xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_device_queue_manager.c (revision 75372d75a4e23783583998ed99d5009d555850da)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/ratelimit.h>
26 #include <linux/printk.h>
27 #include <linux/slab.h>
28 #include <linux/list.h>
29 #include <linux/types.h>
30 #include <linux/bitops.h>
31 #include <linux/sched.h>
32 #include "kfd_priv.h"
33 #include "kfd_device_queue_manager.h"
34 #include "kfd_mqd_manager.h"
35 #include "cik_regs.h"
36 #include "kfd_kernel_queue.h"
37 #include "amdgpu_amdkfd.h"
38 #include "amdgpu_reset.h"
39 #include "amdgpu_sdma.h"
40 #include "mes_v11_api_def.h"
41 #include "kfd_debug.h"
42 
43 /* Size of the per-pipe EOP queue */
44 #define CIK_HPD_EOP_BYTES_LOG2 11
45 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
46 /* See unmap_queues_cpsch() */
47 #define USE_DEFAULT_GRACE_PERIOD 0xffffffff
48 
49 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
50 				  u32 pasid, unsigned int vmid);
51 
52 static int execute_queues_cpsch(struct device_queue_manager *dqm,
53 				enum kfd_unmap_queues_filter filter,
54 				uint32_t filter_param,
55 				uint32_t grace_period);
56 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
57 				enum kfd_unmap_queues_filter filter,
58 				uint32_t filter_param,
59 				uint32_t grace_period,
60 				bool reset);
61 
62 static int map_queues_cpsch(struct device_queue_manager *dqm);
63 
64 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
65 				struct queue *q);
66 
67 static inline void deallocate_hqd(struct device_queue_manager *dqm,
68 				struct queue *q);
69 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q);
70 static int allocate_sdma_queue(struct device_queue_manager *dqm,
71 				struct queue *q, const uint32_t *restore_sdma_id);
72 
73 static int reset_queues_on_hws_hang(struct device_queue_manager *dqm, bool is_sdma);
74 
75 static inline
76 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
77 {
78 	if (type == KFD_QUEUE_TYPE_SDMA || type == KFD_QUEUE_TYPE_SDMA_XGMI)
79 		return KFD_MQD_TYPE_SDMA;
80 	return KFD_MQD_TYPE_CP;
81 }
82 
83 static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe)
84 {
85 	int i;
86 	int pipe_offset = (mec * dqm->dev->kfd->shared_resources.num_pipe_per_mec
87 		+ pipe) * dqm->dev->kfd->shared_resources.num_queue_per_pipe;
88 
89 	/* queue is available for KFD usage if bit is 1 */
90 	for (i = 0; i <  dqm->dev->kfd->shared_resources.num_queue_per_pipe; ++i)
91 		if (test_bit(pipe_offset + i,
92 			      dqm->dev->kfd->shared_resources.cp_queue_bitmap))
93 			return true;
94 	return false;
95 }
96 
97 unsigned int get_cp_queues_num(struct device_queue_manager *dqm)
98 {
99 	return bitmap_weight(dqm->dev->kfd->shared_resources.cp_queue_bitmap,
100 				AMDGPU_MAX_QUEUES);
101 }
102 
103 unsigned int get_queues_per_pipe(struct device_queue_manager *dqm)
104 {
105 	return dqm->dev->kfd->shared_resources.num_queue_per_pipe;
106 }
107 
108 unsigned int get_pipes_per_mec(struct device_queue_manager *dqm)
109 {
110 	return dqm->dev->kfd->shared_resources.num_pipe_per_mec;
111 }
112 
113 static unsigned int get_num_all_sdma_engines(struct device_queue_manager *dqm)
114 {
115 	return kfd_get_num_sdma_engines(dqm->dev) +
116 		kfd_get_num_xgmi_sdma_engines(dqm->dev);
117 }
118 
119 unsigned int get_num_sdma_queues(struct device_queue_manager *dqm)
120 {
121 	return kfd_get_num_sdma_engines(dqm->dev) *
122 		dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
123 }
124 
125 unsigned int get_num_xgmi_sdma_queues(struct device_queue_manager *dqm)
126 {
127 	return kfd_get_num_xgmi_sdma_engines(dqm->dev) *
128 		dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
129 }
130 
131 static void init_sdma_bitmaps(struct device_queue_manager *dqm)
132 {
133 	bitmap_zero(dqm->sdma_bitmap, KFD_MAX_SDMA_QUEUES);
134 	bitmap_set(dqm->sdma_bitmap, 0, get_num_sdma_queues(dqm));
135 
136 	bitmap_zero(dqm->xgmi_sdma_bitmap, KFD_MAX_SDMA_QUEUES);
137 	bitmap_set(dqm->xgmi_sdma_bitmap, 0, get_num_xgmi_sdma_queues(dqm));
138 
139 	/* Mask out the reserved queues */
140 	bitmap_clear(dqm->sdma_bitmap, 0, kfd_get_num_sdma_engines(dqm->dev) *
141 			dqm->dev->kfd->device_info.num_reserved_sdma_queues_per_engine);
142 	bitmap_clear(dqm->xgmi_sdma_bitmap, 0, kfd_get_num_xgmi_sdma_engines(dqm->dev) *
143 			dqm->dev->kfd->device_info.num_reserved_sdma_queues_per_engine);
144 }
145 
146 void program_sh_mem_settings(struct device_queue_manager *dqm,
147 					struct qcm_process_device *qpd)
148 {
149 	uint32_t xcc_mask = dqm->dev->xcc_mask;
150 	int xcc_id;
151 
152 	for_each_inst(xcc_id, xcc_mask)
153 		dqm->dev->kfd2kgd->program_sh_mem_settings(
154 			dqm->dev->adev, qpd->vmid, qpd->sh_mem_config,
155 			qpd->sh_mem_ape1_base, qpd->sh_mem_ape1_limit,
156 			qpd->sh_mem_bases, xcc_id);
157 }
158 
159 static void kfd_hws_hang(struct device_queue_manager *dqm)
160 {
161 	struct device_process_node *cur;
