if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) { 887 if (!dqm->dev->shared_resources.enable_mes) 888 retval = map_queues_cpsch(dqm); 889 else if (add_queue) 890 retval = add_queue_mes(dqm, q, &pdd->qpd); 891 } else if (q->properties.is_active && 892 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE || 893 q->properties.type == KFD_QUEUE_TYPE_SDMA || 894 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { 895 if (WARN(q->process->mm != current->mm, 896 "should only run in user thread")) 897 retval = -EFAULT; 898 else 899 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, 900 q->pipe, q->queue, 901 &q->properties, current->mm); 902 } 903 904 out_unlock: 905 dqm_unlock(dqm); 906 return retval; 907 } 908 909 static int evict_process_queues_nocpsch(struct device_queue_manager *dqm, 910 struct qcm_process_device *qpd) 911 { 912 struct queue *q; 913 struct mqd_manager *mqd_mgr; 914 struct kfd_process_device *pdd; 915 int retval, ret = 0; 916 917 dqm_lock(dqm); 918 if (qpd->evicted++ > 0) /* already evicted, do nothing */ 919 goto out; 920 921 pdd = qpd_to_pdd(qpd); 922 pr_debug_ratelimited("Evicting PASID 0x%x queues\n", 923 pdd->process->pasid); 924 925 pdd->last_evict_timestamp = get_jiffies_64(); 926 /* Mark all queues as evicted. Deactivate all active queues on 927 * the qpd. 928 */ 929 list_for_each_entry(q, &qpd->queues_list, list) { 930 q->properties.is_evicted = true; 931 if (!q->properties.is_active) 932 continue; 933 934 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 935 q->properties.type)]; 936 q->properties.is_active = false; 937 decrement_queue_count(dqm, qpd, q); 938 939 if (WARN_ONCE(!dqm->sched_running, "Evict when stopped\n")) 940 continue; 941 942 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd, 943 (dqm->dev->cwsr_enabled ? 944 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE : 945 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN), 946 KFD_UNMAP_LATENCY_MS, q->pipe, q->queue); 947 if (retval && !ret) 948 /* Return the first error, but keep going to 949 * maintain a consistent eviction state 950 */ 951 ret = retval; 952 } 953 954 out: 955 dqm_unlock(dqm); 956 return ret; 957 } 958 959 static int evict_process_queues_cpsch(struct device_queue_manager *dqm, 960 struct qcm_process_device *qpd) 961 { 962 struct queue *q; 963 struct kfd_process_device *pdd; 964 int retval = 0; 965 966 dqm_lock(dqm); 967 if (qpd->evicted++ > 0) /* already evicted, do nothing */ 968 goto out; 969 970 pdd = qpd_to_pdd(qpd); 971 pr_debug_ratelimited("Evicting PASID 0x%x queues\n", 972 pdd->process->pasid); 973 974 /* Mark all queues as evicted. Deactivate all active queues on 975 * the qpd. 976 */ 977 list_for_each_entry(q, &qpd->queues_list, list) { 978 q->properties.is_evicted = true; 979 if (!q->properties.is_active) 980 continue; 981 982 q->properties.is_active = false; 983 decrement_queue_count(dqm, qpd, q); 984 985 if (dqm->dev->shared_resources.enable_mes) { 986 retval = remove_queue_mes(dqm, q, qpd); 987 if (retval) { 988 pr_err("Failed to evict queue %d\n", 989 q->properties.queue_id); 990 goto out; 991 } 992 } 993 } 994 pdd->last_evict_timestamp = get_jiffies_64(); 995 if (!dqm->dev->shared_resources.enable_mes) 996 retval = execute_queues_cpsch(dqm, 997 qpd->is_debug ? 998 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES : 999 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0); 1000 1001 out: 1002 dqm_unlock(dqm); 1003 return retval; 1004 } 1005 1006 static int restore_process_queues_nocpsch(struct device_queue_manager *dqm, 1007 struct qcm_process_device *qpd) 1008 { 1009 struct mm_struct *mm = NULL; 1010 struct queue *q; 1011 struct mqd_manager *mqd_mgr; 1012 struct kfd_process_device *pdd; 1013 uint64_t pd_base; 1014 uint64_t eviction_duration; 1015 int retval, ret = 0; 1016 1017 pdd = qpd_to_pdd(qpd); 1018 /* Retrieve PD base */ 1019 pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv); 1020 1021 dqm_lock(dqm); 1022 if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */ 1023 goto out; 1024 if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */ 1025 qpd->evicted--; 1026 goto out; 1027 } 1028 1029 pr_debug_ratelimited("Restoring PASID 0x%x queues\n", 1030 pdd->process->pasid); 1031 1032 /* Update PD Base in QPD */ 1033 qpd->page_table_base = pd_base; 1034 pr_debug("Updated PD address to 0x%llx\n", pd_base); 1035 1036 if (!list_empty(&qpd->queues_list)) { 1037 dqm->dev->kfd2kgd->set_vm_context_page_table_base( 1038 dqm->dev->adev, 1039 qpd->vmid, 1040 qpd->page_table_base); 1041 kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY); 1042 } 1043 1044 /* Take a safe reference to the mm_struct, which may otherwise 1045 * disappear even while the kfd_process is still referenced. 1046 */ 1047 mm = get_task_mm(pdd->process->lead_thread); 1048 if (!mm) { 1049 ret = -EFAULT; 1050 goto out; 1051 } 1052 1053 /* Remove the eviction flags. Activate queues that are not 1054 * inactive for other reasons. 1055 */ 1056 list_for_each_entry(q, &qpd->queues_list, list) { 1057 q->properties.is_evicted = false; 1058 if (!QUEUE_IS_ACTIVE(q->properties)) 1059 continue; 1060 1061 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 1062 q->properties.type)]; 1063 q->properties.is_active = true; 1064 increment_queue_count(dqm, qpd, q); 1065 1066 if (WARN_ONCE(!dqm->sched_running, "Restore when stopped\n")) 1067 continue; 1068 1069 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe, 1070 q->queue, &q->properties, mm); 1071 if (retval && !ret) 1072 /* Return the first error, but keep going to 1073 * maintain a consistent eviction state 1074 */ 1075 ret = retval; 1076 } 1077 qpd->evicted = 0; 1078 eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp; 1079 atomic64_add(eviction_duration, &pdd->evict_duration_counter); 1080 out: 1081 if (mm) 1082 mmput(mm); 1083 dqm_unlock(dqm); 1084 return ret; 1085 } 1086 1087 static int restore_process_queues_cpsch(struct device_queue_manager *dqm, 1088 struct qcm_process_device *qpd) 1089 { 1090 struct queue *q; 1091 