xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_device_queue_manager.c (revision 9e56ff53b4115875667760445b028357848b4748)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/ratelimit.h>
26 #include <linux/printk.h>
27 #include <linux/slab.h>
28 #include <linux/list.h>
29 #include <linux/types.h>
30 #include <linux/bitops.h>
31 #include <linux/sched.h>
32 #include "kfd_priv.h"
33 #include "kfd_device_queue_manager.h"
34 #include "kfd_mqd_manager.h"
35 #include "cik_regs.h"
36 #include "kfd_kernel_queue.h"
37 #include "amdgpu_amdkfd.h"
38 #include "mes_api_def.h"
39 #include "kfd_debug.h"
40 
41 /* Size of the per-pipe EOP queue */
42 #define CIK_HPD_EOP_BYTES_LOG2 11
43 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
44 
45 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
46 				  u32 pasid, unsigned int vmid);
47 
48 static int execute_queues_cpsch(struct device_queue_manager *dqm,
49 				enum kfd_unmap_queues_filter filter,
50 				uint32_t filter_param,
51 				uint32_t grace_period);
52 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
53 				enum kfd_unmap_queues_filter filter,
54 				uint32_t filter_param,
55 				uint32_t grace_period,
56 				bool reset);
57 
58 static int map_queues_cpsch(struct device_queue_manager *dqm);
59 
60 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
61 				struct queue *q);
62 
63 static inline void deallocate_hqd(struct device_queue_manager *dqm,
64 				struct queue *q);
65 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q);
66 static int allocate_sdma_queue(struct device_queue_manager *dqm,
67 				struct queue *q, const uint32_t *restore_sdma_id);
68 static void kfd_process_hw_exception(struct work_struct *work);
69 
70 static inline
71 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
72 {
73 	if (type == KFD_QUEUE_TYPE_SDMA || type == KFD_QUEUE_TYPE_SDMA_XGMI)
74 		return KFD_MQD_TYPE_SDMA;
75 	return KFD_MQD_TYPE_CP;
76 }
77 
78 static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe)
79 {
80 	int i;
81 	int pipe_offset = (mec * dqm->dev->kfd->shared_resources.num_pipe_per_mec
82 		+ pipe) * dqm->dev->kfd->shared_resources.num_queue_per_pipe;
83 
84 	/* queue is available for KFD usage if bit is 1 */
85 	for (i = 0; i <  dqm->dev->kfd->shared_resources.num_queue_per_pipe; ++i)
86 		if (test_bit(pipe_offset + i,
87 			      dqm->dev->kfd->shared_resources.cp_queue_bitmap))
88 			return true;
89 	return false;
90 }
91 
92 unsigned int get_cp_queues_num(struct device_queue_manager *dqm)
93 {
94 	return bitmap_weight(dqm->dev->kfd->shared_resources.cp_queue_bitmap,
95 				AMDGPU_MAX_QUEUES);
96 }
97 
98 unsigned int get_queues_per_pipe(struct device_queue_manager *dqm)
99 {
100 	return dqm->dev->kfd->shared_resources.num_queue_per_pipe;
101 }
102 
103 unsigned int get_pipes_per_mec(struct device_queue_manager *dqm)
104 {
105 	return dqm->dev->kfd->shared_resources.num_pipe_per_mec;
106 }
107 
108 static unsigned int get_num_all_sdma_engines(struct device_queue_manager *dqm)
109 {
110 	return kfd_get_num_sdma_engines(dqm->dev) +
111 		kfd_get_num_xgmi_sdma_engines(dqm->dev);
112 }
113 
114 unsigned int get_num_sdma_queues(struct device_queue_manager *dqm)
115 {
116 	return kfd_get_num_sdma_engines(dqm->dev) *
117 		dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
118 }
119 
120 unsigned int get_num_xgmi_sdma_queues(struct device_queue_manager *dqm)
121 {
122 	return kfd_get_num_xgmi_sdma_engines(dqm->dev) *
123 		dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
124 }
125 
126 static void init_sdma_bitmaps(struct device_queue_manager *dqm)
127 {
128 	bitmap_zero(dqm->sdma_bitmap, KFD_MAX_SDMA_QUEUES);
129 	bitmap_set(dqm->sdma_bitmap, 0, get_num_sdma_queues(dqm));
130 
131 	bitmap_zero(dqm->xgmi_sdma_bitmap, KFD_MAX_SDMA_QUEUES);
132 	bitmap_set(dqm->xgmi_sdma_bitmap, 0, get_num_xgmi_sdma_queues(dqm));
133 
134 	/* Mask out the reserved queues */
135 	bitmap_andnot(dqm->sdma_bitmap, dqm->sdma_bitmap,
136 		      dqm->dev->kfd->device_info.reserved_sdma_queues_bitmap,
137 		      KFD_MAX_SDMA_QUEUES);
138 }
139 
140 void program_sh_mem_settings(struct device_queue_manager *dqm,
141 					struct qcm_process_device *qpd)
142 {
143 	uint32_t xcc_mask = dqm->dev->xcc_mask;
144 	int xcc_id;
145 
146 	for_each_inst(xcc_id, xcc_mask)
147 		dqm->dev->kfd2kgd->program_sh_mem_settings(
148 			dqm->dev->adev, qpd->vmid, qpd->sh_mem_config,
149 			qpd->sh_mem_ape1_base, qpd->sh_mem_ape1_limit,
150 			qpd->sh_mem_bases, xcc_id);
151 }
152 
153 static void kfd_hws_hang(struct device_queue_manager *dqm)
154 {
155 	/*
156 	 * Issue a GPU reset if HWS is unresponsive
157 	 */
158 	dqm->is_hws_hang = true;
159 
160 	/* It's possible we're detecting a HWS hang in the
161 	 * middle of a GPU reset. No need to schedule another
162 	 * reset in this case.
163 	 */
164 	if (!dqm->is_resetting)
165 		schedule_work(&dqm->hw_exception_work);
166 }
167 
168 static int convert_to_mes_queue_type(int queue_type)
169 {
170 	int mes_queue_type;
171 
172 	switch (queue_type) {
173 	case KFD_QUEUE_TYPE_COMPUTE:
174 		mes_queue_type = MES_QUEUE_TYPE_COMPUTE;
175 		break;
176 	case KFD_QUEUE_TYPE_SDMA:
177 		mes_queue_type = MES_QUEUE_TYPE_SDMA;
178 		break;
179 	default:
180 		WARN(1, "Invalid queue type %d", queue_type);
181 		mes_queue_type = -EINVAL;
182 		break;
183 	}
184 
185 	return mes_queue_type;
186 }
187 
188 static int add_queue_mes(struct device_queue_manager *dqm, struct queue *q,
189 			 struct qcm_process_device *qpd)
190 {
191 	struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
192 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
193 	struct mes_add_queue_input queue_input;
194 	int r, queue_type;
195 	uint64_t wptr_addr_off;
196 
197 	if (dqm->is_hws_hang)
198 		return -EIO;
199 
200 	memset(&queue_input, 0x0, sizeof(struct mes_add_queue_input));
201 	queue_input.process_id = qpd->pqm->process->pasid;
202 	queue_input.page_table_base_addr =  qpd->page_table_base;
203 	queue_input.process_va_start = 0;
204 	queue_input.process_va_end = adev->vm_manager.max_pfn - 1;
205 	/* MES unit for quantum is 100ns */
206 	queue_input.process_quantum = KFD_MES_PROCESS_QUANTUM;  /* Equivalent to 10ms. */
207 	queue_input.process_context_addr = pdd->proc_ctx_gpu_addr;
208 	queue_input.gang_quantum = KFD_MES_GANG_QUANTUM; /* Equivalent to 1ms */
209 	queue_input.gang_context_addr = q->gang_ctx_gpu_addr;
210 	queue_input.inprocess_gang_priority = q->properties.priority;
211 	queue_input.gang_global_priority_level =
212 					AMDGPU_MES_PRIORITY_LEVEL_NORMAL;
213 	queue_input.doorbell_offset = q->properties.doorbell_off;
214 	queue_input.mqd_addr = q->gart_mqd_addr;
215 	queue_input.wptr_addr = (uint64_t)q->properties.write_ptr;
216 
217 	if (q->wptr_bo) {
218 		wptr_addr_off = (uint64_t)q->properties.write_ptr & (PAGE_SIZE - 1);
219 		queue_input.wptr_mc_addr = amdgpu_bo_gpu_offset(q->wptr_bo) + wptr_addr_off;
220 	}
221 
222 	queue_input.is_kfd_process = 1;
223 	queue_input.is_aql_queue = (q->properties.format == KFD_QUEUE_FORMAT_AQL);
224 	queue_input.queue_size = q->properties.queue_size >> 2;
225 
226 	queue_input.paging = false;
227 	queue_input.tba_addr = qpd->tba_addr;
228 	queue_input.tma_addr = qpd->tma_addr;
229 	queue_input.trap_en = !kfd_dbg_has_cwsr_workaround(q->device);
230 	queue_input.skip_process_ctx_clear =
231 		qpd->pqm->process->runtime_info.runtime_state == DEBUG_RUNTIME_STATE_ENABLED &&
232 						(qpd->pqm->process->debug_trap_enabled ||
233 						 kfd_dbg_has_ttmps_always_setup(q->device));
234 
235 	queue_type = convert_to_mes_queue_type(q->properties.type);
236 	if (queue_type < 0) {
237 		dev_err(adev->dev, "Queue type not supported with MES, queue:%d\n",
238 			q->properties.type);
239 		return -EINVAL;
240 	}
241 	queue_input.queue_type = (uint32_t)queue_type;
242 
243 	queue_input.exclusively_scheduled = q->properties.is_gws;
244 
245 	amdgpu_mes_lock(&adev->mes);
246 	r = adev->mes.funcs->add_hw_queue(&adev->mes, &queue_input);
247 	amdgpu_mes_unlock(&adev->mes);
248 	if (r) {
249 		dev_err(adev->dev, "failed to add hardware queue to MES, doorbell=0x%x\n",
250 			q->properties.doorbell_off);
251 		dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
252 		kfd_hws_hang(dqm);
253 	}
254 
255 	return r;
256 }
257 
258 static int remove_queue_mes(struct device_queue_manager *dqm, struct queue *q,
259 			struct qcm_process_device *qpd)
260 {
261 	struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
262 	int r;
263 	struct mes_remove_queue_input queue_input;
264 
265 	if (dqm->is_hws_hang)
266 		return -EIO;
267 
268 	memset(&queue_input, 0x0, sizeof(struct mes_remove_queue_input));
269 	queue_input.doorbell_offset = q->properties.doorbell_off;
270 	queue_input.gang_context_addr = q->gang_ctx_gpu_addr;
271 
272 	amdgpu_mes_lock(&adev->mes);
273 	r = adev->mes.funcs->remove_hw_queue(&adev->mes, &queue_input);
274 	amdgpu_mes_unlock(&adev->mes);
275 
276 	if (r) {
277 		dev_err(adev->dev, "failed to remove hardware queue from MES, doorbell=0x%x\n",
278 			q->properties.doorbell_off);
279 		dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
280 		kfd_hws_hang(dqm);
281 	}
282 
283 	return r;
284 }
285 
286 static int remove_all_queues_mes(struct device_queue_manager *dqm)
287 {
288 	struct device_process_node *cur;
289 	struct device *dev = dqm->dev->adev->dev;
290 	struct qcm_process_device *qpd;
291 	struct queue *q;
292 	int retval = 0;
293 
294 	list_for_each_entry(cur, &dqm->queues, list) {
295 		qpd = cur->qpd;
296 		list_for_each_entry(q, &qpd->queues_list, list) {
297 			if (q->properties.is_active) {
298 				retval = remove_queue_mes(dqm, q, qpd);
299 				if (retval) {
300 					dev_err(dev, "%s: Failed to remove queue %d for dev %d",
301 						__func__,
302 						q->properties.queue_id,
303 						dqm->dev->id);
304 					return retval;
305 				}
306 			}
307 		}
308 	}
309 
310 	return retval;
311 }
312 
313 static void increment_queue_count(struct device_queue_manager *dqm,
314 				  struct qcm_process_device *qpd,
315 				  struct queue *q)
316 {
317 	dqm->active_queue_count++;
318 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
319 	    q->properties.type == KFD_QUEUE_TYPE_DIQ)
320 		dqm->active_cp_queue_count++;
321 
322 	if (q->properties.is_gws) {
323 		dqm->gws_queue_count++;
324 		qpd->mapped_gws_queue = true;
325 	}
326 }
327 
328 static void decrement_queue_count(struct device_queue_manager *dqm,
329 				  struct qcm_process_device *qpd,
330 				  struct queue *q)
331 {
332 	dqm->active_queue_count--;
333 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
334 	    q->properties.type == KFD_QUEUE_TYPE_DIQ)
335 		dqm->active_cp_queue_count--;
336 
337 	if (q->properties.is_gws) {
338 		dqm->gws_queue_count--;
339 		qpd->mapped_gws_queue = false;
340 	}
341 }
342 
343 /*
344  * Allocate a doorbell ID to this queue.
345  * If doorbell_id is passed in, make sure requested ID is valid then allocate it.
346  */
347 static int allocate_doorbell(struct qcm_process_device *qpd,
348 			     struct queue *q,
349 			     uint32_t const *restore_id)
350 {
351 	struct kfd_node *dev = qpd->dqm->dev;
352 
353 	if (!KFD_IS_SOC15(dev)) {
354 		/* On pre-SOC15 chips we need to use the queue ID to
355 		 * preserve the user mode ABI.
356 		 */
357 
358 		if (restore_id && *restore_id != q->properties.queue_id)
359 			return -EINVAL;
360 
361 		q->doorbell_id = q->properties.queue_id;
362 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
363 			q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
364 		/* For SDMA queues on SOC15 with 8-byte doorbell, use static
365 		 * doorbell assignments based on the engine and queue id.
366 		 * The doobell index distance between RLC (2*i) and (2*i+1)
367 		 * for a SDMA engine is 512.
368 		 */
369 
370 		uint32_t *idx_offset = dev->kfd->shared_resources.sdma_doorbell_idx;
371 
372 		/*
373 		 * q->properties.sdma_engine_id corresponds to the virtual
374 		 * sdma engine number. However, for doorbell allocation,
375 		 * we need the physical sdma engine id in order to get the
376 		 * correct doorbell offset.
