xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_device_queue_manager.c (revision a3a02a52bcfcbcc4a637d4b68bf1bc391c9fad02)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/ratelimit.h>
26 #include <linux/printk.h>
27 #include <linux/slab.h>
28 #include <linux/list.h>
29 #include <linux/types.h>
30 #include <linux/bitops.h>
31 #include <linux/sched.h>
32 #include "kfd_priv.h"
33 #include "kfd_device_queue_manager.h"
34 #include "kfd_mqd_manager.h"
35 #include "cik_regs.h"
36 #include "kfd_kernel_queue.h"
37 #include "amdgpu_amdkfd.h"
38 #include "amdgpu_reset.h"
39 #include "mes_v11_api_def.h"
40 #include "kfd_debug.h"
41 
42 /* Size of the per-pipe EOP queue */
43 #define CIK_HPD_EOP_BYTES_LOG2 11
44 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
45 
46 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
47 				  u32 pasid, unsigned int vmid);
48 
49 static int execute_queues_cpsch(struct device_queue_manager *dqm,
50 				enum kfd_unmap_queues_filter filter,
51 				uint32_t filter_param,
52 				uint32_t grace_period);
53 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
54 				enum kfd_unmap_queues_filter filter,
55 				uint32_t filter_param,
56 				uint32_t grace_period,
57 				bool reset);
58 
59 static int map_queues_cpsch(struct device_queue_manager *dqm);
60 
61 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
62 				struct queue *q);
63 
64 static inline void deallocate_hqd(struct device_queue_manager *dqm,
65 				struct queue *q);
66 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q);
67 static int allocate_sdma_queue(struct device_queue_manager *dqm,
68 				struct queue *q, const uint32_t *restore_sdma_id);
69 static void kfd_process_hw_exception(struct work_struct *work);
70 
71 static inline
72 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
73 {
74 	if (type == KFD_QUEUE_TYPE_SDMA || type == KFD_QUEUE_TYPE_SDMA_XGMI)
75 		return KFD_MQD_TYPE_SDMA;
76 	return KFD_MQD_TYPE_CP;
77 }
78 
79 static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe)
80 {
81 	int i;
82 	int pipe_offset = (mec * dqm->dev->kfd->shared_resources.num_pipe_per_mec
83 		+ pipe) * dqm->dev->kfd->shared_resources.num_queue_per_pipe;
84 
85 	/* queue is available for KFD usage if bit is 1 */
86 	for (i = 0; i <  dqm->dev->kfd->shared_resources.num_queue_per_pipe; ++i)
87 		if (test_bit(pipe_offset + i,
88 			      dqm->dev->kfd->shared_resources.cp_queue_bitmap))
89 			return true;
90 	return false;
91 }
92 
93 unsigned int get_cp_queues_num(struct device_queue_manager *dqm)
94 {
95 	return bitmap_weight(dqm->dev->kfd->shared_resources.cp_queue_bitmap,
96 				AMDGPU_MAX_QUEUES);
97 }
98 
99 unsigned int get_queues_per_pipe(struct device_queue_manager *dqm)
100 {
101 	return dqm->dev->kfd->shared_resources.num_queue_per_pipe;
102 }
103 
104 unsigned int get_pipes_per_mec(struct device_queue_manager *dqm)
105 {
106 	return dqm->dev->kfd->shared_resources.num_pipe_per_mec;
107 }
108 
109 static unsigned int get_num_all_sdma_engines(struct device_queue_manager *dqm)
110 {
111 	return kfd_get_num_sdma_engines(dqm->dev) +
112 		kfd_get_num_xgmi_sdma_engines(dqm->dev);
113 }
114 
115 unsigned int get_num_sdma_queues(struct device_queue_manager *dqm)
116 {
117 	return kfd_get_num_sdma_engines(dqm->dev) *
118 		dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
119 }
120 
121 unsigned int get_num_xgmi_sdma_queues(struct device_queue_manager *dqm)
122 {
123 	return kfd_get_num_xgmi_sdma_engines(dqm->dev) *
124 		dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
125 }
126 
127 static void init_sdma_bitmaps(struct device_queue_manager *dqm)
128 {
129 	bitmap_zero(dqm->sdma_bitmap, KFD_MAX_SDMA_QUEUES);
130 	bitmap_set(dqm->sdma_bitmap, 0, get_num_sdma_queues(dqm));
131 
132 	bitmap_zero(dqm->xgmi_sdma_bitmap, KFD_MAX_SDMA_QUEUES);
133 	bitmap_set(dqm->xgmi_sdma_bitmap, 0, get_num_xgmi_sdma_queues(dqm));
134 
135 	/* Mask out the reserved queues */
136 	bitmap_andnot(dqm->sdma_bitmap, dqm->sdma_bitmap,
137 		      dqm->dev->kfd->device_info.reserved_sdma_queues_bitmap,
138 		      KFD_MAX_SDMA_QUEUES);
139 }
140 
141 void program_sh_mem_settings(struct device_queue_manager *dqm,
142 					struct qcm_process_device *qpd)
143 {
144 	uint32_t xcc_mask = dqm->dev->xcc_mask;
145 	int xcc_id;
146 
147 	for_each_inst(xcc_id, xcc_mask)
148 		dqm->dev->kfd2kgd->program_sh_mem_settings(
149 			dqm->dev->adev, qpd->vmid, qpd->sh_mem_config,
150 			qpd->sh_mem_ape1_base, qpd->sh_mem_ape1_limit,
151 			qpd->sh_mem_bases, xcc_id);
152 }
153 
154 static void kfd_hws_hang(struct device_queue_manager *dqm)
155 {
156 	/*
157 	 * Issue a GPU reset if HWS is unresponsive
158 	 */
159 	schedule_work(&dqm->hw_exception_work);
160 }
161 
162 static int convert_to_mes_queue_type(int queue_type)
163 {
164 	int mes_queue_type;
165 
166 	switch (queue_type) {
167 	case KFD_QUEUE_TYPE_COMPUTE:
168 		mes_queue_type = MES_QUEUE_TYPE_COMPUTE;
169 		break;
170 	case KFD_QUEUE_TYPE_SDMA:
171 		mes_queue_type = MES_QUEUE_TYPE_SDMA;
172 		break;
173 	default:
174 		WARN(1, "Invalid queue type %d", queue_type);
175 		mes_queue_type = -EINVAL;
176 		break;
177 	}
178 
179 	return mes_queue_type;
180 }
181 
182 static int add_queue_mes(struct device_queue_manager *dqm, struct queue *q,
183 			 struct qcm_process_device *qpd)
184 {
185 	struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
186 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
187 	struct mes_add_queue_input queue_input;
188 	int r, queue_type;
189 	uint64_t wptr_addr_off;
190 
191 	if (!down_read_trylock(&adev->reset_domain->sem))
192 		return -EIO;
193 
194 	memset(&queue_input, 0x0, sizeof(struct mes_add_queue_input));
195 	queue_input.process_id = qpd->pqm->process->pasid;
196 	queue_input.page_table_base_addr =  qpd->page_table_base;
197 	queue_input.process_va_start = 0;
198 	queue_input.process_va_end = adev->vm_manager.max_pfn - 1;
199 	/* MES unit for quantum is 100ns */
200 	queue_input.process_quantum = KFD_MES_PROCESS_QUANTUM;  /* Equivalent to 10ms. */
201 	queue_input.process_context_addr = pdd->proc_ctx_gpu_addr;
202 	queue_input.gang_quantum = KFD_MES_GANG_QUANTUM; /* Equivalent to 1ms */
203 	queue_input.gang_context_addr = q->gang_ctx_gpu_addr;
204 	queue_input.inprocess_gang_priority = q->properties.priority;
205 	queue_input.gang_global_priority_level =
206 					AMDGPU_MES_PRIORITY_LEVEL_NORMAL;
207 	queue_input.doorbell_offset = q->properties.doorbell_off;
208 	queue_input.mqd_addr = q->gart_mqd_addr;
209 	queue_input.wptr_addr = (uint64_t)q->properties.write_ptr;
210 
211 	if (q->wptr_bo) {
212 		wptr_addr_off = (uint64_t)q->properties.write_ptr & (PAGE_SIZE - 1);
213 		queue_input.wptr_mc_addr = amdgpu_bo_gpu_offset(q->wptr_bo) + wptr_addr_off;
214 	}
215 
216 	queue_input.is_kfd_process = 1;
217 	queue_input.is_aql_queue = (q->properties.format == KFD_QUEUE_FORMAT_AQL);
218 	queue_input.queue_size = q->properties.queue_size >> 2;
219 
220 	queue_input.paging = false;
221 	queue_input.tba_addr = qpd->tba_addr;
222 	queue_input.tma_addr = qpd->tma_addr;
223 	queue_input.trap_en = !kfd_dbg_has_cwsr_workaround(q->device);
224 	queue_input.skip_process_ctx_clear =
225 		qpd->pqm->process->runtime_info.runtime_state == DEBUG_RUNTIME_STATE_ENABLED &&
226 						(qpd->pqm->process->debug_trap_enabled ||
227 						 kfd_dbg_has_ttmps_always_setup(q->device));
228 
229 	queue_type = convert_to_mes_queue_type(q->properties.type);
230 	if (queue_type < 0) {
231 		dev_err(adev->dev, "Queue type not supported with MES, queue:%d\n",
232 			q->properties.type);
233 		up_read(&adev->reset_domain->sem);
234 		return -EINVAL;
235 	}
236 	queue_input.queue_type = (uint32_t)queue_type;
237 
238 	queue_input.exclusively_scheduled = q->properties.is_gws;
239 
240 	amdgpu_mes_lock(&adev->mes);
241 	r = adev->mes.funcs->add_hw_queue(&adev->mes, &queue_input);
242 	amdgpu_mes_unlock(&adev->mes);
243 	up_read(&adev->reset_domain->sem);
244 	if (r) {
245 		dev_err(adev->dev, "failed to add hardware queue to MES, doorbell=0x%x\n",
246 			q->properties.doorbell_off);
247 		dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
248 		kfd_hws_hang(dqm);
249 	}
250 
251 	return r;
252 }
253 
254 static int remove_queue_mes(struct device_queue_manager *dqm, struct queue *q,
255 			struct qcm_process_device *qpd)
256 {
257 	struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
258 	int r;
259 	struct mes_remove_queue_input queue_input;
260 
261 	if (!down_read_trylock(&adev->reset_domain->sem))
262 		return -EIO;
263 
264 	memset(&queue_input, 0x0, sizeof(struct mes_remove_queue_input));
265 	queue_input.doorbell_offset = q->properties.doorbell_off;
266 	queue_input.gang_context_addr = q->gang_ctx_gpu_addr;
267 
268 	amdgpu_mes_lock(&adev->mes);
269 	r = adev->mes.funcs->remove_hw_queue(&adev->mes, &queue_input);
270 	amdgpu_mes_unlock(&adev->mes);
271 	up_read(&adev->reset_domain->sem);
272 
273 	if (r) {
274 		dev_err(adev->dev, "failed to remove hardware queue from MES, doorbell=0x%x\n",
275 			q->properties.doorbell_off);
276 		dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
277 		kfd_hws_hang(dqm);
278 	}
279 
280 	return r;
281 }
282 
283 static int remove_all_queues_mes(struct device_queue_manager *dqm)
284 {
285 	struct device_process_node *cur;
286 	struct device *dev = dqm->dev->adev->dev;
287 	struct qcm_process_device *qpd;
288 	struct queue *q;
289 	int retval = 0;
290 
291 	list_for_each_entry(cur, &dqm->queues, list) {
292 		qpd = cur->qpd;
293 		list_for_each_entry(q, &qpd->queues_list, list) {
294 			if (q->properties.is_active) {
295 				retval = remove_queue_mes(dqm, q, qpd);
296 				if (retval) {
297 					dev_err(dev, "%s: Failed to remove queue %d for dev %d",
298 						__func__,
299 						q->properties.queue_id,
300 						dqm->dev->id);
301 					return retval;
302 				}
303 			}
304 		}
305 	}
306 
307 	return retval;
308 }
309 
310 static void increment_queue_count(struct device_queue_manager *dqm,
311 				  struct qcm_process_device *qpd,
312 				  struct queue *q)
313 {
314 	dqm->active_queue_count++;
315 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
316 	    q->properties.type == KFD_QUEUE_TYPE_DIQ)
317 		dqm->active_cp_queue_count++;
318 
319 	if (q->properties.is_gws) {
320 		dqm->gws_queue_count++;
321 		qpd->mapped_gws_queue = true;
322 	}
323 }
324 
325 static void decrement_queue_count(struct device_queue_manager *dqm,
326 				  struct qcm_process_device *qpd,
327 				  struct queue *q)
328 {
329 	dqm->active_queue_count--;
330 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
331 	    q->properties.type == KFD_QUEUE_TYPE_DIQ)
332 		dqm->active_cp_queue_count--;
333 
334 	if (q->properties.is_gws) {
335 		dqm->gws_queue_count--;
336 		qpd->mapped_gws_queue = false;
337 	}
338 }
339 
340 /*
341  * Allocate a doorbell ID to this queue.
342  * If doorbell_id is passed in, make sure requested ID is valid then allocate it.
343  */
344 static int allocate_doorbell(struct qcm_process_device *qpd,
345 			     struct queue *q,
346 			     uint32_t const *restore_id)
347 {
348 	struct kfd_node *dev = qpd->dqm->dev;
349 
350 	if (!KFD_IS_SOC15(dev)) {
351 		/* On pre-SOC15 chips we need to use the queue ID to
352 		 * preserve the user mode ABI.
353 		 */
354 
355 		if (restore_id && *restore_id != q->properties.queue_id)
356 			return -EINVAL;
357 
358 		q->doorbell_id = q->properties.queue_id;
359 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
360 			q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
361 		/* For SDMA queues on SOC15 with 8-byte doorbell, use static
362 		 * doorbell assignments based on the engine and queue id.
363 		 * The doobell index distance between RLC (2*i) and (2*i+1)
364 		 * for a SDMA engine is 512.
365 		 */
366 
367 		uint32_t *idx_offset = dev->kfd->shared_resources.sdma_doorbell_idx;
368 
369 		/*
370 		 * q->properties.sdma_engine_id corresponds to the virtual
371 		 * sdma engine number. However, for doorbell allocation,
372 		 * we need the physical sdma engine id in order to get the
373 		 * correct doorbell offset.