struct kfd_process_device *pdd; 1092 uint64_t pd_base; 1093 uint64_t eviction_duration; 1094 int retval = 0; 1095 1096 pdd = qpd_to_pdd(qpd); 1097 /* Retrieve PD base */ 1098 pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv); 1099 1100 dqm_lock(dqm); 1101 if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */ 1102 goto out; 1103 if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */ 1104 qpd->evicted--; 1105 goto out; 1106 } 1107 1108 pr_debug_ratelimited("Restoring PASID 0x%x queues\n", 1109 pdd->process->pasid); 1110 1111 /* Update PD Base in QPD */ 1112 qpd->page_table_base = pd_base; 1113 pr_debug("Updated PD address to 0x%llx\n", pd_base); 1114 1115 /* activate all active queues on the qpd */ 1116 list_for_each_entry(q, &qpd->queues_list, list) { 1117 q->properties.is_evicted = false; 1118 if (!QUEUE_IS_ACTIVE(q->properties)) 1119 continue; 1120 1121 q->properties.is_active = true; 1122 increment_queue_count(dqm, &pdd->qpd, q); 1123 1124 if (dqm->dev->shared_resources.enable_mes) { 1125 retval = add_queue_mes(dqm, q, qpd); 1126 if (retval) { 1127 pr_err("Failed to restore queue %d\n", 1128 q->properties.queue_id); 1129 goto out; 1130 } 1131 } 1132 } 1133 if (!dqm->dev->shared_resources.enable_mes) 1134 retval = execute_queues_cpsch(dqm, 1135 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0); 1136 qpd->evicted = 0; 1137 eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp; 1138 atomic64_add(eviction_duration, &pdd->evict_duration_counter); 1139 out: 1140 dqm_unlock(dqm); 1141 return retval; 1142 } 1143 1144 static int register_process(struct device_queue_manager *dqm, 1145 struct qcm_process_device *qpd) 1146 { 1147 struct device_process_node *n; 1148 struct kfd_process_device *pdd; 1149 uint64_t pd_base; 1150 int retval; 1151 1152 n = kzalloc(sizeof(*n), GFP_KERNEL); 1153 if (!n) 1154 return -ENOMEM; 1155 1156 n->qpd = qpd; 1157 1158 pdd = qpd_to_pdd(qpd); 1159 /* Retrieve PD base */ 1160 pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv); 1161 1162 dqm_lock(dqm); 1163 list_add(&n->list, &dqm->queues); 1164 1165 /* Update PD Base in QPD */ 1166 qpd->page_table_base = pd_base; 1167 pr_debug("Updated PD address to 0x%llx\n", pd_base); 1168 1169 retval = dqm->asic_ops.update_qpd(dqm, qpd); 1170 1171 dqm->processes_count++; 1172 1173 dqm_unlock(dqm); 1174 1175 /* Outside the DQM lock because under the DQM lock we can't do 1176 * reclaim or take other locks that others hold while reclaiming. 1177 */ 1178 kfd_inc_compute_active(dqm->dev); 1179 1180 return retval; 1181 } 1182 1183 static int unregister_process(struct device_queue_manager *dqm, 1184 struct qcm_process_device *qpd) 1185 { 1186 int retval; 1187 struct device_process_node *cur, *next; 1188 1189 pr_debug("qpd->queues_list is %s\n", 1190 list_empty(&qpd->queues_list) ? "empty" : "not empty"); 1191 1192 retval = 0; 1193 dqm_lock(dqm); 1194 1195 list_for_each_entry_safe(cur, next, &dqm->queues, list) { 1196 if (qpd == cur->qpd) { 1197 list_del(&cur->list); 1198 kfree(cur); 1199 dqm->processes_count--; 1200 goto out; 1201 } 1202 } 1203 /* qpd not found in dqm list */ 1204 retval = 1; 1205 out: 1206 dqm_unlock(dqm); 1207 1208 /* Outside the DQM lock because under the DQM lock we can't do 1209 * reclaim or take other locks that others hold while reclaiming. 1210 */ 1211 if (!retval) 1212 kfd_dec_compute_active(dqm->dev); 1213 1214 return retval; 1215 } 1216 1217 static int 1218 set_pasid_vmid_mapping(struct device_queue_manager *dqm, u32 pasid, 1219 unsigned int vmid) 1220 { 1221 return dqm->dev->kfd2kgd->set_pasid_vmid_mapping( 1222 dqm->dev->adev, pasid, vmid); 1223 } 1224 1225 static void init_interrupts(struct device_queue_manager *dqm) 1226 { 1227 unsigned int i; 1228 1229 for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++) 1230 if (is_pipe_enabled(dqm, 0, i)) 1231 dqm->dev->kfd2kgd->init_interrupts(dqm->dev->adev, i); 1232 } 1233 1234 static int initialize_nocpsch(struct device_queue_manager *dqm) 1235 { 1236 int pipe, queue; 1237 1238 pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm)); 1239 1240 dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm), 1241 sizeof(unsigned int), GFP_KERNEL); 1242 if (!dqm->allocated_queues) 1243 return -ENOMEM; 1244 1245 mutex_init(&dqm->lock_hidden); 1246 INIT_LIST_HEAD(&dqm->queues); 1247 dqm->active_queue_count = dqm->next_pipe_to_allocate = 0; 1248 dqm->active_cp_queue_count = 0; 1249 dqm->gws_queue_count = 0; 1250 1251 for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) { 1252 int pipe_offset = pipe * get_queues_per_pipe(dqm); 1253 1254 for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) 1255 if (test_bit(pipe_offset + queue, 1256 dqm->dev->shared_resources.cp_queue_bitmap)) 1257 dqm->allocated_queues[pipe] |= 1 << queue; 1258 } 1259 1260 memset(dqm->vmid_pasid, 0, sizeof(dqm->vmid_pasid)); 1261 1262 dqm->sdma_bitmap = ~0ULL >> (64 - get_num_sdma_queues(dqm)); 1263 dqm->sdma_bitmap &= ~(get_reserved_sdma_queues_bitmap(dqm)); 1264 pr_info("sdma_bitmap: %llx\n", dqm->sdma_bitmap); 1265 1266 dqm->xgmi_sdma_bitmap = ~0ULL >> (64 - get_num_xgmi_sdma_queues(dqm)); 1267 1268 return 0; 1269 } 1270 1271 static void uninitialize(struct device_queue_manager *dqm) 1272 { 1273 int i; 1274 1275 WARN_ON(dqm->active_queue_count > 0 || dqm->processes_count > 0); 1276 1277 kfree(dqm->allocated_queues); 1278 for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++) 1279 kfree(dqm->mqd_mgrs[i]); 1280 mutex_destroy(&dqm->lock_hidden); 1281 } 1282 1283 static int start_nocpsch(struct device_queue_manager *dqm) 1284 { 1285 int r = 0; 1286 1287 pr_info("SW scheduler is used"); 1288 init_interrupts(dqm); 1289 1290 if (dqm->dev->adev->asic_type == CHIP_HAWAII) 1291 r = pm_init(&dqm->packet_mgr, dqm); 1292 if (!r) 1293 dqm->sched_running = true; 1294 1295 return r; 1296 } 1297 1298 static int stop_nocpsch(struct device_queue_manager *dqm) 1299 { 1300 if (dqm->dev->adev->asic_type == CHIP_HAWAII) 1301 pm_uninit(&dqm->packet_mgr, false); 1302 dqm->sched_running = false; 1303 1304 return 0; 1305 } 1306 1307 static void pre_reset(struct device_queue_manager *dqm) 1308 { 1309 dqm_lock(dqm); 1310 dqm->is_resetting = true; 1311 dqm_unlock(dqm); 1312 } 1313 1314 static int allocate_sdma_queue(struct device_queue_manager *dqm, 1315 struct queue *q, const uint32_t *restore_sdma_id) 1316 { 1317 int bit; 1318 1319 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) { 1320 if (dqm->sdma_bitmap == 0) { 1321 pr_err("No more SDMA queue to allocate\n"); 1322 return -ENOMEM; 1323 } 1324 1325 if (restore_sdma_id) { 1326 /* Re-use existing sdma_id */ 1327 if (!