1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2014-2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/ratelimit.h> 26 #include <linux/printk.h> 27 #include <linux/slab.h> 28 #include <linux/list.h> 29 #include <linux/types.h> 30 #include <linux/bitops.h> 31 #include <linux/sched.h> 32 #include "kfd_priv.h" 33 #include "kfd_device_queue_manager.h" 34 #include "kfd_mqd_manager.h" 35 #include "cik_regs.h" 36 #include "kfd_kernel_queue.h" 37 #include "amdgpu_amdkfd.h" 38 #include "amdgpu_reset.h" 39 #include "amdgpu_sdma.h" 40 #include "mes_v11_api_def.h" 41 #include "kfd_debug.h" 42 43 /* Size of the per-pipe EOP queue */ 44 #define CIK_HPD_EOP_BYTES_LOG2 11 45 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2) 46 /* See unmap_queues_cpsch() */ 47 #define USE_DEFAULT_GRACE_PERIOD 0xffffffff 48 49 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm, 50 u32 pasid, unsigned int vmid); 51 52 static int execute_queues_cpsch(struct device_queue_manager *dqm, 53 enum kfd_unmap_queues_filter filter, 54 uint32_t filter_param, 55 uint32_t grace_period); 56 static int unmap_queues_cpsch(struct device_queue_manager *dqm, 57 enum kfd_unmap_queues_filter filter, 58 uint32_t filter_param, 59 uint32_t grace_period, 60 bool reset); 61 62 static int map_queues_cpsch(struct device_queue_manager *dqm); 63 64 static void deallocate_sdma_queue(struct device_queue_manager *dqm, 65 struct queue *q); 66 67 static inline void deallocate_hqd(struct device_queue_manager *dqm, 68 struct queue *q); 69 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q); 70 static int allocate_sdma_queue(struct device_queue_manager *dqm, 71 struct queue *q, const uint32_t *restore_sdma_id); 72 73 static int reset_queues_on_hws_hang(struct device_queue_manager *dqm, bool is_sdma); 74 75 static inline 76 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type) 77 { 78 if (type == KFD_QUEUE_TYPE_SDMA || type == KFD_QUEUE_TYPE_SDMA_XGMI) 79 return KFD_MQD_TYPE_SDMA; 80 return KFD_MQD_TYPE_CP; 81 } 82 83 static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe) 84 { 85 int i; 86 int pipe_offset = (mec * dqm->dev->kfd->shared_resources.num_pipe_per_mec 87 + pipe) * dqm->dev->kfd->shared_resources.num_queue_per_pipe; 88 89 /* queue is available for KFD usage if bit is 1 */ 90 for (i = 0; i < dqm->dev->kfd->shared_resources.num_queue_per_pipe; ++i) 91 if (test_bit(pipe_offset + i, 92 dqm->dev->kfd->shared_resources.cp_queue_bitmap)) 93 return true; 94 return false; 95 } 96 97 unsigned int get_cp_queues_num(struct device_queue_manager *dqm) 98 { 99 return bitmap_weight(dqm->dev->kfd->shared_resources.cp_queue_bitmap, 100 AMDGPU_MAX_QUEUES); 101 } 102 103 unsigned int get_queues_per_pipe(struct device_queue_manager *dqm) 104 { 105 return dqm->dev->kfd->shared_resources.num_queue_per_pipe; 106 } 107 108 unsigned int get_pipes_per_mec(struct device_queue_manager *dqm) 109 { 110 return dqm->dev->kfd->shared_resources.num_pipe_per_mec; 111 } 112 113 static unsigned int get_num_all_sdma_engines(struct device_queue_manager *dqm) 114 { 115 return kfd_get_num_sdma_engines(dqm->dev) + 116 kfd_get_num_xgmi_sdma_engines(dqm->dev); 117 } 118 119 unsigned int get_num_sdma_queues(struct device_queue_manager *dqm) 120 { 121 return kfd_get_num_sdma_engines(dqm->dev) * 122 dqm->dev->kfd->device_info.num_sdma_queues_per_engine; 123 } 124 125 unsigned int get_num_xgmi_sdma_queues(struct device_queue_manager *dqm) 126 { 127 return kfd_get_num_xgmi_sdma_engines(dqm->dev) * 128 dqm->dev->kfd->device_info.num_sdma_queues_per_engine; 129 } 130 131 static void init_sdma_bitmaps(struct device_queue_manager *dqm) 132 { 133 bitmap_zero(dqm->sdma_bitmap, KFD_MAX_SDMA_QUEUES); 134 bitmap_set(dqm->sdma_bitmap, 0, get_num_sdma_queues(dqm)); 135 136 bitmap_zero(dqm->xgmi_sdma_bitmap, KFD_MAX_SDMA_QUEUES); 137 bitmap_set(dqm->xgmi_sdma_bitmap, 0, get_num_xgmi_sdma_queues(dqm)); 138 139 /* Mask out the reserved queues */ 140 bitmap_clear(dqm->sdma_bitmap, 0, kfd_get_num_sdma_engines(dqm->dev) * 141 dqm->dev->kfd->device_info.num_reserved_sdma_queues_per_engine); 142 bitmap_clear(dqm->xgmi_sdma_bitmap, 0, kfd_get_num_xgmi_sdma_engines(dqm->dev) * 143 dqm->dev->kfd->device_info.num_reserved_sdma_queues_per_engine); 144 } 145 146 void program_sh_mem_settings(struct device_queue_manager *dqm, 147 struct qcm_process_device *qpd) 148 { 149 uint32_t xcc_mask = dqm->dev->xcc_mask; 150 int xcc_id; 151 152 for_each_inst(xcc_id, xcc_mask) 153 dqm->dev->kfd2kgd->program_sh_mem_settings( 154 dqm->dev->adev, qpd->vmid, qpd->sh_mem_config, 155 qpd->sh_mem_ape1_base, qpd->sh_mem_ape1_limit, 156 qpd->sh_mem_bases, xcc_id); 157 } 158 159 static void kfd_hws_hang(struct device_queue_manager *dqm) 160 { 161 struct device_process_node *cur; 162 struct qcm_process_device *qpd; 163 struct queue *q; 164 165 /* Mark all device queues as reset. */ 166 list_for_each_entry(cur, &dqm->queues, list) { 167 qpd = cur->qpd; 168 list_for_each_entry(q, &qpd->queues_list, list) { 169 struct kfd_process_device *pdd = qpd_to_pdd(qpd); 170 171 pdd->has_reset_queue = true; 172 } 173 } 174 175 /* 176 * Issue a GPU reset if HWS is unresponsive 177 */ 178 amdgpu_amdkfd_gpu_reset(dqm->dev->adev); 179 } 180 181 static int convert_to_mes_queue_type(int queue_type) 182 { 183 int mes_queue_type; 184 185 switch (queue_type) { 186 case KFD_QUEUE_TYPE_COMPUTE: 187 mes_queue_type = MES_QUEUE_TYPE_COMPUTE; 188 break; 189 case KFD_QUEUE_TYPE_SDMA: 190 mes_queue_type = MES_QUEUE_TYPE_SDMA; 191 break; 192 default: 193 WARN(1, "Invalid queue type %d", queue_type); 194 mes_queue_type = -EINVAL; 195 break; 196 } 197 198 return mes_queue_type; 199 } 200 201 static int add_queue_mes(struct device_queue_manager *dqm, struct queue *q, 202 struct qcm_process_device *qpd) 203 { 204 struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev; 205 struct kfd_process_device *pdd = qpd_to_pdd(qpd); 206 struct mes_add_queue_input queue_input; 207 int r, queue_type; 208 uint64_t wptr_addr_off; 209 210 if (!dqm->sched_running || dqm->sched_halt) 211 return 0; 212 if (!down_read_trylock(&adev->reset_domain->sem)) 213 return -EIO; 214 215 memset(&queue_input, 0x0, sizeof(struct mes_add_queue_input)); 216 queue_input.process_id = pdd->pasid; 217 queue_input.page_table_base_addr = qpd->page_table_base; 218 queue_input.process_va_start = 0; 219 queue_input.process_va_end = adev->vm_manager.max_pfn - 1; 220 /* MES unit for quantum is 100ns */ 221 queue_input.process_quantum = KFD_MES_PROCESS_QUANTUM; /* Equivalent to 10ms. */ 222 queue_input.process_context_addr = pdd->proc_ctx_gpu_addr; 223 queue_input.gang_quantum = KFD_MES_GANG_QUANTUM; /* Equivalent to 1ms */ 224 queue_input.gang_context_addr = q->gang_ctx_gpu_addr; 225 queue_input.inprocess_gang_priority = q->properties.priority; 226 queue_input.gang_global_priority_level = 227 AMDGPU_MES_PRIORITY_LEVEL_NORMAL; 228 queue_input.doorbell_offset = q->properties.doorbell_off; 229 queue_input.mqd_addr = q->gart_mqd_addr; 230 queue_input.wptr_addr = (uint64_t)q->properties.write_ptr; 231 232 wptr_addr_off = (uint64_t)q->properties.write_ptr & (PAGE_SIZE - 1); 233 queue_input.wptr_mc_addr = amdgpu_bo_gpu_offset(q->properties.wptr_bo) + wptr_addr_off; 234 235 queue_input.is_kfd_process = 1; 236 queue_input.is_aql_queue = (q->properties.format == KFD_QUEUE_FORMAT_AQL); 237 queue_input.queue_size = q->properties.queue_size >> 2; 238 239 queue_input.paging = false; 240 queue_input.tba_addr = qpd->tba_addr; 241 queue_input.tma_addr = qpd->tma_addr; 242 queue_input.trap_en = !kfd_dbg_has_cwsr_workaround(q->device); 243 queue_input.skip_process_ctx_clear = 244 qpd->pqm->process->runtime_info.runtime_state == DEBUG_RUNTIME_STATE_ENABLED && 245 (qpd->pqm->process->debug_trap_enabled || 246 kfd_dbg_has_ttmps_always_setup(q->device)); 247 248 queue_type = convert_to_mes_queue_type(q->properties.type); 249 if (queue_type < 0) { 250 dev_err(adev->dev, "Queue type not supported with MES, queue:%d\n", 251 q->properties.type); 252 up_read(&adev->reset_domain->sem); 253 return -EINVAL; 254 } 255 queue_input.queue_type = (uint32_t)queue_type; 256 257 queue_input.exclusively_scheduled = q->properties.is_gws; 258 queue_input.sh_mem_config_data = qpd->sh_mem_config; 259 queue_input.vm_cntx_cntl = qpd->vm_cntx_cntl; 260 queue_input.xcc_id = ffs(dqm->dev->xcc_mask) - 1; 261 262 amdgpu_mes_lock(&adev->mes); 263 r = adev->mes.funcs->add_hw_queue(&adev->mes, &queue_input); 264 amdgpu_mes_unlock(&adev->mes); 265 up_read(&adev->reset_domain->sem); 266 if (r) { 267 dev_err(adev->dev, "failed to add hardware queue to MES, doorbell=0x%x\n", 268 q->properties.doorbell_off); 269 dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n"); 270 kfd_hws_hang(dqm); 271 } 272 273 return r; 274 } 275 276 static int remove_queue_mes(struct device_queue_manager *dqm, struct queue *q, 277 struct qcm_process_device *qpd) 278 { 279 struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev; 280 int r; 281 struct mes_remove_queue_input queue_input; 282 283 if (!dqm->sched_running || dqm->sched_halt) 284 return 0; 285 if (!down_read_trylock(&adev->reset_domain->sem)) 286 return -EIO; 287 288 memset(&queue_input, 0x0, sizeof(struct mes_remove_queue_input)); 289 queue_input.doorbell_offset = q->properties.doorbell_off; 290 queue_input.gang_context_addr = q->gang_ctx_gpu_addr; 291 queue_input.xcc_id = ffs(dqm->dev->xcc_mask) - 1; 292 293 amdgpu_mes_lock(&adev->mes); 294 r = adev->mes.funcs->remove_hw_queue(&adev->mes, &queue_input); 295 amdgpu_mes_unlock(&adev->mes); 296 up_read(&adev->reset_domain->sem); 297 298 if (r) { 299 dev_err(adev->dev, "failed to remove hardware queue from MES, doorbell=0x%x\n", 300 q->properties.doorbell_off); 301 dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n"); 302 kfd_hws_hang(dqm); 303 } 304 305 return r; 306 } 307 308 static int remove_all_kfd_queues_mes(struct device_queue_manager *dqm) 309 { 310 struct device_process_node *cur; 311 struct device *dev = dqm->dev->adev->dev; 312 struct qcm_process_device *qpd; 313 struct queue *q; 314 int retval = 0; 315 316 list_for_each_entry(cur, &dqm->queues, list) { 317 qpd = cur->qpd; 318 list_for_each_entry(q, &qpd->queues_list, list) { 319 if (q->properties.is_active) { 320 retval = remove_queue_mes(dqm, q, qpd); 321 if (retval) { 322 dev_err(dev, "%s: Failed to remove queue %d for dev %d", 323 __func__, 324 q->properties.queue_id, 325 dqm->dev->id); 326 return retval; 327 } 328 } 329 } 330 } 331 332 return retval; 333 } 334 335 static int add_all_kfd_queues_mes(struct device_queue_manager *dqm) 336 { 337 struct device_process_node *cur; 338 struct device *dev = dqm->dev->adev->dev; 339 struct qcm_process_device *qpd; 340 struct queue *q; 341 int retval = 0; 342 343 list_for_each_entry(cur, &dqm->queues, list) { 344 qpd = cur->qpd; 345 list_for_each_entry(q, &qpd->queues_list, list) { 346 if (!q->properties.is_active) 347 continue; 348 retval = add_queue_mes(dqm, q, qpd); 349 if (retval) { 350 dev_err(dev, "%s: Failed to add queue %d for dev %d", 351 __func__, 352 q->properties.queue_id, 353 dqm->dev->id); 354 return retval; 355 } 356 } 357 } 358 359 return retval; 360 } 361 362 static int suspend_all_queues_mes(struct device_queue_manager *dqm) 363 { 364 struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev; 365 int r = 0; 366 367 if (!down_read_trylock(&adev->reset_domain->sem)) 368 return -EIO; 369 370 r = amdgpu_mes_suspend(adev); 371 up_read(&adev->reset_domain->sem); 372 373 if (r) { 374 dev_err(adev->dev, "failed to suspend gangs from MES\n"); 375 dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n"); 376 kfd_hws_hang(dqm); 377 } 378 379 return r; 380 } 381 382 static int resume_all_queues_mes(struct device_queue_manager *dqm) 383 { 384 struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev; 385 int r = 0; 386 387 if (!down_read_trylock(&adev->reset_domain->sem)) 388 return -EIO; 389 390 r = amdgpu_mes_resume(adev); 391 up_read(&adev->reset_domain->sem); 392 393 if (r) { 394 dev_err(adev->dev, "failed to resume gangs from MES\n"); 395 dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n"); 396 kfd_hws_hang(dqm); 397 } 398 399 return r; 400 } 401 402 static void increment_queue_count(struct device_queue_manager *dqm, 403 struct qcm_process_device *qpd, 404 struct queue *q) 405 { 406 dqm->active_queue_count++; 407 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) 408 dqm->active_cp_queue_count++; 409 410 if (q->properties.is_gws) { 411 dqm->gws_queue_count++; 412 qpd->mapped_gws_queue = true; 413 } 414 } 415 416 static void decrement_queue_count(struct device_queue_manager *dqm, 417 struct qcm_process_device *qpd, 418 struct queue *q) 419 { 420 dqm->active_queue_count--; 421 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) 422 dqm->active_cp_queue_count--; 423 424 if (q->properties.is_gws) { 425 dqm->gws_queue_count--; 426 qpd->mapped_gws_queue = false; 427 } 428 } 429 430 /* 431 * Allocate a doorbell ID to this queue. 432 * If doorbell_id is passed in, make sure requested ID is valid then allocate it. 433 */ 434 static int allocate_doorbell(struct qcm_process_device *qpd, 435 struct queue *q, 436 uint32_t const *restore_id) 437 { 438 struct kfd_node *dev = qpd->dqm->dev; 439 440 if (!KFD_IS_SOC15(dev)) { 441 /* On pre-SOC15 chips we need to use the queue ID to 442 * preserve the user mode ABI. 443 */ 444 445 if (restore_id && *restore_id != q->properties.queue_id) 446 return -EINVAL; 447 448 q->doorbell_id = q->properties.queue_id; 449 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 450 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 451 /* For SDMA queues on SOC15 with 8-byte doorbell, use static 452 * doorbell assignments based on the engine and queue id. 453 * The doobell index distance between RLC (2*i) and (2*i+1) 454 * for a SDMA engine is 512. 