377 		 */
378 		uint32_t valid_id = idx_offset[qpd->dqm->dev->node_id *
379 					       get_num_all_sdma_engines(qpd->dqm) +
380 					       q->properties.sdma_engine_id]
381 						+ (q->properties.sdma_queue_id & 1)
382 						* KFD_QUEUE_DOORBELL_MIRROR_OFFSET
383 						+ (q->properties.sdma_queue_id >> 1);
384 
385 		if (restore_id && *restore_id != valid_id)
386 			return -EINVAL;
387 		q->doorbell_id = valid_id;
388 	} else {
389 		/* For CP queues on SOC15 */
390 		if (restore_id) {
391 			/* make sure that ID is free  */
392 			if (__test_and_set_bit(*restore_id, qpd->doorbell_bitmap))
393 				return -EINVAL;
394 
395 			q->doorbell_id = *restore_id;
396 		} else {
397 			/* or reserve a free doorbell ID */
398 			unsigned int found;
399 
400 			found = find_first_zero_bit(qpd->doorbell_bitmap,
401 						    KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
402 			if (found >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) {
403 				pr_debug("No doorbells available");
404 				return -EBUSY;
405 			}
406 			set_bit(found, qpd->doorbell_bitmap);
407 			q->doorbell_id = found;
408 		}
409 	}
410 
411 	q->properties.doorbell_off = amdgpu_doorbell_index_on_bar(dev->adev,
412 								  qpd->proc_doorbells,
413 								  q->doorbell_id,
414 								  dev->kfd->device_info.doorbell_size);
415 	return 0;
416 }
417 
418 static void deallocate_doorbell(struct qcm_process_device *qpd,
419 				struct queue *q)
420 {
421 	unsigned int old;
422 	struct kfd_node *dev = qpd->dqm->dev;
423 
424 	if (!KFD_IS_SOC15(dev) ||
425 	    q->properties.type == KFD_QUEUE_TYPE_SDMA ||
426 	    q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
427 		return;
428 
429 	old = test_and_clear_bit(q->doorbell_id, qpd->doorbell_bitmap);
430 	WARN_ON(!old);
431 }
432 
433 static void program_trap_handler_settings(struct device_queue_manager *dqm,
434 				struct qcm_process_device *qpd)
435 {
436 	uint32_t xcc_mask = dqm->dev->xcc_mask;
437 	int xcc_id;
438 
439 	if (dqm->dev->kfd2kgd->program_trap_handler_settings)
440 		for_each_inst(xcc_id, xcc_mask)
441 			dqm->dev->kfd2kgd->program_trap_handler_settings(
442 				dqm->dev->adev, qpd->vmid, qpd->tba_addr,
443 				qpd->tma_addr, xcc_id);
444 }
445 
446 static int allocate_vmid(struct device_queue_manager *dqm,
447 			struct qcm_process_device *qpd,
448 			struct queue *q)
449 {
450 	struct device *dev = dqm->dev->adev->dev;
451 	int allocated_vmid = -1, i;
452 
453 	for (i = dqm->dev->vm_info.first_vmid_kfd;
454 			i <= dqm->dev->vm_info.last_vmid_kfd; i++) {
455 		if (!dqm->vmid_pasid[i]) {
456 			allocated_vmid = i;
457 			break;
458 		}
459 	}
460 
461 	if (allocated_vmid < 0) {
462 		dev_err(dev, "no more vmid to allocate\n");
463 		return -ENOSPC;
464 	}
465 
466 	pr_debug("vmid allocated: %d\n", allocated_vmid);
467 
468 	dqm->vmid_pasid[allocated_vmid] = q->process->pasid;
469 
470 	set_pasid_vmid_mapping(dqm, q->process->pasid, allocated_vmid);
471 
472 	qpd->vmid = allocated_vmid;
473 	q->properties.vmid = allocated_vmid;
474 
475 	program_sh_mem_settings(dqm, qpd);
476 
477 	if (KFD_IS_SOC15(dqm->dev) && dqm->dev->kfd->cwsr_enabled)
478 		program_trap_handler_settings(dqm, qpd);
479 
480 	/* qpd->page_table_base is set earlier when register_process()
481 	 * is called, i.e. when the first queue is created.
482 	 */
483 	dqm->dev->kfd2kgd->set_vm_context_page_table_base(dqm->dev->adev,
484 			qpd->vmid,
485 			qpd->page_table_base);
486 	/* invalidate the VM context after pasid and vmid mapping is set up */
487 	kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY);
488 
489 	if (dqm->dev->kfd2kgd->set_scratch_backing_va)
490 		dqm->dev->kfd2kgd->set_scratch_backing_va(dqm->dev->adev,
491 				qpd->sh_hidden_private_base, qpd->vmid);
492 
493 	return 0;
494 }
495 
496 static int flush_texture_cache_nocpsch(struct kfd_node *kdev,
497 				struct qcm_process_device *qpd)
498 {
499 	const struct packet_manager_funcs *pmf = qpd->dqm->packet_mgr.pmf;
500 	int ret;
501 
502 	if (!qpd->ib_kaddr)
503 		return -ENOMEM;
504 
505 	ret = pmf->release_mem(qpd->ib_base, (uint32_t *)qpd->ib_kaddr);
506 	if (ret)
507 		return ret;
508 
509 	return amdgpu_amdkfd_submit_ib(kdev->adev, KGD_ENGINE_MEC1, qpd->vmid,
510 				qpd->ib_base, (uint32_t *)qpd->ib_kaddr,
511 				pmf->release_mem_size / sizeof(uint32_t));
512 }
513 
514 static void deallocate_vmid(struct device_queue_manager *dqm,
515 				struct qcm_process_device *qpd,
516 				struct queue *q)
517 {
518 	struct device *dev = dqm->dev->adev->dev;
519 
520 	/* On GFX v7, CP doesn't flush TC at dequeue */
521 	if (q->device->adev->asic_type == CHIP_HAWAII)
522 		if (flush_texture_cache_nocpsch(q->device, qpd))
523 			dev_err(dev, "Failed to flush TC\n");
524 
525 	kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY);
526 
527 	/* Release the vmid mapping */
528 	set_pasid_vmid_mapping(dqm, 0, qpd->vmid);
529 	dqm->vmid_pasid[qpd->vmid] = 0;
530 
531 	qpd->vmid = 0;
532 	q->properties.vmid = 0;
533 }
534 
535 static int create_queue_nocpsch(struct device_queue_manager *dqm,
536 				struct queue *q,
537 				struct qcm_process_device *qpd,
538 				const struct kfd_criu_queue_priv_data *qd,
539 				const void *restore_mqd, const void *restore_ctl_stack)
540 {
541 	struct mqd_manager *mqd_mgr;
542 	int retval;
543 
544 	dqm_lock(dqm);
545 
546 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
547 		pr_warn("Can't create new usermode queue because %d queues were already created\n",
548 				dqm->total_queue_count);
549 		retval = -EPERM;
550 		goto out_unlock;
551 	}
552 
553 	if (list_empty(&qpd->queues_list)) {
554 		retval = allocate_vmid(dqm, qpd, q);
555 		if (retval)
556 			goto out_unlock;
557 	}
558 	q->properties.vmid = qpd->vmid;
559 	/*
560 	 * Eviction state logic: mark all queues as evicted, even ones
561 	 * not currently active. Restoring inactive queues later only
562 	 * updates the is_evicted flag but is a no-op otherwise.
563 	 */
564 	q->properties.is_evicted = !!qpd->evicted;
565 
566 	q->properties.tba_addr = qpd->tba_addr;
567 	q->properties.tma_addr = qpd->tma_addr;
568 
569 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
570 			q->properties.type)];
571 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
572 		retval = allocate_hqd(dqm, q);
573 		if (retval)
574 			goto deallocate_vmid;
575 		pr_debug("Loading mqd to hqd on pipe %d, queue %d\n",
576 			q->pipe, q->queue);
577 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
578 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
579 		retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL);
580 		if (retval)
581 			goto deallocate_vmid;
582 		dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
583 	}
584 
585 	retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL);
586 	if (retval)
587 		goto out_deallocate_hqd;
588 
589 	/* Temporarily release dqm lock to avoid a circular lock dependency */
590 	dqm_unlock(dqm);
591 	q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
592 	dqm_lock(dqm);
593 
594 	if (!q->mqd_mem_obj) {
595 		retval = -ENOMEM;
596 		goto out_deallocate_doorbell;
597 	}
598 
599 	if (qd)
600 		mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr,
601 				     &q->properties, restore_mqd, restore_ctl_stack,
602 				     qd->ctl_stack_size);
603 	else
604 		mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
605 					&q->gart_mqd_addr, &q->properties);
606 
607 	if (q->properties.is_active) {
608 		if (!dqm->sched_running) {
609 			WARN_ONCE(1, "Load non-HWS mqd while stopped\n");
610 			goto add_queue_to_list;
611 		}
612 
613 		if (WARN(q->process->mm != current->mm,
614 					"should only run in user thread"))
615 			retval = -EFAULT;
616 		else
617 			retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
618 					q->queue, &q->properties, current->mm);
619 		if (retval)
620 			goto out_free_mqd;
621 	}
622 
623 add_queue_to_list:
624 	list_add(&q->list, &qpd->queues_list);
625 	qpd->queue_count++;
626 	if (q->properties.is_active)
627 		increment_queue_count(dqm, qpd, q);
628 
629 	/*
630 	 * Unconditionally increment this counter, regardless of the queue's
631 	 * type or whether the queue is active.
632 	 */
633 	dqm->total_queue_count++;
634 	pr_debug("Total of %d queues are accountable so far\n",
635 			dqm->total_queue_count);
636 	goto out_unlock;
637 
638 out_free_mqd:
639 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
640 out_deallocate_doorbell:
641 	deallocate_doorbell(qpd, q);
642 out_deallocate_hqd:
643 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
644 		deallocate_hqd(dqm, q);
645 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
646 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
647 		deallocate_sdma_queue(dqm, q);
648 deallocate_vmid:
649 	if (list_empty(&qpd->queues_list))
650 		deallocate_vmid(dqm, qpd, q);
651 out_unlock:
652 	dqm_unlock(dqm);
653 	return retval;
654 }
655 
656 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
657 {
658 	bool set;
659 	int pipe, bit, i;
660 
661 	set = false;
662 
663 	for (pipe = dqm->next_pipe_to_allocate, i = 0;
664 			i < get_pipes_per_mec(dqm);
665 			pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) {
666 
667 		if (!is_pipe_enabled(dqm, 0, pipe))
668 			continue;
669 
670 		if (dqm->allocated_queues[pipe] != 0) {
671 			bit = ffs(dqm->allocated_queues[pipe]) - 1;
672 			dqm->allocated_queues[pipe] &= ~(1 << bit);
673 			q->pipe = pipe;
674 			q->queue = bit;
675 			set = true;
676 			break;
677 		}
678 	}
679 
680 	if (!set)
681 		return -EBUSY;
682 
683 	pr_debug("hqd slot - pipe %d, queue %d\n", q->pipe, q->queue);
684 	/* horizontal hqd allocation */
685 	dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm);
686 
687 	return 0;
688 }
689 
690 static inline void deallocate_hqd(struct device_queue_manager *dqm,
691 				struct queue *q)
692 {
693 	dqm->allocated_queues[q->pipe] |= (1 << q->queue);
694 }
695 
696 #define SQ_IND_CMD_CMD_KILL		0x00000003
697 #define SQ_IND_CMD_MODE_BROADCAST	0x00000001
698 
699 static int dbgdev_wave_reset_wavefronts(struct kfd_node *dev, struct kfd_process *p)
700 {
701 	int status = 0;
702 	unsigned int vmid;
703 	uint16_t queried_pasid;
704 	union SQ_CMD_BITS reg_sq_cmd;
705 	union GRBM_GFX_INDEX_BITS reg_gfx_index;
706 	struct kfd_process_device *pdd;
707 	int first_vmid_to_scan = dev->vm_info.first_vmid_kfd;
708 	int last_vmid_to_scan = dev->vm_info.last_vmid_kfd;
709 	uint32_t xcc_mask = dev->xcc_mask;
710 	int xcc_id;
711 
712 	reg_sq_cmd.u32All = 0;
713 	reg_gfx_index.u32All = 0;
714 
715 	pr_debug("Killing all process wavefronts\n");
716 
717 	if (!dev->kfd2kgd->get_atc_vmid_pasid_mapping_info) {
718 		dev_err(dev->adev->dev, "no vmid pasid mapping supported\n");
719 		return -EOPNOTSUPP;
720 	}
721 
722 	/* Scan all registers in the range ATC_VMID8_PASID_MAPPING ..
723 	 * ATC_VMID15_PASID_MAPPING
724 	 * to check which VMID the current process is mapped to.
725 	 */
726 
727 	for (vmid = first_vmid_to_scan; vmid <= last_vmid_to_scan; vmid++) {
728 		status = dev->kfd2kgd->get_atc_vmid_pasid_mapping_info
729 				(dev->adev, vmid, &queried_pasid);
730 
731 		if (status && queried_pasid == p->pasid) {
732 			pr_debug("Killing wave fronts of vmid %d and pasid 0x%x\n",
733 					vmid, p->pasid);
734 			break;
735 		}
736 	}
737 
738 	if (vmid > last_vmid_to_scan) {
739 		dev_err(dev->adev->dev, "Didn't find vmid for pasid 0x%x\n", p->pasid);
740 		return -EFAULT;
741 	}
742 
743 	/* taking the VMID for that process on the safe way using PDD */
744 	pdd = kfd_get_process_device_data(dev, p);
745 	if (!pdd)
746 		return -EFAULT;
747 
748 	reg_gfx_index.bits.sh_broadcast_writes = 1;
749 	reg_gfx_index.bits.se_broadcast_writes = 1;
750 	reg_gfx_index.bits.instance_broadcast_writes = 1;
751 	reg_sq_cmd.bits.mode = SQ_IND_CMD_MODE_BROADCAST;
752 	reg_sq_cmd.bits.cmd = SQ_IND_CMD_CMD_KILL;
753 	reg_sq_cmd.bits.vm_id = vmid;
754 
755 	for_each_inst(xcc_id, xcc_mask)
756 		dev->kfd2kgd->wave_control_execute(
757 			dev->adev, reg_gfx_index.u32All,
758 			reg_sq_cmd.u32All, xcc_id);
759 
760 	return 0;
761 }
762 
763 /* Access to DQM has to be locked before calling destroy_queue_nocpsch_locked
764  * to avoid asynchronized access
765  */
766 static int destroy_queue_nocpsch_locked(struct device_queue_manager *dqm,
767 				struct qcm_process_device *qpd,
768 				struct queue *q)
769 {
770 	int retval;
771 	struct mqd_manager *mqd_mgr;
772 
773 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
774 			q->properties.type)];
775 
776 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
777 		deallocate_hqd(dqm, q);
778 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
779 		deallocate_sdma_queue(dqm, q);
780 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
781 		deallocate_sdma_queue(dqm, q);
782 	else {
783 		pr_debug("q->properties.type %d is invalid\n",
784 				q->properties.type);
785 		return -EINVAL;
786 	}
787 	dqm->total_queue_count--;
788 
789 	deallocate_doorbell(qpd, q);
790 
791 	if (!dqm->sched_running) {
792 		WARN_ONCE(1, "Destroy non-HWS queue while stopped\n");
793 		return 0;
794 	}
795 
796 	retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
797 				KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
798 				KFD_UNMAP_LATENCY_MS,
799 				q->pipe, q->queue);
800 	if (retval == -ETIME)
801 		qpd->reset_wavefronts = true;
802 
803 	list_del(&q->list);
804 	if (list_empty(&qpd->queues_list)) {
805 		if (qpd->reset_wavefronts) {
806 			pr_warn("Resetting wave fronts (nocpsch) on dev %p\n",
807 					dqm->dev);
808 			/* dbgdev_wave_reset_wavefronts has to be called before
809 			 * deallocate_vmid(), i.e. when vmid is still in use.