374 		 */
375 		uint32_t valid_id = idx_offset[qpd->dqm->dev->node_id *
376 					       get_num_all_sdma_engines(qpd->dqm) +
377 					       q->properties.sdma_engine_id]
378 						+ (q->properties.sdma_queue_id & 1)
379 						* KFD_QUEUE_DOORBELL_MIRROR_OFFSET
380 						+ (q->properties.sdma_queue_id >> 1);
381 
382 		if (restore_id && *restore_id != valid_id)
383 			return -EINVAL;
384 		q->doorbell_id = valid_id;
385 	} else {
386 		/* For CP queues on SOC15 */
387 		if (restore_id) {
388 			/* make sure that ID is free  */
389 			if (__test_and_set_bit(*restore_id, qpd->doorbell_bitmap))
390 				return -EINVAL;
391 
392 			q->doorbell_id = *restore_id;
393 		} else {
394 			/* or reserve a free doorbell ID */
395 			unsigned int found;
396 
397 			found = find_first_zero_bit(qpd->doorbell_bitmap,
398 						    KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
399 			if (found >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) {
400 				pr_debug("No doorbells available");
401 				return -EBUSY;
402 			}
403 			set_bit(found, qpd->doorbell_bitmap);
404 			q->doorbell_id = found;
405 		}
406 	}
407 
408 	q->properties.doorbell_off = amdgpu_doorbell_index_on_bar(dev->adev,
409 								  qpd->proc_doorbells,
410 								  q->doorbell_id,
411 								  dev->kfd->device_info.doorbell_size);
412 	return 0;
413 }
414 
415 static void deallocate_doorbell(struct qcm_process_device *qpd,
416 				struct queue *q)
417 {
418 	unsigned int old;
419 	struct kfd_node *dev = qpd->dqm->dev;
420 
421 	if (!KFD_IS_SOC15(dev) ||
422 	    q->properties.type == KFD_QUEUE_TYPE_SDMA ||
423 	    q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
424 		return;
425 
426 	old = test_and_clear_bit(q->doorbell_id, qpd->doorbell_bitmap);
427 	WARN_ON(!old);
428 }
429 
430 static void program_trap_handler_settings(struct device_queue_manager *dqm,
431 				struct qcm_process_device *qpd)
432 {
433 	uint32_t xcc_mask = dqm->dev->xcc_mask;
434 	int xcc_id;
435 
436 	if (dqm->dev->kfd2kgd->program_trap_handler_settings)
437 		for_each_inst(xcc_id, xcc_mask)
438 			dqm->dev->kfd2kgd->program_trap_handler_settings(
439 				dqm->dev->adev, qpd->vmid, qpd->tba_addr,
440 				qpd->tma_addr, xcc_id);
441 }
442 
443 static int allocate_vmid(struct device_queue_manager *dqm,
444 			struct qcm_process_device *qpd,
445 			struct queue *q)
446 {
447 	struct device *dev = dqm->dev->adev->dev;
448 	int allocated_vmid = -1, i;
449 
450 	for (i = dqm->dev->vm_info.first_vmid_kfd;
451 			i <= dqm->dev->vm_info.last_vmid_kfd; i++) {
452 		if (!dqm->vmid_pasid[i]) {
453 			allocated_vmid = i;
454 			break;
455 		}
456 	}
457 
458 	if (allocated_vmid < 0) {
459 		dev_err(dev, "no more vmid to allocate\n");
460 		return -ENOSPC;
461 	}
462 
463 	pr_debug("vmid allocated: %d\n", allocated_vmid);
464 
465 	dqm->vmid_pasid[allocated_vmid] = q->process->pasid;
466 
467 	set_pasid_vmid_mapping(dqm, q->process->pasid, allocated_vmid);
468 
469 	qpd->vmid = allocated_vmid;
470 	q->properties.vmid = allocated_vmid;
471 
472 	program_sh_mem_settings(dqm, qpd);
473 
474 	if (KFD_IS_SOC15(dqm->dev) && dqm->dev->kfd->cwsr_enabled)
475 		program_trap_handler_settings(dqm, qpd);
476 
477 	/* qpd->page_table_base is set earlier when register_process()
478 	 * is called, i.e. when the first queue is created.
479 	 */
480 	dqm->dev->kfd2kgd->set_vm_context_page_table_base(dqm->dev->adev,
481 			qpd->vmid,
482 			qpd->page_table_base);
483 	/* invalidate the VM context after pasid and vmid mapping is set up */
484 	kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY);
485 
486 	if (dqm->dev->kfd2kgd->set_scratch_backing_va)
487 		dqm->dev->kfd2kgd->set_scratch_backing_va(dqm->dev->adev,
488 				qpd->sh_hidden_private_base, qpd->vmid);
489 
490 	return 0;
491 }
492 
493 static int flush_texture_cache_nocpsch(struct kfd_node *kdev,
494 				struct qcm_process_device *qpd)
495 {
496 	const struct packet_manager_funcs *pmf = qpd->dqm->packet_mgr.pmf;
497 	int ret;
498 
499 	if (!qpd->ib_kaddr)
500 		return -ENOMEM;
501 
502 	ret = pmf->release_mem(qpd->ib_base, (uint32_t *)qpd->ib_kaddr);
503 	if (ret)
504 		return ret;
505 
506 	return amdgpu_amdkfd_submit_ib(kdev->adev, KGD_ENGINE_MEC1, qpd->vmid,
507 				qpd->ib_base, (uint32_t *)qpd->ib_kaddr,
508 				pmf->release_mem_size / sizeof(uint32_t));
509 }
510 
511 static void deallocate_vmid(struct device_queue_manager *dqm,
512 				struct qcm_process_device *qpd,
513 				struct queue *q)
514 {
515 	struct device *dev = dqm->dev->adev->dev;
516 
517 	/* On GFX v7, CP doesn't flush TC at dequeue */
518 	if (q->device->adev->asic_type == CHIP_HAWAII)
519 		if (flush_texture_cache_nocpsch(q->device, qpd))
520 			dev_err(dev, "Failed to flush TC\n");
521 
522 	kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY);
523 
524 	/* Release the vmid mapping */
525 	set_pasid_vmid_mapping(dqm, 0, qpd->vmid);
526 	dqm->vmid_pasid[qpd->vmid] = 0;
527 
528 	qpd->vmid = 0;
529 	q->properties.vmid = 0;
530 }
531 
532 static int create_queue_nocpsch(struct device_queue_manager *dqm,
533 				struct queue *q,
534 				struct qcm_process_device *qpd,
535 				const struct kfd_criu_queue_priv_data *qd,
536 				const void *restore_mqd, const void *restore_ctl_stack)
537 {
538 	struct mqd_manager *mqd_mgr;
539 	int retval;
540 
541 	dqm_lock(dqm);
542 
543 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
544 		pr_warn("Can't create new usermode queue because %d queues were already created\n",
545 				dqm->total_queue_count);
546 		retval = -EPERM;
547 		goto out_unlock;
548 	}
549 
550 	if (list_empty(&qpd->queues_list)) {
551 		retval = allocate_vmid(dqm, qpd, q);
552 		if (retval)
553 			goto out_unlock;
554 	}
555 	q->properties.vmid = qpd->vmid;
556 	/*
557 	 * Eviction state logic: mark all queues as evicted, even ones
558 	 * not currently active. Restoring inactive queues later only
559 	 * updates the is_evicted flag but is a no-op otherwise.
560 	 */
561 	q->properties.is_evicted = !!qpd->evicted;
562 
563 	q->properties.tba_addr = qpd->tba_addr;
564 	q->properties.tma_addr = qpd->tma_addr;
565 
566 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
567 			q->properties.type)];
568 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
569 		retval = allocate_hqd(dqm, q);
570 		if (retval)
571 			goto deallocate_vmid;
572 		pr_debug("Loading mqd to hqd on pipe %d, queue %d\n",
573 			q->pipe, q->queue);
574 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
575 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
576 		retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL);
577 		if (retval)
578 			goto deallocate_vmid;
579 		dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
580 	}
581 
582 	retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL);
583 	if (retval)
584 		goto out_deallocate_hqd;
585 
586 	/* Temporarily release dqm lock to avoid a circular lock dependency */
587 	dqm_unlock(dqm);
588 	q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
589 	dqm_lock(dqm);
590 
591 	if (!q->mqd_mem_obj) {
592 		retval = -ENOMEM;
593 		goto out_deallocate_doorbell;
594 	}
595 
596 	if (qd)
597 		mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr,
598 				     &q->properties, restore_mqd, restore_ctl_stack,
599 				     qd->ctl_stack_size);
600 	else
601 		mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
602 					&q->gart_mqd_addr, &q->properties);
603 
604 	if (q->properties.is_active) {
605 		if (!dqm->sched_running) {
606 			WARN_ONCE(1, "Load non-HWS mqd while stopped\n");
607 			goto add_queue_to_list;
608 		}
609 
610 		if (WARN(q->process->mm != current->mm,
611 					"should only run in user thread"))
612 			retval = -EFAULT;
613 		else
614 			retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
615 					q->queue, &q->properties, current->mm);
616 		if (retval)
617 			goto out_free_mqd;
618 	}
619 
620 add_queue_to_list:
621 	list_add(&q->list, &qpd->queues_list);
622 	qpd->queue_count++;
623 	if (q->properties.is_active)
624 		increment_queue_count(dqm, qpd, q);
625 
626 	/*
627 	 * Unconditionally increment this counter, regardless of the queue's
628 	 * type or whether the queue is active.
629 	 */
630 	dqm->total_queue_count++;
631 	pr_debug("Total of %d queues are accountable so far\n",
632 			dqm->total_queue_count);
633 	goto out_unlock;
634 
635 out_free_mqd:
636 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
637 out_deallocate_doorbell:
638 	deallocate_doorbell(qpd, q);
639 out_deallocate_hqd:
640 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
641 		deallocate_hqd(dqm, q);
642 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
643 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
644 		deallocate_sdma_queue(dqm, q);
645 deallocate_vmid:
646 	if (list_empty(&qpd->queues_list))
647 		deallocate_vmid(dqm, qpd, q);
648 out_unlock:
649 	dqm_unlock(dqm);
650 	return retval;
651 }
652 
653 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
654 {
655 	bool set;
656 	int pipe, bit, i;
657 
658 	set = false;
659 
660 	for (pipe = dqm->next_pipe_to_allocate, i = 0;
661 			i < get_pipes_per_mec(dqm);
662 			pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) {
663 
664 		if (!is_pipe_enabled(dqm, 0, pipe))
665 			continue;
666 
667 		if (dqm->allocated_queues[pipe] != 0) {
668 			bit = ffs(dqm->allocated_queues[pipe]) - 1;
669 			dqm->allocated_queues[pipe] &= ~(1 << bit);
670 			q->pipe = pipe;
671 			q->queue = bit;
672 			set = true;
673 			break;
674 		}
675 	}
676 
677 	if (!set)
678 		return -EBUSY;
679 
680 	pr_debug("hqd slot - pipe %d, queue %d\n", q->pipe, q->queue);
681 	/* horizontal hqd allocation */
682 	dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm);
683 
684 	return 0;
685 }
686 
687 static inline void deallocate_hqd(struct device_queue_manager *dqm,
688 				struct queue *q)
689 {
690 	dqm->allocated_queues[q->pipe] |= (1 << q->queue);
691 }
692 
693 #define SQ_IND_CMD_CMD_KILL		0x00000003
694 #define SQ_IND_CMD_MODE_BROADCAST	0x00000001
695 
696 static int dbgdev_wave_reset_wavefronts(struct kfd_node *dev, struct kfd_process *p)
697 {
698 	int status = 0;
699 	unsigned int vmid;
700 	uint16_t queried_pasid;
701 	union SQ_CMD_BITS reg_sq_cmd;
702 	union GRBM_GFX_INDEX_BITS reg_gfx_index;
703 	struct kfd_process_device *pdd;
704 	int first_vmid_to_scan = dev->vm_info.first_vmid_kfd;
705 	int last_vmid_to_scan = dev->vm_info.last_vmid_kfd;
706 	uint32_t xcc_mask = dev->xcc_mask;
707 	int xcc_id;
708 
709 	reg_sq_cmd.u32All = 0;
710 	reg_gfx_index.u32All = 0;
711 
712 	pr_debug("Killing all process wavefronts\n");
713 
714 	if (!dev->kfd2kgd->get_atc_vmid_pasid_mapping_info) {
715 		dev_err(dev->adev->dev, "no vmid pasid mapping supported\n");
716 		return -EOPNOTSUPP;
717 	}
718 
719 	/* Scan all registers in the range ATC_VMID8_PASID_MAPPING ..
720 	 * ATC_VMID15_PASID_MAPPING
721 	 * to check which VMID the current process is mapped to.
722 	 */
723 
724 	for (vmid = first_vmid_to_scan; vmid <= last_vmid_to_scan; vmid++) {
725 		status = dev->kfd2kgd->get_atc_vmid_pasid_mapping_info
726 				(dev->adev, vmid, &queried_pasid);
727 
728 		if (status && queried_pasid == p->pasid) {
729 			pr_debug("Killing wave fronts of vmid %d and pasid 0x%x\n",
730 					vmid, p->pasid);
731 			break;
732 		}
733 	}
734 
735 	if (vmid > last_vmid_to_scan) {
736 		dev_err(dev->adev->dev, "Didn't find vmid for pasid 0x%x\n", p->pasid);
737 		return -EFAULT;
738 	}
739 
740 	/* taking the VMID for that process on the safe way using PDD */
741 	pdd = kfd_get_process_device_data(dev, p);
742 	if (!pdd)
743 		return -EFAULT;
744 
745 	reg_gfx_index.bits.sh_broadcast_writes = 1;
746 	reg_gfx_index.bits.se_broadcast_writes = 1;
747 	reg_gfx_index.bits.instance_broadcast_writes = 1;
748 	reg_sq_cmd.bits.mode = SQ_IND_CMD_MODE_BROADCAST;
749 	reg_sq_cmd.bits.cmd = SQ_IND_CMD_CMD_KILL;
750 	reg_sq_cmd.bits.vm_id = vmid;
751 
752 	for_each_inst(xcc_id, xcc_mask)
753 		dev->kfd2kgd->wave_control_execute(
754 			dev->adev, reg_gfx_index.u32All,
755 			reg_sq_cmd.u32All, xcc_id);
756 
757 	return 0;
758 }
759 
760 /* Access to DQM has to be locked before calling destroy_queue_nocpsch_locked
761  * to avoid asynchronized access
762  */
763 static int destroy_queue_nocpsch_locked(struct device_queue_manager *dqm,
764 				struct qcm_process_device *qpd,
765 				struct queue *q)
766 {
767 	int retval;
768 	struct mqd_manager *mqd_mgr;
769 
770 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
771 			q->properties.type)];
772 
773 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
774 		deallocate_hqd(dqm, q);
775 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
776 		deallocate_sdma_queue(dqm, q);
777 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
778 		deallocate_sdma_queue(dqm, q);
779 	else {
780 		pr_debug("q->properties.type %d is invalid\n",
781 				q->properties.type);
782 		return -EINVAL;
783 	}
784 	dqm->total_queue_count--;
785 
786 	deallocate_doorbell(qpd, q);
787 
788 	if (!dqm->sched_running) {
789 		WARN_ONCE(1, "Destroy non-HWS queue while stopped\n");
790 		return 0;
791 	}
792 
793 	retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
794 				KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
795 				KFD_UNMAP_LATENCY_MS,
796 				q->pipe, q->queue);
797 	if (retval == -ETIME)
798 		qpd->reset_wavefronts = true;
799 
800 	list_del(&q->list);
801 	if (list_empty(&qpd->queues_list)) {
802 		if (qpd->reset_wavefronts) {
803 			pr_warn("Resetting wave fronts (nocpsch) on dev %p\n",
804 					dqm->dev);
805 			/* dbgdev_wave_reset_wavefronts has to be called before
806 			 * deallocate_vmid(), i.e. when vmid is still in use.