(dqm->sdma_bitmap & (1ULL << *restore_sdma_id))) { 1328 pr_err("SDMA queue already in use\n"); 1329 return -EBUSY; 1330 } 1331 dqm->sdma_bitmap &= ~(1ULL << *restore_sdma_id); 1332 q->sdma_id = *restore_sdma_id; 1333 } else { 1334 /* Find first available sdma_id */ 1335 bit = __ffs64(dqm->sdma_bitmap); 1336 dqm->sdma_bitmap &= ~(1ULL << bit); 1337 q->sdma_id = bit; 1338 } 1339 1340 q->properties.sdma_engine_id = q->sdma_id % 1341 kfd_get_num_sdma_engines(dqm->dev); 1342 q->properties.sdma_queue_id = q->sdma_id / 1343 kfd_get_num_sdma_engines(dqm->dev); 1344 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 1345 if (dqm->xgmi_sdma_bitmap == 0) { 1346 pr_err("No more XGMI SDMA queue to allocate\n"); 1347 return -ENOMEM; 1348 } 1349 if (restore_sdma_id) { 1350 /* Re-use existing sdma_id */ 1351 if (!(dqm->xgmi_sdma_bitmap & (1ULL << *restore_sdma_id))) { 1352 pr_err("SDMA queue already in use\n"); 1353 return -EBUSY; 1354 } 1355 dqm->xgmi_sdma_bitmap &= ~(1ULL << *restore_sdma_id); 1356 q->sdma_id = *restore_sdma_id; 1357 } else { 1358 bit = __ffs64(dqm->xgmi_sdma_bitmap); 1359 dqm->xgmi_sdma_bitmap &= ~(1ULL << bit); 1360 q->sdma_id = bit; 1361 } 1362 /* sdma_engine_id is sdma id including 1363 * both PCIe-optimized SDMAs and XGMI- 1364 * optimized SDMAs. The calculation below 1365 * assumes the first N engines are always 1366 * PCIe-optimized ones 1367 */ 1368 q->properties.sdma_engine_id = 1369 kfd_get_num_sdma_engines(dqm->dev) + 1370 q->sdma_id % kfd_get_num_xgmi_sdma_engines(dqm->dev); 1371 q->properties.sdma_queue_id = q->sdma_id / 1372 kfd_get_num_xgmi_sdma_engines(dqm->dev); 1373 } 1374 1375 pr_debug("SDMA engine id: %d\n", q->properties.sdma_engine_id); 1376 pr_debug("SDMA queue id: %d\n", q->properties.sdma_queue_id); 1377 1378 return 0; 1379 } 1380 1381 static void deallocate_sdma_queue(struct device_queue_manager *dqm, 1382 struct queue *q) 1383 { 1384 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) { 1385 if (q->sdma_id >= get_num_sdma_queues(dqm)) 1386 return; 1387 dqm->sdma_bitmap |= (1ULL << q->sdma_id); 1388 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 1389 if (q->sdma_id >= get_num_xgmi_sdma_queues(dqm)) 1390 return; 1391 dqm->xgmi_sdma_bitmap |= (1ULL << q->sdma_id); 1392 } 1393 } 1394 1395 /* 1396 * Device Queue Manager implementation for cp scheduler 1397 */ 1398 1399 static int set_sched_resources(struct device_queue_manager *dqm) 1400 { 1401 int i, mec; 1402 struct scheduling_resources res; 1403 1404 res.vmid_mask = dqm->dev->shared_resources.compute_vmid_bitmap; 1405 1406 res.queue_mask = 0; 1407 for (i = 0; i < KGD_MAX_QUEUES; ++i) { 1408 mec = (i / dqm->dev->shared_resources.num_queue_per_pipe) 1409 / dqm->dev->shared_resources.num_pipe_per_mec; 1410 1411 if (!test_bit(i, dqm->dev->shared_resources.cp_queue_bitmap)) 1412 continue; 1413 1414 /* only acquire queues from the first MEC */ 1415 if (mec > 0) 1416 continue; 1417 1418 /* This situation may be hit in the future if a new HW 1419 * generation exposes more than 64 queues. If so, the 1420 * definition of res.queue_mask needs updating 1421 */ 1422 if (WARN_ON(i >= (sizeof(res.queue_mask)*8))) { 1423 pr_err("Invalid queue enabled by amdgpu: %d\n", i); 1424 break; 1425 } 1426 1427 res.queue_mask |= 1ull 1428 << amdgpu_queue_mask_bit_to_set_resource_bit( 1429 dqm->dev->adev, i); 1430 } 1431 res.gws_mask = ~0ull; 1432 res.oac_mask = res.gds_heap_base = res.gds_heap_size = 0; 1433 1434 pr_debug("Scheduling resources:\n" 1435 "vmid mask: 0x%8X\n" 1436 "queue mask: 0x%8llX\n", 1437 res.vmid_mask, res.queue_mask); 1438 1439 return pm_send_set_resources(&dqm->packet_mgr, &res); 1440 } 1441 1442 static int initialize_cpsch(struct device_queue_manager *dqm) 1443 { 1444 uint64_t num_sdma_queues; 1445 uint64_t num_xgmi_sdma_queues; 1446 1447 pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm)); 1448 1449 mutex_init(&dqm->lock_hidden); 1450 INIT_LIST_HEAD(&dqm->queues); 1451 dqm->active_queue_count = dqm->processes_count = 0; 1452 dqm->active_cp_queue_count = 0; 1453 dqm->gws_queue_count = 0; 1454 dqm->active_runlist = false; 1455 1456 num_sdma_queues = get_num_sdma_queues(dqm); 1457 if (num_sdma_queues >= BITS_PER_TYPE(dqm->sdma_bitmap)) 1458 dqm->sdma_bitmap = ULLONG_MAX; 1459 else 1460 dqm->sdma_bitmap = (BIT_ULL(num_sdma_queues) - 1); 1461 1462 dqm->sdma_bitmap &= ~(get_reserved_sdma_queues_bitmap(dqm)); 1463 pr_info("sdma_bitmap: %llx\n", dqm->sdma_bitmap); 1464 1465 num_xgmi_sdma_queues = get_num_xgmi_sdma_queues(dqm); 1466 if (num_xgmi_sdma_queues >= BITS_PER_TYPE(dqm->xgmi_sdma_bitmap)) 1467 dqm->xgmi_sdma_bitmap = ULLONG_MAX; 1468 else 1469 dqm->xgmi_sdma_bitmap = (BIT_ULL(num_xgmi_sdma_queues) - 1); 1470 1471 INIT_WORK(&dqm->hw_exception_work, kfd_process_hw_exception); 1472 1473 return 0; 1474 } 1475 1476 static int start_cpsch(struct device_queue_manager *dqm) 1477 { 1478 int retval; 1479 1480 retval = 0; 1481 1482 dqm_lock(dqm); 1483 1484 if (!dqm->dev->shared_resources.enable_mes) { 1485 retval = pm_init(&dqm->packet_mgr, dqm); 1486 if (retval) 1487 goto fail_packet_manager_init; 1488 1489 retval = set_sched_resources(dqm); 1490 if (retval) 1491 goto fail_set_sched_resources; 1492 } 1493 pr_debug("Allocating fence memory\n"); 1494 1495 /* allocate fence memory on the gart */ 1496 retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr), 1497 &dqm->fence_mem); 1498 1499 if (retval) 1500 goto fail_allocate_vidmem; 1501 1502 