810 			 */
811 			dbgdev_wave_reset_wavefronts(dqm->dev,
812 					qpd->pqm->process);
813 			qpd->reset_wavefronts = false;
814 		}
815 
816 		deallocate_vmid(dqm, qpd, q);
817 	}
818 	qpd->queue_count--;
819 	if (q->properties.is_active)
820 		decrement_queue_count(dqm, qpd, q);
821 
822 	return retval;
823 }
824 
825 static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
826 				struct qcm_process_device *qpd,
827 				struct queue *q)
828 {
829 	int retval;
830 	uint64_t sdma_val = 0;
831 	struct device *dev = dqm->dev->adev->dev;
832 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
833 	struct mqd_manager *mqd_mgr =
834 		dqm->mqd_mgrs[get_mqd_type_from_queue_type(q->properties.type)];
835 
836 	/* Get the SDMA queue stats */
837 	if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
838 	    (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
839 		retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr,
840 							&sdma_val);
841 		if (retval)
842 			dev_err(dev, "Failed to read SDMA queue counter for queue: %d\n",
843 				q->properties.queue_id);
844 	}
845 
846 	dqm_lock(dqm);
847 	retval = destroy_queue_nocpsch_locked(dqm, qpd, q);
848 	if (!retval)
849 		pdd->sdma_past_activity_counter += sdma_val;
850 	dqm_unlock(dqm);
851 
852 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
853 
854 	return retval;
855 }
856 
857 static int update_queue(struct device_queue_manager *dqm, struct queue *q,
858 			struct mqd_update_info *minfo)
859 {
860 	int retval = 0;
861 	struct device *dev = dqm->dev->adev->dev;
862 	struct mqd_manager *mqd_mgr;
863 	struct kfd_process_device *pdd;
864 	bool prev_active = false;
865 
866 	dqm_lock(dqm);
867 	pdd = kfd_get_process_device_data(q->device, q->process);
868 	if (!pdd) {
869 		retval = -ENODEV;
870 		goto out_unlock;
871 	}
872 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
873 			q->properties.type)];
874 
875 	/* Save previous activity state for counters */
876 	prev_active = q->properties.is_active;
877 
878 	/* Make sure the queue is unmapped before updating the MQD */
879 	if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
880 		if (!dqm->dev->kfd->shared_resources.enable_mes)
881 			retval = unmap_queues_cpsch(dqm,
882 						    KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD, false);
883 		else if (prev_active)
884 			retval = remove_queue_mes(dqm, q, &pdd->qpd);
885 
886 		if (retval) {
887 			dev_err(dev, "unmap queue failed\n");
888 			goto out_unlock;
889 		}
890 	} else if (prev_active &&
891 		   (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
892 		    q->properties.type == KFD_QUEUE_TYPE_SDMA ||
893 		    q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
894 
895 		if (!dqm->sched_running) {
896 			WARN_ONCE(1, "Update non-HWS queue while stopped\n");
897 			goto out_unlock;
898 		}
899 
900 		retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
901 				(dqm->dev->kfd->cwsr_enabled ?
902 				 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE :
903 				 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN),
904 				KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
905 		if (retval) {
906 			dev_err(dev, "destroy mqd failed\n");
907 			goto out_unlock;
908 		}
909 	}
910 
911 	mqd_mgr->update_mqd(mqd_mgr, q->mqd, &q->properties, minfo);
912 
913 	/*
914 	 * check active state vs. the previous state and modify
915 	 * counter accordingly. map_queues_cpsch uses the
916 	 * dqm->active_queue_count to determine whether a new runlist must be
917 	 * uploaded.
918 	 */
919 	if (q->properties.is_active && !prev_active) {
920 		increment_queue_count(dqm, &pdd->qpd, q);
921 	} else if (!q->properties.is_active && prev_active) {
922 		decrement_queue_count(dqm, &pdd->qpd, q);
923 	} else if (q->gws && !q->properties.is_gws) {
924 		if (q->properties.is_active) {
925 			dqm->gws_queue_count++;
926 			pdd->qpd.mapped_gws_queue = true;
927 		}
928 		q->properties.is_gws = true;
929 	} else if (!q->gws && q->properties.is_gws) {
930 		if (q->properties.is_active) {
931 			dqm->gws_queue_count--;
932 			pdd->qpd.mapped_gws_queue = false;
933 		}
934 		q->properties.is_gws = false;
935 	}
936 
937 	if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
938 		if (!dqm->dev->kfd->shared_resources.enable_mes)
939 			retval = map_queues_cpsch(dqm);
940 		else if (q->properties.is_active)
941 			retval = add_queue_mes(dqm, q, &pdd->qpd);
942 	} else if (q->properties.is_active &&
943 		 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
944 		  q->properties.type == KFD_QUEUE_TYPE_SDMA ||
945 		  q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
946 		if (WARN(q->process->mm != current->mm,
947 			 "should only run in user thread"))
948 			retval = -EFAULT;
949 		else
950 			retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd,
951 						   q->pipe, q->queue,
952 						   &q->properties, current->mm);
953 	}
954 
955 out_unlock:
956 	dqm_unlock(dqm);
957 	return retval;
958 }
959 
960 /* suspend_single_queue does not lock the dqm like the
961  * evict_process_queues_cpsch or evict_process_queues_nocpsch. You should
962  * lock the dqm before calling, and unlock after calling.
963  *
964  * The reason we don't lock the dqm is because this function may be
965  * called on multiple queues in a loop, so rather than locking/unlocking
966  * multiple times, we will just keep the dqm locked for all of the calls.
967  */
968 static int suspend_single_queue(struct device_queue_manager *dqm,
969 				      struct kfd_process_device *pdd,
970 				      struct queue *q)
971 {
972 	bool is_new;
973 
974 	if (q->properties.is_suspended)
975 		return 0;
976 
977 	pr_debug("Suspending PASID %u queue [%i]\n",
978 			pdd->process->pasid,
979 			q->properties.queue_id);
980 
981 	is_new = q->properties.exception_status & KFD_EC_MASK(EC_QUEUE_NEW);
982 
983 	if (is_new || q->properties.is_being_destroyed) {
984 		pr_debug("Suspend: skip %s queue id %i\n",
985 				is_new ? "new" : "destroyed",
986 				q->properties.queue_id);
987 		return -EBUSY;
988 	}
989 
990 	q->properties.is_suspended = true;
991 	if (q->properties.is_active) {
992 		if (dqm->dev->kfd->shared_resources.enable_mes) {
993 			int r = remove_queue_mes(dqm, q, &pdd->qpd);
994 
995 			if (r)
996 				return r;
997 		}
998 
999 		decrement_queue_count(dqm, &pdd->qpd, q);
1000 		q->properties.is_active = false;
1001 	}
1002 
1003 	return 0;
1004 }
1005 
1006 /* resume_single_queue does not lock the dqm like the functions
1007  * restore_process_queues_cpsch or restore_process_queues_nocpsch. You should
1008  * lock the dqm before calling, and unlock after calling.
1009  *
1010  * The reason we don't lock the dqm is because this function may be
1011  * called on multiple queues in a loop, so rather than locking/unlocking
1012  * multiple times, we will just keep the dqm locked for all of the calls.
1013  */
1014 static int resume_single_queue(struct device_queue_manager *dqm,
1015 				      struct qcm_process_device *qpd,
1016 				      struct queue *q)
1017 {
1018 	struct kfd_process_device *pdd;
1019 
1020 	if (!q->properties.is_suspended)
1021 		return 0;
1022 
1023 	pdd = qpd_to_pdd(qpd);
1024 
1025 	pr_debug("Restoring from suspend PASID %u queue [%i]\n",
1026 			    pdd->process->pasid,
1027 			    q->properties.queue_id);
1028 
1029 	q->properties.is_suspended = false;
1030 
1031 	if (QUEUE_IS_ACTIVE(q->properties)) {
1032 		if (dqm->dev->kfd->shared_resources.enable_mes) {
1033 			int r = add_queue_mes(dqm, q, &pdd->qpd);
1034 
1035 			if (r)
1036 				return r;
1037 		}
1038 
1039 		q->properties.is_active = true;
1040 		increment_queue_count(dqm, qpd, q);
1041 	}
1042 
1043 	return 0;
1044 }
1045 
1046 static int evict_process_queues_nocpsch(struct device_queue_manager *dqm,
1047 					struct qcm_process_device *qpd)
1048 {
1049 	struct queue *q;
1050 	struct mqd_manager *mqd_mgr;
1051 	struct kfd_process_device *pdd;
1052 	int retval, ret = 0;
1053 
1054 	dqm_lock(dqm);
1055 	if (qpd->evicted++ > 0) /* already evicted, do nothing */
1056 		goto out;
1057 
1058 	pdd = qpd_to_pdd(qpd);
1059 	pr_debug_ratelimited("Evicting PASID 0x%x queues\n",
1060 			    pdd->process->pasid);
1061 
1062 	pdd->last_evict_timestamp = get_jiffies_64();
1063 	/* Mark all queues as evicted. Deactivate all active queues on
1064 	 * the qpd.
1065 	 */
1066 	list_for_each_entry(q, &qpd->queues_list, list) {
1067 		q->properties.is_evicted = true;
1068 		if (!q->properties.is_active)
1069 			continue;
1070 
1071 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1072 				q->properties.type)];
1073 		q->properties.is_active = false;
1074 		decrement_queue_count(dqm, qpd, q);
1075 
1076 		if (WARN_ONCE(!dqm->sched_running, "Evict when stopped\n"))
1077 			continue;
1078 
1079 		retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
1080 				(dqm->dev->kfd->cwsr_enabled ?
1081 				 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE :
1082 				 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN),
1083 				KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
1084 		if (retval && !ret)
1085 			/* Return the first error, but keep going to
1086 			 * maintain a consistent eviction state
1087 			 */
1088 			ret = retval;
1089 	}
1090 
1091 out:
1092 	dqm_unlock(dqm);
1093 	return ret;
1094 }
1095 
1096 static int evict_process_queues_cpsch(struct device_queue_manager *dqm,
1097 				      struct qcm_process_device *qpd)
1098 {
1099 	struct queue *q;
1100 	struct device *dev = dqm->dev->adev->dev;
1101 	struct kfd_process_device *pdd;
1102 	int retval = 0;
1103 
1104 	dqm_lock(dqm);
1105 	if (qpd->evicted++ > 0) /* already evicted, do nothing */
1106 		goto out;
1107 
1108 	pdd = qpd_to_pdd(qpd);
1109 
1110 	/* The debugger creates processes that temporarily have not acquired
1111 	 * all VMs for all devices and has no VMs itself.
1112 	 * Skip queue eviction on process eviction.
1113 	 */
1114 	if (!pdd->drm_priv)
1115 		goto out;
1116 
1117 	pr_debug_ratelimited("Evicting PASID 0x%x queues\n",
1118 			    pdd->process->pasid);
1119 
1120 	/* Mark all queues as evicted. Deactivate all active queues on
1121 	 * the qpd.
1122 	 */
1123 	list_for_each_entry(q, &qpd->queues_list, list) {
1124 		q->properties.is_evicted = true;
1125 		if (!q->properties.is_active)
1126 			continue;
1127 
1128 		q->properties.is_active = false;
1129 		decrement_queue_count(dqm, qpd, q);
1130 
1131 		if (dqm->dev->kfd->shared_resources.enable_mes) {
1132 			retval = remove_queue_mes(dqm, q, qpd);
1133 			if (retval) {
1134 				dev_err(dev, "Failed to evict queue %d\n",
1135 					q->properties.queue_id);
1136 				goto out;
1137 			}
1138 		}
1139 	}
1140 	pdd->last_evict_timestamp = get_jiffies_64();
1141 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1142 		retval = execute_queues_cpsch(dqm,
1143 					      qpd->is_debug ?
1144 					      KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES :
1145 					      KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
1146 					      USE_DEFAULT_GRACE_PERIOD);
1147 
1148 out:
1149 	dqm_unlock(dqm);
1150 	return retval;
1151 }
1152 
1153 static int restore_process_queues_nocpsch(struct device_queue_manager *dqm,
1154 					  struct qcm_process_device *qpd)
1155 {
1156 	struct mm_struct *mm = NULL;
1157 	struct queue *q;
1158 	struct mqd_manager *mqd_mgr;
1159 	struct kfd_process_device *pdd;
1160 	uint64_t pd_base;
1161 	uint64_t eviction_duration;
1162 	int retval, ret = 0;
1163 
1164 	pdd = qpd_to_pdd(qpd);
1165 	/* Retrieve PD base */
1166 	pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1167 
1168 	dqm_lock(dqm);
1169 	if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
1170 		goto out;
1171 	if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
1172 		qpd->evicted--;
1173 		goto out;
1174 	}
1175 
1176 	pr_debug_ratelimited("Restoring PASID 0x%x queues\n",
1177 			    pdd->process->pasid);
1178 
1179 	/* Update PD Base in QPD */
1180 	qpd->page_table_base = pd_base;
1181 	pr_debug("Updated PD address to 0x%llx\n", pd_base);
1182 
1183 	if (!list_empty(&qpd->queues_list)) {
1184 		dqm->dev->kfd2kgd->set_vm_context_page_table_base(
1185 				dqm->dev->adev,
1186 				qpd->vmid,
1187 				qpd->page_table_base);
1188 		kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
1189 	}
1190 
1191 	/* Take a safe reference to the mm_struct, which may otherwise
1192 	 * disappear even while the kfd_process is still referenced.
1193 	 */
1194 	mm = get_task_mm(pdd->process->lead_thread);
1195 	if (!mm) {
1196 		ret = -EFAULT;
1197 		goto out;
1198 	}
1199 
1200 	/* Remove the eviction flags. Activate queues that are not
1201 	 * inactive for other reasons.
1202 	 */
1203 	list_for_each_entry(q, &qpd->queues_list, list) {
1204 		q->properties.is_evicted = false;
1205 		if (!QUEUE_IS_ACTIVE(q->properties))
1206 			continue;
1207 
1208 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1209 				q->properties.type)];
1210 		q->properties.is_active = true;
1211 		increment_queue_count(dqm, qpd, q);
1212 
1213 		if (WARN_ONCE(!dqm->sched_running, "Restore when stopped\n"))
1214 			continue;
1215 
1216 		retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
1217 				       q->queue, &q->properties, mm);
1218 		if (retval && !ret)
1219 			/* Return the first error, but keep going to
1220 			 * maintain a consistent eviction state
1221 			 */
1222 			ret = retval;
1223 	}
1224 	qpd->evicted = 0;
1225 	eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp;
1226 	atomic64_add(eviction_duration, &pdd->evict_duration_counter);
1227 out:
1228 	if (mm)
1229 		mmput(mm);
1230 	dqm_unlock(dqm);
1231 	return ret;
1232 }
1233 
1234 static int restore_process_queues_cpsch(struct device_queue_manager *dqm,
1235 					struct qcm_process_device *qpd)
1236 {
1237 	struct queue *q;
1238 	struct device *dev = dqm->dev->adev->dev;
1239 	struct kfd_process_device *pdd;
1240 	uint64_t eviction_duration;
1241 	int retval = 0;
1242 
1243 	pdd = qpd_to_pdd(qpd);
1244 
1245 	dqm_lock(dqm);
1246 	if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
1247 		goto out;
1248 	if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
1249 		qpd->evicted--;
1250 		goto out;
1251 	}
1252 
1253 	/* The debugger creates processes that temporarily have not acquired
1254 	 * all VMs for all devices and has no VMs itself.