807 			 */
808 			dbgdev_wave_reset_wavefronts(dqm->dev,
809 					qpd->pqm->process);
810 			qpd->reset_wavefronts = false;
811 		}
812 
813 		deallocate_vmid(dqm, qpd, q);
814 	}
815 	qpd->queue_count--;
816 	if (q->properties.is_active)
817 		decrement_queue_count(dqm, qpd, q);
818 
819 	return retval;
820 }
821 
822 static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
823 				struct qcm_process_device *qpd,
824 				struct queue *q)
825 {
826 	int retval;
827 	uint64_t sdma_val = 0;
828 	struct device *dev = dqm->dev->adev->dev;
829 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
830 	struct mqd_manager *mqd_mgr =
831 		dqm->mqd_mgrs[get_mqd_type_from_queue_type(q->properties.type)];
832 
833 	/* Get the SDMA queue stats */
834 	if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
835 	    (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
836 		retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr,
837 							&sdma_val);
838 		if (retval)
839 			dev_err(dev, "Failed to read SDMA queue counter for queue: %d\n",
840 				q->properties.queue_id);
841 	}
842 
843 	dqm_lock(dqm);
844 	retval = destroy_queue_nocpsch_locked(dqm, qpd, q);
845 	if (!retval)
846 		pdd->sdma_past_activity_counter += sdma_val;
847 	dqm_unlock(dqm);
848 
849 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
850 
851 	return retval;
852 }
853 
854 static int update_queue(struct device_queue_manager *dqm, struct queue *q,
855 			struct mqd_update_info *minfo)
856 {
857 	int retval = 0;
858 	struct device *dev = dqm->dev->adev->dev;
859 	struct mqd_manager *mqd_mgr;
860 	struct kfd_process_device *pdd;
861 	bool prev_active = false;
862 
863 	dqm_lock(dqm);
864 	pdd = kfd_get_process_device_data(q->device, q->process);
865 	if (!pdd) {
866 		retval = -ENODEV;
867 		goto out_unlock;
868 	}
869 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
870 			q->properties.type)];
871 
872 	/* Save previous activity state for counters */
873 	prev_active = q->properties.is_active;
874 
875 	/* Make sure the queue is unmapped before updating the MQD */
876 	if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
877 		if (!dqm->dev->kfd->shared_resources.enable_mes)
878 			retval = unmap_queues_cpsch(dqm,
879 						    KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD, false);
880 		else if (prev_active)
881 			retval = remove_queue_mes(dqm, q, &pdd->qpd);
882 
883 		if (retval) {
884 			dev_err(dev, "unmap queue failed\n");
885 			goto out_unlock;
886 		}
887 	} else if (prev_active &&
888 		   (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
889 		    q->properties.type == KFD_QUEUE_TYPE_SDMA ||
890 		    q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
891 
892 		if (!dqm->sched_running) {
893 			WARN_ONCE(1, "Update non-HWS queue while stopped\n");
894 			goto out_unlock;
895 		}
896 
897 		retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
898 				(dqm->dev->kfd->cwsr_enabled ?
899 				 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE :
900 				 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN),
901 				KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
902 		if (retval) {
903 			dev_err(dev, "destroy mqd failed\n");
904 			goto out_unlock;
905 		}
906 	}
907 
908 	mqd_mgr->update_mqd(mqd_mgr, q->mqd, &q->properties, minfo);
909 
910 	/*
911 	 * check active state vs. the previous state and modify
912 	 * counter accordingly. map_queues_cpsch uses the
913 	 * dqm->active_queue_count to determine whether a new runlist must be
914 	 * uploaded.
915 	 */
916 	if (q->properties.is_active && !prev_active) {
917 		increment_queue_count(dqm, &pdd->qpd, q);
918 	} else if (!q->properties.is_active && prev_active) {
919 		decrement_queue_count(dqm, &pdd->qpd, q);
920 	} else if (q->gws && !q->properties.is_gws) {
921 		if (q->properties.is_active) {
922 			dqm->gws_queue_count++;
923 			pdd->qpd.mapped_gws_queue = true;
924 		}
925 		q->properties.is_gws = true;
926 	} else if (!q->gws && q->properties.is_gws) {
927 		if (q->properties.is_active) {
928 			dqm->gws_queue_count--;
929 			pdd->qpd.mapped_gws_queue = false;
930 		}
931 		q->properties.is_gws = false;
932 	}
933 
934 	if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
935 		if (!dqm->dev->kfd->shared_resources.enable_mes)
936 			retval = map_queues_cpsch(dqm);
937 		else if (q->properties.is_active)
938 			retval = add_queue_mes(dqm, q, &pdd->qpd);
939 	} else if (q->properties.is_active &&
940 		 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
941 		  q->properties.type == KFD_QUEUE_TYPE_SDMA ||
942 		  q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
943 		if (WARN(q->process->mm != current->mm,
944 			 "should only run in user thread"))
945 			retval = -EFAULT;
946 		else
947 			retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd,
948 						   q->pipe, q->queue,
949 						   &q->properties, current->mm);
950 	}
951 
952 out_unlock:
953 	dqm_unlock(dqm);
954 	return retval;
955 }
956 
957 /* suspend_single_queue does not lock the dqm like the
958  * evict_process_queues_cpsch or evict_process_queues_nocpsch. You should
959  * lock the dqm before calling, and unlock after calling.
960  *
961  * The reason we don't lock the dqm is because this function may be
962  * called on multiple queues in a loop, so rather than locking/unlocking
963  * multiple times, we will just keep the dqm locked for all of the calls.
964  */
965 static int suspend_single_queue(struct device_queue_manager *dqm,
966 				      struct kfd_process_device *pdd,
967 				      struct queue *q)
968 {
969 	bool is_new;
970 
971 	if (q->properties.is_suspended)
972 		return 0;
973 
974 	pr_debug("Suspending PASID %u queue [%i]\n",
975 			pdd->process->pasid,
976 			q->properties.queue_id);
977 
978 	is_new = q->properties.exception_status & KFD_EC_MASK(EC_QUEUE_NEW);
979 
980 	if (is_new || q->properties.is_being_destroyed) {
981 		pr_debug("Suspend: skip %s queue id %i\n",
982 				is_new ? "new" : "destroyed",
983 				q->properties.queue_id);
984 		return -EBUSY;
985 	}
986 
987 	q->properties.is_suspended = true;
988 	if (q->properties.is_active) {
989 		if (dqm->dev->kfd->shared_resources.enable_mes) {
990 			int r = remove_queue_mes(dqm, q, &pdd->qpd);
991 
992 			if (r)
993 				return r;
994 		}
995 
996 		decrement_queue_count(dqm, &pdd->qpd, q);
997 		q->properties.is_active = false;
998 	}
999 
1000 	return 0;
1001 }
1002 
1003 /* resume_single_queue does not lock the dqm like the functions
1004  * restore_process_queues_cpsch or restore_process_queues_nocpsch. You should
1005  * lock the dqm before calling, and unlock after calling.
1006  *
1007  * The reason we don't lock the dqm is because this function may be
1008  * called on multiple queues in a loop, so rather than locking/unlocking
1009  * multiple times, we will just keep the dqm locked for all of the calls.
1010  */
1011 static int resume_single_queue(struct device_queue_manager *dqm,
1012 				      struct qcm_process_device *qpd,
1013 				      struct queue *q)
1014 {
1015 	struct kfd_process_device *pdd;
1016 
1017 	if (!q->properties.is_suspended)
1018 		return 0;
1019 
1020 	pdd = qpd_to_pdd(qpd);
1021 
1022 	pr_debug("Restoring from suspend PASID %u queue [%i]\n",
1023 			    pdd->process->pasid,
1024 			    q->properties.queue_id);
1025 
1026 	q->properties.is_suspended = false;
1027 
1028 	if (QUEUE_IS_ACTIVE(q->properties)) {
1029 		if (dqm->dev->kfd->shared_resources.enable_mes) {
1030 			int r = add_queue_mes(dqm, q, &pdd->qpd);
1031 
1032 			if (r)
1033 				return r;
1034 		}
1035 
1036 		q->properties.is_active = true;
1037 		increment_queue_count(dqm, qpd, q);
1038 	}
1039 
1040 	return 0;
1041 }
1042 
1043 static int evict_process_queues_nocpsch(struct device_queue_manager *dqm,
1044 					struct qcm_process_device *qpd)
1045 {
1046 	struct queue *q;
1047 	struct mqd_manager *mqd_mgr;
1048 	struct kfd_process_device *pdd;
1049 	int retval, ret = 0;
1050 
1051 	dqm_lock(dqm);
1052 	if (qpd->evicted++ > 0) /* already evicted, do nothing */
1053 		goto out;
1054 
1055 	pdd = qpd_to_pdd(qpd);
1056 	pr_debug_ratelimited("Evicting PASID 0x%x queues\n",
1057 			    pdd->process->pasid);
1058 
1059 	pdd->last_evict_timestamp = get_jiffies_64();
1060 	/* Mark all queues as evicted. Deactivate all active queues on
1061 	 * the qpd.
1062 	 */
1063 	list_for_each_entry(q, &qpd->queues_list, list) {
1064 		q->properties.is_evicted = true;
1065 		if (!q->properties.is_active)
1066 			continue;
1067 
1068 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1069 				q->properties.type)];
1070 		q->properties.is_active = false;
1071 		decrement_queue_count(dqm, qpd, q);
1072 
1073 		if (WARN_ONCE(!dqm->sched_running, "Evict when stopped\n"))
1074 			continue;
1075 
1076 		retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
1077 				(dqm->dev->kfd->cwsr_enabled ?
1078 				 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE :
1079 				 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN),
1080 				KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
1081 		if (retval && !ret)
1082 			/* Return the first error, but keep going to
1083 			 * maintain a consistent eviction state
1084 			 */
1085 			ret = retval;
1086 	}
1087 
1088 out:
1089 	dqm_unlock(dqm);
1090 	return ret;
1091 }
1092 
1093 static int evict_process_queues_cpsch(struct device_queue_manager *dqm,
1094 				      struct qcm_process_device *qpd)
1095 {
1096 	struct queue *q;
1097 	struct device *dev = dqm->dev->adev->dev;
1098 	struct kfd_process_device *pdd;
1099 	int retval = 0;
1100 
1101 	dqm_lock(dqm);
1102 	if (qpd->evicted++ > 0) /* already evicted, do nothing */
1103 		goto out;
1104 
1105 	pdd = qpd_to_pdd(qpd);
1106 
1107 	/* The debugger creates processes that temporarily have not acquired
1108 	 * all VMs for all devices and has no VMs itself.
1109 	 * Skip queue eviction on process eviction.
1110 	 */
1111 	if (!pdd->drm_priv)
1112 		goto out;
1113 
1114 	pr_debug_ratelimited("Evicting PASID 0x%x queues\n",
1115 			    pdd->process->pasid);
1116 
1117 	/* Mark all queues as evicted. Deactivate all active queues on
1118 	 * the qpd.
1119 	 */
1120 	list_for_each_entry(q, &qpd->queues_list, list) {
1121 		q->properties.is_evicted = true;
1122 		if (!q->properties.is_active)
1123 			continue;
1124 
1125 		q->properties.is_active = false;
1126 		decrement_queue_count(dqm, qpd, q);
1127 
1128 		if (dqm->dev->kfd->shared_resources.enable_mes) {
1129 			retval = remove_queue_mes(dqm, q, qpd);
1130 			if (retval) {
1131 				dev_err(dev, "Failed to evict queue %d\n",
1132 					q->properties.queue_id);
1133 				goto out;
1134 			}
1135 		}
1136 	}
1137 	pdd->last_evict_timestamp = get_jiffies_64();
1138 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1139 		retval = execute_queues_cpsch(dqm,
1140 					      qpd->is_debug ?
1141 					      KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES :
1142 					      KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
1143 					      USE_DEFAULT_GRACE_PERIOD);
1144 
1145 out:
1146 	dqm_unlock(dqm);
1147 	return retval;
1148 }
1149 
1150 static int restore_process_queues_nocpsch(struct device_queue_manager *dqm,
1151 					  struct qcm_process_device *qpd)
1152 {
1153 	struct mm_struct *mm = NULL;
1154 	struct queue *q;
1155 	struct mqd_manager *mqd_mgr;
1156 	struct kfd_process_device *pdd;
1157 	uint64_t pd_base;
1158 	uint64_t eviction_duration;
1159 	int retval, ret = 0;
1160 
1161 	pdd = qpd_to_pdd(qpd);
1162 	/* Retrieve PD base */
1163 	pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1164 
1165 	dqm_lock(dqm);
1166 	if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
1167 		goto out;
1168 	if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
1169 		qpd->evicted--;
1170 		goto out;
1171 	}
1172 
1173 	pr_debug_ratelimited("Restoring PASID 0x%x queues\n",
1174 			    pdd->process->pasid);
1175 
1176 	/* Update PD Base in QPD */
1177 	qpd->page_table_base = pd_base;
1178 	pr_debug("Updated PD address to 0x%llx\n", pd_base);
1179 
1180 	if (!list_empty(&qpd->queues_list)) {
1181 		dqm->dev->kfd2kgd->set_vm_context_page_table_base(
1182 				dqm->dev->adev,
1183 				qpd->vmid,
1184 				qpd->page_table_base);
1185 		kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
1186 	}
1187 
1188 	/* Take a safe reference to the mm_struct, which may otherwise
1189 	 * disappear even while the kfd_process is still referenced.
1190 	 */
1191 	mm = get_task_mm(pdd->process->lead_thread);
1192 	if (!mm) {
1193 		ret = -EFAULT;
1194 		goto out;
1195 	}
1196 
1197 	/* Remove the eviction flags. Activate queues that are not
1198 	 * inactive for other reasons.
1199 	 */
1200 	list_for_each_entry(q, &qpd->queues_list, list) {
1201 		q->properties.is_evicted = false;
1202 		if (!QUEUE_IS_ACTIVE(q->properties))
1203 			continue;
1204 
1205 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1206 				q->properties.type)];
1207 		q->properties.is_active = true;
1208 		increment_queue_count(dqm, qpd, q);
1209 
1210 		if (WARN_ONCE(!dqm->sched_running, "Restore when stopped\n"))
1211 			continue;
1212 
1213 		retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
1214 				       q->queue, &q->properties, mm);
1215 		if (retval && !ret)
1216 			/* Return the first error, but keep going to
1217 			 * maintain a consistent eviction state
1218 			 */
1219 			ret = retval;
1220 	}
1221 	qpd->evicted = 0;
1222 	eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp;
1223 	atomic64_add(eviction_duration, &pdd->evict_duration_counter);
1224 out:
1225 	if (mm)
1226 		mmput(mm);
1227 	dqm_unlock(dqm);
1228 	return ret;
1229 }
1230 
1231 static int restore_process_queues_cpsch(struct device_queue_manager *dqm,
1232 					struct qcm_process_device *qpd)
1233 {
1234 	struct queue *q;
1235 	struct device *dev = dqm->dev->adev->dev;
1236 	struct kfd_process_device *pdd;
1237 	uint64_t eviction_duration;
1238 	int retval = 0;
1239 
1240 	pdd = qpd_to_pdd(qpd);
1241 
1242 	dqm_lock(dqm);
1243 	if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
1244 		goto out;
1245 	if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
1246 		qpd->evicted--;
1247 		goto out;
1248 	}
1249 
1250 	/* The debugger creates processes that temporarily have not acquired
1251 	 * all VMs for all devices and has no VMs itself.