455 */ 456 457 uint32_t *idx_offset = dev->kfd->shared_resources.sdma_doorbell_idx; 458 459 /* 460 * q->properties.sdma_engine_id corresponds to the virtual 461 * sdma engine number. However, for doorbell allocation, 462 * we need the physical sdma engine id in order to get the 463 * correct doorbell offset. 464 */ 465 uint32_t valid_id = idx_offset[qpd->dqm->dev->node_id * 466 get_num_all_sdma_engines(qpd->dqm) + 467 q->properties.sdma_engine_id] 468 + (q->properties.sdma_queue_id & 1) 469 * KFD_QUEUE_DOORBELL_MIRROR_OFFSET 470 + (q->properties.sdma_queue_id >> 1); 471 472 if (restore_id && *restore_id != valid_id) 473 return -EINVAL; 474 q->doorbell_id = valid_id; 475 } else { 476 /* For CP queues on SOC15 */ 477 if (restore_id) { 478 /* make sure that ID is free */ 479 if (__test_and_set_bit(*restore_id, qpd->doorbell_bitmap)) 480 return -EINVAL; 481 482 q->doorbell_id = *restore_id; 483 } else { 484 /* or reserve a free doorbell ID */ 485 unsigned int found; 486 487 found = find_first_zero_bit(qpd->doorbell_bitmap, 488 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS); 489 if (found >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) { 490 pr_debug("No doorbells available"); 491 return -EBUSY; 492 } 493 set_bit(found, qpd->doorbell_bitmap); 494 q->doorbell_id = found; 495 } 496 } 497 498 q->properties.doorbell_off = amdgpu_doorbell_index_on_bar(dev->adev, 499 qpd->proc_doorbells, 500 q->doorbell_id, 501 dev->kfd->device_info.doorbell_size); 502 return 0; 503 } 504 505 static void deallocate_doorbell(struct qcm_process_device *qpd, 506 struct queue *q) 507 { 508 unsigned int old; 509 struct kfd_node *dev = qpd->dqm->dev; 510 511 if (!KFD_IS_SOC15(dev) || 512 q->properties.type == KFD_QUEUE_TYPE_SDMA || 513 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 514 return; 515 516 old = test_and_clear_bit(q->doorbell_id, qpd->doorbell_bitmap); 517 WARN_ON(!old); 518 } 519 520 static void program_trap_handler_settings(struct device_queue_manager *dqm, 521 struct qcm_process_device *qpd) 522 { 523 uint32_t xcc_mask = dqm->dev->xcc_mask; 524 int xcc_id; 525 526 if (dqm->dev->kfd2kgd->program_trap_handler_settings) 527 for_each_inst(xcc_id, xcc_mask) 528 dqm->dev->kfd2kgd->program_trap_handler_settings( 529 dqm->dev->adev, qpd->vmid, qpd->tba_addr, 530 qpd->tma_addr, xcc_id); 531 } 532 533 static int allocate_vmid(struct device_queue_manager *dqm, 534 struct qcm_process_device *qpd, 535 struct queue *q) 536 { 537 struct kfd_process_device *pdd = qpd_to_pdd(qpd); 538 struct device *dev = dqm->dev->adev->dev; 539 int allocated_vmid = -1, i; 540 541 for (i = dqm->dev->vm_info.first_vmid_kfd; 542 i <= dqm->dev->vm_info.last_vmid_kfd; i++) { 543 if (!dqm->vmid_pasid[i]) { 544 allocated_vmid = i; 545 break; 546 } 547 } 548 549 if (allocated_vmid < 0) { 550 dev_err(dev, "no more vmid to allocate\n"); 551 return -ENOSPC; 552 } 553 554 pr_debug("vmid allocated: %d\n", allocated_vmid); 555 556 dqm->vmid_pasid[allocated_vmid] = pdd->pasid; 557 558 set_pasid_vmid_mapping(dqm, pdd->pasid, allocated_vmid); 559 560 qpd->vmid = allocated_vmid; 561 q->properties.vmid = allocated_vmid; 562 563 program_sh_mem_settings(dqm, qpd); 564 565 if (KFD_IS_SOC15(dqm->dev) && dqm->dev->kfd->cwsr_enabled) 566 program_trap_handler_settings(dqm, qpd); 567 568 /* qpd->page_table_base is set earlier when register_process() 569 * is called, i.e. when the first queue is created. 570 */ 571 dqm->dev->kfd2kgd->set_vm_context_page_table_base(dqm->dev->adev, 572 qpd->vmid, 573 qpd->page_table_base); 574 /* invalidate the VM context after pasid and vmid mapping is set up */ 575 kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY); 576 577 if (dqm->dev->kfd2kgd->set_scratch_backing_va) 578 dqm->dev->kfd2kgd->set_scratch_backing_va(dqm->dev->adev, 579 qpd->sh_hidden_private_base, qpd->vmid); 580 581 return 0; 582 } 583 584 static int flush_texture_cache_nocpsch(struct kfd_node *kdev, 585 struct qcm_process_device *qpd) 586 { 587 const struct packet_manager_funcs *pmf = qpd->dqm->packet_mgr.pmf; 588 int ret; 589 590 if (!qpd->ib_kaddr) 591 return -ENOMEM; 592 593 ret = pmf->release_mem(qpd->ib_base, (uint32_t *)qpd->ib_kaddr); 594 if (ret) 595 return ret; 596 597 return amdgpu_amdkfd_submit_ib(kdev->adev, KGD_ENGINE_MEC1, qpd->vmid, 598 qpd->ib_base, (uint32_t *)qpd->ib_kaddr, 599 pmf->release_mem_size / sizeof(uint32_t)); 600 } 601 602 static void deallocate_vmid(struct device_queue_manager *dqm, 603 struct qcm_process_device *qpd, 604 struct queue *q) 605 { 606 struct device *dev = dqm->dev->adev->dev; 607 608 /* On GFX v7, CP doesn't flush TC at dequeue */ 609 if (q->device->adev->asic_type == CHIP_HAWAII) 610 if (flush_texture_cache_nocpsch(q->device, qpd)) 611 dev_err(dev, "Failed to flush TC\n"); 612 613 kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY); 614 615 /* Release the vmid mapping */ 616 set_pasid_vmid_mapping(dqm, 0, qpd->vmid); 617 dqm->vmid_pasid[qpd->vmid] = 0; 618 619 qpd->vmid = 0; 620 q->properties.vmid = 0; 621 } 622 623 static int create_queue_nocpsch(struct device_queue_manager *dqm, 624 struct queue *q, 625 struct qcm_process_device *qpd, 626 const struct kfd_criu_queue_priv_data *qd, 627 const void *restore_mqd, const void *restore_ctl_stack) 628 { 629 struct mqd_manager *mqd_mgr; 630 int retval; 631 632 dqm_lock(dqm); 633 634 if (dqm->total_queue_count >= max_num_of_queues_per_device) { 635 pr_warn("Can't create new usermode queue because %d queues were already created\n", 636 dqm->total_queue_count); 637 retval = -EPERM; 638 goto out_unlock; 639 } 640 641 if (list_empty(&qpd->queues_list)) { 642 retval = allocate_vmid(dqm, qpd, q); 643 if (retval) 644 goto out_unlock; 645 } 646 q->properties.vmid = qpd->vmid; 647 /* 648 * Eviction state logic: mark all queues as evicted, even ones 649 * not currently active. Restoring inactive queues later only 650 * updates the is_evicted flag but is a no-op otherwise. 651 */ 652 q->properties.is_evicted = !!qpd->evicted; 653 654 q->properties.tba_addr = qpd->tba_addr; 655 q->properties.tma_addr = qpd->tma_addr; 656 657 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 658 q->properties.type)]; 659 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) { 660 retval = allocate_hqd(dqm, q); 661 if (retval) 662 goto deallocate_vmid; 663 pr_debug("Loading mqd to hqd on pipe %d, queue %d\n", 664 q->pipe, q->queue); 665 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 666 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 667 retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL); 668 if (retval) 669 goto deallocate_vmid; 670 dqm->asic_ops.init_sdma_vm(dqm, q, qpd); 671 } 672 673 retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL); 674 if (retval) 675 goto out_deallocate_hqd; 676 677 /* Temporarily release dqm lock to avoid a circular lock dependency */ 678 dqm_unlock(dqm); 679 q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties); 680 dqm_lock(dqm); 681 682 if (!q->mqd_mem_obj) { 683 retval = -ENOMEM; 684 goto out_deallocate_doorbell; 685 } 686 687 if (qd) 688 mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr, 689 &q->properties, restore_mqd, restore_ctl_stack, 690 qd->ctl_stack_size); 691 else 692 mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, 693 &q->gart_mqd_addr, &q->properties); 694 695 if (q->properties.is_active) { 696 if (!dqm->sched_running) { 697 WARN_ONCE(1, "Load non-HWS mqd while stopped\n"); 698 goto add_queue_to_list; 699 } 700 701 if (WARN(q->process->mm != current->mm, 702 "should only run in user thread")) 703 retval = -EFAULT; 704 else 705 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe, 706 q->queue, &q->properties, current->mm); 707 if (retval) 708 goto out_free_mqd; 709 } 710 711 add_queue_to_list: 712 list_add(&q->list, &qpd->queues_list); 713 qpd->queue_count++; 714 if (q->properties.is_active) 715 increment_queue_count(dqm, qpd, q); 716 717 /* 718 * Unconditionally increment this counter, regardless of the queue's 719 * type or whether the queue is active. 720 */ 721 dqm->total_queue_count++; 722 pr_debug("Total of %d queues are accountable so far\n", 723 dqm->total_queue_count); 724 goto out_unlock; 725 726 out_free_mqd: 727 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 728 out_deallocate_doorbell: 729 deallocate_doorbell(qpd, q); 730 out_deallocate_hqd: 731 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) 732 deallocate_hqd(dqm, q); 733 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 734 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 735 deallocate_sdma_queue(dqm, q); 736 deallocate_vmid: 737 if (list_empty(&qpd->queues_list)) 738 deallocate_vmid(dqm, qpd, q); 739 out_unlock: 740 dqm_unlock(dqm); 741 return retval; 742 } 743 744 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q) 745 { 746 bool set; 747 int pipe, bit, i; 748 749 set = false; 750 751 for (pipe = dqm->next_pipe_to_allocate, i = 0; 752 i < get_pipes_per_mec(dqm); 753 pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) { 754 755 if (!is_pipe_enabled(dqm, 0, pipe)) 756 continue; 757 758 if (dqm->allocated_queues[pipe] != 0) { 759 bit = ffs(dqm->allocated_queues[pipe]) - 1; 760 dqm->allocated_queues[pipe] &= ~(1 << bit); 761 q->pipe = pipe; 762 q->queue = bit; 763 set = true; 764 break; 765 } 766 } 767 768 if (!set) 769 return -EBUSY; 770 771 pr_debug("hqd slot - pipe %d, queue %d\n", q->pipe, q->queue); 772 /* horizontal hqd allocation */ 773 dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm); 774 775 return 0; 776 } 777 778 static inline void deallocate_hqd(struct device_queue_manager *dqm, 779 struct queue *q) 780 { 781 dqm->allocated_queues[q->pipe] |= (1 << q->queue); 782 } 783 784 #define SQ_IND_CMD_CMD_KILL 0x00000003 785 #define SQ_IND_CMD_MODE_BROADCAST 0x00000001 786 787 static int dbgdev_wave_reset_wavefronts(struct kfd_node *dev, struct kfd_process *p) 788 { 789 int status = 0; 790 unsigned int vmid; 791 uint16_t queried_pasid; 792 union SQ_CMD_BITS reg_sq_cmd; 793 union GRBM_GFX_INDEX_BITS reg_gfx_index; 794 struct kfd_process_device *pdd; 795 int first_vmid_to_scan = dev->vm_info.first_vmid_kfd; 796 int last_vmid_to_scan = dev->vm_info.last_vmid_kfd; 797 uint32_t xcc_mask = dev->xcc_mask; 798 int xcc_id; 799 800 reg_sq_cmd.u32All = 0; 801 reg_gfx_index.u32All = 0; 802 803 pr_debug("Killing all process wavefronts\n"); 804 805 if (!dev->kfd2kgd->get_atc_vmid_pasid_mapping_info) { 806 dev_err(dev->adev->dev, "no vmid pasid mapping supported\n"); 807 return -EOPNOTSUPP; 808 } 809 810 /* taking the VMID for that process on the safe way using PDD */ 811 pdd = kfd_get_process_device_data(dev, p); 812 if (!pdd) 813 return -EFAULT; 814 815 /* Scan all registers in the range ATC_VMID8_PASID_MAPPING .. 816 * ATC_VMID15_PASID_MAPPING 817 * to check which VMID the current process is mapped to. 818 */ 819 820 for (vmid = first_vmid_to_scan; vmid <= last_vmid_to_scan; vmid++) { 821 status = dev->kfd2kgd->get_atc_vmid_pasid_mapping_info 822 (dev->adev, vmid, &queried_pasid); 823 824 if (status && queried_pasid == pdd->pasid) { 825 pr_debug("Killing wave fronts of vmid %d and process pid %d\n", 826 vmid, p->lead_thread->pid); 827 break; 828 } 829 } 830 831 if (vmid > last_vmid_to_scan) { 832 dev_err(dev->adev->dev, "Didn't find vmid for process pid %d\n", 833 p->lead_thread->pid); 834 return -EFAULT; 835 } 836 837 reg_gfx_index.bits.sh_broadcast_writes = 1; 838 reg_gfx_index.bits.se_broadcast_writes = 1; 839 reg_gfx_index.bits.instance_broadcast_writes = 1; 840 reg_sq_cmd.bits.mode = SQ_IND_CMD_MODE_BROADCAST; 841 reg_sq_cmd.bits.cmd = SQ_IND_CMD_CMD_KILL; 842 reg_sq_cmd.bits.vm_id = vmid; 843 844 for_each_inst(xcc_id, xcc_mask) 845 dev->kfd2kgd->wave_control_execute( 846 dev->adev, reg_gfx_index.u32All, 847 reg_sq_cmd.u32All, xcc_id); 848 849 return 0; 850 } 851 852 /* Access to DQM has to be locked before calling destroy_queue_nocpsch_locked 853 * to avoid asynchronized access 854 */ 855 static int destroy_queue_nocpsch_locked(struct device_queue_manager *dqm, 856 struct qcm_process_device *qpd, 857 struct queue *q) 858 { 859 int retval; 860 struct mqd_manager *mqd_mgr; 861 862 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(q->properties.type)]; 863 864 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) 865 deallocate_hqd(dqm, q); 866 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA) 867 deallocate_sdma_queue(dqm, q); 868 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 869 deallocate_sdma_queue(dqm, q); 870 else { 871 pr_debug("q->properties.type %d is invalid\n", 872 q->properties.type); 873 return -EINVAL; 874 } 875 dqm->total_queue_count--; 876 877 deallocate_doorbell(qpd, q); 878 879 if (!dqm->sched_running) { 880 WARN_ONCE(1, "Destroy non-HWS queue while stopped\n"); 881 return 0; 882 } 883 884 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd, 885 KFD_PREEMPT_TYPE_WAVEFRONT_RESET, 886 KFD_UNMAP_LATENCY_MS, 887 q->pipe, q->queue); 888 if (retval == -ETIME) 889 qpd->reset_wavefronts = true; 890 891 list_del(&q->list); 892 if (list_empty(&qpd->queues_list)) { 893 if (qpd->reset_wavefronts) { 894 pr_warn("Resetting wave fronts (nocpsch) on dev %p\n", 895 dqm->dev); 896 /* dbgdev_wave_reset_wavefronts has to be called before 897 * deallocate_vmid(), i.e. when vmid is still in use. 898 */ 899 dbgdev_wave_reset_wavefronts(dqm->dev, 900 qpd->pqm->process); 901 qpd->reset_wavefronts = false; 902 } 903 904 deallocate_vmid(dqm, qpd, q); 905 } 906 qpd->queue_count--; 907 if (q->properties.is_active) 908 decrement_queue_count(dqm, qpd, q); 909 910 return retval; 911 } 912 913 static int destroy_queue_nocpsch(struct device_queue_manager *dqm, 914 struct qcm_process_device *qpd, 915 struct queue *q) 916 { 917 int retval; 918 uint64_t sdma_val = 0; 919 struct device *dev = dqm->dev->adev->dev; 920 struct kfd_process_device *pdd = qpd_to_pdd(qpd); 921 struct mqd_manager *mqd_mgr = 922 dqm->mqd_mgrs[get_mqd_type_from_queue_type(q->properties.type)]; 923 924 /* Get the SDMA queue stats */ 925 