1255 	 * Skip queue restore on process restore.
1256 	 */
1257 	if (!pdd->drm_priv)
1258 		goto vm_not_acquired;
1259 
1260 	pr_debug_ratelimited("Restoring PASID 0x%x queues\n",
1261 			    pdd->process->pasid);
1262 
1263 	/* Update PD Base in QPD */
1264 	qpd->page_table_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1265 	pr_debug("Updated PD address to 0x%llx\n", qpd->page_table_base);
1266 
1267 	/* activate all active queues on the qpd */
1268 	list_for_each_entry(q, &qpd->queues_list, list) {
1269 		q->properties.is_evicted = false;
1270 		if (!QUEUE_IS_ACTIVE(q->properties))
1271 			continue;
1272 
1273 		q->properties.is_active = true;
1274 		increment_queue_count(dqm, &pdd->qpd, q);
1275 
1276 		if (dqm->dev->kfd->shared_resources.enable_mes) {
1277 			retval = add_queue_mes(dqm, q, qpd);
1278 			if (retval) {
1279 				dev_err(dev, "Failed to restore queue %d\n",
1280 					q->properties.queue_id);
1281 				goto out;
1282 			}
1283 		}
1284 	}
1285 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1286 		retval = execute_queues_cpsch(dqm,
1287 					      KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
1288 	eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp;
1289 	atomic64_add(eviction_duration, &pdd->evict_duration_counter);
1290 vm_not_acquired:
1291 	qpd->evicted = 0;
1292 out:
1293 	dqm_unlock(dqm);
1294 	return retval;
1295 }
1296 
1297 static int register_process(struct device_queue_manager *dqm,
1298 					struct qcm_process_device *qpd)
1299 {
1300 	struct device_process_node *n;
1301 	struct kfd_process_device *pdd;
1302 	uint64_t pd_base;
1303 	int retval;
1304 
1305 	n = kzalloc(sizeof(*n), GFP_KERNEL);
1306 	if (!n)
1307 		return -ENOMEM;
1308 
1309 	n->qpd = qpd;
1310 
1311 	pdd = qpd_to_pdd(qpd);
1312 	/* Retrieve PD base */
1313 	pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1314 
1315 	dqm_lock(dqm);
1316 	list_add(&n->list, &dqm->queues);
1317 
1318 	/* Update PD Base in QPD */
1319 	qpd->page_table_base = pd_base;
1320 	pr_debug("Updated PD address to 0x%llx\n", pd_base);
1321 
1322 	retval = dqm->asic_ops.update_qpd(dqm, qpd);
1323 
1324 	dqm->processes_count++;
1325 
1326 	dqm_unlock(dqm);
1327 
1328 	/* Outside the DQM lock because under the DQM lock we can't do
1329 	 * reclaim or take other locks that others hold while reclaiming.
1330 	 */
1331 	kfd_inc_compute_active(dqm->dev);
1332 
1333 	return retval;
1334 }
1335 
1336 static int unregister_process(struct device_queue_manager *dqm,
1337 					struct qcm_process_device *qpd)
1338 {
1339 	int retval;
1340 	struct device_process_node *cur, *next;
1341 
1342 	pr_debug("qpd->queues_list is %s\n",
1343 			list_empty(&qpd->queues_list) ? "empty" : "not empty");
1344 
1345 	retval = 0;
1346 	dqm_lock(dqm);
1347 
1348 	list_for_each_entry_safe(cur, next, &dqm->queues, list) {
1349 		if (qpd == cur->qpd) {
1350 			list_del(&cur->list);
1351 			kfree(cur);
1352 			dqm->processes_count--;
1353 			goto out;
1354 		}
1355 	}
1356 	/* qpd not found in dqm list */
1357 	retval = 1;
1358 out:
1359 	dqm_unlock(dqm);
1360 
1361 	/* Outside the DQM lock because under the DQM lock we can't do
1362 	 * reclaim or take other locks that others hold while reclaiming.
1363 	 */
1364 	if (!retval)
1365 		kfd_dec_compute_active(dqm->dev);
1366 
1367 	return retval;
1368 }
1369 
1370 static int
1371 set_pasid_vmid_mapping(struct device_queue_manager *dqm, u32 pasid,
1372 			unsigned int vmid)
1373 {
1374 	uint32_t xcc_mask = dqm->dev->xcc_mask;
1375 	int xcc_id, ret;
1376 
1377 	for_each_inst(xcc_id, xcc_mask) {
1378 		ret = dqm->dev->kfd2kgd->set_pasid_vmid_mapping(
1379 			dqm->dev->adev, pasid, vmid, xcc_id);
1380 		if (ret)
1381 			break;
1382 	}
1383 
1384 	return ret;
1385 }
1386 
1387 static void init_interrupts(struct device_queue_manager *dqm)
1388 {
1389 	uint32_t xcc_mask = dqm->dev->xcc_mask;
1390 	unsigned int i, xcc_id;
1391 
1392 	for_each_inst(xcc_id, xcc_mask) {
1393 		for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++) {
1394 			if (is_pipe_enabled(dqm, 0, i)) {
1395 				dqm->dev->kfd2kgd->init_interrupts(
1396 					dqm->dev->adev, i, xcc_id);
1397 			}
1398 		}
1399 	}
1400 }
1401 
1402 static int initialize_nocpsch(struct device_queue_manager *dqm)
1403 {
1404 	int pipe, queue;
1405 
1406 	pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1407 
1408 	dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm),
1409 					sizeof(unsigned int), GFP_KERNEL);
1410 	if (!dqm->allocated_queues)
1411 		return -ENOMEM;
1412 
1413 	mutex_init(&dqm->lock_hidden);
1414 	INIT_LIST_HEAD(&dqm->queues);
1415 	dqm->active_queue_count = dqm->next_pipe_to_allocate = 0;
1416 	dqm->active_cp_queue_count = 0;
1417 	dqm->gws_queue_count = 0;
1418 
1419 	for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
1420 		int pipe_offset = pipe * get_queues_per_pipe(dqm);
1421 
1422 		for (queue = 0; queue < get_queues_per_pipe(dqm); queue++)
1423 			if (test_bit(pipe_offset + queue,
1424 				     dqm->dev->kfd->shared_resources.cp_queue_bitmap))
1425 				dqm->allocated_queues[pipe] |= 1 << queue;
1426 	}
1427 
1428 	memset(dqm->vmid_pasid, 0, sizeof(dqm->vmid_pasid));
1429 
1430 	init_sdma_bitmaps(dqm);
1431 
1432 	return 0;
1433 }
1434 
1435 static void uninitialize(struct device_queue_manager *dqm)
1436 {
1437 	int i;
1438 
1439 	WARN_ON(dqm->active_queue_count > 0 || dqm->processes_count > 0);
1440 
1441 	kfree(dqm->allocated_queues);
1442 	for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
1443 		kfree(dqm->mqd_mgrs[i]);
1444 	mutex_destroy(&dqm->lock_hidden);
1445 }
1446 
1447 static int start_nocpsch(struct device_queue_manager *dqm)
1448 {
1449 	int r = 0;
1450 
1451 	pr_info("SW scheduler is used");
1452 	init_interrupts(dqm);
1453 
1454 	if (dqm->dev->adev->asic_type == CHIP_HAWAII)
1455 		r = pm_init(&dqm->packet_mgr, dqm);
1456 	if (!r)
1457 		dqm->sched_running = true;
1458 
1459 	return r;
1460 }
1461 
1462 static int stop_nocpsch(struct device_queue_manager *dqm)
1463 {
1464 	dqm_lock(dqm);
1465 	if (!dqm->sched_running) {
1466 		dqm_unlock(dqm);
1467 		return 0;
1468 	}
1469 
1470 	if (dqm->dev->adev->asic_type == CHIP_HAWAII)
1471 		pm_uninit(&dqm->packet_mgr, false);
1472 	dqm->sched_running = false;
1473 	dqm_unlock(dqm);
1474 
1475 	return 0;
1476 }
1477 
1478 static void pre_reset(struct device_queue_manager *dqm)
1479 {
1480 	dqm_lock(dqm);
1481 	dqm->is_resetting = true;
1482 	dqm_unlock(dqm);
1483 }
1484 
1485 static int allocate_sdma_queue(struct device_queue_manager *dqm,
1486 				struct queue *q, const uint32_t *restore_sdma_id)
1487 {
1488 	struct device *dev = dqm->dev->adev->dev;
1489 	int bit;
1490 
1491 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1492 		if (bitmap_empty(dqm->sdma_bitmap, KFD_MAX_SDMA_QUEUES)) {
1493 			dev_err(dev, "No more SDMA queue to allocate\n");
1494 			return -ENOMEM;
1495 		}
1496 
1497 		if (restore_sdma_id) {
1498 			/* Re-use existing sdma_id */
1499 			if (!test_bit(*restore_sdma_id, dqm->sdma_bitmap)) {
1500 				dev_err(dev, "SDMA queue already in use\n");
1501 				return -EBUSY;
1502 			}
1503 			clear_bit(*restore_sdma_id, dqm->sdma_bitmap);
1504 			q->sdma_id = *restore_sdma_id;
1505 		} else {
1506 			/* Find first available sdma_id */
1507 			bit = find_first_bit(dqm->sdma_bitmap,
1508 					     get_num_sdma_queues(dqm));
1509 			clear_bit(bit, dqm->sdma_bitmap);
1510 			q->sdma_id = bit;
1511 		}
1512 
1513 		q->properties.sdma_engine_id =
1514 			q->sdma_id % kfd_get_num_sdma_engines(dqm->dev);
1515 		q->properties.sdma_queue_id = q->sdma_id /
1516 				kfd_get_num_sdma_engines(dqm->dev);
1517 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1518 		if (bitmap_empty(dqm->xgmi_sdma_bitmap, KFD_MAX_SDMA_QUEUES)) {
1519 			dev_err(dev, "No more XGMI SDMA queue to allocate\n");
1520 			return -ENOMEM;
1521 		}
1522 		if (restore_sdma_id) {
1523 			/* Re-use existing sdma_id */
1524 			if (!test_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap)) {
1525 				dev_err(dev, "SDMA queue already in use\n");
1526 				return -EBUSY;
1527 			}
1528 			clear_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap);
1529 			q->sdma_id = *restore_sdma_id;
1530 		} else {
1531 			bit = find_first_bit(dqm->xgmi_sdma_bitmap,
1532 					     get_num_xgmi_sdma_queues(dqm));
1533 			clear_bit(bit, dqm->xgmi_sdma_bitmap);
1534 			q->sdma_id = bit;
1535 		}
1536 		/* sdma_engine_id is sdma id including
1537 		 * both PCIe-optimized SDMAs and XGMI-
1538 		 * optimized SDMAs. The calculation below
1539 		 * assumes the first N engines are always
1540 		 * PCIe-optimized ones
1541 		 */
1542 		q->properties.sdma_engine_id =
1543 			kfd_get_num_sdma_engines(dqm->dev) +
1544 			q->sdma_id % kfd_get_num_xgmi_sdma_engines(dqm->dev);
1545 		q->properties.sdma_queue_id = q->sdma_id /
1546 			kfd_get_num_xgmi_sdma_engines(dqm->dev);
1547 	}
1548 
1549 	pr_debug("SDMA engine id: %d\n", q->properties.sdma_engine_id);
1550 	pr_debug("SDMA queue id: %d\n", q->properties.sdma_queue_id);
1551 
1552 	return 0;
1553 }
1554 
1555 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
1556 				struct queue *q)
1557 {
1558 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1559 		if (q->sdma_id >= get_num_sdma_queues(dqm))
1560 			return;
1561 		set_bit(q->sdma_id, dqm->sdma_bitmap);
1562 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1563 		if (q->sdma_id >= get_num_xgmi_sdma_queues(dqm))
1564 			return;
1565 		set_bit(q->sdma_id, dqm->xgmi_sdma_bitmap);
1566 	}
1567 }
1568 
1569 /*
1570  * Device Queue Manager implementation for cp scheduler
1571  */
1572 
1573 static int set_sched_resources(struct device_queue_manager *dqm)
1574 {
1575 	int i, mec;
1576 	struct scheduling_resources res;
1577 	struct device *dev = dqm->dev->adev->dev;
1578 
1579 	res.vmid_mask = dqm->dev->compute_vmid_bitmap;
1580 
1581 	res.queue_mask = 0;
1582 	for (i = 0; i < AMDGPU_MAX_QUEUES; ++i) {
1583 		mec = (i / dqm->dev->kfd->shared_resources.num_queue_per_pipe)
1584 			/ dqm->dev->kfd->shared_resources.num_pipe_per_mec;
1585 
1586 		if (!test_bit(i, dqm->dev->kfd->shared_resources.cp_queue_bitmap))
1587 			continue;
1588 
1589 		/* only acquire queues from the first MEC */
1590 		if (mec > 0)
1591 			continue;
1592 
1593 		/* This situation may be hit in the future if a new HW
1594 		 * generation exposes more than 64 queues. If so, the
1595 		 * definition of res.queue_mask needs updating
1596 		 */
1597 		if (WARN_ON(i >= (sizeof(res.queue_mask)*8))) {
1598 			dev_err(dev, "Invalid queue enabled by amdgpu: %d\n", i);
1599 			break;
1600 		}
1601 
1602 		res.queue_mask |= 1ull
1603 			<< amdgpu_queue_mask_bit_to_set_resource_bit(
1604 				dqm->dev->adev, i);
1605 	}
1606 	res.gws_mask = ~0ull;
1607 	res.oac_mask = res.gds_heap_base = res.gds_heap_size = 0;
1608 
1609 	pr_debug("Scheduling resources:\n"
1610 			"vmid mask: 0x%8X\n"
1611 			"queue mask: 0x%8llX\n",
1612 			res.vmid_mask, res.queue_mask);
1613 
1614 	return pm_send_set_resources(&dqm->packet_mgr, &res);
1615 }
1616 
1617 static int initialize_cpsch(struct device_queue_manager *dqm)
1618 {
1619 	pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1620 
1621 	mutex_init(&dqm->lock_hidden);
1622 	INIT_LIST_HEAD(&dqm->queues);
1623 	dqm->active_queue_count = dqm->processes_count = 0;
1624 	dqm->active_cp_queue_count = 0;
1625 	dqm->gws_queue_count = 0;
1626 	dqm->active_runlist = false;
1627 	INIT_WORK(&dqm->hw_exception_work, kfd_process_hw_exception);
1628 	dqm->trap_debug_vmid = 0;
1629 
1630 	init_sdma_bitmaps(dqm);
1631 
1632 	if (dqm->dev->kfd2kgd->get_iq_wait_times)
1633 		dqm->dev->kfd2kgd->get_iq_wait_times(dqm->dev->adev,
1634 					&dqm->wait_times,
1635 					ffs(dqm->dev->xcc_mask) - 1);
1636 	return 0;
1637 }
1638 
1639 static int start_cpsch(struct device_queue_manager *dqm)
1640 {
1641 	struct device *dev = dqm->dev->adev->dev;
1642 	int retval;
1643 
1644 	retval = 0;
1645 
1646 	dqm_lock(dqm);
1647 
1648 	if (!dqm->dev->kfd->shared_resources.enable_mes) {
1649 		retval = pm_init(&dqm->packet_mgr, dqm);
1650 		if (retval)
1651 			goto fail_packet_manager_init;
1652 
1653 		retval = set_sched_resources(dqm);
1654 		if (retval)
1655 			goto fail_set_sched_resources;
1656 	}
1657 	pr_debug("Allocating fence memory\n");
1658 
1659 	/* allocate fence memory on the gart */
1660 	retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
1661 					&dqm->fence_mem);
1662 
1663 	if (retval)
1664 		goto fail_allocate_vidmem;
1665 
1666 	dqm->fence_addr = (uint64_t *)dqm->fence_mem->cpu_ptr;
1667 	dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
1668 
1669 	init_interrupts(dqm);
1670 
1671 	/* clear hang status when driver try to start the hw scheduler */
1672 	dqm->is_hws_hang = false;
1673 	dqm->is_resetting = false;
1674 	dqm->sched_running = true;
1675 
1676 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1677 		execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
1678 
1679 	/* Set CWSR grace period to 1x1000 cycle for GFX9.4.3 APU */
1680 	if (amdgpu_emu_mode == 0 && dqm->dev->adev->gmc.is_app_apu &&
1681 	    (KFD_GC_VERSION(dqm->dev) == IP_VERSION(9, 4, 3))) {
1682 		uint32_t reg_offset = 0;
1683 		uint32_t grace_period = 1;
1684 
1685 		retval = pm_update_grace_period(&dqm->packet_mgr,
1686 						grace_period);
1687 		if (retval)
1688 			dev_err(dev, "Setting grace timeout failed\n");
1689 		else if (dqm->dev->kfd2kgd->build_grace_period_packet_info)
1690 			/* Update dqm->wait_times maintained in software */
1691 			dqm->dev->kfd2kgd->build_grace_period_packet_info(
1692 					dqm->dev->adev,	dqm->wait_times,
1693 					grace_period, &reg_offset,
1694 					&dqm->wait_times);
1695 	}
1696 
1697 	dqm_unlock(dqm);
1698 
1699 	return 0;
1700 fail_allocate_vidmem:
1701 fail_set_sched_resources:
1702 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1703 		pm_uninit(&dqm->packet_mgr, false);
1704 fail_packet_manager_init:
1705 	dqm_unlock(dqm);
1706 	return retval;
1707 }
1708 
1709 static int stop_cpsch(struct device_queue_manager *dqm)
1710 {
1711 	bool hanging;
1712 
1713 	dqm_lock(dqm);
1714 	if (!dqm->sched_running) {
1715 		dqm_unlock(dqm);
1716 		return 0;
1717 	}
1718 
1719 	if (!dqm->is_hws_hang) {
1720 		if (!dqm->dev->kfd->shared_resources.enable_mes)
1721 			unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD, false);
1722 		else
1723 			remove_all_queues_mes(dqm);
1724 	}
1725 
1726 	hanging = dqm->is_hws_hang || dqm->is_resetting;
1727 	dqm->sched_running = false;
1728 
1729 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1730 		pm_release_ib(&dqm->packet_mgr);
1731 
1732 	kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
1733 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1734 		pm_uninit(&dqm->packet_mgr, hanging);
1735 	dqm_unlock(dqm);
1736 
1737 	return 0;
1738 }
1739 
1740 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
1741 					struct kernel_queue *kq,
1742 					struct qcm_process_device *qpd)
1743 {
1744 	dqm_lock(dqm);
1745 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1746 		pr_warn("Can't create new kernel queue because %d queues were already created\n",
1747 				dqm->total_queue_count);
1748 		dqm_unlock(dqm);
1749 		return -EPERM;
1750 	}
1751 
1752 	/*
1753 	 * Unconditionally increment this counter, regardless of the queue's
1754 	 * type or whether the queue is active.