1252 	 * Skip queue restore on process restore.
1253 	 */
1254 	if (!pdd->drm_priv)
1255 		goto vm_not_acquired;
1256 
1257 	pr_debug_ratelimited("Restoring PASID 0x%x queues\n",
1258 			    pdd->process->pasid);
1259 
1260 	/* Update PD Base in QPD */
1261 	qpd->page_table_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1262 	pr_debug("Updated PD address to 0x%llx\n", qpd->page_table_base);
1263 
1264 	/* activate all active queues on the qpd */
1265 	list_for_each_entry(q, &qpd->queues_list, list) {
1266 		q->properties.is_evicted = false;
1267 		if (!QUEUE_IS_ACTIVE(q->properties))
1268 			continue;
1269 
1270 		q->properties.is_active = true;
1271 		increment_queue_count(dqm, &pdd->qpd, q);
1272 
1273 		if (dqm->dev->kfd->shared_resources.enable_mes) {
1274 			retval = add_queue_mes(dqm, q, qpd);
1275 			if (retval) {
1276 				dev_err(dev, "Failed to restore queue %d\n",
1277 					q->properties.queue_id);
1278 				goto out;
1279 			}
1280 		}
1281 	}
1282 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1283 		retval = execute_queues_cpsch(dqm,
1284 					      KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
1285 	eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp;
1286 	atomic64_add(eviction_duration, &pdd->evict_duration_counter);
1287 vm_not_acquired:
1288 	qpd->evicted = 0;
1289 out:
1290 	dqm_unlock(dqm);
1291 	return retval;
1292 }
1293 
1294 static int register_process(struct device_queue_manager *dqm,
1295 					struct qcm_process_device *qpd)
1296 {
1297 	struct device_process_node *n;
1298 	struct kfd_process_device *pdd;
1299 	uint64_t pd_base;
1300 	int retval;
1301 
1302 	n = kzalloc(sizeof(*n), GFP_KERNEL);
1303 	if (!n)
1304 		return -ENOMEM;
1305 
1306 	n->qpd = qpd;
1307 
1308 	pdd = qpd_to_pdd(qpd);
1309 	/* Retrieve PD base */
1310 	pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1311 
1312 	dqm_lock(dqm);
1313 	list_add(&n->list, &dqm->queues);
1314 
1315 	/* Update PD Base in QPD */
1316 	qpd->page_table_base = pd_base;
1317 	pr_debug("Updated PD address to 0x%llx\n", pd_base);
1318 
1319 	retval = dqm->asic_ops.update_qpd(dqm, qpd);
1320 
1321 	dqm->processes_count++;
1322 
1323 	dqm_unlock(dqm);
1324 
1325 	/* Outside the DQM lock because under the DQM lock we can't do
1326 	 * reclaim or take other locks that others hold while reclaiming.
1327 	 */
1328 	kfd_inc_compute_active(dqm->dev);
1329 
1330 	return retval;
1331 }
1332 
1333 static int unregister_process(struct device_queue_manager *dqm,
1334 					struct qcm_process_device *qpd)
1335 {
1336 	int retval;
1337 	struct device_process_node *cur, *next;
1338 
1339 	pr_debug("qpd->queues_list is %s\n",
1340 			list_empty(&qpd->queues_list) ? "empty" : "not empty");
1341 
1342 	retval = 0;
1343 	dqm_lock(dqm);
1344 
1345 	list_for_each_entry_safe(cur, next, &dqm->queues, list) {
1346 		if (qpd == cur->qpd) {
1347 			list_del(&cur->list);
1348 			kfree(cur);
1349 			dqm->processes_count--;
1350 			goto out;
1351 		}
1352 	}
1353 	/* qpd not found in dqm list */
1354 	retval = 1;
1355 out:
1356 	dqm_unlock(dqm);
1357 
1358 	/* Outside the DQM lock because under the DQM lock we can't do
1359 	 * reclaim or take other locks that others hold while reclaiming.
1360 	 */
1361 	if (!retval)
1362 		kfd_dec_compute_active(dqm->dev);
1363 
1364 	return retval;
1365 }
1366 
1367 static int
1368 set_pasid_vmid_mapping(struct device_queue_manager *dqm, u32 pasid,
1369 			unsigned int vmid)
1370 {
1371 	uint32_t xcc_mask = dqm->dev->xcc_mask;
1372 	int xcc_id, ret;
1373 
1374 	for_each_inst(xcc_id, xcc_mask) {
1375 		ret = dqm->dev->kfd2kgd->set_pasid_vmid_mapping(
1376 			dqm->dev->adev, pasid, vmid, xcc_id);
1377 		if (ret)
1378 			break;
1379 	}
1380 
1381 	return ret;
1382 }
1383 
1384 static void init_interrupts(struct device_queue_manager *dqm)
1385 {
1386 	uint32_t xcc_mask = dqm->dev->xcc_mask;
1387 	unsigned int i, xcc_id;
1388 
1389 	for_each_inst(xcc_id, xcc_mask) {
1390 		for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++) {
1391 			if (is_pipe_enabled(dqm, 0, i)) {
1392 				dqm->dev->kfd2kgd->init_interrupts(
1393 					dqm->dev->adev, i, xcc_id);
1394 			}
1395 		}
1396 	}
1397 }
1398 
1399 static int initialize_nocpsch(struct device_queue_manager *dqm)
1400 {
1401 	int pipe, queue;
1402 
1403 	pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1404 
1405 	dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm),
1406 					sizeof(unsigned int), GFP_KERNEL);
1407 	if (!dqm->allocated_queues)
1408 		return -ENOMEM;
1409 
1410 	mutex_init(&dqm->lock_hidden);
1411 	INIT_LIST_HEAD(&dqm->queues);
1412 	dqm->active_queue_count = dqm->next_pipe_to_allocate = 0;
1413 	dqm->active_cp_queue_count = 0;
1414 	dqm->gws_queue_count = 0;
1415 
1416 	for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
1417 		int pipe_offset = pipe * get_queues_per_pipe(dqm);
1418 
1419 		for (queue = 0; queue < get_queues_per_pipe(dqm); queue++)
1420 			if (test_bit(pipe_offset + queue,
1421 				     dqm->dev->kfd->shared_resources.cp_queue_bitmap))
1422 				dqm->allocated_queues[pipe] |= 1 << queue;
1423 	}
1424 
1425 	memset(dqm->vmid_pasid, 0, sizeof(dqm->vmid_pasid));
1426 
1427 	init_sdma_bitmaps(dqm);
1428 
1429 	return 0;
1430 }
1431 
1432 static void uninitialize(struct device_queue_manager *dqm)
1433 {
1434 	int i;
1435 
1436 	WARN_ON(dqm->active_queue_count > 0 || dqm->processes_count > 0);
1437 
1438 	kfree(dqm->allocated_queues);
1439 	for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
1440 		kfree(dqm->mqd_mgrs[i]);
1441 	mutex_destroy(&dqm->lock_hidden);
1442 }
1443 
1444 static int start_nocpsch(struct device_queue_manager *dqm)
1445 {
1446 	int r = 0;
1447 
1448 	pr_info("SW scheduler is used");
1449 	init_interrupts(dqm);
1450 
1451 	if (dqm->dev->adev->asic_type == CHIP_HAWAII)
1452 		r = pm_init(&dqm->packet_mgr, dqm);
1453 	if (!r)
1454 		dqm->sched_running = true;
1455 
1456 	return r;
1457 }
1458 
1459 static int stop_nocpsch(struct device_queue_manager *dqm)
1460 {
1461 	dqm_lock(dqm);
1462 	if (!dqm->sched_running) {
1463 		dqm_unlock(dqm);
1464 		return 0;
1465 	}
1466 
1467 	if (dqm->dev->adev->asic_type == CHIP_HAWAII)
1468 		pm_uninit(&dqm->packet_mgr);
1469 	dqm->sched_running = false;
1470 	dqm_unlock(dqm);
1471 
1472 	return 0;
1473 }
1474 
1475 static int allocate_sdma_queue(struct device_queue_manager *dqm,
1476 				struct queue *q, const uint32_t *restore_sdma_id)
1477 {
1478 	struct device *dev = dqm->dev->adev->dev;
1479 	int bit;
1480 
1481 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1482 		if (bitmap_empty(dqm->sdma_bitmap, KFD_MAX_SDMA_QUEUES)) {
1483 			dev_err(dev, "No more SDMA queue to allocate\n");
1484 			return -ENOMEM;
1485 		}
1486 
1487 		if (restore_sdma_id) {
1488 			/* Re-use existing sdma_id */
1489 			if (!test_bit(*restore_sdma_id, dqm->sdma_bitmap)) {
1490 				dev_err(dev, "SDMA queue already in use\n");
1491 				return -EBUSY;
1492 			}
1493 			clear_bit(*restore_sdma_id, dqm->sdma_bitmap);
1494 			q->sdma_id = *restore_sdma_id;
1495 		} else {
1496 			/* Find first available sdma_id */
1497 			bit = find_first_bit(dqm->sdma_bitmap,
1498 					     get_num_sdma_queues(dqm));
1499 			clear_bit(bit, dqm->sdma_bitmap);
1500 			q->sdma_id = bit;
1501 		}
1502 
1503 		q->properties.sdma_engine_id =
1504 			q->sdma_id % kfd_get_num_sdma_engines(dqm->dev);
1505 		q->properties.sdma_queue_id = q->sdma_id /
1506 				kfd_get_num_sdma_engines(dqm->dev);
1507 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1508 		if (bitmap_empty(dqm->xgmi_sdma_bitmap, KFD_MAX_SDMA_QUEUES)) {
1509 			dev_err(dev, "No more XGMI SDMA queue to allocate\n");
1510 			return -ENOMEM;
1511 		}
1512 		if (restore_sdma_id) {
1513 			/* Re-use existing sdma_id */
1514 			if (!test_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap)) {
1515 				dev_err(dev, "SDMA queue already in use\n");
1516 				return -EBUSY;
1517 			}
1518 			clear_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap);
1519 			q->sdma_id = *restore_sdma_id;
1520 		} else {
1521 			bit = find_first_bit(dqm->xgmi_sdma_bitmap,
1522 					     get_num_xgmi_sdma_queues(dqm));
1523 			clear_bit(bit, dqm->xgmi_sdma_bitmap);
1524 			q->sdma_id = bit;
1525 		}
1526 		/* sdma_engine_id is sdma id including
1527 		 * both PCIe-optimized SDMAs and XGMI-
1528 		 * optimized SDMAs. The calculation below
1529 		 * assumes the first N engines are always
1530 		 * PCIe-optimized ones
1531 		 */
1532 		q->properties.sdma_engine_id =
1533 			kfd_get_num_sdma_engines(dqm->dev) +
1534 			q->sdma_id % kfd_get_num_xgmi_sdma_engines(dqm->dev);
1535 		q->properties.sdma_queue_id = q->sdma_id /
1536 			kfd_get_num_xgmi_sdma_engines(dqm->dev);
1537 	}
1538 
1539 	pr_debug("SDMA engine id: %d\n", q->properties.sdma_engine_id);
1540 	pr_debug("SDMA queue id: %d\n", q->properties.sdma_queue_id);
1541 
1542 	return 0;
1543 }
1544 
1545 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
1546 				struct queue *q)
1547 {
1548 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1549 		if (q->sdma_id >= get_num_sdma_queues(dqm))
1550 			return;
1551 		set_bit(q->sdma_id, dqm->sdma_bitmap);
1552 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1553 		if (q->sdma_id >= get_num_xgmi_sdma_queues(dqm))
1554 			return;
1555 		set_bit(q->sdma_id, dqm->xgmi_sdma_bitmap);
1556 	}
1557 }
1558 
1559 /*
1560  * Device Queue Manager implementation for cp scheduler
1561  */
1562 
1563 static int set_sched_resources(struct device_queue_manager *dqm)
1564 {
1565 	int i, mec;
1566 	struct scheduling_resources res;
1567 	struct device *dev = dqm->dev->adev->dev;
1568 
1569 	res.vmid_mask = dqm->dev->compute_vmid_bitmap;
1570 
1571 	res.queue_mask = 0;
1572 	for (i = 0; i < AMDGPU_MAX_QUEUES; ++i) {
1573 		mec = (i / dqm->dev->kfd->shared_resources.num_queue_per_pipe)
1574 			/ dqm->dev->kfd->shared_resources.num_pipe_per_mec;
1575 
1576 		if (!test_bit(i, dqm->dev->kfd->shared_resources.cp_queue_bitmap))
1577 			continue;
1578 
1579 		/* only acquire queues from the first MEC */
1580 		if (mec > 0)
1581 			continue;
1582 
1583 		/* This situation may be hit in the future if a new HW
1584 		 * generation exposes more than 64 queues. If so, the
1585 		 * definition of res.queue_mask needs updating
1586 		 */
1587 		if (WARN_ON(i >= (sizeof(res.queue_mask)*8))) {
1588 			dev_err(dev, "Invalid queue enabled by amdgpu: %d\n", i);
1589 			break;
1590 		}
1591 
1592 		res.queue_mask |= 1ull
1593 			<< amdgpu_queue_mask_bit_to_set_resource_bit(
1594 				dqm->dev->adev, i);
1595 	}
1596 	res.gws_mask = ~0ull;
1597 	res.oac_mask = res.gds_heap_base = res.gds_heap_size = 0;
1598 
1599 	pr_debug("Scheduling resources:\n"
1600 			"vmid mask: 0x%8X\n"
1601 			"queue mask: 0x%8llX\n",
1602 			res.vmid_mask, res.queue_mask);
1603 
1604 	return pm_send_set_resources(&dqm->packet_mgr, &res);
1605 }
1606 
1607 static int initialize_cpsch(struct device_queue_manager *dqm)
1608 {
1609 	pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1610 
1611 	mutex_init(&dqm->lock_hidden);
1612 	INIT_LIST_HEAD(&dqm->queues);
1613 	dqm->active_queue_count = dqm->processes_count = 0;
1614 	dqm->active_cp_queue_count = 0;
1615 	dqm->gws_queue_count = 0;
1616 	dqm->active_runlist = false;
1617 	INIT_WORK(&dqm->hw_exception_work, kfd_process_hw_exception);
1618 	dqm->trap_debug_vmid = 0;
1619 
1620 	init_sdma_bitmaps(dqm);
1621 
1622 	if (dqm->dev->kfd2kgd->get_iq_wait_times)
1623 		dqm->dev->kfd2kgd->get_iq_wait_times(dqm->dev->adev,
1624 					&dqm->wait_times,
1625 					ffs(dqm->dev->xcc_mask) - 1);
1626 	return 0;
1627 }
1628 
1629 static int start_cpsch(struct device_queue_manager *dqm)
1630 {
1631 	struct device *dev = dqm->dev->adev->dev;
1632 	int retval;
1633 
1634 	retval = 0;
1635 
1636 	dqm_lock(dqm);
1637 
1638 	if (!dqm->dev->kfd->shared_resources.enable_mes) {
1639 		retval = pm_init(&dqm->packet_mgr, dqm);
1640 		if (retval)
1641 			goto fail_packet_manager_init;
1642 
1643 		retval = set_sched_resources(dqm);
1644 		if (retval)
1645 			goto fail_set_sched_resources;
1646 	}
1647 	pr_debug("Allocating fence memory\n");
1648 
1649 	/* allocate fence memory on the gart */
1650 	retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
1651 					&dqm->fence_mem);
1652 
1653 	if (retval)
1654 		goto fail_allocate_vidmem;
1655 
1656 	dqm->fence_addr = (uint64_t *)dqm->fence_mem->cpu_ptr;
1657 	dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
1658 
1659 	init_interrupts(dqm);
1660 
1661 	/* clear hang status when driver try to start the hw scheduler */
1662 	dqm->sched_running = true;
1663 
1664 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1665 		execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
1666 
1667 	/* Set CWSR grace period to 1x1000 cycle for GFX9.4.3 APU */
1668 	if (amdgpu_emu_mode == 0 && dqm->dev->adev->gmc.is_app_apu &&
1669 	    (KFD_GC_VERSION(dqm->dev) == IP_VERSION(9, 4, 3))) {
1670 		uint32_t reg_offset = 0;
1671 		uint32_t grace_period = 1;
1672 
1673 		retval = pm_update_grace_period(&dqm->packet_mgr,
1674 						grace_period);
1675 		if (retval)
1676 			dev_err(dev, "Setting grace timeout failed\n");
1677 		else if (dqm->dev->kfd2kgd->build_grace_period_packet_info)
1678 			/* Update dqm->wait_times maintained in software */
1679 			dqm->dev->kfd2kgd->build_grace_period_packet_info(
1680 					dqm->dev->adev,	dqm->wait_times,
1681 					grace_period, &reg_offset,
1682 					&dqm->wait_times);
1683 	}
1684 
1685 	dqm_unlock(dqm);
1686 
1687 	return 0;
1688 fail_allocate_vidmem:
1689 fail_set_sched_resources:
1690 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1691 		pm_uninit(&dqm->packet_mgr);
1692 fail_packet_manager_init:
1693 	dqm_unlock(dqm);
1694 	return retval;
1695 }
1696 
1697 static int stop_cpsch(struct device_queue_manager *dqm)
1698 {
1699 	dqm_lock(dqm);
1700 	if (!dqm->sched_running) {
1701 		dqm_unlock(dqm);
1702 		return 0;
1703 	}
1704 
1705 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1706 		unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD, false);
1707 	else
1708 		remove_all_queues_mes(dqm);
1709 
1710 	dqm->sched_running = false;
1711 
1712 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1713 		pm_release_ib(&dqm->packet_mgr);
1714 
1715 	kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
1716 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1717 		pm_uninit(&dqm->packet_mgr);
1718 	dqm_unlock(dqm);
1719 
1720 	return 0;
1721 }
1722 
1723 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
1724 					struct kernel_queue *kq,
1725 					struct qcm_process_device *qpd)
1726 {
1727 	dqm_lock(dqm);
1728 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1729 		pr_warn("Can't create new kernel queue because %d queues were already created\n",
1730 				dqm->total_queue_count);
1731 		dqm_unlock(dqm);
1732 		return -EPERM;
1733 	}
1734 
1735 	/*
1736 	 * Unconditionally increment this counter, regardless of the queue's
1737 	 * type or whether the queue is active.