162 	struct qcm_process_device *qpd;
163 	struct queue *q;
164 
165 	/* Mark all device queues as reset. */
166 	list_for_each_entry(cur, &dqm->queues, list) {
167 		qpd = cur->qpd;
168 		list_for_each_entry(q, &qpd->queues_list, list) {
169 			struct kfd_process_device *pdd = qpd_to_pdd(qpd);
170 
171 			pdd->has_reset_queue = true;
172 		}
173 	}
174 
175 	/*
176 	 * Issue a GPU reset if HWS is unresponsive
177 	 */
178 	amdgpu_amdkfd_gpu_reset(dqm->dev->adev);
179 }
180 
181 static int convert_to_mes_queue_type(int queue_type)
182 {
183 	int mes_queue_type;
184 
185 	switch (queue_type) {
186 	case KFD_QUEUE_TYPE_COMPUTE:
187 		mes_queue_type = MES_QUEUE_TYPE_COMPUTE;
188 		break;
189 	case KFD_QUEUE_TYPE_SDMA:
190 		mes_queue_type = MES_QUEUE_TYPE_SDMA;
191 		break;
192 	default:
193 		WARN(1, "Invalid queue type %d", queue_type);
194 		mes_queue_type = -EINVAL;
195 		break;
196 	}
197 
198 	return mes_queue_type;
199 }
200 
201 static int add_queue_mes(struct device_queue_manager *dqm, struct queue *q,
202 			 struct qcm_process_device *qpd)
203 {
204 	struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
205 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
206 	struct mes_add_queue_input queue_input;
207 	int r, queue_type;
208 	uint64_t wptr_addr_off;
209 
210 	if (!dqm->sched_running || dqm->sched_halt)
211 		return 0;
212 	if (!down_read_trylock(&adev->reset_domain->sem))
213 		return -EIO;
214 
215 	memset(&queue_input, 0x0, sizeof(struct mes_add_queue_input));
216 	queue_input.process_id = pdd->pasid;
217 	queue_input.page_table_base_addr =  qpd->page_table_base;
218 	queue_input.process_va_start = 0;
219 	queue_input.process_va_end = adev->vm_manager.max_pfn - 1;
220 	/* MES unit for quantum is 100ns */
221 	queue_input.process_quantum = KFD_MES_PROCESS_QUANTUM;  /* Equivalent to 10ms. */
222 	queue_input.process_context_addr = pdd->proc_ctx_gpu_addr;
223 	queue_input.gang_quantum = KFD_MES_GANG_QUANTUM; /* Equivalent to 1ms */
224 	queue_input.gang_context_addr = q->gang_ctx_gpu_addr;
225 	queue_input.inprocess_gang_priority = q->properties.priority;
226 	queue_input.gang_global_priority_level =
227 					AMDGPU_MES_PRIORITY_LEVEL_NORMAL;
228 	queue_input.doorbell_offset = q->properties.doorbell_off;
229 	queue_input.mqd_addr = q->gart_mqd_addr;
230 	queue_input.wptr_addr = (uint64_t)q->properties.write_ptr;
231 
232 	wptr_addr_off = (uint64_t)q->properties.write_ptr & (PAGE_SIZE - 1);
233 	queue_input.wptr_mc_addr = amdgpu_bo_gpu_offset(q->properties.wptr_bo) + wptr_addr_off;
234 
235 	queue_input.is_kfd_process = 1;
236 	queue_input.is_aql_queue = (q->properties.format == KFD_QUEUE_FORMAT_AQL);
237 	queue_input.queue_size = q->properties.queue_size >> 2;
238 
239 	queue_input.paging = false;
240 	queue_input.tba_addr = qpd->tba_addr;
241 	queue_input.tma_addr = qpd->tma_addr;
242 	queue_input.trap_en = !kfd_dbg_has_cwsr_workaround(q->device);
243 	queue_input.skip_process_ctx_clear =
244 		qpd->pqm->process->runtime_info.runtime_state == DEBUG_RUNTIME_STATE_ENABLED &&
245 						(qpd->pqm->process->debug_trap_enabled ||
246 						 kfd_dbg_has_ttmps_always_setup(q->device));
247 
248 	queue_type = convert_to_mes_queue_type(q->properties.type);
249 	if (queue_type < 0) {
250 		dev_err(adev->dev, "Queue type not supported with MES, queue:%d\n",
251 			q->properties.type);
252 		up_read(&adev->reset_domain->sem);
253 		return -EINVAL;
254 	}
255 	queue_input.queue_type = (uint32_t)queue_type;
256 
257 	queue_input.exclusively_scheduled = q->properties.is_gws;
258 	queue_input.sh_mem_config_data = qpd->sh_mem_config;
259 	queue_input.vm_cntx_cntl = qpd->vm_cntx_cntl;
260 	queue_input.xcc_id = ffs(dqm->dev->xcc_mask) - 1;
261 
262 	amdgpu_mes_lock(&adev->mes);
263 	r = adev->mes.funcs->add_hw_queue(&adev->mes, &queue_input);
264 	amdgpu_mes_unlock(&adev->mes);
265 	up_read(&adev->reset_domain->sem);
266 	if (r) {
267 		dev_err(adev->dev, "failed to add hardware queue to MES, doorbell=0x%x\n",
268 			q->properties.doorbell_off);
269 		dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
270 		kfd_hws_hang(dqm);
271 	}
272 
273 	return r;
274 }
275 
276 static int remove_queue_mes(struct device_queue_manager *dqm, struct queue *q,
277 			struct qcm_process_device *qpd)
278 {
279 	struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
280 	int r;
281 	struct mes_remove_queue_input queue_input;
282 
283 	if (!dqm->sched_running || dqm->sched_halt)
284 		return 0;
285 	if (!down_read_trylock(&adev->reset_domain->sem))
286 		return -EIO;
287 
288 	memset(&queue_input, 0x0, sizeof(struct mes_remove_queue_input));
289 	queue_input.doorbell_offset = q->properties.doorbell_off;
290 	queue_input.gang_context_addr = q->gang_ctx_gpu_addr;
291 	queue_input.xcc_id = ffs(dqm->dev->xcc_mask) - 1;
292 
293 	amdgpu_mes_lock(&adev->mes);
294 	r = adev->mes.funcs->remove_hw_queue(&adev->mes, &queue_input);