1755 	 */
1756 	dqm->total_queue_count++;
1757 	pr_debug("Total of %d queues are accountable so far\n",
1758 			dqm->total_queue_count);
1759 
1760 	list_add(&kq->list, &qpd->priv_queue_list);
1761 	increment_queue_count(dqm, qpd, kq->queue);
1762 	qpd->is_debug = true;
1763 	execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
1764 			USE_DEFAULT_GRACE_PERIOD);
1765 	dqm_unlock(dqm);
1766 
1767 	return 0;
1768 }
1769 
1770 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
1771 					struct kernel_queue *kq,
1772 					struct qcm_process_device *qpd)
1773 {
1774 	dqm_lock(dqm);
1775 	list_del(&kq->list);
1776 	decrement_queue_count(dqm, qpd, kq->queue);
1777 	qpd->is_debug = false;
1778 	execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
1779 			USE_DEFAULT_GRACE_PERIOD);
1780 	/*
1781 	 * Unconditionally decrement this counter, regardless of the queue's
1782 	 * type.
1783 	 */
1784 	dqm->total_queue_count--;
1785 	pr_debug("Total of %d queues are accountable so far\n",
1786 			dqm->total_queue_count);
1787 	dqm_unlock(dqm);
1788 }
1789 
1790 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
1791 			struct qcm_process_device *qpd,
1792 			const struct kfd_criu_queue_priv_data *qd,
1793 			const void *restore_mqd, const void *restore_ctl_stack)
1794 {
1795 	int retval;
1796 	struct mqd_manager *mqd_mgr;
1797 
1798 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1799 		pr_warn("Can't create new usermode queue because %d queues were already created\n",
1800 				dqm->total_queue_count);
1801 		retval = -EPERM;
1802 		goto out;
1803 	}
1804 
1805 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1806 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1807 		dqm_lock(dqm);
1808 		retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL);
1809 		dqm_unlock(dqm);
1810 		if (retval)
1811 			goto out;
1812 	}
1813 
1814 	retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL);
1815 	if (retval)
1816 		goto out_deallocate_sdma_queue;
1817 
1818 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1819 			q->properties.type)];
1820 
1821 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1822 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
1823 		dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
1824 	q->properties.tba_addr = qpd->tba_addr;
1825 	q->properties.tma_addr = qpd->tma_addr;
1826 	q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
1827 	if (!q->mqd_mem_obj) {
1828 		retval = -ENOMEM;
1829 		goto out_deallocate_doorbell;
1830 	}
1831 
1832 	dqm_lock(dqm);
1833 	/*
1834 	 * Eviction state logic: mark all queues as evicted, even ones
1835 	 * not currently active. Restoring inactive queues later only
1836 	 * updates the is_evicted flag but is a no-op otherwise.
1837 	 */
1838 	q->properties.is_evicted = !!qpd->evicted;
1839 	q->properties.is_dbg_wa = qpd->pqm->process->debug_trap_enabled &&
1840 				  kfd_dbg_has_cwsr_workaround(q->device);
1841 
1842 	if (qd)
1843 		mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr,
1844 				     &q->properties, restore_mqd, restore_ctl_stack,
1845 				     qd->ctl_stack_size);
1846 	else
1847 		mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
1848 					&q->gart_mqd_addr, &q->properties);
1849 
1850 	list_add(&q->list, &qpd->queues_list);
1851 	qpd->queue_count++;
1852 
1853 	if (q->properties.is_active) {
1854 		increment_queue_count(dqm, qpd, q);
1855 
1856 		if (!dqm->dev->kfd->shared_resources.enable_mes)
1857 			retval = execute_queues_cpsch(dqm,
1858 					KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
1859 		else
1860 			retval = add_queue_mes(dqm, q, qpd);
1861 		if (retval)
1862 			goto cleanup_queue;
1863 	}
1864 
1865 	/*
1866 	 * Unconditionally increment this counter, regardless of the queue's
1867 	 * type or whether the queue is active.
1868 	 */
1869 	dqm->total_queue_count++;
1870 
1871 	pr_debug("Total of %d queues are accountable so far\n",
1872 			dqm->total_queue_count);
1873 
1874 	dqm_unlock(dqm);
1875 	return retval;
1876 
1877 cleanup_queue:
1878 	qpd->queue_count--;
1879 	list_del(&q->list);
1880 	if (q->properties.is_active)
1881 		decrement_queue_count(dqm, qpd, q);
1882 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
1883 	dqm_unlock(dqm);
1884 out_deallocate_doorbell:
1885 	deallocate_doorbell(qpd, q);
1886 out_deallocate_sdma_queue:
1887 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1888 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1889 		dqm_lock(dqm);
1890 		deallocate_sdma_queue(dqm, q);
1891 		dqm_unlock(dqm);
1892 	}
1893 out:
1894 	return retval;
1895 }
1896 
1897 int amdkfd_fence_wait_timeout(struct device_queue_manager *dqm,
1898 			      uint64_t fence_value,
1899 			      unsigned int timeout_ms)
1900 {
1901 	unsigned long end_jiffies = msecs_to_jiffies(timeout_ms) + jiffies;
1902 	struct device *dev = dqm->dev->adev->dev;
1903 	uint64_t *fence_addr =  dqm->fence_addr;
1904 
1905 	while (*fence_addr != fence_value) {
1906 		if (time_after(jiffies, end_jiffies)) {
1907 			dev_err(dev, "qcm fence wait loop timeout expired\n");
1908 			/* In HWS case, this is used to halt the driver thread
1909 			 * in order not to mess up CP states before doing
1910 			 * scandumps for FW debugging.
1911 			 */
1912 			while (halt_if_hws_hang)
1913 				schedule();
1914 
1915 			return -ETIME;
1916 		}
1917 		schedule();
1918 	}
1919 
1920 	return 0;
1921 }
1922 
1923 /* dqm->lock mutex has to be locked before calling this function */
1924 static int map_queues_cpsch(struct device_queue_manager *dqm)
1925 {
1926 	struct device *dev = dqm->dev->adev->dev;
1927 	int retval;
1928 
1929 	if (!dqm->sched_running)
1930 		return 0;
1931 	if (dqm->active_queue_count <= 0 || dqm->processes_count <= 0)
1932 		return 0;
1933 	if (dqm->active_runlist)
1934 		return 0;
1935 
1936 	retval = pm_send_runlist(&dqm->packet_mgr, &dqm->queues);
1937 	pr_debug("%s sent runlist\n", __func__);
1938 	if (retval) {
1939 		dev_err(dev, "failed to execute runlist\n");
1940 		return retval;
1941 	}
1942 	dqm->active_runlist = true;
1943 
1944 	return retval;
1945 }
1946 
1947 /* dqm->lock mutex has to be locked before calling this function */
1948 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
1949 				enum kfd_unmap_queues_filter filter,
1950 				uint32_t filter_param,
1951 				uint32_t grace_period,
1952 				bool reset)
1953 {
1954 	struct device *dev = dqm->dev->adev->dev;
1955 	struct mqd_manager *mqd_mgr;
1956 	int retval = 0;
1957 
1958 	if (!dqm->sched_running)
1959 		return 0;
1960 	if (dqm->is_hws_hang || dqm->is_resetting)
1961 		return -EIO;
1962 	if (!dqm->active_runlist)
1963 		return retval;
1964 
1965 	if (grace_period != USE_DEFAULT_GRACE_PERIOD) {
1966 		retval = pm_update_grace_period(&dqm->packet_mgr, grace_period);
1967 		if (retval)
1968 			return retval;
1969 	}
1970 
1971 	retval = pm_send_unmap_queue(&dqm->packet_mgr, filter, filter_param, reset);
1972 	if (retval)
1973 		return retval;
1974 
1975 	*dqm->fence_addr = KFD_FENCE_INIT;
1976 	pm_send_query_status(&dqm->packet_mgr, dqm->fence_gpu_addr,
1977 				KFD_FENCE_COMPLETED);
1978 	/* should be timed out */
1979 	retval = amdkfd_fence_wait_timeout(dqm, KFD_FENCE_COMPLETED,
1980 					   queue_preemption_timeout_ms);
1981 	if (retval) {
1982 		dev_err(dev, "The cp might be in an unrecoverable state due to an unsuccessful queues preemption\n");
1983 		kfd_hws_hang(dqm);
1984 		return retval;
1985 	}
1986 
1987 	/* In the current MEC firmware implementation, if compute queue
1988 	 * doesn't response to the preemption request in time, HIQ will
1989 	 * abandon the unmap request without returning any timeout error
1990 	 * to driver. Instead, MEC firmware will log the doorbell of the
1991 	 * unresponding compute queue to HIQ.MQD.queue_doorbell_id fields.