1738 	 */
1739 	dqm->total_queue_count++;
1740 	pr_debug("Total of %d queues are accountable so far\n",
1741 			dqm->total_queue_count);
1742 
1743 	list_add(&kq->list, &qpd->priv_queue_list);
1744 	increment_queue_count(dqm, qpd, kq->queue);
1745 	qpd->is_debug = true;
1746 	execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
1747 			USE_DEFAULT_GRACE_PERIOD);
1748 	dqm_unlock(dqm);
1749 
1750 	return 0;
1751 }
1752 
1753 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
1754 					struct kernel_queue *kq,
1755 					struct qcm_process_device *qpd)
1756 {
1757 	dqm_lock(dqm);
1758 	list_del(&kq->list);
1759 	decrement_queue_count(dqm, qpd, kq->queue);
1760 	qpd->is_debug = false;
1761 	execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
1762 			USE_DEFAULT_GRACE_PERIOD);
1763 	/*
1764 	 * Unconditionally decrement this counter, regardless of the queue's
1765 	 * type.
1766 	 */
1767 	dqm->total_queue_count--;
1768 	pr_debug("Total of %d queues are accountable so far\n",
1769 			dqm->total_queue_count);
1770 	dqm_unlock(dqm);
1771 }
1772 
1773 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
1774 			struct qcm_process_device *qpd,
1775 			const struct kfd_criu_queue_priv_data *qd,
1776 			const void *restore_mqd, const void *restore_ctl_stack)
1777 {
1778 	int retval;
1779 	struct mqd_manager *mqd_mgr;
1780 
1781 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1782 		pr_warn("Can't create new usermode queue because %d queues were already created\n",
1783 				dqm->total_queue_count);
1784 		retval = -EPERM;
1785 		goto out;
1786 	}
1787 
1788 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1789 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1790 		dqm_lock(dqm);
1791 		retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL);
1792 		dqm_unlock(dqm);
1793 		if (retval)
1794 			goto out;
1795 	}
1796 
1797 	retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL);
1798 	if (retval)
1799 		goto out_deallocate_sdma_queue;
1800 
1801 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1802 			q->properties.type)];
1803 
1804 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1805 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
1806 		dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
1807 	q->properties.tba_addr = qpd->tba_addr;
1808 	q->properties.tma_addr = qpd->tma_addr;
1809 	q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
1810 	if (!q->mqd_mem_obj) {
1811 		retval = -ENOMEM;
1812 		goto out_deallocate_doorbell;
1813 	}
1814 
1815 	dqm_lock(dqm);
1816 	/*
1817 	 * Eviction state logic: mark all queues as evicted, even ones
1818 	 * not currently active. Restoring inactive queues later only
1819 	 * updates the is_evicted flag but is a no-op otherwise.
1820 	 */
1821 	q->properties.is_evicted = !!qpd->evicted;
1822 	q->properties.is_dbg_wa = qpd->pqm->process->debug_trap_enabled &&
1823 				  kfd_dbg_has_cwsr_workaround(q->device);
1824 
1825 	if (qd)
1826 		mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr,
1827 				     &q->properties, restore_mqd, restore_ctl_stack,
1828 				     qd->ctl_stack_size);
1829 	else
1830 		mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
1831 					&q->gart_mqd_addr, &q->properties);
1832 
1833 	list_add(&q->list, &qpd->queues_list);
1834 	qpd->queue_count++;
1835 
1836 	if (q->properties.is_active) {
1837 		increment_queue_count(dqm, qpd, q);
1838 
1839 		if (!dqm->dev->kfd->shared_resources.enable_mes)
1840 			retval = execute_queues_cpsch(dqm,
1841 					KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
1842 		else
1843 			retval = add_queue_mes(dqm, q, qpd);
1844 		if (retval)
1845 			goto cleanup_queue;
1846 	}
1847 
1848 	/*
1849 	 * Unconditionally increment this counter, regardless of the queue's
1850 	 * type or whether the queue is active.
1851 	 */
1852 	dqm->total_queue_count++;
1853 
1854 	pr_debug("Total of %d queues are accountable so far\n",
1855 			dqm->total_queue_count);
1856 
1857 	dqm_unlock(dqm);
1858 	return retval;
1859 
1860 cleanup_queue:
1861 	qpd->queue_count--;
1862 	list_del(&q->list);
1863 	if (q->properties.is_active)
1864 		decrement_queue_count(dqm, qpd, q);
1865 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
1866 	dqm_unlock(dqm);
1867 out_deallocate_doorbell:
1868 	deallocate_doorbell(qpd, q);
1869 out_deallocate_sdma_queue:
1870 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1871 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1872 		dqm_lock(dqm);
1873 		deallocate_sdma_queue(dqm, q);
1874 		dqm_unlock(dqm);
1875 	}
1876 out:
1877 	return retval;
1878 }
1879 
1880 int amdkfd_fence_wait_timeout(struct device_queue_manager *dqm,
1881 			      uint64_t fence_value,
1882 			      unsigned int timeout_ms)
1883 {
1884 	unsigned long end_jiffies = msecs_to_jiffies(timeout_ms) + jiffies;
1885 	struct device *dev = dqm->dev->adev->dev;
1886 	uint64_t *fence_addr =  dqm->fence_addr;
1887 
1888 	while (*fence_addr != fence_value) {
1889 		/* Fatal err detected, this response won't come */
1890 		if (amdgpu_amdkfd_is_fed(dqm->dev->adev))
1891 			return -EIO;
1892 
1893 		if (time_after(jiffies, end_jiffies)) {
1894 			dev_err(dev, "qcm fence wait loop timeout expired\n");
1895 			/* In HWS case, this is used to halt the driver thread
1896 			 * in order not to mess up CP states before doing
1897 			 * scandumps for FW debugging.
1898 			 */
1899 			while (halt_if_hws_hang)
1900 				schedule();
1901 
1902 			return -ETIME;
1903 		}
1904 		schedule();
1905 	}
1906 
1907 	return 0;
1908 }
1909 
1910 /* dqm->lock mutex has to be locked before calling this function */
1911 static int map_queues_cpsch(struct device_queue_manager *dqm)
1912 {
1913 	struct device *dev = dqm->dev->adev->dev;
1914 	int retval;
1915 
1916 	if (!dqm->sched_running)
1917 		return 0;
1918 	if (dqm->active_queue_count <= 0 || dqm->processes_count <= 0)
1919 		return 0;
1920 	if (dqm->active_runlist)
1921 		return 0;
1922 
1923 	retval = pm_send_runlist(&dqm->packet_mgr, &dqm->queues);
1924 	pr_debug("%s sent runlist\n", __func__);
1925 	if (retval) {
1926 		dev_err(dev, "failed to execute runlist\n");
1927 		return retval;
1928 	}
1929 	dqm->active_runlist = true;
1930 
1931 	return retval;
1932 }
1933 
1934 /* dqm->lock mutex has to be locked before calling this function */
1935 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
1936 				enum kfd_unmap_queues_filter filter,
1937 				uint32_t filter_param,
1938 				uint32_t grace_period,
1939 				bool reset)
1940 {
1941 	struct device *dev = dqm->dev->adev->dev;
1942 	struct mqd_manager *mqd_mgr;
1943 	int retval;
1944 
1945 	if (!dqm->sched_running)
1946 		return 0;
1947 	if (!dqm->active_runlist)
1948 		return 0;
1949 	if (!down_read_trylock(&dqm->dev->adev->reset_domain->sem))
1950 		return -EIO;
1951 
1952 	if (grace_period != USE_DEFAULT_GRACE_PERIOD) {
1953 		retval = pm_update_grace_period(&dqm->packet_mgr, grace_period);
1954 		if (retval)
1955 			goto out;
1956 	}
1957 
1958 	retval = pm_send_unmap_queue(&dqm->packet_mgr, filter, filter_param, reset);
1959 	if (retval)
1960 		goto out;
1961 
1962 	*dqm->fence_addr = KFD_FENCE_INIT;
1963 	pm_send_query_status(&dqm->packet_mgr, dqm->fence_gpu_addr,
1964 				KFD_FENCE_COMPLETED);
1965 	/* should be timed out */
1966 	retval = amdkfd_fence_wait_timeout(dqm, KFD_FENCE_COMPLETED,
1967 					   queue_preemption_timeout_ms);
1968 	if (retval) {
1969 		dev_err(dev, "The cp might be in an unrecoverable state due to an unsuccessful queues preemption\n");
1970 		kfd_hws_hang(dqm);
1971 		goto out;
1972 	}
1973 
1974 	/* In the current MEC firmware implementation, if compute queue
1975 	 * doesn't response to the preemption request in time, HIQ will
1976 	 * abandon the unmap request without returning any timeout error
1977 	 * to driver. Instead, MEC firmware will log the doorbell of the
1978 	 * unresponding compute queue to HIQ.MQD.queue_doorbell_id fields.