295 	amdgpu_mes_unlock(&adev->mes);
296 	up_read(&adev->reset_domain->sem);
297 
298 	if (r) {
299 		dev_err(adev->dev, "failed to remove hardware queue from MES, doorbell=0x%x\n",
300 			q->properties.doorbell_off);
301 		dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
302 		kfd_hws_hang(dqm);
303 	}
304 
305 	return r;
306 }
307 
308 static int remove_all_kfd_queues_mes(struct device_queue_manager *dqm)
309 {
310 	struct device_process_node *cur;
311 	struct device *dev = dqm->dev->adev->dev;
312 	struct qcm_process_device *qpd;
313 	struct queue *q;
314 	int retval = 0;
315 
316 	list_for_each_entry(cur, &dqm->queues, list) {
317 		qpd = cur->qpd;
318 		list_for_each_entry(q, &qpd->queues_list, list) {
319 			if (q->properties.is_active) {
320 				retval = remove_queue_mes(dqm, q, qpd);
321 				if (retval) {
322 					dev_err(dev, "%s: Failed to remove queue %d for dev %d",
323 						__func__,
324 						q->properties.queue_id,
325 						dqm->dev->id);
326 					return retval;
327 				}
328 			}
329 		}
330 	}
331 
332 	return retval;
333 }
334 
335 static int add_all_kfd_queues_mes(struct device_queue_manager *dqm)
336 {
337 	struct device_process_node *cur;
338 	struct device *dev = dqm->dev->adev->dev;
339 	struct qcm_process_device *qpd;
340 	struct queue *q;
341 	int retval = 0;
342 
343 	list_for_each_entry(cur, &dqm->queues, list) {
344 		qpd = cur->qpd;
345 		list_for_each_entry(q, &qpd->queues_list, list) {
346 			if (!q->properties.is_active)
347 				continue;
348 			retval = add_queue_mes(dqm, q, qpd);
349 			if (retval) {
350 				dev_err(dev, "%s: Failed to add queue %d for dev %d",
351 					__func__,
352 					q->properties.queue_id,
353 					dqm->dev->id);
354 				return retval;
355 			}
356 		}
357 	}
358 
359 	return retval;
360 }
361 
362 static int suspend_all_queues_mes(struct device_queue_manager *dqm)
363 {
364 	struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
365 	int r = 0;
366 
367 	if (!down_read_trylock(&adev->reset_domain->sem))
368 		return -EIO;
369 
370 	r = amdgpu_mes_suspend(adev);
371 	up_read(&adev->reset_domain->sem);
372 
373 	if (r) {
374 		dev_err(adev->dev, "failed to suspend gangs from MES\n");
375 		dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
376 		kfd_hws_hang(dqm);
377 	}
378 
379 	return r;
380 }
381 
382 static int resume_all_queues_mes(struct device_queue_manager *dqm)
383 {
384 	struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
385 	int r = 0;
386 
387 	if (!down_read_trylock(&adev->reset_domain->sem))
388 		return -EIO;
389 
390 	r = amdgpu_mes_resume(adev);
391 	up_read(&adev->reset_domain->sem);
392 
393 	if (r) {
394 		dev_err(adev->dev, "failed to resume gangs from MES\n");
395 		dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
396 		kfd_hws_hang(dqm);
397 	}
398 
399 	return r;
400 }
401 
402 static void increment_queue_count(struct device_queue_manager *dqm,
403 				  struct qcm_process_device *qpd,
404 				  struct queue *q)
405 {
406 	dqm->active_queue_count++;
407 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
408 		dqm->active_cp_queue_count++;
409 
410 	if (q->properties.is_gws) {
411 		dqm->gws_queue_count++;
412 		qpd->mapped_gws_queue = true;
413 	}
414 }
415 
416 static void decrement_queue_count(struct device_queue_manager *dqm,
417 				  struct qcm_process_device *qpd,
418 				  struct queue *q)
419 {
420 	dqm->active_queue_count--;
421 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
422 		dqm->active_cp_queue_count--;
423 
424 	if (q->properties.is_gws) {
425 		dqm->gws_queue_count--;
426 		qpd->mapped_gws_queue = false;
427 	}
428 }
429 
430 /*
431  * Allocate a doorbell ID to this queue.
432  * If doorbell_id is passed in, make sure requested ID is valid then allocate it.
433  */
434 static int allocate_doorbell(struct qcm_process_device *qpd,
435 			     struct queue *q,
436 			     uint32_t const *restore_id)
437 {
438 	struct kfd_node *dev = qpd->dqm->dev;
439 
440 	if (!KFD_IS_SOC15(dev)) {
441 		/* On pre-SOC15 chips we need to use the queue ID to
442 		 * preserve the user mode ABI.
443 		 */
444 
445 		if (restore_id && *restore_id != q->properties.queue_id)
446 			return -EINVAL;
447 
448 		q->doorbell_id = q->properties.queue_id;
449 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
450 			q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
451 		/* For SDMA queues on SOC15 with 8-byte doorbell, use static
452 		 * doorbell assignments based on the engine and queue id.
453 		 * The doobell index distance between RLC (2*i) and (2*i+1)
454 		 * for a SDMA engine is 512.
455 		 */
456 
457 		uint32_t *idx_offset = dev->kfd->shared_resources.sdma_doorbell_idx;
458 
459 		/*
460 		 * q->properties.sdma_engine_id corresponds to the virtual
461 		 * sdma engine number. However, for doorbell allocation,
462 		 * we need the physical sdma engine id in order to get the
463 		 * correct doorbell offset.