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) || 926 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { 927 retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr, 928 &sdma_val); 929 if (retval) 930 dev_err(dev, "Failed to read SDMA queue counter for queue: %d\n", 931 q->properties.queue_id); 932 } 933 934 dqm_lock(dqm); 935 retval = destroy_queue_nocpsch_locked(dqm, qpd, q); 936 if (!retval) 937 pdd->sdma_past_activity_counter += sdma_val; 938 dqm_unlock(dqm); 939 940 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 941 942 return retval; 943 } 944 945 static int update_queue(struct device_queue_manager *dqm, struct queue *q, 946 struct mqd_update_info *minfo) 947 { 948 int retval = 0; 949 struct device *dev = dqm->dev->adev->dev; 950 struct mqd_manager *mqd_mgr; 951 struct kfd_process_device *pdd; 952 bool prev_active = false; 953 954 dqm_lock(dqm); 955 pdd = kfd_get_process_device_data(q->device, q->process); 956 if (!pdd) { 957 retval = -ENODEV; 958 goto out_unlock; 959 } 960 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 961 q->properties.type)]; 962 963 /* Save previous activity state for counters */ 964 prev_active = q->properties.is_active; 965 966 /* Make sure the queue is unmapped before updating the MQD */ 967 if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) { 968 if (!dqm->dev->kfd->shared_resources.enable_mes) 969 retval = unmap_queues_cpsch(dqm, 970 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD, false); 971 else if (prev_active) 972 retval = remove_queue_mes(dqm, q, &pdd->qpd); 973 974 /* queue is reset so inaccessable */ 975 if (pdd->has_reset_queue) { 976 retval = -EACCES; 977 goto out_unlock; 978 } 979 980 if (retval) { 981 dev_err(dev, "unmap queue failed\n"); 982 goto out_unlock; 983 } 984 } else if (prev_active && 985 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE || 986 q->properties.type == KFD_QUEUE_TYPE_SDMA || 987 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { 988 989 if (!dqm->sched_running) { 990 WARN_ONCE(1, "Update non-HWS queue while stopped\n"); 991 goto out_unlock; 992 } 993 994 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd, 995 (dqm->dev->kfd->cwsr_enabled ? 996 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE : 997 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN), 998 KFD_UNMAP_LATENCY_MS, q->pipe, q->queue); 999 if (retval) { 1000 dev_err(dev, "destroy mqd failed\n"); 1001 goto out_unlock; 1002 } 1003 } 1004 1005 mqd_mgr->update_mqd(mqd_mgr, q->mqd, &q->properties, minfo); 1006 1007 /* 1008 * check active state vs. the previous state and modify 1009 * counter accordingly. map_queues_cpsch uses the 1010 * dqm->active_queue_count to determine whether a new runlist must be 1011 * uploaded. 1012 */ 1013 if (q->properties.is_active && !prev_active) { 1014 increment_queue_count(dqm, &pdd->qpd, q); 1015 } else if (!q->properties.is_active && prev_active) { 1016 decrement_queue_count(dqm, &pdd->qpd, q); 1017 } else if (q->gws && !q->properties.is_gws) { 1018 if (q->properties.is_active) { 1019 dqm->gws_queue_count++; 1020 pdd->qpd.mapped_gws_queue = true; 1021 } 1022 q->properties.is_gws = true; 1023 } else if (!q->gws && q->properties.is_gws) { 1024 if (q->properties.is_active) { 1025 dqm->gws_queue_count--; 1026 pdd->qpd.mapped_gws_queue = false; 1027 } 1028 q->properties.is_gws = false; 1029 } 1030 1031 if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) { 1032 if (!dqm->dev->kfd->shared_resources.enable_mes) 1033 retval = map_queues_cpsch(dqm); 1034 else if (q->properties.is_active) 1035 retval = add_queue_mes(dqm, q, &pdd->qpd); 1036 } else if (q->properties.is_active && 1037 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE || 1038 q->properties.type == KFD_QUEUE_TYPE_SDMA || 1039 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { 1040 if (WARN(q->process->mm != current->mm, 1041 "should only run in user thread")) 1042 retval = -EFAULT; 1043 else 1044 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, 1045 q->pipe, q->queue, 1046 &q->properties, current->mm); 1047 } 1048 1049 out_unlock: 1050 dqm_unlock(dqm); 1051 return retval; 1052 } 1053 1054 /* suspend_single_queue does not lock the dqm like the 1055 * evict_process_queues_cpsch or evict_process_queues_nocpsch. You should 1056 * lock the dqm before calling, and unlock after calling. 1057 * 1058 * The reason we don't lock the dqm is because this function may be 1059 * called on multiple queues in a loop, so rather than locking/unlocking 1060 * multiple times, we will just keep the dqm locked for all of the calls. 1061 */ 1062 static int suspend_single_queue(struct device_queue_manager *dqm, 1063 struct kfd_process_device *pdd, 1064 struct queue *q) 1065 { 1066 bool is_new; 1067 1068 if (q->properties.is_suspended) 1069 return 0; 1070 1071 pr_debug("Suspending process pid %d queue [%i]\n", 1072 pdd->process->lead_thread->pid, 1073 q->properties.queue_id); 1074 1075 is_new = q->properties.exception_status & KFD_EC_MASK(EC_QUEUE_NEW); 1076 1077 if (is_new || q->properties.is_being_destroyed) { 1078 pr_debug("Suspend: skip %s queue id %i\n", 1079 is_new ? "new" : "destroyed", 1080 q->properties.queue_id); 1081 return -EBUSY; 1082 } 1083 1084 q->properties.is_suspended = true; 1085 if (q->properties.is_active) { 1086 if (dqm->dev->kfd->shared_resources.enable_mes) { 1087 int r = remove_queue_mes(dqm, q, &pdd->qpd); 1088 1089 if (r) 1090 return r; 1091 } 1092 1093 decrement_queue_count(dqm, &pdd->qpd, q); 1094 q->properties.is_active = false; 1095 } 1096 1097 return 0; 1098 } 1099 1100 /* resume_single_queue does not lock the dqm like the functions 1101 * restore_process_queues_cpsch or restore_process_queues_nocpsch. You should 1102 * lock the dqm before calling, and unlock after calling. 1103 * 1104 * The reason we don't lock the dqm is because this function may be 1105 * called on multiple queues in a loop, so rather than locking/unlocking 1106 * multiple times, we will just keep the dqm locked for all of the calls. 1107 */ 1108 static int resume_single_queue(struct device_queue_manager *dqm, 1109 struct qcm_process_device *qpd, 1110 struct queue *q) 1111 { 1112 struct kfd_process_device *pdd; 1113 1114 if (!q->properties.is_suspended) 1115 return 0; 1116 1117 pdd = qpd_to_pdd(qpd); 1118 1119 pr_debug("Restoring from suspend process pid %d queue [%i]\n", 1120 pdd->process->lead_thread->pid, 1121 q->properties.queue_id); 1122 1123 q->properties.is_suspended = false; 1124 1125 if (QUEUE_IS_ACTIVE(q->properties)) { 1126 if (dqm->dev->kfd->shared_resources.enable_mes) { 1127 int r = add_queue_mes(dqm, q, &pdd->qpd); 1128 1129 if (r) 1130 return r; 1131 } 1132 1133 q->properties.is_active = true; 1134 increment_queue_count(dqm, qpd, q); 1135 } 1136 1137 return 0; 1138 } 1139 1140 static int evict_process_queues_nocpsch(struct device_queue_manager *dqm, 1141 struct qcm_process_device *qpd) 1142 { 1143 struct queue *q; 1144 struct mqd_manager *mqd_mgr; 1145 struct kfd_process_device *pdd; 1146 int retval, ret = 0; 1147 1148 dqm_lock(dqm); 1149 if (qpd->evicted++ > 0) /* already evicted, do nothing */ 1150 goto out; 1151 1152 pdd = qpd_to_pdd(qpd); 1153 pr_debug_ratelimited("Evicting process pid %d queues\n", 1154 pdd->process->lead_thread->pid); 1155 1156 pdd->last_evict_timestamp = get_jiffies_64(); 1157 /* Mark all queues as evicted. Deactivate all active queues on 1158 * the qpd. 1159 */ 1160 list_for_each_entry(q, &qpd->queues_list, list) { 1161 q->properties.is_evicted = true; 1162 if (!q->properties.is_active) 1163 continue; 1164 1165 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 1166 q->properties.type)]; 1167 q->properties.is_active = false; 1168 decrement_queue_count(dqm, qpd, q); 1169 1170 if (WARN_ONCE(!dqm->sched_running, "Evict when stopped\n")) 1171 continue; 1172 1173 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd, 1174 (dqm->dev->kfd->cwsr_enabled ? 1175 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE : 1176 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN), 1177 KFD_UNMAP_LATENCY_MS, q->pipe, q->queue); 1178 if (retval && !ret) 1179 /* Return the first error, but keep going to 1180 * maintain a consistent eviction state 1181 */ 1182 ret = retval; 1183 } 1184 1185 out: 1186 dqm_unlock(dqm); 1187 return ret; 1188 } 1189 1190 static int evict_process_queues_cpsch(struct device_queue_manager *dqm, 1191 struct qcm_process_device *qpd) 1192 { 1193 struct queue *q; 1194 struct device *dev = dqm->dev->adev->dev; 1195 struct kfd_process_device *pdd; 1196 int retval = 0; 1197 1198 dqm_lock(dqm); 1199 if (qpd->evicted++ > 0) /* already evicted, do nothing */ 1200 goto out; 1201 1202 pdd = qpd_to_pdd(qpd); 1203 1204 /* The debugger creates processes that temporarily have not acquired 1205 * all VMs for all devices and has no VMs itself. 1206 * Skip queue eviction on process eviction. 1207 */ 1208 if (!pdd->drm_priv) 1209 goto out; 1210 1211 pr_debug_ratelimited("Evicting process pid %d queues\n", 1212 pdd->process->lead_thread->pid); 1213 1214 if (dqm->dev->kfd->shared_resources.enable_mes) { 1215 pdd->last_evict_timestamp = get_jiffies_64(); 1216 retval = suspend_all_queues_mes(dqm); 1217 if (retval) { 1218 dev_err(dev, "Suspending all queues failed"); 1219 goto out; 1220 } 1221 } 1222 1223 /* Mark all queues as evicted. Deactivate all active queues on 1224 * the qpd. 1225 */ 1226 list_for_each_entry(q, &qpd->queues_list, list) { 1227 q->properties.is_evicted = true; 1228 if (!q->properties.is_active) 1229 continue; 1230 1231 q->properties.is_active = false; 1232 decrement_queue_count(dqm, qpd, q); 1233 1234 if (dqm->dev->kfd->shared_resources.enable_mes) { 1235 retval = remove_queue_mes(dqm, q, qpd); 1236 if (retval) { 1237 dev_err(dev, "Failed to evict queue %d\n", 1238 q->properties.queue_id); 1239 goto out; 1240 } 1241 } 1242 } 1243 1244 if (!dqm->dev->kfd->shared_resources.enable_mes) { 1245 pdd->last_evict_timestamp = get_jiffies_64(); 1246 retval = execute_queues_cpsch(dqm, 1247 qpd->is_debug ? 1248 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES : 1249 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, 1250 USE_DEFAULT_GRACE_PERIOD); 1251 } else { 1252 retval = resume_all_queues_mes(dqm); 1253 if (retval) 1254 dev_err(dev, "Resuming all queues failed"); 1255 } 1256 1257 out: 1258 dqm_unlock(dqm); 1259 return retval; 1260 } 1261 1262 static int restore_process_queues_nocpsch(struct device_queue_manager *dqm, 1263 struct qcm_process_device *qpd) 1264 { 1265 struct mm_struct *mm = NULL; 1266 struct queue *q; 1267 struct mqd_manager *mqd_mgr; 1268 struct kfd_process_device *pdd; 1269 uint64_t pd_base; 1270 uint64_t eviction_duration; 1271 int retval, ret = 0; 1272 1273 pdd = qpd_to_pdd(qpd); 1274 /* Retrieve PD base */ 1275 pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv); 1276 1277 dqm_lock(dqm); 1278 if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */ 1279 goto out; 1280 if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */ 1281 qpd->evicted--; 1282 goto out; 1283 } 1284 1285 pr_debug_ratelimited("Restoring process pid %d queues\n", 1286 pdd->process->lead_thread->pid); 1287 1288 /* Update PD Base in QPD */ 1289 qpd->page_table_base = pd_base; 1290 pr_debug("Updated PD address to 0x%llx\n", pd_base); 1291 1292 if (!list_empty(&qpd->queues_list)) { 1293 dqm->dev->kfd2kgd->set_vm_context_page_table_base( 1294 dqm->dev->adev, 1295 qpd->vmid, 1296 qpd->page_table_base); 1297 kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY); 1298 } 1299 1300 /* Take a safe reference to the mm_struct, which may otherwise 1301 * disappear even while the kfd_process is still referenced. 1302 */ 1303 mm = get_task_mm(pdd->process->lead_thread); 1304 if (!mm) { 1305 ret = -EFAULT; 1306 goto out; 1307 } 1308 1309 /* Remove the eviction flags. Activate queues that are not 1310 * inactive for other reasons. 1311 */ 1312 list_for_each_entry(q, &qpd->queues_list, list) { 1313 q->properties.is_evicted = false; 1314 if (!QUEUE_IS_ACTIVE(q->properties)) 1315 continue; 1316 1317 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 1318 q->properties.type)]; 1319 q->properties.is_active = true; 1320 increment_queue_count(dqm, qpd, q); 1321 1322 if (WARN_ONCE(!dqm->sched_running, "Restore when stopped\n")) 1323 continue; 1324 1325 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe, 1326 q->queue, &q->properties, mm); 1327 if (retval && !ret) 1328 /* Return the first error, but keep going to 1329 * maintain a consistent eviction state 1330 */ 1331 ret = retval; 1332 } 1333 qpd->evicted = 0; 1334 eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp; 1335 atomic64_add(eviction_duration, &pdd->evict_duration_counter); 1336 out: 1337 if (mm) 1338 mmput(mm); 1339 dqm_unlock(dqm); 1340 return ret; 1341 } 1342 1343 static int restore_process_queues_cpsch(struct device_queue_manager *dqm, 1344 struct qcm_process_device *qpd) 1345 { 1346 struct queue *q; 1347 struct device *dev = dqm->dev->adev->dev; 1348 struct kfd_process_device *pdd; 1349 uint64_t eviction_duration; 1350 int retval = 0; 1351 1352 pdd = qpd_to_pdd(qpd); 1353 1354 dqm_lock(dqm); 1355 if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */ 1356 goto out; 1357 if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */ 1358 qpd->evicted--; 1359 goto out; 1360 } 1361 1362 /* The debugger creates processes that temporarily have not acquired 1363 * all VMs for all devices and has no VMs itself. 1364 * Skip queue restore on process restore. 