1992 	 * To make sure the queue unmap was successful, driver need to
1993 	 * check those fields
1994 	 */
1995 	mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ];
1996 	if (mqd_mgr->read_doorbell_id(dqm->packet_mgr.priv_queue->queue->mqd)) {
1997 		dev_err(dev, "HIQ MQD's queue_doorbell_id0 is not 0, Queue preemption time out\n");
1998 		while (halt_if_hws_hang)
1999 			schedule();
2000 		return -ETIME;
2001 	}
2002 
2003 	/* We need to reset the grace period value for this device */
2004 	if (grace_period != USE_DEFAULT_GRACE_PERIOD) {
2005 		if (pm_update_grace_period(&dqm->packet_mgr,
2006 					USE_DEFAULT_GRACE_PERIOD))
2007 			dev_err(dev, "Failed to reset grace period\n");
2008 	}
2009 
2010 	pm_release_ib(&dqm->packet_mgr);
2011 	dqm->active_runlist = false;
2012 
2013 	return retval;
2014 }
2015 
2016 /* only for compute queue */
2017 static int reset_queues_cpsch(struct device_queue_manager *dqm,
2018 			uint16_t pasid)
2019 {
2020 	int retval;
2021 
2022 	dqm_lock(dqm);
2023 
2024 	retval = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_BY_PASID,
2025 			pasid, USE_DEFAULT_GRACE_PERIOD, true);
2026 
2027 	dqm_unlock(dqm);
2028 	return retval;
2029 }
2030 
2031 /* dqm->lock mutex has to be locked before calling this function */
2032 static int execute_queues_cpsch(struct device_queue_manager *dqm,
2033 				enum kfd_unmap_queues_filter filter,
2034 				uint32_t filter_param,
2035 				uint32_t grace_period)
2036 {
2037 	int retval;
2038 
2039 	if (dqm->is_hws_hang)
2040 		return -EIO;
2041 	retval = unmap_queues_cpsch(dqm, filter, filter_param, grace_period, false);
2042 	if (retval)
2043 		return retval;
2044 
2045 	return map_queues_cpsch(dqm);
2046 }
2047 
2048 static int wait_on_destroy_queue(struct device_queue_manager *dqm,
2049 				 struct queue *q)
2050 {
2051 	struct kfd_process_device *pdd = kfd_get_process_device_data(q->device,
2052 								q->process);
2053 	int ret = 0;
2054 
2055 	if (pdd->qpd.is_debug)
2056 		return ret;
2057 
2058 	q->properties.is_being_destroyed = true;
2059 
2060 	if (pdd->process->debug_trap_enabled && q->properties.is_suspended) {
2061 		dqm_unlock(dqm);
2062 		mutex_unlock(&q->process->mutex);
2063 		ret = wait_event_interruptible(dqm->destroy_wait,
2064 						!q->properties.is_suspended);
2065 
2066 		mutex_lock(&q->process->mutex);
2067 		dqm_lock(dqm);
2068 	}
2069 
2070 	return ret;
2071 }
2072 
2073 static int destroy_queue_cpsch(struct device_queue_manager *dqm,
2074 				struct qcm_process_device *qpd,
2075 				struct queue *q)
2076 {
2077 	int retval;
2078 	struct mqd_manager *mqd_mgr;
2079 	uint64_t sdma_val = 0;
2080 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
2081 	struct device *dev = dqm->dev->adev->dev;
2082 
2083 	/* Get the SDMA queue stats */
2084 	if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
2085 	    (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
2086 		retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr,
2087 							&sdma_val);
2088 		if (retval)
2089 			dev_err(dev, "Failed to read SDMA queue counter for queue: %d\n",
2090 				q->properties.queue_id);
2091 	}
2092 
2093 	/* remove queue from list to prevent rescheduling after preemption */
2094 	dqm_lock(dqm);
2095 
2096 	retval = wait_on_destroy_queue(dqm, q);
2097 
2098 	if (retval) {
2099 		dqm_unlock(dqm);
2100 		return retval;
2101 	}
2102 
2103 	if (qpd->is_debug) {
2104 		/*
2105 		 * error, currently we do not allow to destroy a queue
2106 		 * of a currently debugged process
2107 		 */
2108 		retval = -EBUSY;
2109 		goto failed_try_destroy_debugged_queue;
2110 
2111 	}
2112 
2113 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2114 			q->properties.type)];
2115 
2116 	deallocate_doorbell(qpd, q);
2117 
2118 	if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
2119 	    (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
2120 		deallocate_sdma_queue(dqm, q);
2121 		pdd->sdma_past_activity_counter += sdma_val;
2122 	}
2123 
2124 	list_del(&q->list);
2125 	qpd->queue_count--;
2126 	if (q->properties.is_active) {
2127 		decrement_queue_count(dqm, qpd, q);
2128 		if (!dqm->dev->kfd->shared_resources.enable_mes) {
2129 			retval = execute_queues_cpsch(dqm,
2130 						      KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
2131 						      USE_DEFAULT_GRACE_PERIOD);
2132 			if (retval == -ETIME)
2133 				qpd->reset_wavefronts = true;
2134 		} else {
2135 			retval = remove_queue_mes(dqm, q, qpd);
2136 		}
2137 	}
2138 
2139 	/*
2140 	 * Unconditionally decrement this counter, regardless of the queue's
2141 	 * type
2142 	 */
2143 	dqm->total_queue_count--;
2144 	pr_debug("Total of %d queues are accountable so far\n",
2145 			dqm->total_queue_count);
2146 
2147 	dqm_unlock(dqm);
2148 
2149 	/*
2150 	 * Do free_mqd and raise delete event after dqm_unlock(dqm) to avoid
2151 	 * circular locking
2152 	 */
2153 	kfd_dbg_ev_raise(KFD_EC_MASK(EC_DEVICE_QUEUE_DELETE),
2154 				qpd->pqm->process, q->device,
2155 				-1, false, NULL, 0);
2156 
2157 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2158 
2159 	return retval;
2160 
2161 failed_try_destroy_debugged_queue:
2162 
2163 	dqm_unlock(dqm);
2164 	return retval;
2165 }
2166 
2167 /*
2168  * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to
2169  * stay in user mode.
2170  */
2171 #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL
2172 /* APE1 limit is inclusive and 64K aligned. */
2173 #define APE1_LIMIT_ALIGNMENT 0xFFFF
2174 
2175 static bool set_cache_memory_policy(struct device_queue_manager *dqm,
2176 				   struct qcm_process_device *qpd,
2177 				   enum cache_policy default_policy,
2178 				   enum cache_policy alternate_policy,
2179 				   void __user *alternate_aperture_base,
2180 				   uint64_t alternate_aperture_size)
2181 {
2182 	bool retval = true;
2183 
2184 	if (!dqm->asic_ops.set_cache_memory_policy)
2185 		return retval;
2186 
2187 	dqm_lock(dqm);
2188 
2189 	if (alternate_aperture_size == 0) {
2190 		/* base > limit disables APE1 */
2191 		qpd->sh_mem_ape1_base = 1;
2192 		qpd->sh_mem_ape1_limit = 0;
2193 	} else {
2194 		/*
2195 		 * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]},
2196 		 *			SH_MEM_APE1_BASE[31:0], 0x0000 }
2197 		 * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]},
2198 		 *			SH_MEM_APE1_LIMIT[31:0], 0xFFFF }
2199 		 * Verify that the base and size parameters can be
2200 		 * represented in this format and convert them.
2201 		 * Additionally restrict APE1 to user-mode addresses.
2202 		 */
2203 
2204 		uint64_t base = (uintptr_t)alternate_aperture_base;
2205 		uint64_t limit = base + alternate_aperture_size - 1;
2206 
2207 		if (limit <= base || (base & APE1_FIXED_BITS_MASK) != 0 ||
2208 		   (limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT) {
2209 			retval = false;
2210 			goto out;
2211 		}
2212 
2213 		qpd->sh_mem_ape1_base = base >> 16;
2214 		qpd->sh_mem_ape1_limit = limit >> 16;
2215 	}
2216 
2217 	retval = dqm->asic_ops.set_cache_memory_policy(
2218 			dqm,
2219 			qpd,
2220 			default_policy,
2221 			alternate_policy,
2222 			alternate_aperture_base,
2223 			alternate_aperture_size);
2224 
2225 	if ((dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
2226 		program_sh_mem_settings(dqm, qpd);
2227 
2228 	pr_debug("sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
2229 		qpd->sh_mem_config, qpd->sh_mem_ape1_base,
2230 		qpd->sh_mem_ape1_limit);
2231 
2232 out:
2233 	dqm_unlock(dqm);
2234 	return retval;
2235 }
2236 
2237 static int process_termination_nocpsch(struct device_queue_manager *dqm,
2238 		struct qcm_process_device *qpd)
2239 {
2240 	struct queue *q;
2241 	struct device_process_node *cur, *next_dpn;
2242 	int retval = 0;
2243 	bool found = false;
2244 
2245 	dqm_lock(dqm);
2246 
2247 	/* Clear all user mode queues */
2248 	while (!list_empty(&qpd->queues_list)) {
2249 		struct mqd_manager *mqd_mgr;
2250 		int ret;
2251 
2252 		q = list_first_entry(&qpd->queues_list, struct queue, list);
2253 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2254 				q->properties.type)];
2255 		ret = destroy_queue_nocpsch_locked(dqm, qpd, q);
2256 		if (ret)
2257 			retval = ret;
2258 		dqm_unlock(dqm);
2259 		mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2260 		dqm_lock(dqm);
2261 	}
2262 
2263 	/* Unregister process */
2264 	list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
2265 		if (qpd == cur->qpd) {
2266 			list_del(&cur->list);
2267 			kfree(cur);
2268 			dqm->processes_count--;
2269 			found = true;
2270 			break;
2271 		}
2272 	}
2273 
2274 	dqm_unlock(dqm);
2275 
2276 	/* Outside the DQM lock because under the DQM lock we can't do
2277 	 * reclaim or take other locks that others hold while reclaiming.
2278 	 */
2279 	if (found)
2280 		kfd_dec_compute_active(dqm->dev);
2281 
2282 	return retval;
2283 }
2284 
2285 static int get_wave_state(struct device_queue_manager *dqm,
2286 			  struct queue *q,
2287 			  void __user *ctl_stack,
2288 			  u32 *ctl_stack_used_size,
2289 			  u32 *save_area_used_size)
2290 {
2291 	struct mqd_manager *mqd_mgr;
2292 
2293 	dqm_lock(dqm);
2294 
2295 	mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP];
2296 
2297 	if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE ||
2298 	    q->properties.is_active || !q->device->kfd->cwsr_enabled ||
2299 	    !mqd_mgr->get_wave_state) {
2300 		dqm_unlock(dqm);
2301 		return -EINVAL;
2302 	}
2303 
2304 	dqm_unlock(dqm);
2305 
2306 	/*
2307 	 * get_wave_state is outside the dqm lock to prevent circular locking
2308 	 * and the queue should be protected against destruction by the process
2309 	 * lock.
2310 	 */
2311 	return mqd_mgr->get_wave_state(mqd_mgr, q->mqd, &q->properties,
2312 			ctl_stack, ctl_stack_used_size, save_area_used_size);
2313 }
2314 
2315 static void get_queue_checkpoint_info(struct device_queue_manager *dqm,
2316 			const struct queue *q,
2317 			u32 *mqd_size,
2318 			u32 *ctl_stack_size)
2319 {
2320 	struct mqd_manager *mqd_mgr;
2321 	enum KFD_MQD_TYPE mqd_type =
2322 			get_mqd_type_from_queue_type(q->properties.type);
2323 
2324 	dqm_lock(dqm);
2325 	mqd_mgr = dqm->mqd_mgrs[mqd_type];
2326 	*mqd_size = mqd_mgr->mqd_size;
2327 	*ctl_stack_size = 0;
2328 
2329 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE && mqd_mgr->get_checkpoint_info)
2330 		mqd_mgr->get_checkpoint_info(mqd_mgr, q->mqd, ctl_stack_size);
2331 
2332 	dqm_unlock(dqm);
2333 }
2334 
2335 static int checkpoint_mqd(struct device_queue_manager *dqm,
2336 			  const struct queue *q,
2337 			  void *mqd,
2338 			  void *ctl_stack)
2339 {
2340 	struct mqd_manager *mqd_mgr;
2341 	int r = 0;
2342 	enum KFD_MQD_TYPE mqd_type =
2343 			get_mqd_type_from_queue_type(q->properties.type);
2344 
2345 	dqm_lock(dqm);
2346 
2347 	if (q->properties.is_active || !q->device->kfd->cwsr_enabled) {
2348 		r = -EINVAL;
2349 		goto dqm_unlock;
2350 	}
2351 
2352 	mqd_mgr = dqm->mqd_mgrs[mqd_type];
2353 	if (!mqd_mgr->checkpoint_mqd) {
2354 		r = -EOPNOTSUPP;
2355 		goto dqm_unlock;
2356 	}
2357 
2358 	mqd_mgr->checkpoint_mqd(mqd_mgr, q->mqd, mqd, ctl_stack);
2359 
2360 dqm_unlock:
2361 	dqm_unlock(dqm);
2362 	return r;
2363 }
2364 
2365 static int process_termination_cpsch(struct device_queue_manager *dqm,
2366 		struct qcm_process_device *qpd)
2367 {
2368 	int retval;
2369 	struct queue *q;
2370 	struct device *dev = dqm->dev->adev->dev;
2371 	struct kernel_queue *kq, *kq_next;
2372 	struct mqd_manager *mqd_mgr;
2373 	struct device_process_node *cur, *next_dpn;
2374 	enum kfd_unmap_queues_filter filter =
2375 		KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES;
2376 	bool found = false;
2377 
2378 	retval = 0;
2379 
2380 	dqm_lock(dqm);
2381 
2382 	/* Clean all kernel queues */
2383 	list_for_each_entry_safe(kq, kq_next, &qpd->priv_queue_list, list) {
2384 		list_del(&kq->list);
2385 		decrement_queue_count(dqm, qpd, kq->queue);
2386 		qpd->is_debug = false;
2387 		dqm->total_queue_count--;
2388 		filter = KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES;
2389 	}
2390 
2391 	/* Clear all user mode queues */
2392 	list_for_each_entry(q, &qpd->queues_list, list) {
2393 		if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
2394 			deallocate_sdma_queue(dqm, q);
2395 		else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
2396 			deallocate_sdma_queue(dqm, q);
2397 
2398 		if (q->properties.is_active) {
2399 			decrement_queue_count(dqm, qpd, q);
2400 
2401 			if (dqm->dev->kfd->shared_resources.enable_mes) {
2402 				retval = remove_queue_mes(dqm, q, qpd);
2403 				if (retval)
2404 					dev_err(dev, "Failed to remove queue %d\n",
2405 						q->properties.queue_id);
2406 			}
2407 		}
2408 
2409 		dqm->total_queue_count--;
2410 	}
2411 
2412 	/* Unregister process */
2413 	list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
2414 		if (qpd == cur->qpd) {
2415 			list_del(&cur->list);
2416 			kfree(cur);
2417 			dqm->processes_count--;
2418 			found = true;
2419 			break;
2420 		}
2421 	}
2422 
2423 	if (!dqm->dev->kfd->shared_resources.enable_mes)
2424 		retval = execute_queues_cpsch(dqm, filter, 0, USE_DEFAULT_GRACE_PERIOD);
2425 
2426 	if ((!dqm->is_hws_hang) && (retval || qpd->reset_wavefronts)) {
2427 		pr_warn("Resetting wave fronts (cpsch) on dev %p\n", dqm->dev);
2428 		dbgdev_wave_reset_wavefronts(dqm->dev, qpd->pqm->process);
2429 		qpd->reset_wavefronts = false;
2430 	}
2431 
2432 	/* Lastly, free mqd resources.
2433 	 * Do free_mqd() after dqm_unlock to avoid circular locking.
2434 	 */
2435 	while (!list_empty(&qpd->queues_list)) {
2436 		q = list_first_entry(&qpd->queues_list, struct queue, list);
2437 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2438 				q->properties.type)];
2439 		list_del(&q->list);
2440 		qpd->queue_count--;
2441 		dqm_unlock(dqm);
2442 		mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2443 		dqm_lock(dqm);
2444 	}
2445 	dqm_unlock(dqm);
2446 
2447 	/* Outside the DQM lock because under the DQM lock we can't do
2448 	 * reclaim or take other locks that others hold while reclaiming.