464 		 */
465 		uint32_t valid_id = idx_offset[qpd->dqm->dev->node_id *
466 					       get_num_all_sdma_engines(qpd->dqm) +
467 					       q->properties.sdma_engine_id]
468 						+ (q->properties.sdma_queue_id & 1)
469 						* KFD_QUEUE_DOORBELL_MIRROR_OFFSET
470 						+ (q->properties.sdma_queue_id >> 1);
471 
472 		if (restore_id && *restore_id != valid_id)
473 			return -EINVAL;
474 		q->doorbell_id = valid_id;
475 	} else {
476 		/* For CP queues on SOC15 */
477 		if (restore_id) {
478 			/* make sure that ID is free  */
479 			if (__test_and_set_bit(*restore_id, qpd->doorbell_bitmap))
480 				return -EINVAL;
481 
482 			q->doorbell_id = *restore_id;
483 		} else {
484 			/* or reserve a free doorbell ID */
485 			unsigned int found;
486 
487 			found = find_first_zero_bit(qpd->doorbell_bitmap,
488 						    KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
489 			if (found >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) {
490 				pr_debug("No doorbells available");
491 				return -EBUSY;
492 			}
493 			set_bit(found, qpd->doorbell_bitmap);
494 			q->doorbell_id = found;
495 		}
496 	}
497 
498 	q->properties.doorbell_off = amdgpu_doorbell_index_on_bar(dev->adev,
499 								  qpd->proc_doorbells,
500 								  q->doorbell_id,
501 								  dev->kfd->device_info.doorbell_size);
502 	return 0;
503 }
504 
505 static void deallocate_doorbell(struct qcm_process_device *qpd,
506 				struct queue *q)
507 {
508 	unsigned int old;
509 	struct kfd_node *dev = qpd->dqm->dev;
510 
511 	if (!KFD_IS_SOC15(dev) ||
512 	    q->properties.type == KFD_QUEUE_TYPE_SDMA ||
513 	    q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
514 		return;
515 
516 	old = test_and_clear_bit(q->doorbell_id, qpd->doorbell_bitmap);
517 	WARN_ON(!old);
518 }
519 
520 static void program_trap_handler_settings(struct device_queue_manager *dqm,
521 				struct qcm_process_device *qpd)
522 {
523 	uint32_t xcc_mask = dqm->dev->xcc_mask;
524 	int xcc_id;
525 
526 	if (dqm->dev->kfd2kgd->program_trap_handler_settings)
527 		for_each_inst(xcc_id, xcc_mask)
528 			dqm->dev->kfd2kgd->program_trap_handler_settings(
529 				dqm->dev->adev, qpd->vmid, qpd->tba_addr,
530 				qpd->tma_addr, xcc_id);
531 }
532 
533 static int allocate_vmid(struct device_queue_manager *dqm,
534 			struct qcm_process_device *qpd,
535 			struct queue *q)
536 {
537 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
538 	struct device *dev = dqm->dev->adev->dev;
539 	int allocated_vmid = -1, i;
540 
541 	for (i = dqm->dev->vm_info.first_vmid_kfd;
542 			i <= dqm->dev->vm_info.last_vmid_kfd; i++) {
543 		if (!dqm->vmid_pasid[i]) {
544 			allocated_vmid = i;
545 			break;
546 		}
547 	}
548 
549 	if (allocated_vmid < 0) {
550 		dev_err(dev, "no more vmid to allocate\n");
551 		return -ENOSPC;
552 	}
553 
554 	pr_debug("vmid allocated: %d\n", allocated_vmid);
555 
556 	dqm->vmid_pasid[allocated_vmid] = pdd->pasid;
557 
558 	set_pasid_vmid_mapping(dqm, pdd->pasid, allocated_vmid);
559 
560 	qpd->vmid = allocated_vmid;
561 	q->properties.vmid = allocated_vmid;
562 
563 	program_sh_mem_settings(dqm, qpd);
564 
565 	if (KFD_IS_SOC15(dqm->dev) && dqm->dev->kfd->cwsr_enabled)
566 		program_trap_handler_settings(dqm, qpd);
567 
568 	/* qpd->page_table_base is set earlier when register_process()
569 	 * is called, i.e. when the first queue is created.
570 	 */
571 	dqm->dev->kfd2kgd->set_vm_context_page_table_base(dqm->dev->adev,
572 			qpd->vmid,
573 			qpd->page_table_base);
574 	/* invalidate the VM context after pasid and vmid mapping is set up */
575 	kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY);
576 
577 	if (dqm->dev->kfd2kgd->set_scratch_backing_va)
578 		dqm->dev->kfd2kgd->set_scratch_backing_va(dqm->dev->adev,
579 				qpd->sh_hidden_private_base, qpd->vmid);
580 
581 	return 0;
582 }
583 
584 static int flush_texture_cache_nocpsch(struct kfd_node *kdev,
585 				struct qcm_process_device *qpd)
586 {
587 	const struct packet_manager_funcs *pmf = qpd->dqm->packet_mgr.pmf;
588 	int ret;
589 
590 	if (!qpd->ib_kaddr)
591 		return -ENOMEM;
592 
593 	ret = pmf->release_mem(qpd->ib_base, (uint32_t *)qpd->ib_kaddr);
594 	if (ret)
595 		return ret;
596 
597 	return amdgpu_amdkfd_submit_ib(kdev->adev, KGD_ENGINE_MEC1, qpd->vmid,
598 				qpd->ib_base, (uint32_t *)qpd->ib_kaddr,
599 				pmf->release_mem_size / sizeof(uint32_t));
600 }
601 
602 static void deallocate_vmid(struct device_queue_manager *dqm,
603 				struct qcm_process_device *qpd,
604 				struct queue *q)
605 {
606 	struct device *dev = dqm->dev->adev->dev;
607 
608 	/* On GFX v7, CP doesn't flush TC at dequeue */
609 	if (q->device->adev->asic_type == CHIP_HAWAII)
610 		if (flush_texture_cache_nocpsch(q->device, qpd))
611 			dev_err(dev, "Failed to flush TC\n");
612 
613 	kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY);
614 
615 	/* Release the vmid mapping */
616 	set_pasid_vmid_mapping(dqm, 0, qpd->vmid);
617 	dqm->vmid_pasid[qpd->vmid] = 0;
618 
619 	qpd->vmid = 0;
620 	q->properties.vmid = 0;
621 }
622 
623 static int create_queue_nocpsch(struct device_queue_manager *dqm,
624 				struct queue *q,
625 				struct qcm_process_device *qpd,
626 				const struct kfd_criu_queue_priv_data *qd,
627 				const void *restore_mqd, const void *restore_ctl_stack)
628 {
629 	struct mqd_manager *mqd_mgr;
630 	int retval;
631 
632 	dqm_lock(dqm);
633 
634 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
635 		pr_warn("Can't create new usermode queue because %d queues were already created\n",
636 				dqm->total_queue_count);
637 		retval = -EPERM;
638 		goto out_unlock;
639 	}
640 
641 	if (list_empty(&qpd->queues_list)) {
642 		retval = allocate_vmid(dqm, qpd, q);
643 		if (retval)
644 			goto out_unlock;
645 	}
646 	q->properties.vmid = qpd->vmid;
647 	/*
648 	 * Eviction state logic: mark all queues as evicted, even ones
649 	 * not currently active. Restoring inactive queues later only
650 	 * updates the is_evicted flag but is a no-op otherwise.