dqm->fence_addr = (uint64_t *)dqm->fence_mem->cpu_ptr; 1503 dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr; 1504 1505 init_interrupts(dqm); 1506 1507 /* clear hang status when driver try to start the hw scheduler */ 1508 dqm->is_hws_hang = false; 1509 dqm->is_resetting = false; 1510 dqm->sched_running = true; 1511 if (!dqm->dev->shared_resources.enable_mes) 1512 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0); 1513 dqm_unlock(dqm); 1514 1515 return 0; 1516 fail_allocate_vidmem: 1517 fail_set_sched_resources: 1518 if (!dqm->dev->shared_resources.enable_mes) 1519 pm_uninit(&dqm->packet_mgr, false); 1520 fail_packet_manager_init: 1521 dqm_unlock(dqm); 1522 return retval; 1523 } 1524 1525 static int stop_cpsch(struct device_queue_manager *dqm) 1526 { 1527 bool hanging; 1528 1529 dqm_lock(dqm); 1530 if (!dqm->sched_running) { 1531 dqm_unlock(dqm); 1532 return 0; 1533 } 1534 1535 if (!dqm->is_hws_hang) { 1536 if (!dqm->dev->shared_resources.enable_mes) 1537 unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, false); 1538 else 1539 remove_all_queues_mes(dqm); 1540 } 1541 1542 hanging = dqm->is_hws_hang || dqm->is_resetting; 1543 dqm->sched_running = false; 1544 1545 if (!dqm->dev->shared_resources.enable_mes) 1546 pm_release_ib(&dqm->packet_mgr); 1547 1548 kfd_gtt_sa_free(dqm->dev, dqm->fence_mem); 1549 if (!dqm->dev->shared_resources.enable_mes) 1550 pm_uninit(&dqm->packet_mgr, hanging); 1551 dqm_unlock(dqm); 1552 1553 return 0; 1554 } 1555 1556 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm, 1557 struct kernel_queue *kq, 1558 struct qcm_process_device *qpd) 1559 { 1560 dqm_lock(dqm); 1561 if (dqm->total_queue_count >= max_num_of_queues_per_device) { 1562 pr_warn("Can't create new kernel queue because %d queues were already created\n", 1563 dqm->total_queue_count); 1564 dqm_unlock(dqm); 1565 return -EPERM; 1566 } 1567 1568 /* 1569 * Unconditionally increment this counter, regardless of the queue's 1570 * type or whether the queue is active. 1571 */ 1572 dqm->total_queue_count++; 1573 pr_debug("Total of %d queues are accountable so far\n", 1574 dqm->total_queue_count); 1575 1576 list_add(&kq->list, &qpd->priv_queue_list); 1577 increment_queue_count(dqm, qpd, kq->queue); 1578 qpd->is_debug = true; 1579 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0); 1580 dqm_unlock(dqm); 1581 1582 return 0; 1583 } 1584 1585 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm, 1586 struct kernel_queue *kq, 1587 struct qcm_process_device *qpd) 1588 { 1589 dqm_lock(dqm); 1590 list_del(&kq->list); 1591 decrement_queue_count(dqm, qpd, kq->queue); 1592 qpd->is_debug = false; 1593 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0); 1594 /* 1595 * Unconditionally decrement this counter, regardless of the queue's 1596 * type. 1597 */ 1598 dqm->total_queue_count--; 1599 pr_debug("Total of %d queues are accountable so far\n", 1600 dqm->total_queue_count); 1601 dqm_unlock(dqm); 1602 } 1603 1604 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q, 1605 struct qcm_process_device *qpd, 1606 const struct kfd_criu_queue_priv_data *qd, 1607 const void *restore_mqd, const void *restore_ctl_stack) 1608 { 1609 int retval; 1610 struct mqd_manager *mqd_mgr; 1611 1612 if (dqm->total_queue_count >= max_num_of_queues_per_device) { 1613 pr_warn("Can't create new usermode queue because %d queues were already created\n", 1614 dqm->total_queue_count); 1615 retval = -EPERM; 1616 goto out; 1617 } 1618 1619 if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 1620 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 1621 dqm_lock(dqm); 1622 retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL); 1623 dqm_unlock(dqm); 1624 if (retval) 1625 goto out; 1626 } 1627 1628 retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL); 1629 if (retval) 1630 goto out_deallocate_sdma_queue; 1631 1632 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 1633 q->properties.type)]; 1634 1635 if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 1636 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 1637 dqm->asic_ops.init_sdma_vm(dqm, q, qpd); 1638 q->properties.tba_addr = qpd->tba_addr; 1639 q->properties.tma_addr = qpd->tma_addr; 1640 q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties); 1641 if (!q->mqd_mem_obj) { 1642 retval = -ENOMEM; 1643 goto out_deallocate_doorbell; 1644 } 1645 1646 dqm_lock(dqm); 1647 /* 1648 * Eviction state logic: mark all queues as evicted, even ones 1649 * not currently active. Restoring inactive queues later only 1650 * updates the is_evicted flag but is a no-op otherwise. 1651 */ 1652 q->properties.is_evicted = !!qpd->evicted; 1653 1654 if (qd) 1655 mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr, 1656 &q->properties, restore_mqd, restore_ctl_stack, 1657 qd->ctl_stack_size); 1658 else 1659 mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, 1660 &q->gart_mqd_addr, &q->properties); 1661 1662 list_add(&q->list, &qpd->queues_list); 1663 qpd->queue_count++; 1664 1665 if (q->properties.is_active) { 1666 increment_queue_count(dqm, qpd, q); 1667 1668 if (!dqm->dev->shared_resources.enable_mes) { 1669 retval = execute_queues_cpsch(dqm, 1670 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0); 1671 } else { 1672 retval = add_queue_mes(dqm, q, qpd); 1673 if (retval) 1674 goto cleanup_queue; 1675 } 1676 } 1677 1678 /* 1679 * Unconditionally increment this counter, regardless of the queue's 1680 * type or whether the queue is active. 