2449 	 */
2450 	if (found)
2451 		kfd_dec_compute_active(dqm->dev);
2452 
2453 	return retval;
2454 }
2455 
2456 static int init_mqd_managers(struct device_queue_manager *dqm)
2457 {
2458 	int i, j;
2459 	struct device *dev = dqm->dev->adev->dev;
2460 	struct mqd_manager *mqd_mgr;
2461 
2462 	for (i = 0; i < KFD_MQD_TYPE_MAX; i++) {
2463 		mqd_mgr = dqm->asic_ops.mqd_manager_init(i, dqm->dev);
2464 		if (!mqd_mgr) {
2465 			dev_err(dev, "mqd manager [%d] initialization failed\n", i);
2466 			goto out_free;
2467 		}
2468 		dqm->mqd_mgrs[i] = mqd_mgr;
2469 	}
2470 
2471 	return 0;
2472 
2473 out_free:
2474 	for (j = 0; j < i; j++) {
2475 		kfree(dqm->mqd_mgrs[j]);
2476 		dqm->mqd_mgrs[j] = NULL;
2477 	}
2478 
2479 	return -ENOMEM;
2480 }
2481 
2482 /* Allocate one hiq mqd (HWS) and all SDMA mqd in a continuous trunk*/
2483 static int allocate_hiq_sdma_mqd(struct device_queue_manager *dqm)
2484 {
2485 	int retval;
2486 	struct kfd_node *dev = dqm->dev;
2487 	struct kfd_mem_obj *mem_obj = &dqm->hiq_sdma_mqd;
2488 	uint32_t size = dqm->mqd_mgrs[KFD_MQD_TYPE_SDMA]->mqd_size *
2489 		get_num_all_sdma_engines(dqm) *
2490 		dev->kfd->device_info.num_sdma_queues_per_engine +
2491 		(dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]->mqd_size *
2492 		NUM_XCC(dqm->dev->xcc_mask));
2493 
2494 	retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev, size,
2495 		&(mem_obj->gtt_mem), &(mem_obj->gpu_addr),
2496 		(void *)&(mem_obj->cpu_ptr), false);
2497 
2498 	return retval;
2499 }
2500 
2501 struct device_queue_manager *device_queue_manager_init(struct kfd_node *dev)
2502 {
2503 	struct device_queue_manager *dqm;
2504 
2505 	pr_debug("Loading device queue manager\n");
2506 
2507 	dqm = kzalloc(sizeof(*dqm), GFP_KERNEL);
2508 	if (!dqm)
2509 		return NULL;
2510 
2511 	switch (dev->adev->asic_type) {
2512 	/* HWS is not available on Hawaii. */
2513 	case CHIP_HAWAII:
2514 	/* HWS depends on CWSR for timely dequeue. CWSR is not
2515 	 * available on Tonga.
2516 	 *
2517 	 * FIXME: This argument also applies to Kaveri.
2518 	 */
2519 	case CHIP_TONGA:
2520 		dqm->sched_policy = KFD_SCHED_POLICY_NO_HWS;
2521 		break;
2522 	default:
2523 		dqm->sched_policy = sched_policy;
2524 		break;
2525 	}
2526 
2527 	dqm->dev = dev;
2528 	switch (dqm->sched_policy) {
2529 	case KFD_SCHED_POLICY_HWS:
2530 	case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
2531 		/* initialize dqm for cp scheduling */
2532 		dqm->ops.create_queue = create_queue_cpsch;
2533 		dqm->ops.initialize = initialize_cpsch;
2534 		dqm->ops.start = start_cpsch;
2535 		dqm->ops.stop = stop_cpsch;
2536 		dqm->ops.pre_reset = pre_reset;
2537 		dqm->ops.destroy_queue = destroy_queue_cpsch;
2538 		dqm->ops.update_queue = update_queue;
2539 		dqm->ops.register_process = register_process;
2540 		dqm->ops.unregister_process = unregister_process;
2541 		dqm->ops.uninitialize = uninitialize;
2542 		dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
2543 		dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
2544 		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
2545 		dqm->ops.process_termination = process_termination_cpsch;
2546 		dqm->ops.evict_process_queues = evict_process_queues_cpsch;
2547 		dqm->ops.restore_process_queues = restore_process_queues_cpsch;
2548 		dqm->ops.get_wave_state = get_wave_state;
2549 		dqm->ops.reset_queues = reset_queues_cpsch;
2550 		dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info;
2551 		dqm->ops.checkpoint_mqd = checkpoint_mqd;
2552 		break;
2553 	case KFD_SCHED_POLICY_NO_HWS:
2554 		/* initialize dqm for no cp scheduling */
2555 		dqm->ops.start = start_nocpsch;
2556 		dqm->ops.stop = stop_nocpsch;
2557 		dqm->ops.pre_reset = pre_reset;
2558 		dqm->ops.create_queue = create_queue_nocpsch;
2559 		dqm->ops.destroy_queue = destroy_queue_nocpsch;
2560 		dqm->ops.update_queue = update_queue;
2561 		dqm->ops.register_process = register_process;
2562 		dqm->ops.unregister_process = unregister_process;
2563 		dqm->ops.initialize = initialize_nocpsch;
2564 		dqm->ops.uninitialize = uninitialize;
2565 		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
2566 		dqm->ops.process_termination = process_termination_nocpsch;
2567 		dqm->ops.evict_process_queues = evict_process_queues_nocpsch;
2568 		dqm->ops.restore_process_queues =
2569 			restore_process_queues_nocpsch;
2570 		dqm->ops.get_wave_state = get_wave_state;
2571 		dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info;
2572 		dqm->ops.checkpoint_mqd = checkpoint_mqd;
2573 		break;
2574 	default:
2575 		dev_err(dev->adev->dev, "Invalid scheduling policy %d\n", dqm->sched_policy);
2576 		goto out_free;
2577 	}
2578 
2579 	switch (dev->adev->asic_type) {
2580 	case CHIP_KAVERI:
2581 	case CHIP_HAWAII:
2582 		device_queue_manager_init_cik(&dqm->asic_ops);
2583 		break;
2584 
2585 	case CHIP_CARRIZO:
2586 	case CHIP_TONGA:
2587 	case CHIP_FIJI:
2588 	case CHIP_POLARIS10:
2589 	case CHIP_POLARIS11:
2590 	case CHIP_POLARIS12:
2591 	case CHIP_VEGAM:
2592 		device_queue_manager_init_vi(&dqm->asic_ops);
2593 		break;
2594 
2595 	default:
2596 		if (KFD_GC_VERSION(dev) >= IP_VERSION(11, 0, 0))
2597 			device_queue_manager_init_v11(&dqm->asic_ops);
2598 		else if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
2599 			device_queue_manager_init_v10(&dqm->asic_ops);
2600 		else if (KFD_GC_VERSION(dev) >= IP_VERSION(9, 0, 1))
2601 			device_queue_manager_init_v9(&dqm->asic_ops);
2602 		else {
2603 			WARN(1, "Unexpected ASIC family %u",
2604 			     dev->adev->asic_type);
2605 			goto out_free;
2606 		}
2607 	}
2608 
2609 	if (init_mqd_managers(dqm))
2610 		goto out_free;
2611 
2612 	if (!dev->kfd->shared_resources.enable_mes && allocate_hiq_sdma_mqd(dqm)) {
2613 		dev_err(dev->adev->dev, "Failed to allocate hiq sdma mqd trunk buffer\n");
2614 		goto out_free;
2615 	}
2616 
2617 	if (!dqm->ops.initialize(dqm)) {
2618 		init_waitqueue_head(&dqm->destroy_wait);
2619 		return dqm;
2620 	}
2621 
2622 out_free:
2623 	kfree(dqm);
2624 	return NULL;
2625 }
2626 
2627 static void deallocate_hiq_sdma_mqd(struct kfd_node *dev,
2628 				    struct kfd_mem_obj *mqd)
2629 {
2630 	WARN(!mqd, "No hiq sdma mqd trunk to free");
2631 
2632 	amdgpu_amdkfd_free_gtt_mem(dev->adev, mqd->gtt_mem);
2633 }
2634 
2635 void device_queue_manager_uninit(struct device_queue_manager *dqm)
2636 {
2637 	dqm->ops.stop(dqm);
2638 	dqm->ops.uninitialize(dqm);
2639 	if (!dqm->dev->kfd->shared_resources.enable_mes)
2640 		deallocate_hiq_sdma_mqd(dqm->dev, &dqm->hiq_sdma_mqd);
2641 	kfree(dqm);
2642 }
2643 
2644 int kfd_dqm_evict_pasid(struct device_queue_manager *dqm, u32 pasid)
2645 {
2646 	struct kfd_process_device *pdd;
2647 	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
2648 	int ret = 0;
2649 
2650 	if (!p)
2651 		return -EINVAL;
2652 	WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
2653 	pdd = kfd_get_process_device_data(dqm->dev, p);
2654 	if (pdd)
2655 		ret = dqm->ops.evict_process_queues(dqm, &pdd->qpd);
2656 	kfd_unref_process(p);
2657 
2658 	return ret;
2659 }
2660 
2661 static void kfd_process_hw_exception(struct work_struct *work)
2662 {
2663 	struct device_queue_manager *dqm = container_of(work,
2664 			struct device_queue_manager, hw_exception_work);
2665 	amdgpu_amdkfd_gpu_reset(dqm->dev->adev);
2666 }
2667 
2668 int reserve_debug_trap_vmid(struct device_queue_manager *dqm,
2669 				struct qcm_process_device *qpd)
2670 {
2671 	int r;
2672 	struct device *dev = dqm->dev->adev->dev;
2673 	int updated_vmid_mask;
2674 
2675 	if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
2676 		dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
2677 		return -EINVAL;
2678 	}
2679 
2680 	dqm_lock(dqm);
2681 
2682 	if (dqm->trap_debug_vmid != 0) {
2683 		dev_err(dev, "Trap debug id already reserved\n");
2684 		r = -EBUSY;
2685 		goto out_unlock;
2686 	}
2687 
2688 	r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
2689 			USE_DEFAULT_GRACE_PERIOD, false);
2690 	if (r)
2691 		goto out_unlock;
2692 
2693 	updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap;
2694 	updated_vmid_mask &= ~(1 << dqm->dev->vm_info.last_vmid_kfd);
2695 
2696 	dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask;
2697 	dqm->trap_debug_vmid = dqm->dev->vm_info.last_vmid_kfd;
2698 	r = set_sched_resources(dqm);
2699 	if (r)
2700 		goto out_unlock;
2701 
2702 	r = map_queues_cpsch(dqm);
2703 	if (r)
2704 		goto out_unlock;
2705 
2706 	pr_debug("Reserved VMID for trap debug: %i\n", dqm->trap_debug_vmid);
2707 
2708 out_unlock:
2709 	dqm_unlock(dqm);
2710 	return r;
2711 }
2712 
2713 /*
2714  * Releases vmid for the trap debugger
2715  */
2716 int release_debug_trap_vmid(struct device_queue_manager *dqm,
2717 			struct qcm_process_device *qpd)
2718 {
2719 	struct device *dev = dqm->dev->adev->dev;
2720 	int r;
2721 	int updated_vmid_mask;
2722 	uint32_t trap_debug_vmid;
2723 
2724 	if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
2725 		dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
2726 		return -EINVAL;
2727 	}
2728 
2729 	dqm_lock(dqm);
2730 	trap_debug_vmid = dqm->trap_debug_vmid;
2731 	if (dqm->trap_debug_vmid == 0) {
2732 		dev_err(dev, "Trap debug id is not reserved\n");
2733 		r = -EINVAL;
2734 		goto out_unlock;
2735 	}
2736 
2737 	r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
2738 			USE_DEFAULT_GRACE_PERIOD, false);
2739 	if (r)
2740 		goto out_unlock;
2741 
2742 	updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap;
2743 	updated_vmid_mask |= (1 << dqm->dev->vm_info.last_vmid_kfd);
2744 
2745 	dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask;
2746 	dqm->trap_debug_vmid = 0;
2747 	r = set_sched_resources(dqm);
2748 	if (r)
2749 		goto out_unlock;
2750 
2751 	r = map_queues_cpsch(dqm);
2752 	if (r)
2753 		goto out_unlock;
2754 
2755 	pr_debug("Released VMID for trap debug: %i\n", trap_debug_vmid);
2756 
2757 out_unlock:
2758 	dqm_unlock(dqm);
2759 	return r;
2760 }
2761 
2762 #define QUEUE_NOT_FOUND		-1
2763 /* invalidate queue operation in array */
2764 static void q_array_invalidate(uint32_t num_queues, uint32_t *queue_ids)
2765 {
2766 	int i;
2767 
2768 	for (i = 0; i < num_queues; i++)
2769 		queue_ids[i] |= KFD_DBG_QUEUE_INVALID_MASK;
2770 }
2771 
2772 /* find queue index in array */
2773 static int q_array_get_index(unsigned int queue_id,
2774 		uint32_t num_queues,
2775 		uint32_t *queue_ids)
2776 {
2777 	int i;
2778 
2779 	for (i = 0; i < num_queues; i++)
2780 		if (queue_id == (queue_ids[i] & ~KFD_DBG_QUEUE_INVALID_MASK))
2781 			return i;
2782 
2783 	return QUEUE_NOT_FOUND;
2784 }
2785 
2786 struct copy_context_work_handler_workarea {
2787 	struct work_struct copy_context_work;
2788 	struct kfd_process *p;
2789 };
2790 
2791 static void copy_context_work_handler (struct work_struct *work)
2792 {
2793 	struct copy_context_work_handler_workarea *workarea;
2794 	struct mqd_manager *mqd_mgr;
2795 	struct queue *q;
2796 	struct mm_struct *mm;
2797 	struct kfd_process *p;
2798 	uint32_t tmp_ctl_stack_used_size, tmp_save_area_used_size;
2799 	int i;
2800 
2801 	workarea = container_of(work,
2802 			struct copy_context_work_handler_workarea,
2803 			copy_context_work);
2804 
2805 	p = workarea->p;
2806 	mm = get_task_mm(p->lead_thread);
2807 
2808 	if (!mm)
2809 		return;
2810 
2811 	kthread_use_mm(mm);
2812 	for (i = 0; i < p->n_pdds; i++) {
2813 		struct kfd_process_device *pdd = p->pdds[i];
2814 		struct device_queue_manager *dqm = pdd->dev->dqm;
2815 		struct qcm_process_device *qpd = &pdd->qpd;
2816 
2817 		list_for_each_entry(q, &qpd->queues_list, list) {
2818 			mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP];
2819 
2820 			/* We ignore the return value from get_wave_state
2821 			 * because
2822 			 * i) right now, it always returns 0, and
2823 			 * ii) if we hit an error, we would continue to the
2824 			 *      next queue anyway.