1365 */ 1366 if (!pdd->drm_priv) 1367 goto vm_not_acquired; 1368 1369 pr_debug_ratelimited("Restoring process pid %d queues\n", 1370 pdd->process->lead_thread->pid); 1371 1372 /* Update PD Base in QPD */ 1373 qpd->page_table_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv); 1374 pr_debug("Updated PD address to 0x%llx\n", qpd->page_table_base); 1375 1376 /* activate all active queues on the qpd */ 1377 list_for_each_entry(q, &qpd->queues_list, list) { 1378 q->properties.is_evicted = false; 1379 if (!QUEUE_IS_ACTIVE(q->properties)) 1380 continue; 1381 1382 q->properties.is_active = true; 1383 increment_queue_count(dqm, &pdd->qpd, q); 1384 1385 if (dqm->dev->kfd->shared_resources.enable_mes) { 1386 retval = add_queue_mes(dqm, q, qpd); 1387 if (retval) { 1388 dev_err(dev, "Failed to restore queue %d\n", 1389 q->properties.queue_id); 1390 goto out; 1391 } 1392 } 1393 } 1394 if (!dqm->dev->kfd->shared_resources.enable_mes) 1395 retval = execute_queues_cpsch(dqm, 1396 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD); 1397 eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp; 1398 atomic64_add(eviction_duration, &pdd->evict_duration_counter); 1399 vm_not_acquired: 1400 qpd->evicted = 0; 1401 out: 1402 dqm_unlock(dqm); 1403 return retval; 1404 } 1405 1406 static int register_process(struct device_queue_manager *dqm, 1407 struct qcm_process_device *qpd) 1408 { 1409 struct device_process_node *n; 1410 struct kfd_process_device *pdd; 1411 uint64_t pd_base; 1412 int retval; 1413 1414 n = kzalloc(sizeof(*n), GFP_KERNEL); 1415 if (!n) 1416 return -ENOMEM; 1417 1418 n->qpd = qpd; 1419 1420 pdd = qpd_to_pdd(qpd); 1421 /* Retrieve PD base */ 1422 pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv); 1423 1424 dqm_lock(dqm); 1425 list_add(&n->list, &dqm->queues); 1426 1427 /* Update PD Base in QPD */ 1428 qpd->page_table_base = pd_base; 1429 pr_debug("Updated PD address to 0x%llx\n", pd_base); 1430 1431 retval = dqm->asic_ops.update_qpd(dqm, qpd); 1432 1433 dqm->processes_count++; 1434 1435 dqm_unlock(dqm); 1436 1437 /* Outside the DQM lock because under the DQM lock we can't do 1438 * reclaim or take other locks that others hold while reclaiming. 1439 */ 1440 kfd_inc_compute_active(dqm->dev); 1441 1442 return retval; 1443 } 1444 1445 static int unregister_process(struct device_queue_manager *dqm, 1446 struct qcm_process_device *qpd) 1447 { 1448 int retval = 0; 1449 struct device_process_node *cur, *next; 1450 1451 pr_debug("qpd->queues_list is %s\n", 1452 list_empty(&qpd->queues_list) ? "empty" : "not empty"); 1453 1454 dqm_lock(dqm); 1455 1456 list_for_each_entry_safe(cur, next, &dqm->queues, list) { 1457 if (qpd == cur->qpd) { 1458 list_del(&cur->list); 1459 kfree(cur); 1460 dqm->processes_count--; 1461 goto out; 1462 } 1463 } 1464 /* qpd not found in dqm list */ 1465 retval = 1; 1466 out: 1467 dqm_unlock(dqm); 1468 1469 /* Outside the DQM lock because under the DQM lock we can't do 1470 * reclaim or take other locks that others hold while reclaiming. 1471 */ 1472 if (!retval) 1473 kfd_dec_compute_active(dqm->dev); 1474 1475 return retval; 1476 } 1477 1478 static int 1479 set_pasid_vmid_mapping(struct device_queue_manager *dqm, u32 pasid, 1480 unsigned int vmid) 1481 { 1482 uint32_t xcc_mask = dqm->dev->xcc_mask; 1483 int xcc_id, ret = 0; 1484 1485 for_each_inst(xcc_id, xcc_mask) { 1486 ret = dqm->dev->kfd2kgd->set_pasid_vmid_mapping( 1487 dqm->dev->adev, pasid, vmid, xcc_id); 1488 if (ret) 1489 break; 1490 } 1491 1492 return ret; 1493 } 1494 1495 static void init_interrupts(struct device_queue_manager *dqm) 1496 { 1497 uint32_t xcc_mask = dqm->dev->xcc_mask; 1498 unsigned int i, xcc_id; 1499 1500 for_each_inst(xcc_id, xcc_mask) { 1501 for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++) { 1502 if (is_pipe_enabled(dqm, 0, i)) { 1503 dqm->dev->kfd2kgd->init_interrupts( 1504 dqm->dev->adev, i, xcc_id); 1505 } 1506 } 1507 } 1508 } 1509 1510 static int initialize_nocpsch(struct device_queue_manager *dqm) 1511 { 1512 int pipe, queue; 1513 1514 pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm)); 1515 1516 dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm), 1517 sizeof(unsigned int), GFP_KERNEL); 1518 if (!dqm->allocated_queues) 1519 return -ENOMEM; 1520 1521 mutex_init(&dqm->lock_hidden); 1522 INIT_LIST_HEAD(&dqm->queues); 1523 dqm->active_queue_count = dqm->next_pipe_to_allocate = 0; 1524 dqm->active_cp_queue_count = 0; 1525 dqm->gws_queue_count = 0; 1526 1527 for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) { 1528 int pipe_offset = pipe * get_queues_per_pipe(dqm); 1529 1530 for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) 1531 if (test_bit(pipe_offset + queue, 1532 dqm->dev->kfd->shared_resources.cp_queue_bitmap)) 1533 dqm->allocated_queues[pipe] |= 1 << queue; 1534 } 1535 1536 memset(dqm->vmid_pasid, 0, sizeof(dqm->vmid_pasid)); 1537 1538 init_sdma_bitmaps(dqm); 1539 1540 return 0; 1541 } 1542 1543 static void uninitialize(struct device_queue_manager *dqm) 1544 { 1545 int i; 1546 1547 WARN_ON(dqm->active_queue_count > 0 || dqm->processes_count > 0); 1548 1549 kfree(dqm->allocated_queues); 1550 for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++) 1551 kfree(dqm->mqd_mgrs[i]); 1552 mutex_destroy(&dqm->lock_hidden); 1553 } 1554 1555 static int start_nocpsch(struct device_queue_manager *dqm) 1556 { 1557 int r = 0; 1558 1559 pr_info("SW scheduler is used"); 1560 init_interrupts(dqm); 1561 1562 if (dqm->dev->adev->asic_type == CHIP_HAWAII) 1563 r = pm_init(&dqm->packet_mgr, dqm); 1564 if (!r) 1565 dqm->sched_running = true; 1566 1567 return r; 1568 } 1569 1570 static int stop_nocpsch(struct device_queue_manager *dqm) 1571 { 1572 dqm_lock(dqm); 1573 if (!dqm->sched_running) { 1574 dqm_unlock(dqm); 1575 return 0; 1576 } 1577 1578 if (dqm->dev->adev->asic_type == CHIP_HAWAII) 1579 pm_uninit(&dqm->packet_mgr); 1580 dqm->sched_running = false; 1581 dqm_unlock(dqm); 1582 1583 return 0; 1584 } 1585 1586 static int allocate_sdma_queue(struct device_queue_manager *dqm, 1587 struct queue *q, const uint32_t *restore_sdma_id) 1588 { 1589 struct device *dev = dqm->dev->adev->dev; 1590 int bit; 1591 1592 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) { 1593 if (bitmap_empty(dqm->sdma_bitmap, get_num_sdma_queues(dqm))) { 1594 dev_warn(dev, "No more SDMA queue to allocate (%d total queues)\n", 1595 get_num_sdma_queues(dqm)); 1596 return -ENOMEM; 1597 } 1598 1599 if (restore_sdma_id) { 1600 /* Re-use existing sdma_id */ 1601 if (!test_bit(*restore_sdma_id, dqm->sdma_bitmap)) { 1602 dev_err(dev, "SDMA queue already in use\n"); 1603 return -EBUSY; 1604 } 1605 clear_bit(*restore_sdma_id, dqm->sdma_bitmap); 1606 q->sdma_id = *restore_sdma_id; 1607 } else { 1608 /* Find first available sdma_id */ 1609 bit = find_first_bit(dqm->sdma_bitmap, 1610 get_num_sdma_queues(dqm)); 1611 clear_bit(bit, dqm->sdma_bitmap); 1612 q->sdma_id = bit; 1613 } 1614 1615 q->properties.sdma_engine_id = 1616 q->sdma_id % kfd_get_num_sdma_engines(dqm->dev); 1617 q->properties.sdma_queue_id = q->sdma_id / 1618 kfd_get_num_sdma_engines(dqm->dev); 1619 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 1620 if (bitmap_empty(dqm->xgmi_sdma_bitmap, get_num_xgmi_sdma_queues(dqm))) { 1621 dev_warn(dev, "No more XGMI SDMA queue to allocate (%d total queues)\n", 1622 get_num_xgmi_sdma_queues(dqm)); 1623 return -ENOMEM; 1624 } 1625 if (restore_sdma_id) { 1626 /* Re-use existing sdma_id */ 1627 if (!test_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap)) { 1628 dev_err(dev, "SDMA queue already in use\n"); 1629 return -EBUSY; 1630 } 1631 clear_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap); 1632 q->sdma_id = *restore_sdma_id; 1633 } else { 1634 bit = find_first_bit(dqm->xgmi_sdma_bitmap, 1635 get_num_xgmi_sdma_queues(dqm)); 1636 clear_bit(bit, dqm->xgmi_sdma_bitmap); 1637 q->sdma_id = bit; 1638 } 1639 /* sdma_engine_id is sdma id including 1640 * both PCIe-optimized SDMAs and XGMI- 1641 * optimized SDMAs. The calculation below 1642 * assumes the first N engines are always 1643 * PCIe-optimized ones 1644 */ 1645 q->properties.sdma_engine_id = 1646 kfd_get_num_sdma_engines(dqm->dev) + 1647 q->sdma_id % kfd_get_num_xgmi_sdma_engines(dqm->dev); 1648 q->properties.sdma_queue_id = q->sdma_id / 1649 kfd_get_num_xgmi_sdma_engines(dqm->dev); 1650 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_BY_ENG_ID) { 1651 int i, num_queues, num_engines, eng_offset = 0, start_engine; 1652 bool free_bit_found = false, is_xgmi = false; 1653 1654 if (q->properties.sdma_engine_id < kfd_get_num_sdma_engines(dqm->dev)) { 1655 num_queues = get_num_sdma_queues(dqm); 1656 num_engines = kfd_get_num_sdma_engines(dqm->dev); 1657 q->properties.type = KFD_QUEUE_TYPE_SDMA; 1658 } else { 1659 num_queues = get_num_xgmi_sdma_queues(dqm); 1660 num_engines = kfd_get_num_xgmi_sdma_engines(dqm->dev); 1661 eng_offset = kfd_get_num_sdma_engines(dqm->dev); 1662 q->properties.type = KFD_QUEUE_TYPE_SDMA_XGMI; 1663 is_xgmi = true; 1664 } 1665 1666 /* Scan available bit based on target engine ID. */ 1667 start_engine = q->properties.sdma_engine_id - eng_offset; 1668 for (i = start_engine; i < num_queues; i += num_engines) { 1669 1670 if (!test_bit(i, is_xgmi ? dqm->xgmi_sdma_bitmap : dqm->sdma_bitmap)) 1671 continue; 1672 1673 clear_bit(i, is_xgmi ? dqm->xgmi_sdma_bitmap : dqm->sdma_bitmap); 1674 q->sdma_id = i; 1675 q->properties.sdma_queue_id = q->sdma_id / num_engines; 1676 free_bit_found = true; 1677 break; 1678 } 1679 1680 if (!free_bit_found) { 1681 dev_warn(dev, "No more SDMA queue to allocate for target ID %i (%d total queues)\n", 1682 q->properties.sdma_engine_id, num_queues); 1683 return -ENOMEM; 1684 } 1685 } 1686 1687 pr_debug("SDMA engine id: %d\n", q->properties.sdma_engine_id); 1688 pr_debug("SDMA queue id: %d\n", q->properties.sdma_queue_id); 1689 1690 return 0; 1691 } 1692 1693 static void deallocate_sdma_queue(struct device_queue_manager *dqm, 1694 struct queue *q) 1695 { 1696 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) { 1697 if (q->sdma_id >= get_num_sdma_queues(dqm)) 1698 return; 1699 set_bit(q->sdma_id, dqm->sdma_bitmap); 1700 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 1701 if (q->sdma_id >= get_num_xgmi_sdma_queues(dqm)) 1702 return; 1703 set_bit(q->sdma_id, dqm->xgmi_sdma_bitmap); 1704 } 1705 } 1706 1707 /* 1708 * Device Queue Manager implementation for cp scheduler 1709 */ 1710 1711 static int set_sched_resources(struct device_queue_manager *dqm) 1712 { 1713 int i, mec; 1714 struct scheduling_resources res; 1715 struct device *dev = dqm->dev->adev->dev; 1716 1717 res.vmid_mask = dqm->dev->compute_vmid_bitmap; 1718 1719 res.queue_mask = 0; 1720 for (i = 0; i < AMDGPU_MAX_QUEUES; ++i) { 1721 mec = (i / dqm->dev->kfd->shared_resources.num_queue_per_pipe) 1722 / dqm->dev->kfd->shared_resources.num_pipe_per_mec; 1723 1724 if (!test_bit(i, dqm->dev->kfd->shared_resources.cp_queue_bitmap)) 1725 continue; 1726 1727 /* only acquire queues from the first MEC */ 1728 if (mec > 0) 1729 continue; 1730 1731 /* This situation may be hit in the future if a new HW 1732 * generation exposes more than 64 queues. If so, the 1733 * definition of res.queue_mask needs updating 1734 */ 1735 if (WARN_ON(i >= (sizeof(res.queue_mask)*8))) { 1736 dev_err(dev, "Invalid queue enabled by amdgpu: %d\n", i); 1737 break; 1738 } 1739 1740 res.queue_mask |= 1ull 1741 << amdgpu_queue_mask_bit_to_set_resource_bit( 1742 dqm->dev->adev, i); 1743 } 1744 res.gws_mask = ~0ull; 1745 res.oac_mask = res.gds_heap_base = res.gds_heap_size = 0; 1746 1747 pr_debug("Scheduling resources:\n" 1748 "vmid mask: 0x%8X\n" 1749 "queue mask: 0x%8llX\n", 1750 res.vmid_mask, res.queue_mask); 1751 1752 return pm_send_set_resources(&dqm->packet_mgr, &res); 1753 } 1754 1755 static int initialize_cpsch(struct device_queue_manager *dqm) 1756 { 1757 pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm)); 1758 1759 mutex_init(&dqm->lock_hidden); 1760 INIT_LIST_HEAD(&dqm->queues); 1761 dqm->active_queue_count = dqm->processes_count = 0; 1762 dqm->active_cp_queue_count = 0; 1763 dqm->gws_queue_count = 0; 1764 dqm->active_runlist = false; 1765 dqm->trap_debug_vmid = 0; 1766 1767 init_sdma_bitmaps(dqm); 1768 1769 update_dqm_wait_times(dqm); 1770 return 0; 1771 } 1772 1773 /* halt_cpsch: 1774 * Unmap queues so the schedule doesn't continue remaining jobs in the queue. 1775 * Then set dqm->sched_halt so queues don't map to runlist until unhalt_cpsch 1776 * is called. 1777 */ 1778 static int halt_cpsch(struct device_queue_manager *dqm) 1779 { 1780 int ret = 0; 1781 1782 dqm_lock(dqm); 1783 if (!dqm->sched_running) { 1784 dqm_unlock(dqm); 1785 return 0; 1786 } 1787 1788 WARN_ONCE(dqm->sched_halt, "Scheduling is already on halt\n"); 1789 1790 if (!dqm->is_hws_hang) { 1791 if (!dqm->dev->kfd->shared_resources.enable_mes) 1792 ret = unmap_queues_cpsch(dqm, 1793 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, 1794 USE_DEFAULT_GRACE_PERIOD, false); 1795 else 1796 ret = remove_all_kfd_queues_mes(dqm); 1797 } 1798 dqm->sched_halt = true; 1799 dqm_unlock(dqm); 1800 1801 return ret; 1802 } 1803 1804 /* unhalt_cpsch 1805 * Unset dqm->sched_halt and map queues back to runlist 1806 */ 1807 static int unhalt_cpsch(struct device_queue_manager *dqm) 1808 { 1809 int ret = 0; 1810 1811 dqm_lock(dqm); 1812 if (!dqm->sched_running || !dqm->sched_halt) { 1813 WARN_ONCE(!dqm->sched_halt, "Scheduling is not on halt.