651 	 */
652 	q->properties.is_evicted = !!qpd->evicted;
653 
654 	q->properties.tba_addr = qpd->tba_addr;
655 	q->properties.tma_addr = qpd->tma_addr;
656 
657 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
658 			q->properties.type)];
659 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
660 		retval = allocate_hqd(dqm, q);
661 		if (retval)
662 			goto deallocate_vmid;
663 		pr_debug("Loading mqd to hqd on pipe %d, queue %d\n",
664 			q->pipe, q->queue);
665 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
666 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
667 		retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL);
668 		if (retval)
669 			goto deallocate_vmid;
670 		dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
671 	}
672 
673 	retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL);
674 	if (retval)
675 		goto out_deallocate_hqd;
676 
677 	/* Temporarily release dqm lock to avoid a circular lock dependency */
678 	dqm_unlock(dqm);
679 	q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
680 	dqm_lock(dqm);
681 
682 	if (!q->mqd_mem_obj) {
683 		retval = -ENOMEM;
684 		goto out_deallocate_doorbell;
685 	}
686 
687 	if (qd)
688 		mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr,
689 				     &q->properties, restore_mqd, restore_ctl_stack,
690 				     qd->ctl_stack_size);
691 	else
692 		mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
693 					&q->gart_mqd_addr, &q->properties);
694 
695 	if (q->properties.is_active) {
696 		if (!dqm->sched_running) {
697 			WARN_ONCE(1, "Load non-HWS mqd while stopped\n");
698 			goto add_queue_to_list;
699 		}
700 
701 		if (WARN(q->process->mm != current->mm,
702 					"should only run in user thread"))
703 			retval = -EFAULT;
704 		else
705 			retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
706 					q->queue, &q->properties, current->mm);
707 		if (retval)
708 			goto out_free_mqd;
709 	}
710 
711 add_queue_to_list:
712 	list_add(&q->list, &qpd->queues_list);
713 	qpd->queue_count++;
714 	if (q->properties.is_active)
715 		increment_queue_count(dqm, qpd, q);
716 
717 	/*
718 	 * Unconditionally increment this counter, regardless of the queue's
719 	 * type or whether the queue is active.
720 	 */
721 	dqm->total_queue_count++;
722 	pr_debug("Total of %d queues are accountable so far\n",
723 			dqm->total_queue_count);
724 	goto out_unlock;
725 
726 out_free_mqd:
727 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
728 out_deallocate_doorbell:
729 	deallocate_doorbell(qpd, q);
730 out_deallocate_hqd:
731 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
732 		deallocate_hqd(dqm, q);
733 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
734 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
735 		deallocate_sdma_queue(dqm, q);
736 deallocate_vmid:
737 	if (list_empty(&qpd->queues_list))
738 		deallocate_vmid(dqm, qpd, q);
739 out_unlock:
740 	dqm_unlock(dqm);
741 	return retval;
742 }
743 
744 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
745 {
746 	bool set;
747 	int pipe, bit, i;
748 
749 	set = false;
750 
751 	for (pipe = dqm->next_pipe_to_allocate, i = 0;
752 			i < get_pipes_per_mec(dqm);
753 			pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) {
754 
755 		if (!is_pipe_enabled(dqm, 0, pipe))
756 			continue;
757 
758 		if (dqm->allocated_queues[pipe] != 0) {
759 			bit = ffs(dqm->allocated_queues[pipe]) - 1;
760 			dqm->allocated_queues[pipe] &= ~(1 << bit);
761 			q->pipe = pipe;
762 			q->queue = bit;
763 			set = true;
764 			break;
765 		}
766 	}
767 
768 	if (!set)
769 		return -EBUSY;
770 
771 	pr_debug("hqd slot - pipe %d, queue %d\n", q->pipe, q->queue);
772 	/* horizontal hqd allocation */
773 	dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm);
774 
775 	return 0;
776 }
777 
778 static inline void deallocate_hqd(struct device_queue_manager *dqm,
779 				struct queue *q)
780 {
781 	dqm->allocated_queues[q->pipe] |= (1 << q->queue);
782 }
783 
784 #define SQ_IND_CMD_CMD_KILL		0x00000003
785 #define SQ_IND_CMD_MODE_BROADCAST	0x00000001
786 
787 static int dbgdev_wave_reset_wavefronts(struct kfd_node *dev, struct kfd_process *p)
788 {
789 	int status = 0;
790 	unsigned int vmid;
791 	uint16_t queried_pasid;
792 	union SQ_CMD_BITS reg_sq_cmd;
793 	union GRBM_GFX_INDEX_BITS reg_gfx_index;
794 	struct kfd_process_device *pdd;
795 	int first_vmid_to_scan = dev->vm_info.first_vmid_kfd;
796 	int last_vmid_to_scan = dev->vm_info.last_vmid_kfd;
797 	uint32_t xcc_mask = dev->xcc_mask;
798 	int xcc_id;
799 
800 	reg_sq_cmd.u32All = 0;
801 	reg_gfx_index.u32All = 0;
802 
803 	pr_debug("Killing all process wavefronts\n");
804 
805 	if (!dev->kfd2kgd->get_atc_vmid_pasid_mapping_info) {
806 		dev_err(dev->adev->dev, "no vmid pasid mapping supported\n");
807 		return -EOPNOTSUPP;
808 	}
809 
810 	/* taking the VMID for that process on the safe way using PDD */
811 	pdd = kfd_get_process_device_data(dev, p);
812 	if (!pdd)
813 		return -EFAULT;
814 
815 	/* Scan all registers in the range ATC_VMID8_PASID_MAPPING ..
816 	 * ATC_VMID15_PASID_MAPPING
817 	 * to check which VMID the current process is mapped to.