2825 			 */
2826 			mqd_mgr->get_wave_state(mqd_mgr,
2827 					q->mqd,
2828 					&q->properties,
2829 					(void __user *)	q->properties.ctx_save_restore_area_address,
2830 					&tmp_ctl_stack_used_size,
2831 					&tmp_save_area_used_size);
2832 		}
2833 	}
2834 	kthread_unuse_mm(mm);
2835 	mmput(mm);
2836 }
2837 
2838 static uint32_t *get_queue_ids(uint32_t num_queues, uint32_t *usr_queue_id_array)
2839 {
2840 	size_t array_size = num_queues * sizeof(uint32_t);
2841 
2842 	if (!usr_queue_id_array)
2843 		return NULL;
2844 
2845 	return memdup_user(usr_queue_id_array, array_size);
2846 }
2847 
2848 int resume_queues(struct kfd_process *p,
2849 		uint32_t num_queues,
2850 		uint32_t *usr_queue_id_array)
2851 {
2852 	uint32_t *queue_ids = NULL;
2853 	int total_resumed = 0;
2854 	int i;
2855 
2856 	if (usr_queue_id_array) {
2857 		queue_ids = get_queue_ids(num_queues, usr_queue_id_array);
2858 
2859 		if (IS_ERR(queue_ids))
2860 			return PTR_ERR(queue_ids);
2861 
2862 		/* mask all queues as invalid.  unmask per successful request */
2863 		q_array_invalidate(num_queues, queue_ids);
2864 	}
2865 
2866 	for (i = 0; i < p->n_pdds; i++) {
2867 		struct kfd_process_device *pdd = p->pdds[i];
2868 		struct device_queue_manager *dqm = pdd->dev->dqm;
2869 		struct device *dev = dqm->dev->adev->dev;
2870 		struct qcm_process_device *qpd = &pdd->qpd;
2871 		struct queue *q;
2872 		int r, per_device_resumed = 0;
2873 
2874 		dqm_lock(dqm);
2875 
2876 		/* unmask queues that resume or already resumed as valid */
2877 		list_for_each_entry(q, &qpd->queues_list, list) {
2878 			int q_idx = QUEUE_NOT_FOUND;
2879 
2880 			if (queue_ids)
2881 				q_idx = q_array_get_index(
2882 						q->properties.queue_id,
2883 						num_queues,
2884 						queue_ids);
2885 
2886 			if (!queue_ids || q_idx != QUEUE_NOT_FOUND) {
2887 				int err = resume_single_queue(dqm, &pdd->qpd, q);
2888 
2889 				if (queue_ids) {
2890 					if (!err) {
2891 						queue_ids[q_idx] &=
2892 							~KFD_DBG_QUEUE_INVALID_MASK;
2893 					} else {
2894 						queue_ids[q_idx] |=
2895 							KFD_DBG_QUEUE_ERROR_MASK;
2896 						break;
2897 					}
2898 				}
2899 
2900 				if (dqm->dev->kfd->shared_resources.enable_mes) {
2901 					wake_up_all(&dqm->destroy_wait);
2902 					if (!err)
2903 						total_resumed++;
2904 				} else {
2905 					per_device_resumed++;
2906 				}
2907 			}
2908 		}
2909 
2910 		if (!per_device_resumed) {
2911 			dqm_unlock(dqm);
2912 			continue;
2913 		}
2914 
2915 		r = execute_queues_cpsch(dqm,
2916 					KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
2917 					0,
2918 					USE_DEFAULT_GRACE_PERIOD);
2919 		if (r) {
2920 			dev_err(dev, "Failed to resume process queues\n");
2921 			if (queue_ids) {
2922 				list_for_each_entry(q, &qpd->queues_list, list) {
2923 					int q_idx = q_array_get_index(
2924 							q->properties.queue_id,
2925 							num_queues,
2926 							queue_ids);
2927 
2928 					/* mask queue as error on resume fail */
2929 					if (q_idx != QUEUE_NOT_FOUND)
2930 						queue_ids[q_idx] |=
2931 							KFD_DBG_QUEUE_ERROR_MASK;
2932 				}
2933 			}
2934 		} else {
2935 			wake_up_all(&dqm->destroy_wait);
2936 			total_resumed += per_device_resumed;
2937 		}
2938 
2939 		dqm_unlock(dqm);
2940 	}
2941 
2942 	if (queue_ids) {
2943 		if (copy_to_user((void __user *)usr_queue_id_array, queue_ids,
2944 				num_queues * sizeof(uint32_t)))
2945 			pr_err("copy_to_user failed on queue resume\n");
2946 
2947 		kfree(queue_ids);
2948 	}
2949 
2950 	return total_resumed;
2951 }
2952 
2953 int suspend_queues(struct kfd_process *p,
2954 			uint32_t num_queues,
2955 			uint32_t grace_period,
2956 			uint64_t exception_clear_mask,
2957 			uint32_t *usr_queue_id_array)
2958 {
2959 	uint32_t *queue_ids = get_queue_ids(num_queues, usr_queue_id_array);
2960 	int total_suspended = 0;
2961 	int i;
2962 
2963 	if (IS_ERR(queue_ids))
2964 		return PTR_ERR(queue_ids);
2965 
2966 	/* mask all queues as invalid.  umask on successful request */
2967 	q_array_invalidate(num_queues, queue_ids);
2968 
2969 	for (i = 0; i < p->n_pdds; i++) {
2970 		struct kfd_process_device *pdd = p->pdds[i];
2971 		struct device_queue_manager *dqm = pdd->dev->dqm;
2972 		struct device *dev = dqm->dev->adev->dev;
2973 		struct qcm_process_device *qpd = &pdd->qpd;
2974 		struct queue *q;
2975 		int r, per_device_suspended = 0;
2976 
2977 		mutex_lock(&p->event_mutex);
2978 		dqm_lock(dqm);
2979 
2980 		/* unmask queues that suspend or already suspended */
2981 		list_for_each_entry(q, &qpd->queues_list, list) {
2982 			int q_idx = q_array_get_index(q->properties.queue_id,
2983 							num_queues,
2984 							queue_ids);
2985 
2986 			if (q_idx != QUEUE_NOT_FOUND) {
2987 				int err = suspend_single_queue(dqm, pdd, q);
2988 				bool is_mes = dqm->dev->kfd->shared_resources.enable_mes;
2989 
2990 				if (!err) {
2991 					queue_ids[q_idx] &= ~KFD_DBG_QUEUE_INVALID_MASK;
2992 					if (exception_clear_mask && is_mes)
2993 						q->properties.exception_status &=
2994 							~exception_clear_mask;
2995 
2996 					if (is_mes)
2997 						total_suspended++;
2998 					else
2999 						per_device_suspended++;
3000 				} else if (err != -EBUSY) {
3001 					r = err;
3002 					queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK;
3003 					break;
3004 				}
3005 			}
3006 		}
3007 
3008 		if (!per_device_suspended) {
3009 			dqm_unlock(dqm);
3010 			mutex_unlock(&p->event_mutex);
3011 			if (total_suspended)
3012 				amdgpu_amdkfd_debug_mem_fence(dqm->dev->adev);
3013 			continue;
3014 		}
3015 
3016 		r = execute_queues_cpsch(dqm,
3017 			KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
3018 			grace_period);
3019 
3020 		if (r)
3021 			dev_err(dev, "Failed to suspend process queues.\n");
3022 		else
3023 			total_suspended += per_device_suspended;
3024 
3025 		list_for_each_entry(q, &qpd->queues_list, list) {
3026 			int q_idx = q_array_get_index(q->properties.queue_id,
3027 						num_queues, queue_ids);
3028 
3029 			if (q_idx == QUEUE_NOT_FOUND)
3030 				continue;
3031 
3032 			/* mask queue as error on suspend fail */
3033 			if (r)
3034 				queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK;
3035 			else if (exception_clear_mask)
3036 				q->properties.exception_status &=
3037 							~exception_clear_mask;
3038 		}
3039 
3040 		dqm_unlock(dqm);
3041 		mutex_unlock(&p->event_mutex);
3042 		amdgpu_device_flush_hdp(dqm->dev->adev, NULL);
3043 	}
3044 
3045 	if (total_suspended) {
3046 		struct copy_context_work_handler_workarea copy_context_worker;
3047 
3048 		INIT_WORK_ONSTACK(
3049 				&copy_context_worker.copy_context_work,
3050 				copy_context_work_handler);
3051 
3052 		copy_context_worker.p = p;
3053 
3054 		schedule_work(&copy_context_worker.copy_context_work);
3055 
3056 
3057 		flush_work(&copy_context_worker.copy_context_work);
3058 		destroy_work_on_stack(&copy_context_worker.copy_context_work);
3059 	}
3060 
3061 	if (copy_to_user((void __user *)usr_queue_id_array, queue_ids,
3062 			num_queues * sizeof(uint32_t)))
3063 		pr_err("copy_to_user failed on queue suspend\n");
3064 
3065 	kfree(queue_ids);
3066 
3067 	return total_suspended;
3068 }
3069 
3070 static uint32_t set_queue_type_for_user(struct queue_properties *q_props)
3071 {
3072 	switch (q_props->type) {
3073 	case KFD_QUEUE_TYPE_COMPUTE:
3074 		return q_props->format == KFD_QUEUE_FORMAT_PM4
3075 					? KFD_IOC_QUEUE_TYPE_COMPUTE
3076 					: KFD_IOC_QUEUE_TYPE_COMPUTE_AQL;
3077 	case KFD_QUEUE_TYPE_SDMA:
3078 		return KFD_IOC_QUEUE_TYPE_SDMA;
3079 	case KFD_QUEUE_TYPE_SDMA_XGMI:
3080 		return KFD_IOC_QUEUE_TYPE_SDMA_XGMI;
3081 	default:
3082 		WARN_ONCE(true, "queue type not recognized!");
3083 		return 0xffffffff;
3084 	};
3085 }
3086 
3087 void set_queue_snapshot_entry(struct queue *q,
3088 			      uint64_t exception_clear_mask,
3089 			      struct kfd_queue_snapshot_entry *qss_entry)
3090 {
3091 	qss_entry->ring_base_address = q->properties.queue_address;
3092 	qss_entry->write_pointer_address = (uint64_t)q->properties.write_ptr;
3093 	qss_entry->read_pointer_address = (uint64_t)q->properties.read_ptr;
3094 	qss_entry->ctx_save_restore_address =
3095 				q->properties.ctx_save_restore_area_address;
3096 	qss_entry->ctx_save_restore_area_size =
3097 				q->properties.ctx_save_restore_area_size;
3098 	qss_entry->exception_status = q->properties.exception_status;
3099 	qss_entry->queue_id = q->properties.queue_id;
3100 	qss_entry->gpu_id = q->device->id;
3101 	qss_entry->ring_size = (uint32_t)q->properties.queue_size;
3102 	qss_entry->queue_type = set_queue_type_for_user(&q->properties);
3103 	q->properties.exception_status &= ~exception_clear_mask;
3104 }
3105 
3106 int debug_lock_and_unmap(struct device_queue_manager *dqm)
3107 {
3108 	struct device *dev = dqm->dev->adev->dev;
3109 	int r;
3110 
3111 	if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3112 		dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3113 		return -EINVAL;
3114 	}
3115 
3116 	if (!kfd_dbg_is_per_vmid_supported(dqm->dev))
3117 		return 0;
3118 
3119 	dqm_lock(dqm);
3120 
3121 	r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, 0, false);
3122 	if (r)
3123 		dqm_unlock(dqm);
3124 
3125 	return r;
3126 }
3127 
3128 int debug_map_and_unlock(struct device_queue_manager *dqm)
3129 {
3130 	struct device *dev = dqm->dev->adev->dev;
3131 	int r;
3132 
3133 	if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3134 		dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3135 		return -EINVAL;
3136 	}
3137 
3138 	if (!kfd_dbg_is_per_vmid_supported(dqm->dev))
3139 		return 0;
3140 
3141 	r = map_queues_cpsch(dqm);
3142 
3143 	dqm_unlock(dqm);
3144 
3145 	return r;
3146 }
3147 
3148 int debug_refresh_runlist(struct device_queue_manager *dqm)
3149 {
3150 	int r = debug_lock_and_unmap(dqm);
3151 
3152 	if (r)
3153 		return r;
3154 
3155 	return debug_map_and_unlock(dqm);
3156 }
3157 
3158 #if defined(CONFIG_DEBUG_FS)
3159 
3160 static void seq_reg_dump(struct seq_file *m,
3161 			 uint32_t (*dump)[2], uint32_t n_regs)
3162 {
3163 	uint32_t i, count;
3164 
3165 	for (i = 0, count = 0; i < n_regs; i++) {
3166 		if (count == 0 ||
3167 		    dump[i-1][0] + sizeof(uint32_t) != dump[i][0]) {
3168 			seq_printf(m, "%s    %08x: %08x",
3169 				   i ? "\n" : "",
3170 				   dump[i][0], dump[i][1]);
3171 			count = 7;
3172 		} else {
3173 			seq_printf(m, " %08x", dump[i][1]);
3174 			count--;
3175 		}
3176 	}
3177 
3178 	seq_puts(m, "\n");
3179 }
3180 
3181 int dqm_debugfs_hqds(struct seq_file *m, void *data)
3182 {
3183 	struct device_queue_manager *dqm = data;
3184 	uint32_t xcc_mask = dqm->dev->xcc_mask;
3185 	uint32_t (*dump)[2], n_regs;
3186 	int pipe, queue;
3187 	int r = 0, xcc_id;
3188 	uint32_t sdma_engine_start;
3189 
3190 	if (!dqm->sched_running) {
3191 		seq_puts(m, " Device is stopped\n");
3192 		return 0;
3193 	}
3194 
3195 	for_each_inst(xcc_id, xcc_mask) {
3196 		r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev,
3197 						KFD_CIK_HIQ_PIPE,
3198 						KFD_CIK_HIQ_QUEUE, &dump,
3199 						&n_regs, xcc_id);
3200 		if (!r) {
3201 			seq_printf(
3202 				m,
3203 				"   Inst %d, HIQ on MEC %d Pipe %d Queue %d\n",
3204 				xcc_id,
3205 				KFD_CIK_HIQ_PIPE / get_pipes_per_mec(dqm) + 1,
3206 				KFD_CIK_HIQ_PIPE % get_pipes_per_mec(dqm),
3207 				KFD_CIK_HIQ_QUEUE);
3208 			seq_reg_dump(m, dump, n_regs);
3209 
3210 			kfree(dump);
3211 		}
3212 
3213 		for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
3214 			int pipe_offset = pipe * get_queues_per_pipe(dqm);
3215 
3216 			for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) {
3217 				if (!test_bit(pipe_offset + queue,
3218 				      dqm->dev->kfd->shared_resources.cp_queue_bitmap))
3219 					continue;
3220 
3221 				r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev,
3222 								pipe, queue,
3223 								&dump, &n_regs,
3224 								xcc_id);
3225 				if (r)
3226 					break;
3227 
3228 				seq_printf(m,
3229 					   " Inst %d,  CP Pipe %d, Queue %d\n",
3230 					   xcc_id, pipe, queue);
3231 				seq_reg_dump(m, dump, n_regs);
3232 
3233 				kfree(dump);
3234 			}
3235 		}
3236 	}
3237 
3238 	sdma_engine_start = dqm->dev->node_id * get_num_all_sdma_engines(dqm);
3239 	for (pipe = sdma_engine_start;
3240 	     pipe < (sdma_engine_start + get_num_all_sdma_engines(dqm));
3241 	     pipe++) {
3242 		for (queue = 0;
3243 		     queue < dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
3244 		     queue++) {
3245 			r = dqm->dev->kfd2kgd->hqd_sdma_dump(
3246 				dqm->dev->adev, pipe, queue, &dump, &n_regs);
3247 			if (r)
3248 				break;
3249 
3250 			seq_printf(m, "  SDMA Engine %d, RLC %d\n",
3251 				  pipe, queue);
3252 			seq_reg_dump(m, dump, n_regs);
3253 
3254 			kfree(dump);
3255 		}
3256 	}
3257 
3258 	return r;
3259 }
3260 
3261 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm)
3262 {
3263 	int r = 0;
3264 
3265 	dqm_lock(dqm);
3266 	r = pm_debugfs_hang_hws(&dqm->packet_mgr);
3267 	if (r) {
3268 		dqm_unlock(dqm);
3269 		return r;
3270 	}
3271 	dqm->active_runlist = true;
3272 	r = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES,
3273 				0, USE_DEFAULT_GRACE_PERIOD);
3274 	dqm_unlock(dqm);
3275 
3276 	return r;
3277 }
3278 
3279 #endif
3280