\n"); 1814 dqm_unlock(dqm); 1815 return 0; 1816 } 1817 dqm->sched_halt = false; 1818 if (!dqm->dev->kfd->shared_resources.enable_mes) 1819 ret = execute_queues_cpsch(dqm, 1820 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 1821 0, USE_DEFAULT_GRACE_PERIOD); 1822 else 1823 ret = add_all_kfd_queues_mes(dqm); 1824 1825 dqm_unlock(dqm); 1826 1827 return ret; 1828 } 1829 1830 static int start_cpsch(struct device_queue_manager *dqm) 1831 { 1832 struct device *dev = dqm->dev->adev->dev; 1833 int retval, num_hw_queue_slots; 1834 1835 dqm_lock(dqm); 1836 1837 if (!dqm->dev->kfd->shared_resources.enable_mes) { 1838 retval = pm_init(&dqm->packet_mgr, dqm); 1839 if (retval) 1840 goto fail_packet_manager_init; 1841 1842 retval = set_sched_resources(dqm); 1843 if (retval) 1844 goto fail_set_sched_resources; 1845 } 1846 pr_debug("Allocating fence memory\n"); 1847 1848 /* allocate fence memory on the gart */ 1849 retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr), 1850 &dqm->fence_mem); 1851 1852 if (retval) 1853 goto fail_allocate_vidmem; 1854 1855 dqm->fence_addr = (uint64_t *)dqm->fence_mem->cpu_ptr; 1856 dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr; 1857 1858 init_interrupts(dqm); 1859 1860 /* clear hang status when driver try to start the hw scheduler */ 1861 dqm->sched_running = true; 1862 1863 if (!dqm->dev->kfd->shared_resources.enable_mes) { 1864 if (pm_config_dequeue_wait_counts(&dqm->packet_mgr, 1865 KFD_DEQUEUE_WAIT_INIT, 0 /* unused */)) 1866 dev_err(dev, "Setting optimized dequeue wait failed. Using default values\n"); 1867 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD); 1868 } 1869 1870 /* setup per-queue reset detection buffer */ 1871 num_hw_queue_slots = dqm->dev->kfd->shared_resources.num_queue_per_pipe * 1872 dqm->dev->kfd->shared_resources.num_pipe_per_mec * 1873 NUM_XCC(dqm->dev->xcc_mask); 1874 1875 dqm->detect_hang_info_size = num_hw_queue_slots * sizeof(struct dqm_detect_hang_info); 1876 dqm->detect_hang_info = kzalloc(dqm->detect_hang_info_size, GFP_KERNEL); 1877 1878 if (!dqm->detect_hang_info) { 1879 retval = -ENOMEM; 1880 goto fail_detect_hang_buffer; 1881 } 1882 1883 dqm_unlock(dqm); 1884 1885 return 0; 1886 fail_detect_hang_buffer: 1887 kfd_gtt_sa_free(dqm->dev, dqm->fence_mem); 1888 fail_allocate_vidmem: 1889 fail_set_sched_resources: 1890 if (!dqm->dev->kfd->shared_resources.enable_mes) 1891 pm_uninit(&dqm->packet_mgr); 1892 fail_packet_manager_init: 1893 dqm_unlock(dqm); 1894 return retval; 1895 } 1896 1897 static int stop_cpsch(struct device_queue_manager *dqm) 1898 { 1899 int ret = 0; 1900 1901 dqm_lock(dqm); 1902 if (!dqm->sched_running) { 1903 dqm_unlock(dqm); 1904 return 0; 1905 } 1906 1907 if (!dqm->dev->kfd->shared_resources.enable_mes) 1908 ret = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 1909 0, USE_DEFAULT_GRACE_PERIOD, false); 1910 else 1911 ret = remove_all_kfd_queues_mes(dqm); 1912 1913 dqm->sched_running = false; 1914 1915 if (!dqm->dev->kfd->shared_resources.enable_mes) 1916 pm_release_ib(&dqm->packet_mgr); 1917 1918 kfd_gtt_sa_free(dqm->dev, dqm->fence_mem); 1919 if (!dqm->dev->kfd->shared_resources.enable_mes) 1920 pm_uninit(&dqm->packet_mgr); 1921 kfree(dqm->detect_hang_info); 1922 dqm->detect_hang_info = NULL; 1923 dqm_unlock(dqm); 1924 1925 return ret; 1926 } 1927 1928 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm, 1929 struct kernel_queue *kq, 1930 struct qcm_process_device *qpd) 1931 { 1932 dqm_lock(dqm); 1933 if (dqm->total_queue_count >= max_num_of_queues_per_device) { 1934 pr_warn("Can't create new kernel queue because %d queues were already created\n", 1935 dqm->total_queue_count); 1936 dqm_unlock(dqm); 1937 return -EPERM; 1938 } 1939 1940 /* 1941 * Unconditionally increment this counter, regardless of the queue's 1942 * type or whether the queue is active. 1943 */ 1944 dqm->total_queue_count++; 1945 pr_debug("Total of %d queues are accountable so far\n", 1946 dqm->total_queue_count); 1947 1948 list_add(&kq->list, &qpd->priv_queue_list); 1949 increment_queue_count(dqm, qpd, kq->queue); 1950 qpd->is_debug = true; 1951 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, 1952 USE_DEFAULT_GRACE_PERIOD); 1953 dqm_unlock(dqm); 1954 1955 return 0; 1956 } 1957 1958 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm, 1959 struct kernel_queue *kq, 1960 struct qcm_process_device *qpd) 1961 { 1962 dqm_lock(dqm); 1963 list_del(&kq->list); 1964 decrement_queue_count(dqm, qpd, kq->queue); 1965 qpd->is_debug = false; 1966 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, 1967 USE_DEFAULT_GRACE_PERIOD); 1968 /* 1969 * Unconditionally decrement this counter, regardless of the queue's 1970 * type. 1971 */ 1972 dqm->total_queue_count--; 1973 pr_debug("Total of %d queues are accountable so far\n", 1974 dqm->total_queue_count); 1975 dqm_unlock(dqm); 1976 } 1977 1978 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q, 1979 struct qcm_process_device *qpd, 1980 const struct kfd_criu_queue_priv_data *qd, 1981 const void *restore_mqd, const void *restore_ctl_stack) 1982 { 1983 int retval; 1984 struct mqd_manager *mqd_mgr; 1985 1986 if (dqm->total_queue_count >= max_num_of_queues_per_device) { 1987 pr_warn("Can't create new usermode queue because %d queues were already created\n", 1988 dqm->total_queue_count); 1989 retval = -EPERM; 1990 goto out; 1991 } 1992 1993 if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 1994 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI || 1995 q->properties.type == KFD_QUEUE_TYPE_SDMA_BY_ENG_ID) { 1996 dqm_lock(dqm); 1997 retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL); 1998 dqm_unlock(dqm); 1999 if (retval) 2000 goto out; 2001 } 2002 2003 retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL); 2004 if (retval) 2005 goto out_deallocate_sdma_queue; 2006 2007 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 2008 q->properties.type)]; 2009 2010 if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 2011 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 2012 dqm->asic_ops.init_sdma_vm(dqm, q, qpd); 2013 q->properties.tba_addr = qpd->tba_addr; 2014 q->properties.tma_addr = qpd->tma_addr; 2015 q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties); 2016 if (!q->mqd_mem_obj) { 2017 retval = -ENOMEM; 2018 goto out_deallocate_doorbell; 2019 } 2020 2021 dqm_lock(dqm); 2022 /* 2023 * Eviction state logic: mark all queues as evicted, even ones 2024 * not currently active. Restoring inactive queues later only 2025 * updates the is_evicted flag but is a no-op otherwise. 2026 */ 2027 q->properties.is_evicted = !!qpd->evicted; 2028 q->properties.is_dbg_wa = qpd->pqm->process->debug_trap_enabled && 2029 kfd_dbg_has_cwsr_workaround(q->device); 2030 2031 if (qd) 2032 mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr, 2033 &q->properties, restore_mqd, restore_ctl_stack, 2034 qd->ctl_stack_size); 2035 else 2036 mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, 2037 &q->gart_mqd_addr, &q->properties); 2038 2039 list_add(&q->list, &qpd->queues_list); 2040 qpd->queue_count++; 2041 2042 if (q->properties.is_active) { 2043 increment_queue_count(dqm, qpd, q); 2044 2045 if (!dqm->dev->kfd->shared_resources.enable_mes) 2046 retval = execute_queues_cpsch(dqm, 2047 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD); 2048 else 2049 retval = add_queue_mes(dqm, q, qpd); 2050 if (retval) 2051 goto cleanup_queue; 2052 } 2053 2054 /* 2055 * Unconditionally increment this counter, regardless of the queue's 2056 * type or whether the queue is active. 2057 */ 2058 dqm->total_queue_count++; 2059 2060 pr_debug("Total of %d queues are accountable so far\n", 2061 dqm->total_queue_count); 2062 2063 dqm_unlock(dqm); 2064 return retval; 2065 2066 cleanup_queue: 2067 qpd->queue_count--; 2068 list_del(&q->list); 2069 if (q->properties.is_active) 2070 decrement_queue_count(dqm, qpd, q); 2071 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 2072 dqm_unlock(dqm); 2073 out_deallocate_doorbell: 2074 deallocate_doorbell(qpd, q); 2075 out_deallocate_sdma_queue: 2076 if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 2077 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 2078 dqm_lock(dqm); 2079 deallocate_sdma_queue(dqm, q); 2080 dqm_unlock(dqm); 2081 } 2082 out: 2083 return retval; 2084 } 2085 2086 int amdkfd_fence_wait_timeout(struct device_queue_manager *dqm, 2087 uint64_t fence_value, 2088 unsigned int timeout_ms) 2089 { 2090 unsigned long end_jiffies = msecs_to_jiffies(timeout_ms) + jiffies; 2091 struct device *dev = dqm->dev->adev->dev; 2092 uint64_t *fence_addr = dqm->fence_addr; 2093 2094 while (*fence_addr != fence_value) { 2095 /* Fatal err detected, this response won't come */ 2096 if (amdgpu_amdkfd_is_fed(dqm->dev->adev) || 2097 amdgpu_in_reset(dqm->dev->adev)) 2098 return -EIO; 2099 2100 if (time_after(jiffies, end_jiffies)) { 2101 dev_err(dev, "qcm fence wait loop timeout expired\n"); 2102 /* In HWS case, this is used to halt the driver thread 2103 * in order not to mess up CP states before doing 2104 * scandumps for FW debugging. 2105 */ 2106 while (halt_if_hws_hang) 2107 schedule(); 2108 2109 return -ETIME; 2110 } 2111 schedule(); 2112 } 2113 2114 return 0; 2115 } 2116 2117 /* dqm->lock mutex has to be locked before calling this function */ 2118 static int map_queues_cpsch(struct device_queue_manager *dqm) 2119 { 2120 struct device *dev = dqm->dev->adev->dev; 2121 int retval; 2122 2123 if (!dqm->sched_running || dqm->sched_halt) 2124 return 0; 2125 if (dqm->active_queue_count <= 0 || dqm->processes_count <= 0) 2126 return 0; 2127 if (dqm->active_runlist) 2128 return 0; 2129 2130 retval = pm_send_runlist(&dqm->packet_mgr, &dqm->queues); 2131 pr_debug("%s sent runlist\n", __func__); 2132 if (retval) { 2133 dev_err(dev, "failed to execute runlist\n"); 2134 return retval; 2135 } 2136 dqm->active_runlist = true; 2137 2138 return retval; 2139 } 2140 2141 static void set_queue_as_reset(struct device_queue_manager *dqm, struct queue *q, 2142 struct qcm_process_device *qpd) 2143 { 2144 struct kfd_process_device *pdd = qpd_to_pdd(qpd); 2145 2146 dev_err(dqm->dev->adev->dev, "queue id 0x%0x at pasid %d is reset\n", 2147 q->properties.queue_id, pdd->process->lead_thread->pid); 2148 2149 pdd->has_reset_queue = true; 2150 if (q->properties.is_active) { 2151 q->properties.is_active = false; 2152 decrement_queue_count(dqm, qpd, q); 2153 } 2154 } 2155 2156 static int detect_queue_hang(struct device_queue_manager *dqm) 2157 { 2158 int i; 2159 2160 /* detect should be used only in dqm locked queue reset */ 2161 if (WARN_ON(dqm->detect_hang_count > 0)) 2162 return 0; 2163 2164 memset(dqm->detect_hang_info, 0, dqm->detect_hang_info_size); 2165 2166 for (i = 0; i < AMDGPU_MAX_QUEUES; ++i) { 2167 uint32_t mec, pipe, queue; 2168 int xcc_id; 2169 2170 mec = (i / dqm->dev->kfd->shared_resources.num_queue_per_pipe) 2171 / dqm->dev->kfd->shared_resources.num_pipe_per_mec; 2172 2173 if (mec || !test_bit(i, dqm->dev->kfd->shared_resources.cp_queue_bitmap)) 2174 continue; 2175 2176 amdgpu_queue_mask_bit_to_mec_queue(dqm->dev->adev, i, &mec, &pipe, &queue); 2177 2178 for_each_inst(xcc_id, dqm->dev->xcc_mask) { 2179 uint64_t queue_addr = dqm->dev->kfd2kgd->hqd_get_pq_addr( 2180 dqm->dev->adev, pipe, queue, xcc_id); 2181 struct dqm_detect_hang_info hang_info; 2182 2183 if (!queue_addr) 2184 continue; 2185 2186 hang_info.pipe_id = pipe; 2187 hang_info.queue_id = queue; 2188 hang_info.xcc_id = xcc_id; 2189 hang_info.queue_address = queue_addr; 2190 2191 dqm->detect_hang_info[dqm->detect_hang_count] = hang_info; 2192 dqm->detect_hang_count++; 2193 } 2194 } 2195 2196 return dqm->detect_hang_count; 2197 } 2198 2199 static struct queue *find_queue_by_address(struct device_queue_manager *dqm, uint64_t queue_address) 2200 { 2201 struct device_process_node *cur; 2202 struct qcm_process_device *qpd; 2203 struct queue *q; 2204 2205 list_for_each_entry(cur, &dqm->queues, list) { 2206 qpd = cur->qpd; 2207 list_for_each_entry(q, &qpd->queues_list, list) { 2208 if (queue_address == q->properties.queue_address) 2209 return q; 2210 } 2211 } 2212 2213 return NULL; 2214 } 2215 2216 static int reset_hung_queues(struct device_queue_manager *dqm) 2217 { 2218 int r = 0, reset_count = 0, i; 2219 2220 if (!dqm->detect_hang_info || dqm->is_hws_hang) 2221 return -EIO; 2222 2223 /* assume dqm locked. */ 2224 if (!detect_queue_hang(dqm)) 2225 return -ENOTRECOVERABLE; 2226 2227 for (i = 0; i < dqm->detect_hang_count; i++) { 2228 struct dqm_detect_hang_info hang_info = dqm->detect_hang_info[i]; 2229 struct queue *q = find_queue_by_address(dqm, hang_info.queue_address); 2230 struct kfd_process_device *pdd; 2231 uint64_t queue_addr = 0; 2232 2233 if (!q) { 2234 r = -ENOTRECOVERABLE; 2235 goto reset_fail; 2236 } 2237 2238 pdd = kfd_get_process_device_data(dqm->dev, q->process); 2239 if (!pdd) { 2240 r = -ENOTRECOVERABLE; 2241 goto reset_fail; 2242 } 2243 2244 queue_addr = dqm->dev->kfd2kgd->hqd_reset(dqm->dev->adev, 2245 hang_info.pipe_id, hang_info.queue_id, hang_info.xcc_id, 2246 KFD_UNMAP_LATENCY_MS); 2247 2248 /* either reset failed or we reset an unexpected queue. */ 2249 if (queue_addr != q->properties.queue_address) { 2250 r = -ENOTRECOVERABLE; 2251 goto reset_fail; 2252 } 2253 2254 set_queue_as_reset(dqm, q, &pdd->qpd); 2255 reset_count++; 2256 } 2257 2258 if (reset_count == dqm->detect_hang_count) 2259 kfd_signal_reset_event(dqm->dev); 2260 else 2261 r = -ENOTRECOVERABLE; 2262 2263 reset_fail: 2264 dqm->detect_hang_count = 0; 2265 2266 return r; 2267 } 2268 2269 static bool sdma_has_hang(struct device_queue_manager *dqm) 2270 { 2271 int engine_start = dqm->dev->node_id * get_num_all_sdma_engines(dqm); 2272 int engine_end = engine_start + get_num_all_sdma_engines(dqm); 2273 int num_queues_per_eng = dqm->dev->kfd->device_info.num_sdma_queues_per_engine; 2274 int i, j; 2275 2276 for (i = engine_start; i < engine_end; i++) { 2277 for (j = 0; j < num_queues_per_eng; j++) { 2278 if (!dqm->dev->kfd2kgd->hqd_sdma_get_doorbell(dqm->dev->adev, i, j)) 2279 continue; 2280 2281 return true; 2282 } 2283 } 2284 2285 return false; 2286 } 2287 2288 static bool set_sdma_queue_as_reset(struct device_queue_manager *dqm, 2289 uint32_t doorbell_off) 2290 { 2291 struct device_process_node *cur; 2292 struct qcm_process_device *qpd; 2293 struct queue *q; 2294 2295 list_for_each_entry(cur, &dqm->queues, list) { 2296 qpd = cur->qpd; 2297 list_for_each_entry(q, &qpd->queues_list, list) { 2298 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA || 2299 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) && 2300 q->properties.doorbell_off == doorbell_off) { 2301 set_queue_as_reset(dqm, q, qpd); 2302 return true; 2303 } 2304 } 2305 } 2306 2307 return false; 2308 } 2309 2310 static int reset_hung_queues_sdma(struct device_queue_manager *dqm) 2311 { 2312 int engine_start = dqm->dev->node_id * get_num_all_sdma_engines(dqm); 2313 int engine_end = engine_start + get_num_all_sdma_engines(dqm); 2314 int num_queues_per_eng = dqm->dev->kfd->device_info.num_sdma_queues_per_engine; 2315 int r = 0, i, j; 2316 2317 if (dqm->is_hws_hang) 2318 return -EIO; 2319 2320 /* Scan for hung HW queues and reset engine. */ 2321 dqm->detect_hang_count = 0; 2322 for (i = engine_start; i < engine_end; i++) { 2323 for (j = 0; j < num_queues_per_eng; j++) { 2324 uint32_t doorbell_off = 2325 dqm->dev->kfd2kgd->hqd_sdma_get_doorbell(dqm->dev->adev, i, j); 2326 2327 if (!doorbell_off) 2328 continue; 2329 2330 /* Reset engine and check. */ 2331 if (amdgpu_sdma_reset_engine(dqm->dev->adev, i, false) || 2332 dqm->dev->kfd2kgd->hqd_sdma_get_doorbell(dqm->dev->adev, i, j) || 2333 !set_sdma_queue_as_reset(dqm, doorbell_off)) { 2334 r = -ENOTRECOVERABLE; 2335 goto reset_fail; 2336 } 2337 2338 /* Should only expect one queue active per engine */ 2339 dqm->detect_hang_count++; 2340 break; 2341 } 2342 } 2343 2344 /* Signal process reset */ 2345 if (dqm->detect_hang_count) 2346 kfd_signal_reset_event(dqm->dev); 2347 else 2348 r = -ENOTRECOVERABLE; 2349 2350 reset_fail: 2351 dqm->detect_hang_count = 0; 2352 2353 return r; 2354 } 2355 2356 static int reset_queues_on_hws_hang(struct device_queue_manager *dqm, bool is_sdma) 2357 { 2358 struct amdgpu_device *adev = dqm->dev->adev; 2359 2360 while (halt_if_hws_hang) 2361 schedule(); 2362 2363 if (adev->debug_disable_gpu_ring_reset) { 2364 dev_info_once(adev->dev, 2365 "%s queue hung, but ring reset disabled", 2366 is_sdma ? "sdma" : "compute"); 2367 2368 return -EPERM; 2369 } 2370 if (!amdgpu_gpu_recovery) 2371 return -ENOTRECOVERABLE; 2372 2373 return is_sdma ? reset_hung_queues_sdma(dqm) : reset_hung_queues(dqm); 2374 } 2375 2376 /* dqm->lock mutex has to be locked before calling this function 2377 * 2378 * @grace_period: If USE_DEFAULT_GRACE_PERIOD then default wait time 2379 * for context switch latency. Lower values are used by debugger 2380 * since context switching are triggered at high frequency. 