818 	 */
819 
820 	for (vmid = first_vmid_to_scan; vmid <= last_vmid_to_scan; vmid++) {
821 		status = dev->kfd2kgd->get_atc_vmid_pasid_mapping_info
822 				(dev->adev, vmid, &queried_pasid);
823 
824 		if (status && queried_pasid == pdd->pasid) {
825 			pr_debug("Killing wave fronts of vmid %d and process pid %d\n",
826 					vmid, p->lead_thread->pid);
827 			break;
828 		}
829 	}
830 
831 	if (vmid > last_vmid_to_scan) {
832 		dev_err(dev->adev->dev, "Didn't find vmid for process pid %d\n",
833 				p->lead_thread->pid);
834 		return -EFAULT;
835 	}
836 
837 	reg_gfx_index.bits.sh_broadcast_writes = 1;
838 	reg_gfx_index.bits.se_broadcast_writes = 1;
839 	reg_gfx_index.bits.instance_broadcast_writes = 1;
840 	reg_sq_cmd.bits.mode = SQ_IND_CMD_MODE_BROADCAST;
841 	reg_sq_cmd.bits.cmd = SQ_IND_CMD_CMD_KILL;
842 	reg_sq_cmd.bits.vm_id = vmid;
843 
844 	for_each_inst(xcc_id, xcc_mask)
845 		dev->kfd2kgd->wave_control_execute(
846 			dev->adev, reg_gfx_index.u32All,
847 			reg_sq_cmd.u32All, xcc_id);
848 
849 	return 0;
850 }
851 
852 /* Access to DQM has to be locked before calling destroy_queue_nocpsch_locked
853  * to avoid asynchronized access
854  */
855 static int destroy_queue_nocpsch_locked(struct device_queue_manager *dqm,
856 				struct qcm_process_device *qpd,
857 				struct queue *q)
858 {
859 	int retval;
860 	struct mqd_manager *mqd_mgr;
861 
862 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(q->properties.type)];
863 
864 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
865 		deallocate_hqd(dqm, q);
866 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
867 		deallocate_sdma_queue(dqm, q);
868 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
869 		deallocate_sdma_queue(dqm, q);
870 	else {
871 		pr_debug("q->properties.type %d is invalid\n",
872 				q->properties.type);
873 		return -EINVAL;
874 	}
875 	dqm->total_queue_count--;
876 
877 	deallocate_doorbell(qpd, q);
878 
879 	if (!dqm->sched_running) {
880 		WARN_ONCE(1, "Destroy non-HWS queue while stopped\n");
881 		return 0;
882 	}
883 
884 	retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
885 				KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
886 				KFD_UNMAP_LATENCY_MS,
887 				q->pipe, q->queue);
888 	if (retval == -ETIME)
889 		qpd->reset_wavefronts = true;
890 
891 	list_del(&q->list);
892 	if (list_empty(&qpd->queues_list)) {
893 		if (qpd->reset_wavefronts) {
894 			pr_warn("Resetting wave fronts (nocpsch) on dev %p\n",
895 					dqm->dev);
896 			/* dbgdev_wave_reset_wavefronts has to be called before
897 			 * deallocate_vmid(), i.e. when vmid is still in use.
898 			 */
899 			dbgdev_wave_reset_wavefronts(dqm->dev,
900 					qpd->pqm->process);
901 			qpd->reset_wavefronts = false;
902 		}
903 
904 		deallocate_vmid(dqm, qpd, q);
905 	}
906 	qpd->queue_count--;
907 	if (q->properties.is_active)
908 		decrement_queue_count(dqm, qpd, q);
909 
910 	return retval;
911 }
912 
913 static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
914 				struct qcm_process_device *qpd,
915 				struct queue *q)
916 {
917 	int retval;
918 	uint64_t sdma_val = 0;
919 	struct device *dev = dqm->dev->adev->dev;
920 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
921 	struct mqd_manager *mqd_mgr =
922 		dqm->mqd_mgrs[get_mqd_type_from_queue_type(q->properties.type)];
923 
924 	/* Get the SDMA queue stats */
925 	if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
926 	    (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
927 		retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr,
928 							&sdma_val);
929 		if (retval)
930 			dev_err(dev, "Failed to read SDMA queue counter for queue: %d\n",
931 				q->properties.queue_id);
932 	}
933 
934 	dqm_lock(dqm);
935 	retval = destroy_queue_nocpsch_locked(dqm, qpd, q);
936 	if (!retval)
937 		pdd->sdma_past_activity_counter += sdma_val;
938 	dqm_unlock(dqm);
939 
940 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
941 
942 	return retval;
943 }
944 
945 static int update_queue(struct device_queue_manager *dqm, struct queue *q,
946 			struct mqd_update_info *minfo)
947 {
948 	int retval = 0;
949 	struct device *dev = dqm->dev->adev->dev;
950 	struct mqd_manager *mqd_mgr;
951 	struct kfd_process_device *pdd;
952 	bool prev_active = false;
953 
954 	dqm_lock(dqm);
955 	pdd = kfd_get_process_device_data(q->device, q->process);
956 	if (!pdd) {
957 		retval = -ENODEV;
958 		goto out_unlock;
959 	}
960 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
961 			q->properties.type)];
962 
963 	/* Save previous activity state for counters */
964 	prev_active = q->properties.is_active;
965 
966 	/* Make sure the queue is unmapped before updating the MQD */
967 	if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
968 		if (!dqm->dev->kfd->shared_resources.enable_mes)
969 			retval = unmap_queues_cpsch(dqm,
970 						    KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD, false);
971 		else if (prev_active)
972 			retval = remove_queue_mes(dqm, q, &pdd->qpd);
973 
974 		/* queue is reset so inaccessable  */
975 		if (pdd->has_reset_queue) {
976 			retval = -EACCES;
977 			goto out_unlock;
978 		}
979 
980 		if (retval) {
981 			dev_err(dev, "unmap queue failed\n");
982 			goto out_unlock;
983 		}
984 	} else if (prev_active &&
985 		   (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
986 		    q->properties.type == KFD_QUEUE_TYPE_SDMA ||
987 		    q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
988 
989 		if (!dqm->sched_running) {
990 			WARN_ONCE(1, "Update non-HWS queue while stopped\n");
991 			goto out_unlock;
992 		}
993 
994 		retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
995 				(dqm->dev->kfd->cwsr_enabled ?
996 				 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE :
997 				 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN),
998 				KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
999 		if (retval) {
1000 			dev_err(dev, "destroy mqd failed\n");
1001 			goto out_unlock;
1002 		}
1003 	}
1004 
1005 	mqd_mgr->update_mqd(mqd_mgr, q->mqd, &q->properties, minfo);
1006 
1007 	/*
1008 	 * check active state vs. the previous state and modify
1009 	 * counter accordingly. map_queues_cpsch uses the
1010 	 * dqm->active_queue_count to determine whether a new runlist must be
1011 	 * uploaded.
1012 	 */
1013 	if (q->properties.is_active && !prev_active) {
1014 		increment_queue_count(dqm, &pdd->qpd, q);
1015 	} else if (!q->properties.is_active && prev_active) {
1016 		decrement_queue_count(dqm, &pdd->qpd, q);
1017 	} else if (q->gws && !q->properties.is_gws) {
1018 		if (q->properties.is_active) {
1019 			dqm->gws_queue_count++;
1020 			pdd->qpd.mapped_gws_queue = true;
1021 		}
1022 		q->properties.is_gws = true;
1023 	} else if (!q->gws && q->properties.is_gws) {
1024 		if (q->properties.is_active) {
1025 			dqm->gws_queue_count--;
1026 			pdd->qpd.mapped_gws_queue = false;
1027 		}
1028 		q->properties.is_gws = false;
1029 	}
1030 
1031 	if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
1032 		if (!dqm->dev->kfd->shared_resources.enable_mes)
1033 			retval = map_queues_cpsch(dqm);
1034 		else if (q->properties.is_active)
1035 			retval = add_queue_mes(dqm, q, &pdd->qpd);
1036 	} else if (q->properties.is_active &&
1037 		 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
1038 		  q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1039 		  q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
1040 		if (WARN(q->process->mm != current->mm,
1041 			 "should only run in user thread"))
1042 			retval = -EFAULT;
1043 		else
1044 			retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd,
1045 						   q->pipe, q->queue,
1046 						   &q->properties, current->mm);
1047 	}
1048 
1049 out_unlock:
1050 	dqm_unlock(dqm);
1051 	return retval;
1052 }
1053 
1054 /* suspend_single_queue does not lock the dqm like the
1055  * evict_process_queues_cpsch or evict_process_queues_nocpsch. You should
1056  * lock the dqm before calling, and unlock after calling.