1681 */ 1682 dqm->total_queue_count++; 1683 1684 pr_debug("Total of %d queues are accountable so far\n", 1685 dqm->total_queue_count); 1686 1687 dqm_unlock(dqm); 1688 return retval; 1689 1690 cleanup_queue: 1691 qpd->queue_count--; 1692 list_del(&q->list); 1693 if (q->properties.is_active) 1694 decrement_queue_count(dqm, qpd, q); 1695 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 1696 dqm_unlock(dqm); 1697 out_deallocate_doorbell: 1698 deallocate_doorbell(qpd, q); 1699 out_deallocate_sdma_queue: 1700 if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 1701 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 1702 dqm_lock(dqm); 1703 deallocate_sdma_queue(dqm, q); 1704 dqm_unlock(dqm); 1705 } 1706 out: 1707 return retval; 1708 } 1709 1710 int amdkfd_fence_wait_timeout(uint64_t *fence_addr, 1711 uint64_t fence_value, 1712 unsigned int timeout_ms) 1713 { 1714 unsigned long end_jiffies = msecs_to_jiffies(timeout_ms) + jiffies; 1715 1716 while (*fence_addr != fence_value) { 1717 if (time_after(jiffies, end_jiffies)) { 1718 pr_err("qcm fence wait loop timeout expired\n"); 1719 /* In HWS case, this is used to halt the driver thread 1720 * in order not to mess up CP states before doing 1721 * scandumps for FW debugging. 1722 */ 1723 while (halt_if_hws_hang) 1724 schedule(); 1725 1726 return -ETIME; 1727 } 1728 schedule(); 1729 } 1730 1731 return 0; 1732 } 1733 1734 /* dqm->lock mutex has to be locked before calling this function */ 1735 static int map_queues_cpsch(struct device_queue_manager *dqm) 1736 { 1737 int retval; 1738 1739 if (!dqm->sched_running) 1740 return 0; 1741 if (dqm->active_queue_count <= 0 || dqm->processes_count <= 0) 1742 return 0; 1743 if (dqm->active_runlist) 1744 return 0; 1745 1746 retval = pm_send_runlist(&dqm->packet_mgr, &dqm->queues); 1747 pr_debug("%s sent runlist\n", __func__); 1748 if (retval) { 1749 pr_err("failed to execute runlist\n"); 1750 return retval; 1751 } 1752 dqm->active_runlist = true; 1753 1754 return retval; 1755 } 1756 1757 /* dqm->lock mutex has to be locked before calling this function */ 1758 static int unmap_queues_cpsch(struct device_queue_manager *dqm, 1759 enum kfd_unmap_queues_filter filter, 1760 uint32_t filter_param, bool reset) 1761 { 1762 int retval = 0; 1763 struct mqd_manager *mqd_mgr; 1764 1765 if (!dqm->sched_running) 1766 return 0; 1767 if (dqm->is_hws_hang || dqm->is_resetting) 1768 return -EIO; 1769 if (!dqm->active_runlist) 1770 return retval; 1771 1772 retval = pm_send_unmap_queue(&dqm->packet_mgr, filter, filter_param, reset); 1773 if (retval) 1774 return retval; 1775 1776 *dqm->fence_addr = KFD_FENCE_INIT; 1777 pm_send_query_status(&dqm->packet_mgr, dqm->fence_gpu_addr, 1778 KFD_FENCE_COMPLETED); 1779 /* should be timed out */ 1780 retval = amdkfd_fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED, 1781 queue_preemption_timeout_ms); 1782 if (retval) { 1783 pr_err("The cp might be in an unrecoverable state due to an unsuccessful queues preemption\n"); 1784 kfd_hws_hang(dqm); 1785 return retval; 1786 } 1787 1788 /* In the current MEC firmware implementation, if compute queue 1789 * doesn't response to the preemption request in time, HIQ will 1790 * abandon the unmap request without returning any timeout error 1791 * to driver. Instead, MEC firmware will log the doorbell of the 1792 * unresponding compute queue to HIQ.MQD.queue_doorbell_id fields. 1793 * To make sure the queue unmap was successful, driver need to 1794 * check those fields 1795 */ 1796 mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]; 1797 if (mqd_mgr->read_doorbell_id(dqm->packet_mgr.priv_queue->queue->mqd)) { 1798 pr_err("HIQ MQD's queue_doorbell_id0 is not 0, Queue preemption time out\n"); 1799 while (halt_if_hws_hang) 1800 schedule(); 1801 return -ETIME; 1802 } 1803 1804 pm_release_ib(&dqm->packet_mgr); 1805 dqm->active_runlist = false; 1806 1807 return retval; 1808 } 1809 1810 /* only for compute queue */ 1811 static int reset_queues_cpsch(struct device_queue_manager *dqm, 1812 uint16_t pasid) 1813 { 1814 int retval; 1815 1816 dqm_lock(dqm); 1817 1818 retval = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_BY_PASID, 1819 pasid, true); 1820 1821 dqm_unlock(dqm); 1822 return retval; 1823 } 1824 1825 /* dqm->lock mutex has to be locked before calling this function */ 1826 static int execute_queues_cpsch(struct device_queue_manager *dqm, 1827 enum kfd_unmap_queues_filter filter, 1828 uint32_t filter_param) 1829 { 1830 int retval; 1831 1832 if (dqm->is_hws_hang) 1833 return -EIO; 1834 retval = unmap_queues_cpsch(dqm, filter, filter_param, false); 1835 if (retval) 1836 return retval; 1837 1838 return map_queues_cpsch(dqm); 1839 } 1840 1841 static int destroy_queue_cpsch(struct device_queue_manager *dqm, 1842 struct qcm_process_device *qpd, 1843 struct queue *q) 1844 { 1845 int retval; 1846 struct mqd_manager *mqd_mgr; 1847 uint64_t sdma_val = 0; 1848 struct kfd_process_device *pdd = qpd_to_pdd(qpd); 1849 1850 /* Get the SDMA queue stats */ 1851 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) || 1852 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { 1853 retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr, 1854 &sdma_val); 1855 if (retval) 1856 pr_err("Failed to read SDMA queue counter for queue: %d\n", 1857 q->properties.queue_id); 1858 } 1859 1860 retval = 0; 1861 1862 /* remove queue from list to prevent rescheduling after preemption */ 1863 dqm_lock(dqm); 1864 1865 if (qpd->is_debug) { 1866 /* 1867 * error, currently we do not allow to destroy a queue 1868 * of a currently debugged process 1869 */ 1870 retval = -EBUSY; 1871 goto failed_try_destroy_debugged_queue; 1872 1873 } 1874 1875 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 1876 q->properties.type)]; 1877 1878 deallocate_doorbell(qpd, q); 1879 1880 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) || 1881 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { 1882 deallocate_sdma_queue(dqm, q); 1883 pdd->sdma_past_activity_counter += sdma_val; 1884 } 1885 1886 list_del(&q->list); 1887 qpd->queue_count--; 1888 if (q->properties.is_active) { 1889 if (!dqm->dev->shared_resources.enable_mes) { 1890 decrement_queue_count(dqm, qpd, q); 1891 retval = execute_queues_cpsch(dqm, 1892 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0); 1893 if (retval == -ETIME) 1894 qpd->reset_wavefronts = true; 1895 } else { 1896 retval = remove_queue_mes(dqm, q, qpd); 1897 } 1898 } 1899 1900 /* 1901 * Unconditionally decrement this counter, regardless of the queue's 1902 * type 1903 */ 1904 dqm->total_queue_count--; 