1979 	 * To make sure the queue unmap was successful, driver need to
1980 	 * check those fields
1981 	 */
1982 	mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ];
1983 	if (mqd_mgr->check_preemption_failed(mqd_mgr, dqm->packet_mgr.priv_queue->queue->mqd)) {
1984 		while (halt_if_hws_hang)
1985 			schedule();
1986 		kfd_hws_hang(dqm);
1987 		retval = -ETIME;
1988 		goto out;
1989 	}
1990 
1991 	/* We need to reset the grace period value for this device */
1992 	if (grace_period != USE_DEFAULT_GRACE_PERIOD) {
1993 		if (pm_update_grace_period(&dqm->packet_mgr,
1994 					USE_DEFAULT_GRACE_PERIOD))
1995 			dev_err(dev, "Failed to reset grace period\n");
1996 	}
1997 
1998 	pm_release_ib(&dqm->packet_mgr);
1999 	dqm->active_runlist = false;
2000 
2001 out:
2002 	up_read(&dqm->dev->adev->reset_domain->sem);
2003 	return retval;
2004 }
2005 
2006 /* only for compute queue */
2007 static int reset_queues_cpsch(struct device_queue_manager *dqm,
2008 			uint16_t pasid)
2009 {
2010 	int retval;
2011 
2012 	dqm_lock(dqm);
2013 
2014 	retval = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_BY_PASID,
2015 			pasid, USE_DEFAULT_GRACE_PERIOD, true);
2016 
2017 	dqm_unlock(dqm);
2018 	return retval;
2019 }
2020 
2021 /* dqm->lock mutex has to be locked before calling this function */
2022 static int execute_queues_cpsch(struct device_queue_manager *dqm,
2023 				enum kfd_unmap_queues_filter filter,
2024 				uint32_t filter_param,
2025 				uint32_t grace_period)
2026 {
2027 	int retval;
2028 
2029 	if (!down_read_trylock(&dqm->dev->adev->reset_domain->sem))
2030 		return -EIO;
2031 	retval = unmap_queues_cpsch(dqm, filter, filter_param, grace_period, false);
2032 	if (!retval)
2033 		retval = map_queues_cpsch(dqm);
2034 	up_read(&dqm->dev->adev->reset_domain->sem);
2035 	return retval;
2036 }
2037 
2038 static int wait_on_destroy_queue(struct device_queue_manager *dqm,
2039 				 struct queue *q)
2040 {
2041 	struct kfd_process_device *pdd = kfd_get_process_device_data(q->device,
2042 								q->process);
2043 	int ret = 0;
2044 
2045 	if (pdd->qpd.is_debug)
2046 		return ret;
2047 
2048 	q->properties.is_being_destroyed = true;
2049 
2050 	if (pdd->process->debug_trap_enabled && q->properties.is_suspended) {
2051 		dqm_unlock(dqm);
2052 		mutex_unlock(&q->process->mutex);
2053 		ret = wait_event_interruptible(dqm->destroy_wait,
2054 						!q->properties.is_suspended);
2055 
2056 		mutex_lock(&q->process->mutex);
2057 		dqm_lock(dqm);
2058 	}
2059 
2060 	return ret;
2061 }
2062 
2063 static int destroy_queue_cpsch(struct device_queue_manager *dqm,
2064 				struct qcm_process_device *qpd,
2065 				struct queue *q)
2066 {
2067 	int retval;
2068 	struct mqd_manager *mqd_mgr;
2069 	uint64_t sdma_val = 0;
2070 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
2071 	struct device *dev = dqm->dev->adev->dev;
2072 
2073 	/* Get the SDMA queue stats */
2074 	if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
2075 	    (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
2076 		retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr,
2077 							&sdma_val);
2078 		if (retval)
2079 			dev_err(dev, "Failed to read SDMA queue counter for queue: %d\n",
2080 				q->properties.queue_id);
2081 	}
2082 
2083 	/* remove queue from list to prevent rescheduling after preemption */
2084 	dqm_lock(dqm);
2085 
2086 	retval = wait_on_destroy_queue(dqm, q);
2087 
2088 	if (retval) {
2089 		dqm_unlock(dqm);
2090 		return retval;
2091 	}
2092 
2093 	if (qpd->is_debug) {
2094 		/*
2095 		 * error, currently we do not allow to destroy a queue
2096 		 * of a currently debugged process
2097 		 */
2098 		retval = -EBUSY;
2099 		goto failed_try_destroy_debugged_queue;
2100 
2101 	}
2102 
2103 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2104 			q->properties.type)];
2105 
2106 	deallocate_doorbell(qpd, q);
2107 
2108 	if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
2109 	    (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
2110 		deallocate_sdma_queue(dqm, q);
2111 		pdd->sdma_past_activity_counter += sdma_val;
2112 	}
2113 
2114 	list_del(&q->list);
2115 	qpd->queue_count--;
2116 	if (q->properties.is_active) {
2117 		decrement_queue_count(dqm, qpd, q);
2118 		if (!dqm->dev->kfd->shared_resources.enable_mes) {
2119 			retval = execute_queues_cpsch(dqm,
2120 						      KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
2121 						      USE_DEFAULT_GRACE_PERIOD);
2122 			if (retval == -ETIME)
2123 				qpd->reset_wavefronts = true;
2124 		} else {
2125 			retval = remove_queue_mes(dqm, q, qpd);
2126 		}
2127 	}
2128 
2129 	/*
2130 	 * Unconditionally decrement this counter, regardless of the queue's
2131 	 * type
2132 	 */
2133 	dqm->total_queue_count--;
2134 	pr_debug("Total of %d queues are accountable so far\n",
2135 			dqm->total_queue_count);
2136 
2137 	dqm_unlock(dqm);
2138 
2139 	/*
2140 	 * Do free_mqd and raise delete event after dqm_unlock(dqm) to avoid
2141 	 * circular locking
2142 	 */
2143 	kfd_dbg_ev_raise(KFD_EC_MASK(EC_DEVICE_QUEUE_DELETE),
2144 				qpd->pqm->process, q->device,
2145 				-1, false, NULL, 0);
2146 
2147 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2148 
2149 	return retval;
2150 
2151 failed_try_destroy_debugged_queue:
2152 
2153 	dqm_unlock(dqm);
2154 	return retval;
2155 }
2156 
2157 /*
2158  * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to
2159  * stay in user mode.
2160  */
2161 #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL
2162 /* APE1 limit is inclusive and 64K aligned. */
2163 #define APE1_LIMIT_ALIGNMENT 0xFFFF
2164 
2165 static bool set_cache_memory_policy(struct device_queue_manager *dqm,
2166 				   struct qcm_process_device *qpd,
2167 				   enum cache_policy default_policy,
2168 				   enum cache_policy alternate_policy,
2169 				   void __user *alternate_aperture_base,
2170 				   uint64_t alternate_aperture_size)
2171 {
2172 	bool retval = true;
2173 
2174 	if (!dqm->asic_ops.set_cache_memory_policy)
2175 		return retval;
2176 
2177 	dqm_lock(dqm);
2178 
2179 	if (alternate_aperture_size == 0) {
2180 		/* base > limit disables APE1 */
2181 		qpd->sh_mem_ape1_base = 1;
2182 		qpd->sh_mem_ape1_limit = 0;
2183 	} else {
2184 		/*
2185 		 * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]},
2186 		 *			SH_MEM_APE1_BASE[31:0], 0x0000 }
2187 		 * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]},
2188 		 *			SH_MEM_APE1_LIMIT[31:0], 0xFFFF }
2189 		 * Verify that the base and size parameters can be
2190 		 * represented in this format and convert them.
2191 		 * Additionally restrict APE1 to user-mode addresses.
2192 		 */
2193 
2194 		uint64_t base = (uintptr_t)alternate_aperture_base;
2195 		uint64_t limit = base + alternate_aperture_size - 1;
2196 
2197 		if (limit <= base || (base & APE1_FIXED_BITS_MASK) != 0 ||
2198 		   (limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT) {
2199 			retval = false;
2200 			goto out;
2201 		}
2202 
2203 		qpd->sh_mem_ape1_base = base >> 16;
2204 		qpd->sh_mem_ape1_limit = limit >> 16;
2205 	}
2206 
2207 	retval = dqm->asic_ops.set_cache_memory_policy(
2208 			dqm,
2209 			qpd,
2210 			default_policy,
2211 			alternate_policy,
2212 			alternate_aperture_base,
2213 			alternate_aperture_size);
2214 
2215 	if ((dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
2216 		program_sh_mem_settings(dqm, qpd);
2217 
2218 	pr_debug("sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
2219 		qpd->sh_mem_config, qpd->sh_mem_ape1_base,
2220 		qpd->sh_mem_ape1_limit);
2221 
2222 out:
2223 	dqm_unlock(dqm);
2224 	return retval;
2225 }
2226 
2227 static int process_termination_nocpsch(struct device_queue_manager *dqm,
2228 		struct qcm_process_device *qpd)
2229 {
2230 	struct queue *q;
2231 	struct device_process_node *cur, *next_dpn;
2232 	int retval = 0;
2233 	bool found = false;
2234 
2235 	dqm_lock(dqm);
2236 
2237 	/* Clear all user mode queues */
2238 	while (!list_empty(&qpd->queues_list)) {
2239 		struct mqd_manager *mqd_mgr;
2240 		int ret;
2241 
2242 		q = list_first_entry(&qpd->queues_list, struct queue, list);
2243 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2244 				q->properties.type)];
2245 		ret = destroy_queue_nocpsch_locked(dqm, qpd, q);
2246 		if (ret)
2247 			retval = ret;
2248 		dqm_unlock(dqm);
2249 		mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2250 		dqm_lock(dqm);
2251 	}
2252 
2253 	/* Unregister process */
2254 	list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
2255 		if (qpd == cur->qpd) {
2256 			list_del(&cur->list);
2257 			kfree(cur);
2258 			dqm->processes_count--;
2259 			found = true;
2260 			break;
2261 		}
2262 	}
2263 
2264 	dqm_unlock(dqm);
2265 
2266 	/* Outside the DQM lock because under the DQM lock we can't do
2267 	 * reclaim or take other locks that others hold while reclaiming.
2268 	 */
2269 	if (found)
2270 		kfd_dec_compute_active(dqm->dev);
2271 
2272 	return retval;
2273 }
2274 
2275 static int get_wave_state(struct device_queue_manager *dqm,
2276 			  struct queue *q,
2277 			  void __user *ctl_stack,
2278 			  u32 *ctl_stack_used_size,
2279 			  u32 *save_area_used_size)
2280 {
2281 	struct mqd_manager *mqd_mgr;
2282 
2283 	dqm_lock(dqm);
2284 
2285 	mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP];
2286 
2287 	if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE ||
2288 	    q->properties.is_active || !q->device->kfd->cwsr_enabled ||
2289 	    !mqd_mgr->get_wave_state) {
2290 		dqm_unlock(dqm);
2291 		return -EINVAL;
2292 	}
2293 
2294 	dqm_unlock(dqm);
2295 
2296 	/*
2297 	 * get_wave_state is outside the dqm lock to prevent circular locking
2298 	 * and the queue should be protected against destruction by the process
2299 	 * lock.
2300 	 */
2301 	return mqd_mgr->get_wave_state(mqd_mgr, q->mqd, &q->properties,
2302 			ctl_stack, ctl_stack_used_size, save_area_used_size);
2303 }
2304 
2305 static void get_queue_checkpoint_info(struct device_queue_manager *dqm,
2306 			const struct queue *q,
2307 			u32 *mqd_size,
2308 			u32 *ctl_stack_size)
2309 {
2310 	struct mqd_manager *mqd_mgr;
2311 	enum KFD_MQD_TYPE mqd_type =
2312 			get_mqd_type_from_queue_type(q->properties.type);
2313 
2314 	dqm_lock(dqm);
2315 	mqd_mgr = dqm->mqd_mgrs[mqd_type];
2316 	*mqd_size = mqd_mgr->mqd_size;
2317 	*ctl_stack_size = 0;
2318 
2319 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE && mqd_mgr->get_checkpoint_info)
2320 		mqd_mgr->get_checkpoint_info(mqd_mgr, q->mqd, ctl_stack_size);
2321 
2322 	dqm_unlock(dqm);
2323 }
2324 
2325 static int checkpoint_mqd(struct device_queue_manager *dqm,
2326 			  const struct queue *q,
2327 			  void *mqd,
2328 			  void *ctl_stack)
2329 {
2330 	struct mqd_manager *mqd_mgr;
2331 	int r = 0;
2332 	enum KFD_MQD_TYPE mqd_type =
2333 			get_mqd_type_from_queue_type(q->properties.type);
2334 
2335 	dqm_lock(dqm);
2336 
2337 	if (q->properties.is_active || !q->device->kfd->cwsr_enabled) {
2338 		r = -EINVAL;
2339 		goto dqm_unlock;
2340 	}
2341 
2342 	mqd_mgr = dqm->mqd_mgrs[mqd_type];
2343 	if (!mqd_mgr->checkpoint_mqd) {
2344 		r = -EOPNOTSUPP;
2345 		goto dqm_unlock;
2346 	}
2347 
2348 	mqd_mgr->checkpoint_mqd(mqd_mgr, q->mqd, mqd, ctl_stack);
2349 
2350 dqm_unlock:
2351 	dqm_unlock(dqm);
2352 	return r;
2353 }
2354 
2355 static int process_termination_cpsch(struct device_queue_manager *dqm,
2356 		struct qcm_process_device *qpd)
2357 {
2358 	int retval;
2359 	struct queue *q;
2360 	struct device *dev = dqm->dev->adev->dev;
2361 	struct kernel_queue *kq, *kq_next;
2362 	struct mqd_manager *mqd_mgr;
2363 	struct device_process_node *cur, *next_dpn;
2364 	enum kfd_unmap_queues_filter filter =
2365 		KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES;
2366 	bool found = false;
2367 
2368 	retval = 0;
2369 
2370 	dqm_lock(dqm);
2371 
2372 	/* Clean all kernel queues */
2373 	list_for_each_entry_safe(kq, kq_next, &qpd->priv_queue_list, list) {
2374 		list_del(&kq->list);
2375 		decrement_queue_count(dqm, qpd, kq->queue);
2376 		qpd->is_debug = false;
2377 		dqm->total_queue_count--;
2378 		filter = KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES;
2379 	}
2380 
2381 	/* Clear all user mode queues */
2382 	list_for_each_entry(q, &qpd->queues_list, list) {
2383 		if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
2384 			deallocate_sdma_queue(dqm, q);
2385 		else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
2386 			deallocate_sdma_queue(dqm, q);
2387 
2388 		if (q->properties.is_active) {
2389 			decrement_queue_count(dqm, qpd, q);
2390 
2391 			if (dqm->dev->kfd->shared_resources.enable_mes) {
2392 				retval = remove_queue_mes(dqm, q, qpd);
2393 				if (retval)
2394 					dev_err(dev, "Failed to remove queue %d\n",
2395 						q->properties.queue_id);
2396 			}
2397 		}
2398 
2399 		dqm->total_queue_count--;
2400 	}
2401 
2402 	/* Unregister process */
2403 	list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
2404 		if (qpd == cur->qpd) {
2405 			list_del(&cur->list);
2406 			kfree(cur);
2407 			dqm->processes_count--;
2408 			found = true;
2409 			break;
2410 		}
2411 	}
2412 
2413 	if (!dqm->dev->kfd->shared_resources.enable_mes)
2414 		retval = execute_queues_cpsch(dqm, filter, 0, USE_DEFAULT_GRACE_PERIOD);
2415 
2416 	if ((retval || qpd->reset_wavefronts) &&
2417 	    down_read_trylock(&dqm->dev->adev->reset_domain->sem)) {
2418 		pr_warn("Resetting wave fronts (cpsch) on dev %p\n", dqm->dev);
2419 		dbgdev_wave_reset_wavefronts(dqm->dev, qpd->pqm->process);
2420 		qpd->reset_wavefronts = false;
2421 		up_read(&dqm->dev->adev->reset_domain->sem);
2422 	}
2423 
2424 	/* Lastly, free mqd resources.
2425 	 * Do free_mqd() after dqm_unlock to avoid circular locking.
2426 	 */
2427 	while (!list_empty(&qpd->queues_list)) {
2428 		q = list_first_entry(&qpd->queues_list, struct queue, list);
2429 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2430 				q->properties.type)];
2431 		list_del(&q->list);
2432 		qpd->queue_count--;
2433 		dqm_unlock(dqm);
2434 		mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2435 		dqm_lock(dqm);
2436 	}
2437 	dqm_unlock(dqm);
2438 
2439 	/* Outside the DQM lock because under the DQM lock we can't do
2440 	 * reclaim or take other locks that others hold while reclaiming.