1057  *
1058  * The reason we don't lock the dqm is because this function may be
1059  * called on multiple queues in a loop, so rather than locking/unlocking
1060  * multiple times, we will just keep the dqm locked for all of the calls.
1061  */
1062 static int suspend_single_queue(struct device_queue_manager *dqm,
1063 				      struct kfd_process_device *pdd,
1064 				      struct queue *q)
1065 {
1066 	bool is_new;
1067 
1068 	if (q->properties.is_suspended)
1069 		return 0;
1070 
1071 	pr_debug("Suspending process pid %d queue [%i]\n",
1072 			pdd->process->lead_thread->pid,
1073 			q->properties.queue_id);
1074 
1075 	is_new = q->properties.exception_status & KFD_EC_MASK(EC_QUEUE_NEW);
1076 
1077 	if (is_new || q->properties.is_being_destroyed) {
1078 		pr_debug("Suspend: skip %s queue id %i\n",
1079 				is_new ? "new" : "destroyed",
1080 				q->properties.queue_id);
1081 		return -EBUSY;
1082 	}
1083 
1084 	q->properties.is_suspended = true;
1085 	if (q->properties.is_active) {
1086 		if (dqm->dev->kfd->shared_resources.enable_mes) {
1087 			int r = remove_queue_mes(dqm, q, &pdd->qpd);
1088 
1089 			if (r)
1090 				return r;
1091 		}
1092 
1093 		decrement_queue_count(dqm, &pdd->qpd, q);
1094 		q->properties.is_active = false;
1095 	}
1096 
1097 	return 0;
1098 }
1099 
1100 /* resume_single_queue does not lock the dqm like the functions
1101  * restore_process_queues_cpsch or restore_process_queues_nocpsch. You should
1102  * lock the dqm before calling, and unlock after calling.
1103  *
1104  * The reason we don't lock the dqm is because this function may be
1105  * called on multiple queues in a loop, so rather than locking/unlocking
1106  * multiple times, we will just keep the dqm locked for all of the calls.
1107  */
1108 static int resume_single_queue(struct device_queue_manager *dqm,
1109 				      struct qcm_process_device *qpd,
1110 				      struct queue *q)
1111 {
1112 	struct kfd_process_device *pdd;
1113 
1114 	if (!q->properties.is_suspended)
1115 		return 0;
1116 
1117 	pdd = qpd_to_pdd(qpd);
1118 
1119 	pr_debug("Restoring from suspend process pid %d queue [%i]\n",
1120 			    pdd->process->lead_thread->pid,
1121 			    q->properties.queue_id);
1122 
1123 	q->properties.is_suspended = false;
1124 
1125 	if (QUEUE_IS_ACTIVE(q->properties)) {
1126 		if (dqm->dev->kfd->shared_resources.enable_mes) {
1127 			int r = add_queue_mes(dqm, q, &pdd->qpd);
1128 
1129 			if (r)
1130 				return r;
1131 		}
1132 
1133 		q->properties.is_active = true;
1134 		increment_queue_count(dqm, qpd, q);
1135 	}
1136 
1137 	return 0;
1138 }
1139 
1140 static int evict_process_queues_nocpsch(struct device_queue_manager *dqm,
1141 					struct qcm_process_device *qpd)
1142 {
1143 	struct queue *q;
1144 	struct mqd_manager *mqd_mgr;
1145 	struct kfd_process_device *pdd;
1146 	int retval, ret = 0;
1147 
1148 	dqm_lock(dqm);
1149 	if (qpd->evicted++ > 0) /* already evicted, do nothing */
1150 		goto out;
1151 
1152 	pdd = qpd_to_pdd(qpd);
1153 	pr_debug_ratelimited("Evicting process pid %d queues\n",
1154 			    pdd->process->lead_thread->pid);
1155 
1156 	pdd->last_evict_timestamp = get_jiffies_64();
1157 	/* Mark all queues as evicted. Deactivate all active queues on
1158 	 * the qpd.
1159 	 */
1160 	list_for_each_entry(q, &qpd->queues_list, list) {
1161 		q->properties.is_evicted = true;
1162 		if (!q->properties.is_active)
1163 			continue;
1164 
1165 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1166 				q->properties.type)];
1167 		q->properties.is_active = false;
1168 		decrement_queue_count(dqm, qpd, q);
1169 
1170 		if (WARN_ONCE(!dqm->sched_running, "Evict when stopped\n"))
1171 			continue;
1172 
1173 		retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
1174 				(dqm->dev->kfd->cwsr_enabled ?
1175 				 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE :
1176 				 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN),
1177 				KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
1178 		if (retval && !ret)
1179 			/* Return the first error, but keep going to
1180 			 * maintain a consistent eviction state
1181 			 */
1182 			ret = retval;
1183 	}
1184 
1185 out:
1186 	dqm_unlock(dqm);
1187 	return ret;
1188 }
1189 
1190 static int evict_process_queues_cpsch(struct device_queue_manager *dqm,
1191 				      struct qcm_process_device *qpd)
1192 {
1193 	struct queue *q;
1194 	struct device *dev = dqm->dev->adev->dev;
1195 	struct kfd_process_device *pdd;
1196 	int retval = 0;
1197 
1198 	dqm_lock(dqm);
1199 	if (qpd->evicted++ > 0) /* already evicted, do nothing */
1200 		goto out;
1201 
1202 	pdd = qpd_to_pdd(qpd);
1203 
1204 	/* The debugger creates processes that temporarily have not acquired
1205 	 * all VMs for all devices and has no VMs itself.
1206 	 * Skip queue eviction on process eviction.