1905 pr_debug("Total of %d queues are accountable so far\n", 1906 dqm->total_queue_count); 1907 1908 dqm_unlock(dqm); 1909 1910 /* Do free_mqd after dqm_unlock(dqm) to avoid circular locking */ 1911 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 1912 1913 return retval; 1914 1915 failed_try_destroy_debugged_queue: 1916 1917 dqm_unlock(dqm); 1918 return retval; 1919 } 1920 1921 /* 1922 * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to 1923 * stay in user mode. 1924 */ 1925 #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL 1926 /* APE1 limit is inclusive and 64K aligned. */ 1927 #define APE1_LIMIT_ALIGNMENT 0xFFFF 1928 1929 static bool set_cache_memory_policy(struct device_queue_manager *dqm, 1930 struct qcm_process_device *qpd, 1931 enum cache_policy default_policy, 1932 enum cache_policy alternate_policy, 1933 void __user *alternate_aperture_base, 1934 uint64_t alternate_aperture_size) 1935 { 1936 bool retval = true; 1937 1938 if (!dqm->asic_ops.set_cache_memory_policy) 1939 return retval; 1940 1941 dqm_lock(dqm); 1942 1943 if (alternate_aperture_size == 0) { 1944 /* base > limit disables APE1 */ 1945 qpd->sh_mem_ape1_base = 1; 1946 qpd->sh_mem_ape1_limit = 0; 1947 } else { 1948 /* 1949 * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]}, 1950 * SH_MEM_APE1_BASE[31:0], 0x0000 } 1951 * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]}, 1952 * SH_MEM_APE1_LIMIT[31:0], 0xFFFF } 1953 * Verify that the base and size parameters can be 1954 * represented in this format and convert them. 1955 * Additionally restrict APE1 to user-mode addresses. 1956 */ 1957 1958 uint64_t base = (uintptr_t)alternate_aperture_base; 1959 uint64_t limit = base + alternate_aperture_size - 1; 1960 1961 if (limit <= base || (base & APE1_FIXED_BITS_MASK) != 0 || 1962 (limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT) { 1963 retval = false; 1964 goto out; 1965 } 1966 1967 qpd->sh_mem_ape1_base = base >> 16; 1968 qpd->sh_mem_ape1_limit = limit >> 16; 1969 } 1970 1971 retval = dqm->asic_ops.set_cache_memory_policy( 1972 dqm, 1973 qpd, 1974 default_policy, 1975 alternate_policy, 1976 alternate_aperture_base, 1977 alternate_aperture_size); 1978 1979 if ((dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0)) 1980 program_sh_mem_settings(dqm, qpd); 1981 1982 pr_debug("sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n", 1983 qpd->sh_mem_config, qpd->sh_mem_ape1_base, 1984 qpd->sh_mem_ape1_limit); 1985 1986 out: 1987 dqm_unlock(dqm); 1988 return retval; 1989 } 1990 1991 static int process_termination_nocpsch(struct device_queue_manager *dqm, 1992 struct qcm_process_device *qpd) 1993 { 1994 struct queue *q; 1995 struct device_process_node *cur, *next_dpn; 1996 int retval = 0; 1997 bool found = false; 1998 1999 dqm_lock(dqm); 2000 2001 /* Clear all user mode queues */ 2002 while (!list_empty(&qpd->queues_list)) { 2003 struct mqd_manager *mqd_mgr; 2004 int ret; 2005 2006 q = list_first_entry(&qpd->queues_list, struct queue, list); 2007 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 2008 q->properties.type)]; 2009 ret = destroy_queue_nocpsch_locked(dqm, qpd, q); 2010 if (ret) 2011 retval = ret; 2012 dqm_unlock(dqm); 2013 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 2014 dqm_lock(dqm); 2015 } 2016 2017 /* Unregister process */ 2018 list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) { 2019 if (qpd == cur->qpd) { 2020 list_del(&cur->list); 2021 kfree(cur); 2022 dqm->processes_count--; 2023 found = true; 2024 break; 2025 } 2026 } 2027 2028 dqm_unlock(dqm); 2029 2030 /* Outside the DQM lock because under the DQM lock we can't do 2031 * reclaim or take other locks that others hold while reclaiming. 2032 */ 2033 if (found) 2034 kfd_dec_compute_active(dqm->dev); 2035 2036 return retval; 2037 } 2038 2039 static int get_wave_state(struct device_queue_manager *dqm, 2040 struct queue *q, 2041 void __user *ctl_stack, 2042 u32 *ctl_stack_used_size, 2043 u32 *save_area_used_size) 2044 { 2045 struct mqd_manager *mqd_mgr; 2046 2047 dqm_lock(dqm); 2048 2049 mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP]; 2050 2051 if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE || 2052 q->properties.is_active || !q->device->cwsr_enabled || 2053 !mqd_mgr->get_wave_state) { 2054 dqm_unlock(dqm); 2055 return -EINVAL; 2056 } 2057 2058 dqm_unlock(dqm); 2059 2060 /* 2061 * get_wave_state is outside the dqm lock to prevent circular locking 2062 * and the queue should be protected against destruction by the process 2063 * lock. 2064 */ 2065 return mqd_mgr->get_wave_state(mqd_mgr, q->mqd, ctl_stack, 2066 ctl_stack_used_size, save_area_used_size); 2067 } 2068 2069 static void get_queue_checkpoint_info(struct device_queue_manager *dqm, 2070 const struct queue *q, 2071 u32 *mqd_size, 2072 u32 *ctl_stack_size) 2073 { 2074 struct mqd_manager *mqd_mgr; 2075 enum KFD_MQD_TYPE mqd_type = 2076 get_mqd_type_from_queue_type(q->properties.type); 2077 2078 dqm_lock(dqm); 2079 mqd_mgr = dqm->mqd_mgrs[mqd_type]; 2080 *mqd_size = mqd_mgr->mqd_size; 2081 *ctl_stack_size = 0; 2082 2083 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE && mqd_mgr->get_checkpoint_info) 2084 mqd_mgr->get_checkpoint_info(mqd_mgr, q->mqd, ctl_stack_size); 2085 2086 dqm_unlock(dqm); 2087 } 2088 2089 static int checkpoint_mqd(struct device_queue_manager *dqm, 2090 const struct queue *q, 2091 void *mqd, 2092 void *ctl_stack) 2093 { 2094 struct mqd_manager *mqd_mgr; 2095 int r = 0; 2096 enum KFD_MQD_TYPE mqd_type = 2097 get_mqd_type_from_queue_type(q->properties.type); 2098 2099 dqm_lock(dqm); 2100 2101 if (q->properties.is_active || !q->device->cwsr_enabled) { 2102 r = -EINVAL; 2103 goto dqm_unlock; 2104 } 2105 2106 mqd_mgr = dqm->mqd_mgrs[mqd_type]; 2107 if (!mqd_mgr->checkpoint_mqd) { 2108 r = -EOPNOTSUPP; 2109 goto dqm_unlock; 2110 } 2111 2112 mqd_mgr->checkpoint_mqd(mqd_mgr, q->mqd, mqd, ctl_stack); 2113 2114 dqm_unlock: 2115 dqm_unlock(dqm); 2116 return r; 2117 } 2118 2119 static int process_termination_cpsch(struct device_queue_manager *dqm, 2120 struct qcm_process_device *qpd) 2121 { 2122 int retval; 2123 struct queue *q; 2124 struct kernel_queue *kq, *kq_next; 2125 struct mqd_manager *mqd_mgr; 2126 struct device_process_node *cur, *next_dpn; 2127 enum kfd_unmap_queues_filter filter = 2128 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES; 2129 bool found = false; 2130 2131 retval = 0; 2132 2133 dqm_lock(dqm); 2134 2135 /* Clean all kernel queues */ 2136 list_for_each_entry_safe(kq, kq_next, &qpd->priv_queue_list, list) { 2137 list_del(&kq->list); 2138 decrement_queue_count(dqm, qpd, kq->queue); 2139 qpd->is_debug = false; 2140 dqm->total_queue_count--; 2141 filter = KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES; 2142 } 2143 2144 /* Clear all user mode queues */ 2145 list_for_each_entry(q, &qpd->queues_list, list) { 2146 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) 2147 deallocate_sdma_queue(dqm, q); 2148 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 2149 deallocate_sdma_queue(dqm, q); 2150 2151 if (q->properties.is_active) { 2152 decrement_queue_count(dqm, qpd, q); 2153 2154 if (dqm->dev->shared_resources.enable_mes) { 2155 retval = remove_queue_mes(dqm, q, qpd); 2156 if (retval) 2157 pr_err("Failed to remove queue %d\n", 2158 q->properties.queue_id); 2159 } 2160 } 2161 2162 dqm->total_queue_count--; 2163 } 2164 2165 /* Unregister process */ 2166 list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) { 2167 if (qpd == cur->qpd) { 2168 list_del(&cur->list); 2169 kfree(cur); 2170 dqm->processes_count--; 2171 found = true; 2172 break; 2173 } 2174 } 2175 2176 if (!dqm->dev->shared_resources.enable_mes) 2177 retval = execute_queues_cpsch(dqm, filter, 0); 2178 2179 if ((!dqm->is_hws_hang) && (retval || qpd->reset_wavefronts)) { 2180 pr_warn("Resetting wave fronts (cpsch) on dev %p\n", dqm->dev); 2181 dbgdev_wave_reset_wavefronts(dqm->dev, qpd->pqm->process); 2182 qpd->reset_wavefronts = false; 2183 } 2184 2185 /* Lastly, free mqd resources. 2186 * Do free_mqd() after dqm_unlock to avoid circular locking. 2187 */ 2188 while (!list_empty(&qpd->queues_list)) { 2189 q = list_first_entry(&qpd->queues_list, struct queue, list); 2190 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 2191 q->properties.type)]; 2192 list_del(&q->list); 2193 qpd->queue_count--; 2194 dqm_unlock(dqm); 2195 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 2196 dqm_lock(dqm); 2197 } 2198 dqm_unlock(dqm); 2199 2200 /* Outside the DQM lock because under the DQM lock we can't do 2201 * reclaim or take other locks that others hold while reclaiming. 2202 */ 2203 if (found) 2204 kfd_dec_compute_active(dqm->dev); 2205 2206 return retval; 2207 } 2208 2209 static int init_mqd_managers(struct device_queue_manager *dqm) 2210 { 2211 int i, j; 2212 struct mqd_manager *mqd_mgr; 2213 2214 for (i = 0; i < KFD_MQD_TYPE_MAX; i++) { 2215 mqd_mgr = dqm->asic_ops.mqd_manager_init(i, dqm->dev); 2216 if (!mqd_mgr) { 2217 pr_err("mqd manager [%d] initialization failed\n", i); 2218 goto out_free; 2219 } 2220 dqm->mqd_mgrs[i] = mqd_mgr; 2221 } 2222 2223 return 0; 2224 2225 out_free: 2226 for (j = 0; j < i; j++) { 2227 kfree(dqm->mqd_mgrs[j]); 2228 dqm->mqd_mgrs[j] = NULL; 2229 } 2230 2231 return -ENOMEM; 2232 } 2233 2234 /* Allocate one hiq mqd (HWS) and all SDMA mqd in a continuous trunk*/ 2235 static int allocate_hiq_sdma_mqd(struct device_queue_manager *dqm) 2236 { 2237 int retval; 2238 struct kfd_dev *dev = dqm->dev; 2239 struct kfd_mem_obj *mem_obj = &dqm->hiq_sdma_mqd; 2240 uint32_t size = dqm->mqd_mgrs[KFD_MQD_TYPE_SDMA]->mqd_size * 2241 get_num_all_sdma_engines(dqm) * 2242 dev->device_info.num_sdma_queues_per_engine + 2243 dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]->mqd_size; 2244 2245 retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev, size, 2246 &(mem_obj->gtt_mem), &(mem_obj->gpu_addr), 2247 (void *)&(mem_obj->cpu_ptr), false); 2248 2249 return retval; 2250 } 2251 2252 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev) 2253 { 2254 struct device_queue_manager *dqm; 2255 2256 pr_debug("Loading device queue manager\n"); 2257 2258 dqm = kzalloc(sizeof(*dqm), GFP_KERNEL); 2259 if (!dqm) 2260 return NULL; 2261 2262 switch (dev->adev->asic_type) { 2263 /* HWS is not available on Hawaii. */ 2264 case CHIP_HAWAII: 2265 /* HWS depends on CWSR for timely dequeue. CWSR is not 2266 * available on Tonga. 2267 * 2268 * FIXME: This argument also applies to Kaveri. 2269 */ 2270 case CHIP_TONGA: 2271 dqm->sched_policy = KFD_SCHED_POLICY_NO_HWS; 2272 break; 2273 default: 2274 dqm->sched_policy = sched_policy; 2275 break; 2276 } 2277 2278 dqm->dev = dev; 2279 switch (dqm->sched_policy) { 2280 case KFD_SCHED_POLICY_HWS: 2281 case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION: 2282 /* initialize dqm for cp scheduling */ 2283 dqm->ops.create_queue = create_queue_cpsch; 2284 dqm->ops.initialize = initialize_cpsch; 2285 dqm->ops.start = start_cpsch; 2286 dqm->ops.stop = stop_cpsch; 2287 dqm->ops.pre_reset = pre_reset; 2288 dqm->ops.destroy_queue = destroy_queue_cpsch; 2289 dqm->ops.update_queue = update_queue; 2290 dqm->ops.register_process = register_process; 2291 dqm->ops.unregister_process = unregister_process; 2292 dqm->ops.uninitialize = uninitialize; 2293 dqm->ops.create_kernel_queue = create_kernel_queue_cpsch; 2294 dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch; 2295 dqm->ops.set_cache_memory_policy = set_cache_memory_policy; 2296 dqm->ops.process_termination = process_termination_cpsch; 2297 dqm->ops.evict_process_queues = evict_process_queues_cpsch; 2298 dqm->ops.restore_process_queues = restore_process_queues_cpsch; 2299 dqm->ops.get_wave_state = get_wave_state; 2300 dqm->ops.reset_queues = reset_queues_cpsch; 2301 dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info; 2302 dqm->ops.checkpoint_mqd = checkpoint_mqd; 2303 break; 2304 case KFD_SCHED_POLICY_NO_HWS: 2305 /* initialize dqm for no cp scheduling */ 2306 dqm->ops.start = start_nocpsch; 2307 dqm->ops.stop = stop_nocpsch; 2308 