2441 	 */
2442 	if (found)
2443 		kfd_dec_compute_active(dqm->dev);
2444 
2445 	return retval;
2446 }
2447 
2448 static int init_mqd_managers(struct device_queue_manager *dqm)
2449 {
2450 	int i, j;
2451 	struct device *dev = dqm->dev->adev->dev;
2452 	struct mqd_manager *mqd_mgr;
2453 
2454 	for (i = 0; i < KFD_MQD_TYPE_MAX; i++) {
2455 		mqd_mgr = dqm->asic_ops.mqd_manager_init(i, dqm->dev);
2456 		if (!mqd_mgr) {
2457 			dev_err(dev, "mqd manager [%d] initialization failed\n", i);
2458 			goto out_free;
2459 		}
2460 		dqm->mqd_mgrs[i] = mqd_mgr;
2461 	}
2462 
2463 	return 0;
2464 
2465 out_free:
2466 	for (j = 0; j < i; j++) {
2467 		kfree(dqm->mqd_mgrs[j]);
2468 		dqm->mqd_mgrs[j] = NULL;
2469 	}
2470 
2471 	return -ENOMEM;
2472 }
2473 
2474 /* Allocate one hiq mqd (HWS) and all SDMA mqd in a continuous trunk*/
2475 static int allocate_hiq_sdma_mqd(struct device_queue_manager *dqm)
2476 {
2477 	int retval;
2478 	struct kfd_node *dev = dqm->dev;
2479 	struct kfd_mem_obj *mem_obj = &dqm->hiq_sdma_mqd;
2480 	uint32_t size = dqm->mqd_mgrs[KFD_MQD_TYPE_SDMA]->mqd_size *
2481 		get_num_all_sdma_engines(dqm) *
2482 		dev->kfd->device_info.num_sdma_queues_per_engine +
2483 		(dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]->mqd_size *
2484 		NUM_XCC(dqm->dev->xcc_mask));
2485 
2486 	retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev, size,
2487 		&(mem_obj->gtt_mem), &(mem_obj->gpu_addr),
2488 		(void *)&(mem_obj->cpu_ptr), false);
2489 
2490 	return retval;
2491 }
2492 
2493 struct device_queue_manager *device_queue_manager_init(struct kfd_node *dev)
2494 {
2495 	struct device_queue_manager *dqm;
2496 
2497 	pr_debug("Loading device queue manager\n");
2498 
2499 	dqm = kzalloc(sizeof(*dqm), GFP_KERNEL);
2500 	if (!dqm)
2501 		return NULL;
2502 
2503 	switch (dev->adev->asic_type) {
2504 	/* HWS is not available on Hawaii. */
2505 	case CHIP_HAWAII:
2506 	/* HWS depends on CWSR for timely dequeue. CWSR is not
2507 	 * available on Tonga.
2508 	 *
2509 	 * FIXME: This argument also applies to Kaveri.
2510 	 */
2511 	case CHIP_TONGA:
2512 		dqm->sched_policy = KFD_SCHED_POLICY_NO_HWS;
2513 		break;
2514 	default:
2515 		dqm->sched_policy = sched_policy;
2516 		break;
2517 	}
2518 
2519 	dqm->dev = dev;
2520 	switch (dqm->sched_policy) {
2521 	case KFD_SCHED_POLICY_HWS:
2522 	case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
2523 		/* initialize dqm for cp scheduling */
2524 		dqm->ops.create_queue = create_queue_cpsch;
2525 		dqm->ops.initialize = initialize_cpsch;
2526 		dqm->ops.start = start_cpsch;
2527 		dqm->ops.stop = stop_cpsch;
2528 		dqm->ops.destroy_queue = destroy_queue_cpsch;
2529 		dqm->ops.update_queue = update_queue;
2530 		dqm->ops.register_process = register_process;
2531 		dqm->ops.unregister_process = unregister_process;
2532 		dqm->ops.uninitialize = uninitialize;
2533 		dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
2534 		dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
2535 		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
2536 		dqm->ops.process_termination = process_termination_cpsch;
2537 		dqm->ops.evict_process_queues = evict_process_queues_cpsch;
2538 		dqm->ops.restore_process_queues = restore_process_queues_cpsch;
2539 		dqm->ops.get_wave_state = get_wave_state;
2540 		dqm->ops.reset_queues = reset_queues_cpsch;
2541 		dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info;
2542 		dqm->ops.checkpoint_mqd = checkpoint_mqd;
2543 		break;
2544 	case KFD_SCHED_POLICY_NO_HWS:
2545 		/* initialize dqm for no cp scheduling */
2546 		dqm->ops.start = start_nocpsch;
2547 		dqm->ops.stop = stop_nocpsch;
2548 		dqm->ops.create_queue = create_queue_nocpsch;
2549 		dqm->ops.destroy_queue = destroy_queue_nocpsch;
2550 		dqm->ops.update_queue = update_queue;
2551 		dqm->ops.register_process = register_process;
2552 		dqm->ops.unregister_process = unregister_process;
2553 		dqm->ops.initialize = initialize_nocpsch;
2554 		dqm->ops.uninitialize = uninitialize;
2555 		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
2556 		dqm->ops.process_termination = process_termination_nocpsch;
2557 		dqm->ops.evict_process_queues = evict_process_queues_nocpsch;
2558 		dqm->ops.restore_process_queues =
2559 			restore_process_queues_nocpsch;
2560 		dqm->ops.get_wave_state = get_wave_state;
2561 		dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info;
2562 		dqm->ops.checkpoint_mqd = checkpoint_mqd;
2563 		break;
2564 	default:
2565 		dev_err(dev->adev->dev, "Invalid scheduling policy %d\n", dqm->sched_policy);
2566 		goto out_free;
2567 	}
2568 
2569 	switch (dev->adev->asic_type) {
2570 	case CHIP_KAVERI:
2571 	case CHIP_HAWAII:
2572 		device_queue_manager_init_cik(&dqm->asic_ops);
2573 		break;
2574 
2575 	case CHIP_CARRIZO:
2576 	case CHIP_TONGA:
2577 	case CHIP_FIJI:
2578 	case CHIP_POLARIS10:
2579 	case CHIP_POLARIS11:
2580 	case CHIP_POLARIS12:
2581 	case CHIP_VEGAM:
2582 		device_queue_manager_init_vi(&dqm->asic_ops);
2583 		break;
2584 
2585 	default:
2586 		if (KFD_GC_VERSION(dev) >= IP_VERSION(12, 0, 0))
2587 			device_queue_manager_init_v12(&dqm->asic_ops);
2588 		else if (KFD_GC_VERSION(dev) >= IP_VERSION(11, 0, 0))
2589 			device_queue_manager_init_v11(&dqm->asic_ops);
2590 		else if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
2591 			device_queue_manager_init_v10(&dqm->asic_ops);
2592 		else if (KFD_GC_VERSION(dev) >= IP_VERSION(9, 0, 1))
2593 			device_queue_manager_init_v9(&dqm->asic_ops);
2594 		else {
2595 			WARN(1, "Unexpected ASIC family %u",
2596 			     dev->adev->asic_type);
2597 			goto out_free;
2598 		}
2599 	}
2600 
2601 	if (init_mqd_managers(dqm))
2602 		goto out_free;
2603 
2604 	if (!dev->kfd->shared_resources.enable_mes && allocate_hiq_sdma_mqd(dqm)) {
2605 		dev_err(dev->adev->dev, "Failed to allocate hiq sdma mqd trunk buffer\n");
2606 		goto out_free;
2607 	}
2608 
2609 	if (!dqm->ops.initialize(dqm)) {
2610 		init_waitqueue_head(&dqm->destroy_wait);
2611 		return dqm;
2612 	}
2613 
2614 out_free:
2615 	kfree(dqm);
2616 	return NULL;
2617 }
2618 
2619 static void deallocate_hiq_sdma_mqd(struct kfd_node *dev,
2620 				    struct kfd_mem_obj *mqd)
2621 {
2622 	WARN(!mqd, "No hiq sdma mqd trunk to free");
2623 
2624 	amdgpu_amdkfd_free_gtt_mem(dev->adev, mqd->gtt_mem);
2625 }
2626 
2627 void device_queue_manager_uninit(struct device_queue_manager *dqm)
2628 {
2629 	dqm->ops.stop(dqm);
2630 	dqm->ops.uninitialize(dqm);
2631 	if (!dqm->dev->kfd->shared_resources.enable_mes)
2632 		deallocate_hiq_sdma_mqd(dqm->dev, &dqm->hiq_sdma_mqd);
2633 	kfree(dqm);
2634 }
2635 
2636 int kfd_dqm_evict_pasid(struct device_queue_manager *dqm, u32 pasid)
2637 {
2638 	struct kfd_process_device *pdd;
2639 	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
2640 	int ret = 0;
2641 
2642 	if (!p)
2643 		return -EINVAL;
2644 	WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
2645 	pdd = kfd_get_process_device_data(dqm->dev, p);
2646 	if (pdd)
2647 		ret = dqm->ops.evict_process_queues(dqm, &pdd->qpd);
2648 	kfd_unref_process(p);
2649 
2650 	return ret;
2651 }
2652 
2653 static void kfd_process_hw_exception(struct work_struct *work)
2654 {
2655 	struct device_queue_manager *dqm = container_of(work,
2656 			struct device_queue_manager, hw_exception_work);
2657 	amdgpu_amdkfd_gpu_reset(dqm->dev->adev);
2658 }
2659 
2660 int reserve_debug_trap_vmid(struct device_queue_manager *dqm,
2661 				struct qcm_process_device *qpd)
2662 {
2663 	int r;
2664 	struct device *dev = dqm->dev->adev->dev;
2665 	int updated_vmid_mask;
2666 
2667 	if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
2668 		dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
2669 		return -EINVAL;
2670 	}
2671 
2672 	dqm_lock(dqm);
2673 
2674 	if (dqm->trap_debug_vmid != 0) {
2675 		dev_err(dev, "Trap debug id already reserved\n");
2676 		r = -EBUSY;
2677 		goto out_unlock;
2678 	}
2679 
2680 	r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
2681 			USE_DEFAULT_GRACE_PERIOD, false);
2682 	if (r)
2683 		goto out_unlock;
2684 
2685 	updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap;
2686 	updated_vmid_mask &= ~(1 << dqm->dev->vm_info.last_vmid_kfd);
2687 
2688 	dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask;
2689 	dqm->trap_debug_vmid = dqm->dev->vm_info.last_vmid_kfd;
2690 	r = set_sched_resources(dqm);
2691 	if (r)
2692 		goto out_unlock;
2693 
2694 	r = map_queues_cpsch(dqm);
2695 	if (r)
2696 		goto out_unlock;
2697 
2698 	pr_debug("Reserved VMID for trap debug: %i\n", dqm->trap_debug_vmid);
2699 
2700 out_unlock:
2701 	dqm_unlock(dqm);
2702 	return r;
2703 }
2704 
2705 /*
2706  * Releases vmid for the trap debugger
2707  */
2708 int release_debug_trap_vmid(struct device_queue_manager *dqm,
2709 			struct qcm_process_device *qpd)
2710 {
2711 	struct device *dev = dqm->dev->adev->dev;
2712 	int r;
2713 	int updated_vmid_mask;
2714 	uint32_t trap_debug_vmid;
2715 
2716 	if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
2717 		dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
2718 		return -EINVAL;
2719 	}
2720 
2721 	dqm_lock(dqm);
2722 	trap_debug_vmid = dqm->trap_debug_vmid;
2723 	if (dqm->trap_debug_vmid == 0) {
2724 		dev_err(dev, "Trap debug id is not reserved\n");
2725 		r = -EINVAL;
2726 		goto out_unlock;
2727 	}
2728 
2729 	r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
2730 			USE_DEFAULT_GRACE_PERIOD, false);
2731 	if (r)
2732 		goto out_unlock;
2733 
2734 	updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap;
2735 	updated_vmid_mask |= (1 << dqm->dev->vm_info.last_vmid_kfd);
2736 
2737 	dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask;
2738 	dqm->trap_debug_vmid = 0;
2739 	r = set_sched_resources(dqm);
2740 	if (r)
2741 		goto out_unlock;
2742 
2743 	r = map_queues_cpsch(dqm);
2744 	if (r)
2745 		goto out_unlock;
2746 
2747 	pr_debug("Released VMID for trap debug: %i\n", trap_debug_vmid);
2748 
2749 out_unlock:
2750 	dqm_unlock(dqm);
2751 	return r;
2752 }
2753 
2754 #define QUEUE_NOT_FOUND		-1
2755 /* invalidate queue operation in array */
2756 static void q_array_invalidate(uint32_t num_queues, uint32_t *queue_ids)
2757 {
2758 	int i;
2759 
2760 	for (i = 0; i < num_queues; i++)
2761 		queue_ids[i] |= KFD_DBG_QUEUE_INVALID_MASK;
2762 }
2763 
2764 /* find queue index in array */
2765 static int q_array_get_index(unsigned int queue_id,
2766 		uint32_t num_queues,
2767 		uint32_t *queue_ids)
2768 {
2769 	int i;
2770 
2771 	for (i = 0; i < num_queues; i++)
2772 		if (queue_id == (queue_ids[i] & ~KFD_DBG_QUEUE_INVALID_MASK))
2773 			return i;
2774 
2775 	return QUEUE_NOT_FOUND;
2776 }
2777 
2778 struct copy_context_work_handler_workarea {
2779 	struct work_struct copy_context_work;
2780 	struct kfd_process *p;
2781 };
2782 
2783 static void copy_context_work_handler (struct work_struct *work)
2784 {
2785 	struct copy_context_work_handler_workarea *workarea;
2786 	struct mqd_manager *mqd_mgr;
2787 	struct queue *q;
2788 	struct mm_struct *mm;
2789 	struct kfd_process *p;
2790 	uint32_t tmp_ctl_stack_used_size, tmp_save_area_used_size;
2791 	int i;
2792 
2793 	workarea = container_of(work,
2794 			struct copy_context_work_handler_workarea,
2795 			copy_context_work);
2796 
2797 	p = workarea->p;
2798 	mm = get_task_mm(p->lead_thread);
2799 
2800 	if (!mm)
2801 		return;
2802 
2803 	kthread_use_mm(mm);
2804 	for (i = 0; i < p->n_pdds; i++) {
2805 		struct kfd_process_device *pdd = p->pdds[i];
2806 		struct device_queue_manager *dqm = pdd->dev->dqm;
2807 		struct qcm_process_device *qpd = &pdd->qpd;
2808 
2809 		list_for_each_entry(q, &qpd->queues_list, list) {
2810 			mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP];
2811 
2812 			/* We ignore the return value from get_wave_state
2813 			 * because
2814 			 * i) right now, it always returns 0, and
2815 			 * ii) if we hit an error, we would continue to the
2816 			 *      next queue anyway.