2381 * This is configured by setting CP_IQ_WAIT_TIME2.SCH_WAVE 2382 * 2383 */ 2384 static int unmap_queues_cpsch(struct device_queue_manager *dqm, 2385 enum kfd_unmap_queues_filter filter, 2386 uint32_t filter_param, 2387 uint32_t grace_period, 2388 bool reset) 2389 { 2390 struct device *dev = dqm->dev->adev->dev; 2391 struct mqd_manager *mqd_mgr; 2392 int retval; 2393 2394 if (!dqm->sched_running) 2395 return 0; 2396 if (!dqm->active_runlist) 2397 return 0; 2398 if (!down_read_trylock(&dqm->dev->adev->reset_domain->sem)) 2399 return -EIO; 2400 2401 if (grace_period != USE_DEFAULT_GRACE_PERIOD) { 2402 retval = pm_config_dequeue_wait_counts(&dqm->packet_mgr, 2403 KFD_DEQUEUE_WAIT_SET_SCH_WAVE, grace_period); 2404 if (retval) 2405 goto out; 2406 } 2407 2408 retval = pm_send_unmap_queue(&dqm->packet_mgr, filter, filter_param, reset); 2409 if (retval) 2410 goto out; 2411 2412 *dqm->fence_addr = KFD_FENCE_INIT; 2413 mb(); 2414 pm_send_query_status(&dqm->packet_mgr, dqm->fence_gpu_addr, 2415 KFD_FENCE_COMPLETED); 2416 /* should be timed out */ 2417 retval = amdkfd_fence_wait_timeout(dqm, KFD_FENCE_COMPLETED, 2418 queue_preemption_timeout_ms); 2419 if (retval) { 2420 dev_err(dev, "The cp might be in an unrecoverable state due to an unsuccessful queues preemption\n"); 2421 kfd_hws_hang(dqm); 2422 goto out; 2423 } 2424 2425 /* In the current MEC firmware implementation, if compute queue 2426 * doesn't response to the preemption request in time, HIQ will 2427 * abandon the unmap request without returning any timeout error 2428 * to driver. Instead, MEC firmware will log the doorbell of the 2429 * unresponding compute queue to HIQ.MQD.queue_doorbell_id fields. 2430 * To make sure the queue unmap was successful, driver need to 2431 * check those fields 2432 */ 2433 mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]; 2434 if (mqd_mgr->check_preemption_failed(mqd_mgr, dqm->packet_mgr.priv_queue->queue->mqd) && 2435 reset_queues_on_hws_hang(dqm, false)) 2436 goto reset_fail; 2437 2438 /* Check for SDMA hang and attempt SDMA reset */ 2439 if (sdma_has_hang(dqm) && reset_queues_on_hws_hang(dqm, true)) 2440 goto reset_fail; 2441 2442 /* We need to reset the grace period value for this device */ 2443 if (grace_period != USE_DEFAULT_GRACE_PERIOD) { 2444 if (pm_config_dequeue_wait_counts(&dqm->packet_mgr, 2445 KFD_DEQUEUE_WAIT_RESET, 0 /* unused */)) 2446 dev_err(dev, "Failed to reset grace period\n"); 2447 } 2448 2449 pm_release_ib(&dqm->packet_mgr); 2450 dqm->active_runlist = false; 2451 out: 2452 up_read(&dqm->dev->adev->reset_domain->sem); 2453 return retval; 2454 2455 reset_fail: 2456 dqm->is_hws_hang = true; 2457 kfd_hws_hang(dqm); 2458 up_read(&dqm->dev->adev->reset_domain->sem); 2459 return -ETIME; 2460 } 2461 2462 /* only for compute queue */ 2463 static int reset_queues_cpsch(struct device_queue_manager *dqm, uint16_t pasid) 2464 { 2465 int retval; 2466 2467 dqm_lock(dqm); 2468 2469 retval = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_BY_PASID, 2470 pasid, USE_DEFAULT_GRACE_PERIOD, true); 2471 2472 dqm_unlock(dqm); 2473 return retval; 2474 } 2475 2476 /* dqm->lock mutex has to be locked before calling this function */ 2477 static int execute_queues_cpsch(struct device_queue_manager *dqm, 2478 enum kfd_unmap_queues_filter filter, 2479 uint32_t filter_param, 2480 uint32_t grace_period) 2481 { 2482 int retval; 2483 2484 if (!down_read_trylock(&dqm->dev->adev->reset_domain->sem)) 2485 return -EIO; 2486 retval = unmap_queues_cpsch(dqm, filter, filter_param, grace_period, false); 2487 if (!retval) 2488 retval = map_queues_cpsch(dqm); 2489 up_read(&dqm->dev->adev->reset_domain->sem); 2490 return retval; 2491 } 2492 2493 static int wait_on_destroy_queue(struct device_queue_manager *dqm, 2494 struct queue *q) 2495 { 2496 struct kfd_process_device *pdd = kfd_get_process_device_data(q->device, 2497 q->process); 2498 int ret = 0; 2499 2500 if (WARN_ON(!pdd)) 2501 return ret; 2502 2503 if (pdd->qpd.is_debug) 2504 return ret; 2505 2506 q->properties.is_being_destroyed = true; 2507 2508 if (pdd->process->debug_trap_enabled && q->properties.is_suspended) { 2509 dqm_unlock(dqm); 2510 mutex_unlock(&q->process->mutex); 2511 ret = wait_event_interruptible(dqm->destroy_wait, 2512 !q->properties.is_suspended); 2513 2514 mutex_lock(&q->process->mutex); 2515 dqm_lock(dqm); 2516 } 2517 2518 return ret; 2519 } 2520 2521 static int destroy_queue_cpsch(struct device_queue_manager *dqm, 2522 struct qcm_process_device *qpd, 2523 struct queue *q) 2524 { 2525 int retval; 2526 struct mqd_manager *mqd_mgr; 2527 uint64_t sdma_val = 0; 2528 struct kfd_process_device *pdd = qpd_to_pdd(qpd); 2529 struct device *dev = dqm->dev->adev->dev; 2530 2531 /* Get the SDMA queue stats */ 2532 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) || 2533 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { 2534 retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr, 2535 &sdma_val); 2536 if (retval) 2537 dev_err(dev, "Failed to read SDMA queue counter for queue: %d\n", 2538 q->properties.queue_id); 2539 } 2540 2541 /* remove queue from list to prevent rescheduling after preemption */ 2542 dqm_lock(dqm); 2543 2544 retval = wait_on_destroy_queue(dqm, q); 2545 2546 if (retval) { 2547 dqm_unlock(dqm); 2548 return retval; 2549 } 2550 2551 if (qpd->is_debug) { 2552 /* 2553 * error, currently we do not allow to destroy a queue 2554 * of a currently debugged process 2555 */ 2556 retval = -EBUSY; 2557 goto failed_try_destroy_debugged_queue; 2558 2559 } 2560 2561 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 2562 q->properties.type)]; 2563 2564 deallocate_doorbell(qpd, q); 2565 2566 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) || 2567 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { 2568 deallocate_sdma_queue(dqm, q); 2569 pdd->sdma_past_activity_counter += sdma_val; 2570 } 2571 2572 if (q->properties.is_active) { 2573 decrement_queue_count(dqm, qpd, q); 2574 q->properties.is_active = false; 2575 if (!dqm->dev->kfd->shared_resources.enable_mes) { 2576 retval = execute_queues_cpsch(dqm, 2577 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, 2578 USE_DEFAULT_GRACE_PERIOD); 2579 if (retval == -ETIME) 2580 qpd->reset_wavefronts = true; 2581 } else { 2582 retval = remove_queue_mes(dqm, q, qpd); 2583 } 2584 } 2585 list_del(&q->list); 2586 qpd->queue_count--; 2587 2588 /* 2589 * Unconditionally decrement this counter, regardless of the queue's 2590 * type 2591 */ 2592 dqm->total_queue_count--; 2593 pr_debug("Total of %d queues are accountable so far\n", 2594 dqm->total_queue_count); 2595 2596 dqm_unlock(dqm); 2597 2598 /* 2599 * Do free_mqd and raise delete event after dqm_unlock(dqm) to avoid 2600 * circular locking 2601 */ 2602 kfd_dbg_ev_raise(KFD_EC_MASK(EC_DEVICE_QUEUE_DELETE), 2603 qpd->pqm->process, q->device, 2604 -1, false, NULL, 0); 2605 2606 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 2607 2608 return retval; 2609 2610 failed_try_destroy_debugged_queue: 2611 2612 dqm_unlock(dqm); 2613 return retval; 2614 } 2615 2616 static bool set_cache_memory_policy(struct device_queue_manager *dqm, 2617 struct qcm_process_device *qpd, 2618 enum cache_policy default_policy, 2619 enum cache_policy alternate_policy, 2620 void __user *alternate_aperture_base, 2621 uint64_t alternate_aperture_size, 2622 u32 misc_process_properties) 2623 { 2624 bool retval = true; 2625 2626 if (!dqm->asic_ops.set_cache_memory_policy) 2627 return retval; 2628 2629 dqm_lock(dqm); 2630 2631 retval = dqm->asic_ops.set_cache_memory_policy( 2632 dqm, 2633 qpd, 2634 default_policy, 2635 alternate_policy, 2636 alternate_aperture_base, 2637 alternate_aperture_size, 2638 misc_process_properties); 2639 2640 if (retval) 2641 goto out; 2642 2643 if ((dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0)) 2644 program_sh_mem_settings(dqm, qpd); 2645 2646 pr_debug("sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n", 2647 qpd->sh_mem_config, qpd->sh_mem_ape1_base, 2648 qpd->sh_mem_ape1_limit); 2649 2650 out: 2651 dqm_unlock(dqm); 2652 return retval; 2653 } 2654 2655 static int process_termination_nocpsch(struct device_queue_manager *dqm, 2656 struct qcm_process_device *qpd) 2657 { 2658 struct queue *q; 2659 struct device_process_node *cur, *next_dpn; 2660 int retval = 0; 2661 bool found = false; 2662 2663 dqm_lock(dqm); 2664 2665 /* Clear all user mode queues */ 2666 while (!list_empty(&qpd->queues_list)) { 2667 struct mqd_manager *mqd_mgr; 2668 int ret; 2669 2670 q = list_first_entry(&qpd->queues_list, struct queue, list); 2671 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 2672 q->properties.type)]; 2673 ret = destroy_queue_nocpsch_locked(dqm, qpd, q); 2674 if (ret) 2675 retval = ret; 2676 dqm_unlock(dqm); 2677 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 2678 dqm_lock(dqm); 2679 } 2680 2681 /* Unregister process */ 2682 list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) { 2683 if (qpd == cur->qpd) { 2684 list_del(&cur->list); 2685 kfree(cur); 2686 dqm->processes_count--; 2687 found = true; 2688 break; 2689 } 2690 } 2691 2692 dqm_unlock(dqm); 2693 2694 /* Outside the DQM lock because under the DQM lock we can't do 2695 * reclaim or take other locks that others hold while reclaiming. 2696 */ 2697 if (found) 2698 kfd_dec_compute_active(dqm->dev); 2699 2700 return retval; 2701 } 2702 2703 static int get_wave_state(struct device_queue_manager *dqm, 2704 struct queue *q, 2705 void __user *ctl_stack, 2706 u32 *ctl_stack_used_size, 2707 u32 *save_area_used_size) 2708 { 2709 struct mqd_manager *mqd_mgr; 2710 2711 dqm_lock(dqm); 2712 2713 mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP]; 2714 2715 if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE || 2716 q->properties.is_active || !q->device->kfd->cwsr_enabled || 2717 !mqd_mgr->get_wave_state) { 2718 dqm_unlock(dqm); 2719 return -EINVAL; 2720 } 2721 2722 dqm_unlock(dqm); 2723 2724 /* 2725 * get_wave_state is outside the dqm lock to prevent circular locking 2726 * and the queue should be protected against destruction by the process 2727 * lock. 2728 */ 2729 return mqd_mgr->get_wave_state(mqd_mgr, q->mqd, &q->properties, 2730 ctl_stack, ctl_stack_used_size, save_area_used_size); 2731 } 2732 2733 static void get_queue_checkpoint_info(struct device_queue_manager *dqm, 2734 const struct queue *q, 2735 u32 *mqd_size, 2736 u32 *ctl_stack_size) 2737 { 2738 struct mqd_manager *mqd_mgr; 2739 enum KFD_MQD_TYPE mqd_type = 2740 get_mqd_type_from_queue_type(q->properties.type); 2741 2742 dqm_lock(dqm); 2743 mqd_mgr = dqm->mqd_mgrs[mqd_type]; 2744 *mqd_size = mqd_mgr->mqd_size * NUM_XCC(mqd_mgr->dev->xcc_mask); 2745 *ctl_stack_size = 0; 2746 2747 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE && mqd_mgr->get_checkpoint_info) 2748 mqd_mgr->get_checkpoint_info(mqd_mgr, q->mqd, ctl_stack_size); 2749 2750 dqm_unlock(dqm); 2751 } 2752 2753 static int checkpoint_mqd(struct device_queue_manager *dqm, 2754 const struct queue *q, 2755 void *mqd, 2756 void *ctl_stack) 2757 { 2758 struct mqd_manager *mqd_mgr; 2759 int r = 0; 2760 enum KFD_MQD_TYPE mqd_type = 2761 get_mqd_type_from_queue_type(q->properties.type); 2762 2763 dqm_lock(dqm); 2764 2765 if (q->properties.is_active || !q->device->kfd->cwsr_enabled) { 2766 r = -EINVAL; 2767 goto dqm_unlock; 2768 } 2769 2770 mqd_mgr = dqm->mqd_mgrs[mqd_type]; 2771 if (!mqd_mgr->checkpoint_mqd) { 2772 r = -EOPNOTSUPP; 2773 goto dqm_unlock; 2774 } 2775 2776 mqd_mgr->checkpoint_mqd(mqd_mgr, q->mqd, mqd, ctl_stack); 2777 2778 dqm_unlock: 2779 dqm_unlock(dqm); 2780 return r; 2781 } 2782 2783 static int process_termination_cpsch(struct device_queue_manager *dqm, 2784 struct qcm_process_device *qpd) 2785 { 2786 int retval = 0; 2787 struct queue *q; 2788 struct device *dev = dqm->dev->adev->dev; 2789 struct kernel_queue *kq, *kq_next; 2790 struct mqd_manager *mqd_mgr; 2791 struct device_process_node *cur, *next_dpn; 2792 enum kfd_unmap_queues_filter filter = 2793 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES; 2794 bool found = false; 2795 2796 dqm_lock(dqm); 2797 2798 /* Clean all kernel queues */ 2799 list_for_each_entry_safe(kq, kq_next, &qpd->priv_queue_list, list) { 2800 list_del(&kq->list); 2801 decrement_queue_count(dqm, qpd, kq->queue); 2802 qpd->is_debug = false; 2803 dqm->total_queue_count--; 2804 filter = KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES; 2805 } 2806 2807 /* Clear all user mode queues */ 2808 list_for_each_entry(q, &qpd->queues_list, list) { 2809 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) 2810 deallocate_sdma_queue(dqm, q); 2811 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 2812 deallocate_sdma_queue(dqm, q); 2813 2814 if (q->properties.is_active) { 2815 decrement_queue_count(dqm, qpd, q); 2816 2817 if (dqm->dev->kfd->shared_resources.enable_mes) { 2818 retval = remove_queue_mes(dqm, q, qpd); 2819 if (retval) 2820 dev_err(dev, "Failed to remove queue %d\n", 2821 q->properties.queue_id); 2822 } 2823 } 2824 2825 dqm->total_queue_count--; 2826 } 2827 2828 /* Unregister process */ 2829 list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) { 2830 if (qpd == cur->qpd) { 2831 list_del(&cur->list); 2832 kfree(cur); 2833 dqm->processes_count--; 2834 found = true; 2835 break; 2836 } 2837 } 2838 2839 if (!dqm->dev->kfd->shared_resources.enable_mes) 2840 retval = execute_queues_cpsch(dqm, filter, 0, USE_DEFAULT_GRACE_PERIOD); 2841 2842 if ((retval || qpd->reset_wavefronts) && 2843 down_read_trylock(&dqm->dev->adev->reset_domain->sem)) { 2844 pr_warn("Resetting wave fronts (cpsch) on dev %p\n", dqm->dev); 2845 dbgdev_wave_reset_wavefronts(dqm->dev, qpd->pqm->process); 2846 qpd->reset_wavefronts = false; 2847 up_read(&dqm->dev->adev->reset_domain->sem); 2848 } 2849 2850 /* Lastly, free mqd resources. 