dqm->ops.pre_reset = pre_reset; 2309 dqm->ops.create_queue = create_queue_nocpsch; 2310 dqm->ops.destroy_queue = destroy_queue_nocpsch; 2311 dqm->ops.update_queue = update_queue; 2312 dqm->ops.register_process = register_process; 2313 dqm->ops.unregister_process = unregister_process; 2314 dqm->ops.initialize = initialize_nocpsch; 2315 dqm->ops.uninitialize = uninitialize; 2316 dqm->ops.set_cache_memory_policy = set_cache_memory_policy; 2317 dqm->ops.process_termination = process_termination_nocpsch; 2318 dqm->ops.evict_process_queues = evict_process_queues_nocpsch; 2319 dqm->ops.restore_process_queues = 2320 restore_process_queues_nocpsch; 2321 dqm->ops.get_wave_state = get_wave_state; 2322 dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info; 2323 dqm->ops.checkpoint_mqd = checkpoint_mqd; 2324 break; 2325 default: 2326 pr_err("Invalid scheduling policy %d\n", dqm->sched_policy); 2327 goto out_free; 2328 } 2329 2330 switch (dev->adev->asic_type) { 2331 case CHIP_CARRIZO: 2332 device_queue_manager_init_vi(&dqm->asic_ops); 2333 break; 2334 2335 case CHIP_KAVERI: 2336 device_queue_manager_init_cik(&dqm->asic_ops); 2337 break; 2338 2339 case CHIP_HAWAII: 2340 device_queue_manager_init_cik_hawaii(&dqm->asic_ops); 2341 break; 2342 2343 case CHIP_TONGA: 2344 case CHIP_FIJI: 2345 case CHIP_POLARIS10: 2346 case CHIP_POLARIS11: 2347 case CHIP_POLARIS12: 2348 case CHIP_VEGAM: 2349 device_queue_manager_init_vi_tonga(&dqm->asic_ops); 2350 break; 2351 2352 default: 2353 if (KFD_GC_VERSION(dev) >= IP_VERSION(11, 0, 0)) 2354 device_queue_manager_init_v11(&dqm->asic_ops); 2355 else if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1)) 2356 device_queue_manager_init_v10_navi10(&dqm->asic_ops); 2357 else if (KFD_GC_VERSION(dev) >= IP_VERSION(9, 0, 1)) 2358 device_queue_manager_init_v9(&dqm->asic_ops); 2359 else { 2360 WARN(1, "Unexpected ASIC family %u", 2361 dev->adev->asic_type); 2362 goto out_free; 2363 } 2364 } 2365 2366 if (init_mqd_managers(dqm)) 2367 goto out_free; 2368 2369 if (allocate_hiq_sdma_mqd(dqm)) { 2370 pr_err("Failed to allocate hiq sdma mqd trunk buffer\n"); 2371 goto out_free; 2372 } 2373 2374 if (!dqm->ops.initialize(dqm)) 2375 return dqm; 2376 2377 out_free: 2378 kfree(dqm); 2379 return NULL; 2380 } 2381 2382 static void deallocate_hiq_sdma_mqd(struct kfd_dev *dev, 2383 struct kfd_mem_obj *mqd) 2384 { 2385 WARN(!mqd, "No hiq sdma mqd trunk to free"); 2386 2387 amdgpu_amdkfd_free_gtt_mem(dev->adev, mqd->gtt_mem); 2388 } 2389 2390 void device_queue_manager_uninit(struct device_queue_manager *dqm) 2391 { 2392 dqm->ops.uninitialize(dqm); 2393 deallocate_hiq_sdma_mqd(dqm->dev, &dqm->hiq_sdma_mqd); 2394 kfree(dqm); 2395 } 2396 2397 int kfd_dqm_evict_pasid(struct device_queue_manager *dqm, u32 pasid) 2398 { 2399 struct kfd_process_device *pdd; 2400 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); 2401 int ret = 0; 2402 2403 if (!p) 2404 return -EINVAL; 2405 WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid); 2406 pdd = kfd_get_process_device_data(dqm->dev, p); 2407 if (pdd) 2408 ret = dqm->ops.evict_process_queues(dqm, &pdd->qpd); 2409 kfd_unref_process(p); 2410 2411 return ret; 2412 } 2413 2414 static void kfd_process_hw_exception(struct work_struct *work) 2415 { 2416 struct device_queue_manager *dqm = container_of(work, 2417 struct device_queue_manager, hw_exception_work); 2418 amdgpu_amdkfd_gpu_reset(dqm->dev->adev); 2419 } 2420 2421 #if defined(CONFIG_DEBUG_FS) 2422 2423 static void seq_reg_dump(struct seq_file *m, 2424 uint32_t (*dump)[2], uint32_t n_regs) 2425 { 2426 uint32_t i, count; 2427 2428 for (i = 0, count = 0; i < n_regs; i++) { 2429 if (count == 0 || 2430 dump[i-1][0] + sizeof(uint32_t) != dump[i][0]) { 2431 seq_printf(m, "%s %08x: %08x", 2432 i ? "\n" : "", 2433 dump[i][0], dump[i][1]); 2434 count = 7; 2435 } else { 2436 seq_printf(m, " %08x", dump[i][1]); 2437 count--; 2438 } 2439 } 2440 2441 seq_puts(m, "\n"); 2442 } 2443 2444 int dqm_debugfs_hqds(struct seq_file *m, void *data) 2445 { 2446 struct device_queue_manager *dqm = data; 2447 uint32_t (*dump)[2], n_regs; 2448 int pipe, queue; 2449 int r = 0; 2450 2451 if (!dqm->sched_running) { 2452 seq_puts(m, " Device is stopped\n"); 2453 return 0; 2454 } 2455 2456 r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev, 2457 KFD_CIK_HIQ_PIPE, KFD_CIK_HIQ_QUEUE, 2458 &dump, &n_regs); 2459 if (!r) { 2460 seq_printf(m, " HIQ on MEC %d Pipe %d Queue %d\n", 2461 KFD_CIK_HIQ_PIPE/get_pipes_per_mec(dqm)+1, 2462 KFD_CIK_HIQ_PIPE%get_pipes_per_mec(dqm), 2463 KFD_CIK_HIQ_QUEUE); 2464 seq_reg_dump(m, dump, n_regs); 2465 2466 kfree(dump); 2467 } 2468 2469 for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) { 2470 int pipe_offset = pipe * get_queues_per_pipe(dqm); 2471 2472 for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) { 2473 if (!test_bit(pipe_offset + queue, 2474 dqm->dev->shared_resources.cp_queue_bitmap)) 2475 continue; 2476 2477 r = dqm->dev->kfd2kgd->hqd_dump( 2478 dqm->dev->adev, pipe, queue, &dump, &n_regs); 2479 if (r) 2480 break; 2481 2482 seq_printf(m, " CP Pipe %d, Queue %d\n", 2483 pipe, queue); 2484 seq_reg_dump(m, dump, n_regs); 2485 2486 kfree(dump); 2487 } 2488 } 2489 2490 for (pipe = 0; pipe < get_num_all_sdma_engines(dqm); pipe++) { 2491 for (queue = 0; 2492 queue < dqm->dev->device_info.num_sdma_queues_per_engine; 2493 queue++) { 2494 r = dqm->dev->kfd2kgd->hqd_sdma_dump( 2495 dqm->dev->adev, pipe, queue, &dump, &n_regs); 2496 if (r) 2497 break; 2498 2499 seq_printf(m, " SDMA Engine %d, RLC %d\n", 2500 pipe, queue); 2501 seq_reg_dump(m, dump, n_regs); 2502 2503 kfree(dump); 2504 } 2505 } 2506 2507 return r; 2508 } 2509 2510 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm) 2511 { 2512 int r = 0; 2513 2514 dqm_lock(dqm); 2515 r = pm_debugfs_hang_hws(&dqm->packet_mgr); 2516 if (r) { 2517 dqm_unlock(dqm); 2518 return r; 2519 } 2520 dqm->active_runlist = true; 2521 r = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0); 2522 dqm_unlock(dqm); 2523 2524 return r; 2525 } 2526 2527 #endif 2528