2817 			 */
2818 			mqd_mgr->get_wave_state(mqd_mgr,
2819 					q->mqd,
2820 					&q->properties,
2821 					(void __user *)	q->properties.ctx_save_restore_area_address,
2822 					&tmp_ctl_stack_used_size,
2823 					&tmp_save_area_used_size);
2824 		}
2825 	}
2826 	kthread_unuse_mm(mm);
2827 	mmput(mm);
2828 }
2829 
2830 static uint32_t *get_queue_ids(uint32_t num_queues, uint32_t *usr_queue_id_array)
2831 {
2832 	size_t array_size = num_queues * sizeof(uint32_t);
2833 
2834 	if (!usr_queue_id_array)
2835 		return NULL;
2836 
2837 	return memdup_user(usr_queue_id_array, array_size);
2838 }
2839 
2840 int resume_queues(struct kfd_process *p,
2841 		uint32_t num_queues,
2842 		uint32_t *usr_queue_id_array)
2843 {
2844 	uint32_t *queue_ids = NULL;
2845 	int total_resumed = 0;
2846 	int i;
2847 
2848 	if (usr_queue_id_array) {
2849 		queue_ids = get_queue_ids(num_queues, usr_queue_id_array);
2850 
2851 		if (IS_ERR(queue_ids))
2852 			return PTR_ERR(queue_ids);
2853 
2854 		/* mask all queues as invalid.  unmask per successful request */
2855 		q_array_invalidate(num_queues, queue_ids);
2856 	}
2857 
2858 	for (i = 0; i < p->n_pdds; i++) {
2859 		struct kfd_process_device *pdd = p->pdds[i];
2860 		struct device_queue_manager *dqm = pdd->dev->dqm;
2861 		struct device *dev = dqm->dev->adev->dev;
2862 		struct qcm_process_device *qpd = &pdd->qpd;
2863 		struct queue *q;
2864 		int r, per_device_resumed = 0;
2865 
2866 		dqm_lock(dqm);
2867 
2868 		/* unmask queues that resume or already resumed as valid */
2869 		list_for_each_entry(q, &qpd->queues_list, list) {
2870 			int q_idx = QUEUE_NOT_FOUND;
2871 
2872 			if (queue_ids)
2873 				q_idx = q_array_get_index(
2874 						q->properties.queue_id,
2875 						num_queues,
2876 						queue_ids);
2877 
2878 			if (!queue_ids || q_idx != QUEUE_NOT_FOUND) {
2879 				int err = resume_single_queue(dqm, &pdd->qpd, q);
2880 
2881 				if (queue_ids) {
2882 					if (!err) {
2883 						queue_ids[q_idx] &=
2884 							~KFD_DBG_QUEUE_INVALID_MASK;
2885 					} else {
2886 						queue_ids[q_idx] |=
2887 							KFD_DBG_QUEUE_ERROR_MASK;
2888 						break;
2889 					}
2890 				}
2891 
2892 				if (dqm->dev->kfd->shared_resources.enable_mes) {
2893 					wake_up_all(&dqm->destroy_wait);
2894 					if (!err)
2895 						total_resumed++;
2896 				} else {
2897 					per_device_resumed++;
2898 				}
2899 			}
2900 		}
2901 
2902 		if (!per_device_resumed) {
2903 			dqm_unlock(dqm);
2904 			continue;
2905 		}
2906 
2907 		r = execute_queues_cpsch(dqm,
2908 					KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
2909 					0,
2910 					USE_DEFAULT_GRACE_PERIOD);
2911 		if (r) {
2912 			dev_err(dev, "Failed to resume process queues\n");
2913 			if (queue_ids) {
2914 				list_for_each_entry(q, &qpd->queues_list, list) {
2915 					int q_idx = q_array_get_index(
2916 							q->properties.queue_id,
2917 							num_queues,
2918 							queue_ids);
2919 
2920 					/* mask queue as error on resume fail */
2921 					if (q_idx != QUEUE_NOT_FOUND)
2922 						queue_ids[q_idx] |=
2923 							KFD_DBG_QUEUE_ERROR_MASK;
2924 				}
2925 			}
2926 		} else {
2927 			wake_up_all(&dqm->destroy_wait);
2928 			total_resumed += per_device_resumed;
2929 		}
2930 
2931 		dqm_unlock(dqm);
2932 	}
2933 
2934 	if (queue_ids) {
2935 		if (copy_to_user((void __user *)usr_queue_id_array, queue_ids,
2936 				num_queues * sizeof(uint32_t)))
2937 			pr_err("copy_to_user failed on queue resume\n");
2938 
2939 		kfree(queue_ids);
2940 	}
2941 
2942 	return total_resumed;
2943 }
2944 
2945 int suspend_queues(struct kfd_process *p,
2946 			uint32_t num_queues,
2947 			uint32_t grace_period,
2948 			uint64_t exception_clear_mask,
2949 			uint32_t *usr_queue_id_array)
2950 {
2951 	uint32_t *queue_ids = get_queue_ids(num_queues, usr_queue_id_array);
2952 	int total_suspended = 0;
2953 	int i;
2954 
2955 	if (IS_ERR(queue_ids))
2956 		return PTR_ERR(queue_ids);
2957 
2958 	/* mask all queues as invalid.  umask on successful request */
2959 	q_array_invalidate(num_queues, queue_ids);
2960 
2961 	for (i = 0; i < p->n_pdds; i++) {
2962 		struct kfd_process_device *pdd = p->pdds[i];
2963 		struct device_queue_manager *dqm = pdd->dev->dqm;
2964 		struct device *dev = dqm->dev->adev->dev;
2965 		struct qcm_process_device *qpd = &pdd->qpd;
2966 		struct queue *q;
2967 		int r, per_device_suspended = 0;
2968 
2969 		mutex_lock(&p->event_mutex);
2970 		dqm_lock(dqm);
2971 
2972 		/* unmask queues that suspend or already suspended */
2973 		list_for_each_entry(q, &qpd->queues_list, list) {
2974 			int q_idx = q_array_get_index(q->properties.queue_id,
2975 							num_queues,
2976 							queue_ids);
2977 
2978 			if (q_idx != QUEUE_NOT_FOUND) {
2979 				int err = suspend_single_queue(dqm, pdd, q);
2980 				bool is_mes = dqm->dev->kfd->shared_resources.enable_mes;
2981 
2982 				if (!err) {
2983 					queue_ids[q_idx] &= ~KFD_DBG_QUEUE_INVALID_MASK;
2984 					if (exception_clear_mask && is_mes)
2985 						q->properties.exception_status &=
2986 							~exception_clear_mask;
2987 
2988 					if (is_mes)
2989 						total_suspended++;
2990 					else
2991 						per_device_suspended++;
2992 				} else if (err != -EBUSY) {
2993 					r = err;
2994 					queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK;
2995 					break;
2996 				}
2997 			}
2998 		}
2999 
3000 		if (!per_device_suspended) {
3001 			dqm_unlock(dqm);
3002 			mutex_unlock(&p->event_mutex);
3003 			if (total_suspended)
3004 				amdgpu_amdkfd_debug_mem_fence(dqm->dev->adev);
3005 			continue;
3006 		}
3007 
3008 		r = execute_queues_cpsch(dqm,
3009 			KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
3010 			grace_period);
3011 
3012 		if (r)
3013 			dev_err(dev, "Failed to suspend process queues.\n");
3014 		else
3015 			total_suspended += per_device_suspended;
3016 
3017 		list_for_each_entry(q, &qpd->queues_list, list) {
3018 			int q_idx = q_array_get_index(q->properties.queue_id,
3019 						num_queues, queue_ids);
3020 
3021 			if (q_idx == QUEUE_NOT_FOUND)
3022 				continue;
3023 
3024 			/* mask queue as error on suspend fail */
3025 			if (r)
3026 				queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK;
3027 			else if (exception_clear_mask)
3028 				q->properties.exception_status &=
3029 							~exception_clear_mask;
3030 		}
3031 
3032 		dqm_unlock(dqm);
3033 		mutex_unlock(&p->event_mutex);
3034 		amdgpu_device_flush_hdp(dqm->dev->adev, NULL);
3035 	}
3036 
3037 	if (total_suspended) {
3038 		struct copy_context_work_handler_workarea copy_context_worker;
3039 
3040 		INIT_WORK_ONSTACK(
3041 				&copy_context_worker.copy_context_work,
3042 				copy_context_work_handler);
3043 
3044 		copy_context_worker.p = p;
3045 
3046 		schedule_work(&copy_context_worker.copy_context_work);
3047 
3048 
3049 		flush_work(&copy_context_worker.copy_context_work);
3050 		destroy_work_on_stack(&copy_context_worker.copy_context_work);
3051 	}
3052 
3053 	if (copy_to_user((void __user *)usr_queue_id_array, queue_ids,
3054 			num_queues * sizeof(uint32_t)))
3055 		pr_err("copy_to_user failed on queue suspend\n");
3056 
3057 	kfree(queue_ids);
3058 
3059 	return total_suspended;
3060 }
3061 
3062 static uint32_t set_queue_type_for_user(struct queue_properties *q_props)
3063 {
3064 	switch (q_props->type) {
3065 	case KFD_QUEUE_TYPE_COMPUTE:
3066 		return q_props->format == KFD_QUEUE_FORMAT_PM4
3067 					? KFD_IOC_QUEUE_TYPE_COMPUTE
3068 					: KFD_IOC_QUEUE_TYPE_COMPUTE_AQL;
3069 	case KFD_QUEUE_TYPE_SDMA:
3070 		return KFD_IOC_QUEUE_TYPE_SDMA;
3071 	case KFD_QUEUE_TYPE_SDMA_XGMI:
3072 		return KFD_IOC_QUEUE_TYPE_SDMA_XGMI;
3073 	default:
3074 		WARN_ONCE(true, "queue type not recognized!");
3075 		return 0xffffffff;
3076 	};
3077 }
3078 
3079 void set_queue_snapshot_entry(struct queue *q,
3080 			      uint64_t exception_clear_mask,
3081 			      struct kfd_queue_snapshot_entry *qss_entry)
3082 {
3083 	qss_entry->ring_base_address = q->properties.queue_address;
3084 	qss_entry->write_pointer_address = (uint64_t)q->properties.write_ptr;
3085 	qss_entry->read_pointer_address = (uint64_t)q->properties.read_ptr;
3086 	qss_entry->ctx_save_restore_address =
3087 				q->properties.ctx_save_restore_area_address;
3088 	qss_entry->ctx_save_restore_area_size =
3089 				q->properties.ctx_save_restore_area_size;
3090 	qss_entry->exception_status = q->properties.exception_status;
3091 	qss_entry->queue_id = q->properties.queue_id;
3092 	qss_entry->gpu_id = q->device->id;
3093 	qss_entry->ring_size = (uint32_t)q->properties.queue_size;
3094 	qss_entry->queue_type = set_queue_type_for_user(&q->properties);
3095 	q->properties.exception_status &= ~exception_clear_mask;
3096 }
3097 
3098 int debug_lock_and_unmap(struct device_queue_manager *dqm)
3099 {
3100 	struct device *dev = dqm->dev->adev->dev;
3101 	int r;
3102 
3103 	if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3104 		dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3105 		return -EINVAL;
3106 	}
3107 
3108 	if (!kfd_dbg_is_per_vmid_supported(dqm->dev))
3109 		return 0;
3110 
3111 	dqm_lock(dqm);
3112 
3113 	r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, 0, false);
3114 	if (r)
3115 		dqm_unlock(dqm);
3116 
3117 	return r;
3118 }
3119 
3120 int debug_map_and_unlock(struct device_queue_manager *dqm)
3121 {
3122 	struct device *dev = dqm->dev->adev->dev;
3123 	int r;
3124 
3125 	if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3126 		dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3127 		return -EINVAL;
3128 	}
3129 
3130 	if (!kfd_dbg_is_per_vmid_supported(dqm->dev))
3131 		return 0;
3132 
3133 	r = map_queues_cpsch(dqm);
3134 
3135 	dqm_unlock(dqm);
3136 
3137 	return r;
3138 }
3139 
3140 int debug_refresh_runlist(struct device_queue_manager *dqm)
3141 {
3142 	int r = debug_lock_and_unmap(dqm);
3143 
3144 	if (r)
3145 		return r;
3146 
3147 	return debug_map_and_unlock(dqm);
3148 }
3149 
3150 #if defined(CONFIG_DEBUG_FS)
3151 
3152 static void seq_reg_dump(struct seq_file *m,
3153 			 uint32_t (*dump)[2], uint32_t n_regs)
3154 {
3155 	uint32_t i, count;
3156 
3157 	for (i = 0, count = 0; i < n_regs; i++) {
3158 		if (count == 0 ||
3159 		    dump[i-1][0] + sizeof(uint32_t) != dump[i][0]) {
3160 			seq_printf(m, "%s    %08x: %08x",
3161 				   i ? "\n" : "",
3162 				   dump[i][0], dump[i][1]);
3163 			count = 7;
3164 		} else {
3165 			seq_printf(m, " %08x", dump[i][1]);
3166 			count--;
3167 		}
3168 	}
3169 
3170 	seq_puts(m, "\n");
3171 }
3172 
3173 int dqm_debugfs_hqds(struct seq_file *m, void *data)
3174 {
3175 	struct device_queue_manager *dqm = data;
3176 	uint32_t xcc_mask = dqm->dev->xcc_mask;
3177 	uint32_t (*dump)[2], n_regs;
3178 	int pipe, queue;
3179 	int r = 0, xcc_id;
3180 	uint32_t sdma_engine_start;
3181 
3182 	if (!dqm->sched_running) {
3183 		seq_puts(m, " Device is stopped\n");
3184 		return 0;
3185 	}
3186 
3187 	for_each_inst(xcc_id, xcc_mask) {
3188 		r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev,
3189 						KFD_CIK_HIQ_PIPE,
3190 						KFD_CIK_HIQ_QUEUE, &dump,
3191 						&n_regs, xcc_id);
3192 		if (!r) {
3193 			seq_printf(
3194 				m,
3195 				"   Inst %d, HIQ on MEC %d Pipe %d Queue %d\n",
3196 				xcc_id,
3197 				KFD_CIK_HIQ_PIPE / get_pipes_per_mec(dqm) + 1,
3198 				KFD_CIK_HIQ_PIPE % get_pipes_per_mec(dqm),
3199 				KFD_CIK_HIQ_QUEUE);
3200 			seq_reg_dump(m, dump, n_regs);
3201 
3202 			kfree(dump);
3203 		}
3204 
3205 		for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
3206 			int pipe_offset = pipe * get_queues_per_pipe(dqm);
3207 
3208 			for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) {
3209 				if (!test_bit(pipe_offset + queue,
3210 				      dqm->dev->kfd->shared_resources.cp_queue_bitmap))
3211 					continue;
3212 
3213 				r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev,
3214 								pipe, queue,
3215 								&dump, &n_regs,
3216 								xcc_id);
3217 				if (r)
3218 					break;
3219 
3220 				seq_printf(m,
3221 					   " Inst %d,  CP Pipe %d, Queue %d\n",
3222 					   xcc_id, pipe, queue);
3223 				seq_reg_dump(m, dump, n_regs);
3224 
3225 				kfree(dump);
3226 			}
3227 		}
3228 	}
3229 
3230 	sdma_engine_start = dqm->dev->node_id * get_num_all_sdma_engines(dqm);
3231 	for (pipe = sdma_engine_start;
3232 	     pipe < (sdma_engine_start + get_num_all_sdma_engines(dqm));
3233 	     pipe++) {
3234 		for (queue = 0;
3235 		     queue < dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
3236 		     queue++) {
3237 			r = dqm->dev->kfd2kgd->hqd_sdma_dump(
3238 				dqm->dev->adev, pipe, queue, &dump, &n_regs);
3239 			if (r)
3240 				break;
3241 
3242 			seq_printf(m, "  SDMA Engine %d, RLC %d\n",
3243 				  pipe, queue);
3244 			seq_reg_dump(m, dump, n_regs);
3245 
3246 			kfree(dump);
3247 		}
3248 	}
3249 
3250 	return r;
3251 }
3252 
3253 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm)
3254 {
3255 	int r = 0;
3256 
3257 	dqm_lock(dqm);
3258 	r = pm_debugfs_hang_hws(&dqm->packet_mgr);
3259 	if (r) {
3260 		dqm_unlock(dqm);
3261 		return r;
3262 	}
3263 	dqm->active_runlist = true;
3264 	r = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES,
3265 				0, USE_DEFAULT_GRACE_PERIOD);
3266 	dqm_unlock(dqm);
3267 
3268 	return r;
3269 }
3270 
3271 #endif
3272