2851 * Do free_mqd() after dqm_unlock to avoid circular locking. 2852 */ 2853 while (!list_empty(&qpd->queues_list)) { 2854 q = list_first_entry(&qpd->queues_list, struct queue, list); 2855 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 2856 q->properties.type)]; 2857 list_del(&q->list); 2858 qpd->queue_count--; 2859 dqm_unlock(dqm); 2860 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 2861 dqm_lock(dqm); 2862 } 2863 dqm_unlock(dqm); 2864 2865 /* Outside the DQM lock because under the DQM lock we can't do 2866 * reclaim or take other locks that others hold while reclaiming. 2867 */ 2868 if (found) 2869 kfd_dec_compute_active(dqm->dev); 2870 2871 return retval; 2872 } 2873 2874 static int init_mqd_managers(struct device_queue_manager *dqm) 2875 { 2876 int i, j; 2877 struct device *dev = dqm->dev->adev->dev; 2878 struct mqd_manager *mqd_mgr; 2879 2880 for (i = 0; i < KFD_MQD_TYPE_MAX; i++) { 2881 mqd_mgr = dqm->asic_ops.mqd_manager_init(i, dqm->dev); 2882 if (!mqd_mgr) { 2883 dev_err(dev, "mqd manager [%d] initialization failed\n", i); 2884 goto out_free; 2885 } 2886 dqm->mqd_mgrs[i] = mqd_mgr; 2887 } 2888 2889 return 0; 2890 2891 out_free: 2892 for (j = 0; j < i; j++) { 2893 kfree(dqm->mqd_mgrs[j]); 2894 dqm->mqd_mgrs[j] = NULL; 2895 } 2896 2897 return -ENOMEM; 2898 } 2899 2900 /* Allocate one hiq mqd (HWS) and all SDMA mqd in a continuous trunk*/ 2901 static int allocate_hiq_sdma_mqd(struct device_queue_manager *dqm) 2902 { 2903 int retval; 2904 struct kfd_node *dev = dqm->dev; 2905 struct kfd_mem_obj *mem_obj = &dqm->hiq_sdma_mqd; 2906 uint32_t size = dqm->mqd_mgrs[KFD_MQD_TYPE_SDMA]->mqd_size * 2907 get_num_all_sdma_engines(dqm) * 2908 dev->kfd->device_info.num_sdma_queues_per_engine + 2909 (dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]->mqd_size * 2910 NUM_XCC(dqm->dev->xcc_mask)); 2911 2912 retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev, size, 2913 &(mem_obj->gtt_mem), &(mem_obj->gpu_addr), 2914 (void *)&(mem_obj->cpu_ptr), false); 2915 2916 return retval; 2917 } 2918 2919 static void deallocate_hiq_sdma_mqd(struct kfd_node *dev, 2920 struct kfd_mem_obj *mqd) 2921 { 2922 WARN(!mqd, "No hiq sdma mqd trunk to free"); 2923 2924 amdgpu_amdkfd_free_gtt_mem(dev->adev, &mqd->gtt_mem); 2925 } 2926 2927 struct device_queue_manager *device_queue_manager_init(struct kfd_node *dev) 2928 { 2929 struct device_queue_manager *dqm; 2930 2931 pr_debug("Loading device queue manager\n"); 2932 2933 dqm = kzalloc(sizeof(*dqm), GFP_KERNEL); 2934 if (!dqm) 2935 return NULL; 2936 2937 switch (dev->adev->asic_type) { 2938 /* HWS is not available on Hawaii. */ 2939 case CHIP_HAWAII: 2940 /* HWS depends on CWSR for timely dequeue. CWSR is not 2941 * available on Tonga. 2942 * 2943 * FIXME: This argument also applies to Kaveri. 2944 */ 2945 case CHIP_TONGA: 2946 dqm->sched_policy = KFD_SCHED_POLICY_NO_HWS; 2947 break; 2948 default: 2949 dqm->sched_policy = sched_policy; 2950 break; 2951 } 2952 2953 dqm->dev = dev; 2954 switch (dqm->sched_policy) { 2955 case KFD_SCHED_POLICY_HWS: 2956 case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION: 2957 /* initialize dqm for cp scheduling */ 2958 dqm->ops.create_queue = create_queue_cpsch; 2959 dqm->ops.initialize = initialize_cpsch; 2960 dqm->ops.start = start_cpsch; 2961 dqm->ops.stop = stop_cpsch; 2962 dqm->ops.halt = halt_cpsch; 2963 dqm->ops.unhalt = unhalt_cpsch; 2964 dqm->ops.destroy_queue = destroy_queue_cpsch; 2965 dqm->ops.update_queue = update_queue; 2966 dqm->ops.register_process = register_process; 2967 dqm->ops.unregister_process = unregister_process; 2968 dqm->ops.uninitialize = uninitialize; 2969 dqm->ops.create_kernel_queue = create_kernel_queue_cpsch; 2970 dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch; 2971 dqm->ops.set_cache_memory_policy = set_cache_memory_policy; 2972 dqm->ops.process_termination = process_termination_cpsch; 2973 dqm->ops.evict_process_queues = evict_process_queues_cpsch; 2974 dqm->ops.restore_process_queues = restore_process_queues_cpsch; 2975 dqm->ops.get_wave_state = get_wave_state; 2976 dqm->ops.reset_queues = reset_queues_cpsch; 2977 dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info; 2978 dqm->ops.checkpoint_mqd = checkpoint_mqd; 2979 break; 2980 case KFD_SCHED_POLICY_NO_HWS: 2981 /* initialize dqm for no cp scheduling */ 2982 dqm->ops.start = start_nocpsch; 2983 dqm->ops.stop = stop_nocpsch; 2984 dqm->ops.create_queue = create_queue_nocpsch; 2985 dqm->ops.destroy_queue = destroy_queue_nocpsch; 2986 dqm->ops.update_queue = update_queue; 2987 dqm->ops.register_process = register_process; 2988 dqm->ops.unregister_process = unregister_process; 2989 dqm->ops.initialize = initialize_nocpsch; 2990 dqm->ops.uninitialize = uninitialize; 2991 dqm->ops.set_cache_memory_policy = set_cache_memory_policy; 2992 dqm->ops.process_termination = process_termination_nocpsch; 2993 dqm->ops.evict_process_queues = evict_process_queues_nocpsch; 2994 dqm->ops.restore_process_queues = 2995 restore_process_queues_nocpsch; 2996 dqm->ops.get_wave_state = get_wave_state; 2997 dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info; 2998 dqm->ops.checkpoint_mqd = checkpoint_mqd; 2999 break; 3000 default: 3001 dev_err(dev->adev->dev, "Invalid scheduling policy %d\n", dqm->sched_policy); 3002 goto out_free; 3003 } 3004 3005 switch (dev->adev->asic_type) { 3006 case CHIP_KAVERI: 3007 case CHIP_HAWAII: 3008 device_queue_manager_init_cik(&dqm->asic_ops); 3009 break; 3010 3011 case CHIP_CARRIZO: 3012 case CHIP_TONGA: 3013 case CHIP_FIJI: 3014 case CHIP_POLARIS10: 3015 case CHIP_POLARIS11: 3016 case CHIP_POLARIS12: 3017 case CHIP_VEGAM: 3018 device_queue_manager_init_vi(&dqm->asic_ops); 3019 break; 3020 3021 default: 3022 if (KFD_GC_VERSION(dev) >= IP_VERSION(12, 1, 0)) 3023 device_queue_manager_init_v12_1(&dqm->asic_ops); 3024 else if (KFD_GC_VERSION(dev) >= IP_VERSION(12, 0, 0)) 3025 device_queue_manager_init_v12(&dqm->asic_ops); 3026 else if (KFD_GC_VERSION(dev) >= IP_VERSION(11, 0, 0)) 3027 device_queue_manager_init_v11(&dqm->asic_ops); 3028 else if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1)) 3029 device_queue_manager_init_v10(&dqm->asic_ops); 3030 else if (KFD_GC_VERSION(dev) >= IP_VERSION(9, 0, 1)) 3031 device_queue_manager_init_v9(&dqm->asic_ops); 3032 else { 3033 WARN(1, "Unexpected ASIC family %u", 3034 dev->adev->asic_type); 3035 goto out_free; 3036 } 3037 } 3038 3039 if (init_mqd_managers(dqm)) 3040 goto out_free; 3041 3042 if (!dev->kfd->shared_resources.enable_mes && allocate_hiq_sdma_mqd(dqm)) { 3043 dev_err(dev->adev->dev, "Failed to allocate hiq sdma mqd trunk buffer\n"); 3044 goto out_free; 3045 } 3046 3047 if (!dqm->ops.initialize(dqm)) { 3048 init_waitqueue_head(&dqm->destroy_wait); 3049 return dqm; 3050 } 3051 3052 if (!dev->kfd->shared_resources.enable_mes) 3053 deallocate_hiq_sdma_mqd(dev, &dqm->hiq_sdma_mqd); 3054 3055 out_free: 3056 kfree(dqm); 3057 return NULL; 3058 } 3059 3060 void device_queue_manager_uninit(struct device_queue_manager *dqm) 3061 { 3062 dqm->ops.stop(dqm); 3063 dqm->ops.uninitialize(dqm); 3064 if (!dqm->dev->kfd->shared_resources.enable_mes) 3065 deallocate_hiq_sdma_mqd(dqm->dev, &dqm->hiq_sdma_mqd); 3066 kfree(dqm); 3067 } 3068 3069 int kfd_dqm_suspend_bad_queue_mes(struct kfd_node *knode, u32 pasid, u32 doorbell_id) 3070 { 3071 struct kfd_process_device *pdd = NULL; 3072 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid, &pdd); 3073 struct device_queue_manager *dqm = knode->dqm; 3074 struct device *dev = dqm->dev->adev->dev; 3075 struct qcm_process_device *qpd; 3076 struct queue *q = NULL; 3077 int ret = 0; 3078 3079 if (!pdd) 3080 return -EINVAL; 3081 3082 dqm_lock(dqm); 3083 3084 if (pdd) { 3085 qpd = &pdd->qpd; 3086 3087 list_for_each_entry(q, &qpd->queues_list, list) { 3088 if (q->doorbell_id == doorbell_id && q->properties.is_active) { 3089 ret = suspend_all_queues_mes(dqm); 3090 if (ret) { 3091 dev_err(dev, "Suspending all queues failed"); 3092 goto out; 3093 } 3094 3095 q->properties.is_evicted = true; 3096 q->properties.is_active = false; 3097 decrement_queue_count(dqm, qpd, q); 3098 3099 ret = remove_queue_mes(dqm, q, qpd); 3100 if (ret) { 3101 dev_err(dev, "Removing bad queue failed"); 3102 goto out; 3103 } 3104 3105 ret = resume_all_queues_mes(dqm); 3106 if (ret) 3107 dev_err(dev, "Resuming all queues failed"); 3108 3109 break; 3110 } 3111 } 3112 } 3113 3114 out: 3115 dqm_unlock(dqm); 3116 kfd_unref_process(p); 3117 return ret; 3118 } 3119 3120 int kfd_evict_process_device(struct kfd_process_device *pdd) 3121 { 3122 struct device_queue_manager *dqm; 3123 struct kfd_process *p; 3124 3125 p = pdd->process; 3126 dqm = pdd->dev->dqm; 3127 3128 WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid); 3129 3130 return dqm->ops.evict_process_queues(dqm, &pdd->qpd); 3131 } 3132 3133 int reserve_debug_trap_vmid(struct device_queue_manager *dqm, 3134 struct qcm_process_device *qpd) 3135 { 3136 int r; 3137 struct device *dev = dqm->dev->adev->dev; 3138 int updated_vmid_mask; 3139 3140 if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) { 3141 dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy); 3142 return -EINVAL; 3143 } 3144 3145 dqm_lock(dqm); 3146 3147 if (dqm->trap_debug_vmid != 0) { 3148 dev_err(dev, "Trap debug id already reserved\n"); 3149 r = -EBUSY; 3150 goto out_unlock; 3151 } 3152 3153 r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, 3154 USE_DEFAULT_GRACE_PERIOD, false); 3155 if (r) 3156 goto out_unlock; 3157 3158 updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap; 3159 updated_vmid_mask &= ~(1 << dqm->dev->vm_info.last_vmid_kfd); 3160 3161 dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask; 3162 dqm->trap_debug_vmid = dqm->dev->vm_info.last_vmid_kfd; 3163 r = set_sched_resources(dqm); 3164 if (r) 3165 goto out_unlock; 3166 3167 r = map_queues_cpsch(dqm); 3168 if (r) 3169 goto out_unlock; 3170 3171 pr_debug("Reserved VMID for trap debug: %i\n", dqm->trap_debug_vmid); 3172 3173 out_unlock: 3174 dqm_unlock(dqm); 3175 return r; 3176 } 3177 3178 /* 3179 * Releases vmid for the trap debugger 3180 */ 3181 int release_debug_trap_vmid(struct device_queue_manager *dqm, 3182 struct qcm_process_device *qpd) 3183 { 3184 struct device *dev = dqm->dev->adev->dev; 3185 int r; 3186 int updated_vmid_mask; 3187 uint32_t trap_debug_vmid; 3188 3189 if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) { 3190 dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy); 3191 return -EINVAL; 3192 } 3193 3194 dqm_lock(dqm); 3195 trap_debug_vmid = dqm->trap_debug_vmid; 3196 if (dqm->trap_debug_vmid == 0) { 3197 dev_err(dev, "Trap debug id is not reserved\n"); 3198 r = -EINVAL; 3199 goto out_unlock; 3200 } 3201 3202 r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, 3203 USE_DEFAULT_GRACE_PERIOD, false); 3204 if (r) 3205 goto out_unlock; 3206 3207 updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap; 3208 updated_vmid_mask |= (1 << dqm->dev->vm_info.last_vmid_kfd); 3209 3210 dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask; 3211 dqm->trap_debug_vmid = 0; 3212 r = set_sched_resources(dqm); 3213 if (r) 3214 goto out_unlock; 3215 3216 r = map_queues_cpsch(dqm); 3217 if (r) 3218 goto out_unlock; 3219 3220 pr_debug("Released VMID for trap debug: %i\n", trap_debug_vmid); 3221 3222 out_unlock: 3223 dqm_unlock(dqm); 3224 return r; 3225 } 3226 3227 #define QUEUE_NOT_FOUND -1 3228 /* invalidate queue operation in array */ 3229 static void q_array_invalidate(uint32_t num_queues, uint32_t *queue_ids) 3230 { 3231 int i; 3232 3233 for (i = 0; i < num_queues; i++) 3234 queue_ids[i] |= KFD_DBG_QUEUE_INVALID_MASK; 3235 } 3236 3237 /* find queue index in array */ 3238 static int q_array_get_index(unsigned int queue_id, 3239 uint32_t num_queues, 3240 uint32_t *queue_ids) 3241 { 3242 int i; 3243 3244 for (i = 0; i < num_queues; i++) 3245 if (queue_id == (queue_ids[i] & ~KFD_DBG_QUEUE_INVALID_MASK)) 3246 return i; 3247 3248 return QUEUE_NOT_FOUND; 3249 } 3250 3251 struct copy_context_work_handler_workarea { 3252 struct work_struct copy_context_work; 3253 struct kfd_process *p; 3254 }; 3255 3256 static void copy_context_work_handler(struct work_struct *work) 3257 { 3258 struct copy_context_work_handler_workarea *workarea; 3259 struct mqd_manager *mqd_mgr; 3260 struct queue *q; 3261 struct mm_struct *mm; 3262 struct kfd_process *p; 3263 uint32_t tmp_ctl_stack_used_size, tmp_save_area_used_size; 3264 int i; 3265 3266 workarea = container_of(work, 3267 struct copy_context_work_handler_workarea, 3268 copy_context_work); 3269 3270 p = workarea->p; 3271 mm = get_task_mm(p->lead_thread); 3272 3273 if (!mm) 3274 return; 3275 3276 kthread_use_mm(mm); 3277 for (i = 0; i < p->n_pdds; i++) { 3278 struct kfd_process_device *pdd = p->pdds[i]; 3279 struct device_queue_manager *dqm = pdd->dev->dqm; 3280 struct qcm_process_device *qpd = &pdd->qpd; 3281 3282 list_for_each_entry(q, &qpd->queues_list, list) { 3283 if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE) 3284 continue; 3285 3286 mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP]; 3287 3288 /* We ignore the return value from get_wave_state 3289 * because 3290 * i) right now, it always returns 0, and 3291 * ii) if we hit an error, we would continue to the 3292 * next queue anyway. 3293 */ 3294 mqd_mgr->get_wave_state(mqd_mgr, 3295 q->mqd, 3296 &q->properties, 3297 (void __user *) q->properties.ctx_save_restore_area_address, 3298 &tmp_ctl_stack_used_size, 3299 &tmp_save_area_used_size); 3300 } 3301 } 3302 kthread_unuse_mm(mm); 3303 mmput(mm); 3304 } 3305 3306 static uint32_t *get_queue_ids(uint32_t num_queues, uint32_t *usr_queue_id_array) 3307 { 3308 size_t array_size = num_queues * sizeof(uint32_t); 3309 3310 if (!usr_queue_id_array) 3311 return NULL; 3312 3313 return memdup_user(usr_queue_id_array, array_size); 3314 } 3315 3316 int resume_queues(struct kfd_process *p, 3317 uint32_t num_queues, 3318 uint32_t *usr_queue_id_array) 3319 { 3320 uint32_t *queue_ids = NULL; 3321 int total_resumed = 0; 3322 int i; 3323 3324 if (usr_queue_id_array) { 3325 queue_ids = get_queue_ids(num_queues, usr_queue_id_array); 3326 3327 if (IS_ERR(queue_ids)) 3328 return PTR_ERR(queue_ids); 3329 3330 /* mask all queues as invalid. unmask per successful request */ 3331 q_array_invalidate(num_queues, queue_ids); 3332 } 3333 3334 for (i = 0; i < p->n_pdds; i++) { 3335 struct kfd_process_device *pdd = p->pdds[i]; 3336 struct device_queue_manager *dqm = pdd->dev->dqm; 3337 struct device *dev = dqm->dev->adev->dev; 3338 struct qcm_process_device *qpd = &pdd->qpd; 3339 struct queue *q; 3340 int r, per_device_resumed = 0; 3341 3342 dqm_lock(dqm); 3343 3344 /* unmask queues that resume or already resumed as valid */ 3345 list_for_each_entry(q, &qpd->queues_list, list) { 3346 int q_idx = QUEUE_NOT_FOUND; 3347 3348 if (queue_ids) 3349 q_idx = q_array_get_index( 3350 q->properties.queue_id, 3351 num_queues, 3352 queue_ids); 3353 3354 if (!queue_ids || q_idx != QUEUE_NOT_FOUND) { 3355 int err = resume_single_queue(dqm, &pdd->qpd, q); 3356 3357 if (queue_ids) { 3358 if (!err) { 3359 queue_ids[q_idx] &= 3360 ~KFD_DBG_QUEUE_INVALID_MASK; 3361 } else { 3362 queue_ids[q_idx] |= 3363 KFD_DBG_QUEUE_ERROR_MASK; 3364 break; 3365 } 3366 } 3367 3368 if (dqm->dev->kfd->shared_resources.enable_mes) { 3369 wake_up_all(&dqm->destroy_wait); 3370 if (!err) 3371 total_resumed++; 3372 } else { 3373 per_device_resumed++; 3374 } 3375 } 3376 } 3377 3378 if (!per_device_resumed) { 3379 dqm_unlock(dqm); 3380 continue; 3381 } 3382 3383 r = execute_queues_cpsch(dqm, 3384 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 3385 0, 3386 USE_DEFAULT_GRACE_PERIOD); 3387 if (r) { 3388 dev_err(dev, "Failed to resume process queues\n"); 3389 if (queue_ids) { 3390 list_for_each_entry(q, &qpd->queues_list, list) { 3391 int q_idx = q_array_get_index( 3392 q->properties.queue_id, 3393 num_queues, 3394 queue_ids); 3395 3396 /* mask queue as error on resume fail */ 3397 if (q_idx != QUEUE_NOT_FOUND) 3398 queue_ids[q_idx] |= 3399 KFD_DBG_QUEUE_ERROR_MASK; 3400 } 3401 } 3402 } else { 3403 wake_up_all(&dqm->destroy_wait); 3404 total_resumed += per_device_resumed; 3405 } 3406 3407 dqm_unlock(dqm); 3408 } 3409 3410 if (queue_ids) { 3411 if (copy_to_user((void __user *)usr_queue_id_array, queue_ids, 3412 num_queues * sizeof(uint32_t))) 3413 pr_err("copy_to_user failed on queue resume\n"); 3414 3415 kfree(queue_ids); 3416 } 3417 3418 return total_resumed; 3419 } 3420 3421 int suspend_queues(struct kfd_process *p, 3422 uint32_t num_queues, 3423 uint32_t grace_period, 3424 uint64_t exception_clear_mask, 3425 uint32_t *usr_queue_id_array) 3426 { 3427 uint32_t *queue_ids = get_queue_ids(num_queues, usr_queue_id_array); 3428 int total_suspended = 0; 3429 int i; 3430 3431 if (IS_ERR(queue_ids)) 3432 return PTR_ERR(queue_ids); 3433 3434 /* mask all queues as invalid. umask on successful request */ 3435 q_array_invalidate(num_queues, queue_ids); 3436 3437 for (i = 0; i < p->n_pdds; i++) { 3438 struct kfd_process_device *pdd = p->pdds[i]; 3439 struct device_queue_manager *dqm = pdd->dev->dqm; 3440 struct device *dev = dqm->dev->adev->dev; 3441 struct qcm_process_device *qpd = &pdd->qpd; 3442 struct queue *q; 3443 int r, per_device_suspended = 0; 3444 3445 mutex_lock(&p->event_mutex); 3446 dqm_lock(dqm); 3447 3448 /* unmask queues that suspend or already suspended */ 3449 list_for_each_entry(q, &qpd->queues_list, list) { 3450 int q_idx = q_array_get_index(q->properties.queue_id, 3451 num_queues, 3452 queue_ids); 3453 3454 if (q_idx != QUEUE_NOT_FOUND) { 3455 int err = suspend_single_queue(dqm, pdd, q); 3456 bool is_mes = dqm->dev->kfd->shared_resources.enable_mes; 3457 3458 if (!err) { 3459 queue_ids[q_idx] &= ~KFD_DBG_QUEUE_INVALID_MASK; 3460 if (exception_clear_mask && is_mes) 3461 q->properties.exception_status &= 3462 ~exception_clear_mask; 3463 3464 if (is_mes) 3465 total_suspended++; 3466 else 3467 per_device_suspended++; 3468 } else if (err != -EBUSY) { 3469 queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK; 3470 break; 3471 } 3472 } 3473 } 3474 3475 if (!per_device_suspended) { 3476 dqm_unlock(dqm); 3477 mutex_unlock(&p->event_mutex); 3478 if (total_suspended) 3479 amdgpu_amdkfd_debug_mem_fence(dqm->dev->adev); 3480 continue; 3481 } 3482 3483 r = execute_queues_cpsch(dqm, 3484 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, 3485 grace_period); 3486 3487 if (r) 3488 dev_err(dev, "Failed to suspend process queues.\n"); 3489 else 3490 total_suspended += per_device_suspended; 3491 3492 list_for_each_entry(q, &qpd->queues_list, list) { 3493 int q_idx = q_array_get_index(q->properties.queue_id, 3494 num_queues, queue_ids); 3495 3496 if (q_idx == QUEUE_NOT_FOUND) 3497 continue; 3498 3499 /* mask queue as error on suspend fail */ 3500 if (r) 3501 queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK; 3502 else if (exception_clear_mask) 3503 q->properties.exception_status &= 3504 ~exception_clear_mask; 3505 } 3506 3507 dqm_unlock(dqm); 3508 mutex_unlock(&p->event_mutex); 3509 amdgpu_device_flush_hdp(dqm->dev->adev, NULL); 3510 } 3511 3512 if (total_suspended) { 3513 struct copy_context_work_handler_workarea copy_context_worker; 3514 3515 INIT_WORK_ONSTACK( 3516 ©_context_worker.copy_context_work, 3517 copy_context_work_handler); 3518 3519 copy_context_worker.p = p; 3520 3521 schedule_work(©_context_worker.copy_context_work); 3522 3523 3524 flush_work(©_context_worker.copy_context_work); 3525 destroy_work_on_stack(©_context_worker.copy_context_work); 3526 } 3527 3528 if (copy_to_user((void __user *)usr_queue_id_array, queue_ids, 3529 num_queues * sizeof(uint32_t))) 3530 pr_err("copy_to_user failed on queue suspend\n"); 3531 3532 kfree(queue_ids); 3533 3534 return total_suspended; 3535 } 3536 3537 static uint32_t set_queue_type_for_user(struct queue_properties *q_props) 3538 { 3539 switch (q_props->type) { 3540 case KFD_QUEUE_TYPE_COMPUTE: 3541 return q_props->format == KFD_QUEUE_FORMAT_PM4 3542 ? KFD_IOC_QUEUE_TYPE_COMPUTE 3543 : KFD_IOC_QUEUE_TYPE_COMPUTE_AQL; 3544 case KFD_QUEUE_TYPE_SDMA: 3545 return KFD_IOC_QUEUE_TYPE_SDMA; 3546 case KFD_QUEUE_TYPE_SDMA_XGMI: 3547 return KFD_IOC_QUEUE_TYPE_SDMA_XGMI; 3548 default: 3549 WARN_ONCE(true, "queue type not recognized!"); 3550 return 0xffffffff; 3551 }; 3552 } 3553 3554 void set_queue_snapshot_entry(struct queue *q, 3555 uint64_t exception_clear_mask, 3556 struct kfd_queue_snapshot_entry *qss_entry) 3557 { 3558 qss_entry->ring_base_address = q->properties.queue_address; 3559 qss_entry->write_pointer_address = (uint64_t)q->properties.write_ptr; 3560 qss_entry->read_pointer_address = (uint64_t)q->properties.read_ptr; 3561 qss_entry->ctx_save_restore_address = 3562 q->properties.ctx_save_restore_area_address; 3563 qss_entry->ctx_save_restore_area_size = 3564 q->properties.ctx_save_restore_area_size; 3565 qss_entry->exception_status = q->properties.exception_status; 3566 qss_entry->queue_id = q->properties.queue_id; 3567 qss_entry->gpu_id = q->device->id; 3568 qss_entry->ring_size = (uint32_t)q->properties.queue_size; 3569 qss_entry->queue_type = set_queue_type_for_user(&q->properties); 3570 q->properties.exception_status &= ~exception_clear_mask; 3571 } 3572 3573 int debug_lock_and_unmap(struct device_queue_manager *dqm) 3574 { 3575 struct device *dev = dqm->dev->adev->dev; 3576 int r; 3577 3578 if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) { 3579 dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy); 3580 return -EINVAL; 3581 } 3582 3583 if (!kfd_dbg_is_per_vmid_supported(dqm->dev)) 3584 return 0; 3585 3586 dqm_lock(dqm); 3587 3588 r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, 0, false); 3589 if (r) 3590 dqm_unlock(dqm); 3591 3592 return r; 3593 } 3594 3595 int debug_map_and_unlock(struct device_queue_manager *dqm) 3596 { 3597 struct device *dev = dqm->dev->adev->dev; 3598 int r; 3599 3600 if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) { 3601 dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy); 3602 return -EINVAL; 3603 } 3604 3605 if (!kfd_dbg_is_per_vmid_supported(dqm->dev)) 3606 return 0; 3607 3608 r = map_queues_cpsch(dqm); 3609 3610 dqm_unlock(dqm); 3611 3612 return r; 3613 } 3614 3615 int debug_refresh_runlist(struct device_queue_manager *dqm) 3616 { 3617 int r = debug_lock_and_unmap(dqm); 3618 3619 if (r) 3620 return r; 3621 3622 return debug_map_and_unlock(dqm); 3623 } 3624 3625 bool kfd_dqm_is_queue_in_process(struct device_queue_manager *dqm, 3626 struct qcm_process_device *qpd, 3627 int doorbell_off, u32 *queue_format) 3628 { 3629 struct queue *q; 3630 bool r = false; 3631 3632 if (!queue_format) 3633 return r; 3634 3635 dqm_lock(dqm); 3636 3637 list_for_each_entry(q, &qpd->queues_list, list) { 3638 if (q->properties.doorbell_off == doorbell_off) { 3639 *queue_format = q->properties.format; 3640 r = true; 3641 goto out; 3642 } 3643 } 3644 3645 out: 3646 dqm_unlock(dqm); 3647 return r; 3648 } 3649 #if defined(CONFIG_DEBUG_FS) 3650 3651 static void seq_reg_dump(struct seq_file *m, 3652 uint32_t (*dump)[2], uint32_t n_regs) 3653 { 3654 uint32_t i, count; 3655 3656 for (i = 0, count = 0; i < n_regs; i++) { 3657 if (count == 0 || 3658 dump[i-1][0] + sizeof(uint32_t) != dump[i][0]) { 3659 seq_printf(m, "%s %08x: %08x", 3660 i ? "\n" : "", 3661 dump[i][0], dump[i][1]); 3662 count = 7; 3663 } else { 3664 seq_printf(m, " %08x", dump[i][1]); 3665 count--; 3666 } 3667 } 3668 3669 seq_puts(m, "\n"); 3670 } 3671 3672 int dqm_debugfs_hqds(struct seq_file *m, void *data) 3673 { 3674 struct device_queue_manager *dqm = data; 3675 uint32_t xcc_mask = dqm->dev->xcc_mask; 3676 uint32_t (*dump)[2], n_regs; 3677 int pipe, queue; 3678 int r = 0, xcc_id; 3679 uint32_t sdma_engine_start; 3680 3681 if (!dqm->sched_running) { 3682 seq_puts(m, " Device is stopped\n"); 3683 return 0; 3684 } 3685 3686 for_each_inst(xcc_id, xcc_mask) { 3687 r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev, 3688 KFD_CIK_HIQ_PIPE, 3689 KFD_CIK_HIQ_QUEUE, &dump, 3690 &n_regs, xcc_id); 3691 if (!r) { 3692 seq_printf( 3693 m, 3694 " Inst %d, HIQ on MEC %d Pipe %d Queue %d\n", 3695 xcc_id, 3696 KFD_CIK_HIQ_PIPE / get_pipes_per_mec(dqm) + 1, 3697 KFD_CIK_HIQ_PIPE % get_pipes_per_mec(dqm), 3698 KFD_CIK_HIQ_QUEUE); 3699 seq_reg_dump(m, dump, n_regs); 3700 3701 kfree(dump); 3702 } 3703 3704 for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) { 3705 int pipe_offset = pipe * get_queues_per_pipe(dqm); 3706 3707 for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) { 3708 if (!test_bit(pipe_offset + queue, 3709 dqm->dev->kfd->shared_resources.cp_queue_bitmap)) 3710 continue; 3711 3712 r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev, 3713 pipe, queue, 3714 &dump, &n_regs, 3715 xcc_id); 3716 if (r) 3717 break; 3718 3719 seq_printf(m, 3720 " Inst %d, CP Pipe %d, Queue %d\n", 3721 xcc_id, pipe, queue); 3722 seq_reg_dump(m, dump, n_regs); 3723 3724 kfree(dump); 3725 } 3726 } 3727 } 3728 3729 sdma_engine_start = dqm->dev->node_id * get_num_all_sdma_engines(dqm); 3730 for (pipe = sdma_engine_start; 3731 pipe < (sdma_engine_start + get_num_all_sdma_engines(dqm)); 3732 pipe++) { 3733 for (queue = 0; 3734 queue < dqm->dev->kfd->device_info.num_sdma_queues_per_engine; 3735 queue++) { 3736 r = dqm->dev->kfd2kgd->hqd_sdma_dump( 3737 dqm->dev->adev, pipe, queue, &dump, &n_regs); 3738 if (r) 3739 break; 3740 3741 seq_printf(m, " SDMA Engine %d, RLC %d\n", 3742 pipe, queue); 3743 seq_reg_dump(m, dump, n_regs); 3744 3745 kfree(dump); 3746 } 3747 } 3748 3749 return r; 3750 } 3751 3752 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm) 3753 { 3754 int r = 0; 3755 3756 dqm_lock(dqm); 3757 r = pm_debugfs_hang_hws(&dqm->packet_mgr); 3758 if (r) { 3759 dqm_unlock(dqm); 3760 return r; 3761 } 3762 dqm->active_runlist = true; 3763 r = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 3764 0, USE_DEFAULT_GRACE_PERIOD); 3765 dqm_unlock(dqm); 3766 3767 return r; 3768 } 3769 3770 #endif 3771