1207 	 */
1208 	if (!pdd->drm_priv)
1209 		goto out;
1210 
1211 	pr_debug_ratelimited("Evicting process pid %d queues\n",
1212 			    pdd->process->lead_thread->pid);
1213 
1214 	if (dqm->dev->kfd->shared_resources.enable_mes) {
1215 		pdd->last_evict_timestamp = get_jiffies_64();
1216 		retval = suspend_all_queues_mes(dqm);
1217 		if (retval) {
1218 			dev_err(dev, "Suspending all queues failed");
1219 			goto out;
1220 		}
1221 	}
1222 
1223 	/* Mark all queues as evicted. Deactivate all active queues on
1224 	 * the qpd.
1225 	 */
1226 	list_for_each_entry(q, &qpd->queues_list, list) {
1227 		q->properties.is_evicted = true;
1228 		if (!q->properties.is_active)
1229 			continue;
1230 
1231 		q->properties.is_active = false;
1232 		decrement_queue_count(dqm, qpd, q);
1233 
1234 		if (dqm->dev->kfd->shared_resources.enable_mes) {
1235 			retval = remove_queue_mes(dqm, q, qpd);
1236 			if (retval) {
1237 				dev_err(dev, "Failed to evict queue %d\n",
1238 					q->properties.queue_id);
1239 				goto out;
1240 			}
1241 		}
1242 	}
1243 
1244 	if (!dqm->dev->kfd->shared_resources.enable_mes) {
1245 		pdd->last_evict_timestamp = get_jiffies_64();
1246 		retval = execute_queues_cpsch(dqm,
1247 					      qpd->is_debug ?
1248 					      KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES :
1249 					      KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
1250 					      USE_DEFAULT_GRACE_PERIOD);
1251 	} else {
1252 		retval = resume_all_queues_mes(dqm);
1253 		if (retval)
1254 			dev_err(dev, "Resuming all queues failed");
1255 	}
1256 
1257 out:
1258 	dqm_unlock(dqm);
1259 	return retval;
1260 }
1261 
1262 static int restore_process_queues_nocpsch(struct device_queue_manager *dqm,
1263 					  struct qcm_process_device *qpd)
1264 {
1265 	struct mm_struct *mm = NULL;
1266 	struct queue *q;
1267 	struct mqd_manager *mqd_mgr;
1268 	struct kfd_process_device *pdd;
1269 	uint64_t pd_base;
1270 	uint64_t eviction_duration;
1271 	int retval, ret = 0;
1272 
1273 	pdd = qpd_to_pdd(qpd);
1274 	/* Retrieve PD base */
1275 	pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1276 
1277 	dqm_lock(dqm);
1278 	if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
1279 		goto out;
1280 	if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
1281 		qpd->evicted--;
1282 		goto out;
1283 	}
1284 
1285 	pr_debug_ratelimited("Restoring process pid %d queues\n",
1286 			    pdd->process->lead_thread->pid);
1287 
1288 	/* Update PD Base in QPD */
1289 	qpd->page_table_base = pd_base;
1290 	pr_debug("Updated PD address to 0x%llx\n", pd_base);
1291 
1292 	if (!list_empty(&qpd->queues_list)) {
1293 		dqm->dev->kfd2kgd->set_vm_context_page_table_base(
1294 				dqm->dev->adev,
1295 				qpd->vmid,
1296 				qpd->page_table_base);
1297 		kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
1298 	}
1299 
1300 	/* Take a safe reference to the mm_struct, which may otherwise
1301 	 * disappear even while the kfd_process is still referenced.
1302 	 */
1303 	mm = get_task_mm(pdd->process->lead_thread);
1304 	if (!mm) {
1305 		ret = -EFAULT;
1306 		goto out;
1307 	}
1308 
1309 	/* Remove the eviction flags. Activate queues that are not
1310 	 * inactive for other reasons.
1311 	 */
1312 	list_for_each_entry(q, &qpd->queues_list, list) {
1313 		q->properties.is_evicted = false;
1314 		if (!QUEUE_IS_ACTIVE(q->properties))
1315 			continue;
1316 
1317 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1318 				q->properties.type)];
1319 		q->properties.is_active = true;
1320 		increment_queue_count(dqm, qpd, q);
1321 
1322 		if (WARN_ONCE(!dqm->sched_running, "Restore when stopped\n"))
1323 			continue;
1324 
1325 		retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
1326 				       q->queue, &q->properties, mm);
1327 		if (retval && !ret)
1328 			/* Return the first error, but keep going to
1329 			 * maintain a consistent eviction state
1330 			 */
1331 			ret = retval;
1332 	}
1333 	qpd->evicted = 0;
1334 	eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp;
1335 	atomic64_add(eviction_duration, &pdd->evict_duration_counter);
1336 out:
1337 	if (mm)
1338 		mmput(mm);
1339 	dqm_unlock(dqm);
1340 	return ret;
1341 }
1342 
1343 static int restore_process_queues_cpsch(struct device_queue_manager *dqm,
1344 					struct qcm_process_device *qpd)
1345 {
1346 	struct queue *q;
1347 	struct device *dev = dqm->dev->adev->dev;
1348 	struct kfd_process_device *pdd;
1349 	uint64_t eviction_duration;
1350 	int retval = 0;
1351 
1352 	pdd = qpd_to_pdd(qpd);
1353 
1354 	dqm_lock(dqm);
1355 	if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
1356 		goto out;
1357 	if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
1358 		qpd->evicted--;
1359 		goto out;
1360 	}
1361 
1362 	/* The debugger creates processes that temporarily have not acquired
1363 	 * all VMs for all devices and has no VMs itself.
1364 	 * Skip queue restore on process restore.
1365 	 */
1366 	if (!pdd->drm_priv)
1367 		goto vm_not_acquired;
1368 
1369 	pr_debug_ratelimited("Restoring process pid %d queues\n",
1370 			    pdd->process->lead_thread->pid);
1371 
1372 	/* Update PD Base in QPD */
1373 	qpd->page_table_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1374 	pr_debug("Updated PD address to 0x%llx\n", qpd->page_table_base);
1375 
1376 	/* activate all active queues on the qpd */
1377 	list_for_each_entry(q, &qpd->queues_list, list) {
1378 		q->properties.is_evicted = false;
1379 		if (!QUEUE_IS_ACTIVE(q->properties))
1380 			continue;
1381 
1382 		q->properties.is_active = true;
1383 		increment_queue_count(dqm, &pdd->qpd, q);
1384 
1385 		if (dqm->dev->kfd->shared_resources.enable_mes) {
1386 			retval = add_queue_mes(dqm, q, qpd);
1387 			if (retval) {
1388 				dev_err(dev, "Failed to restore queue %d\n",
1389 					q->properties.queue_id);
1390 				goto out;
1391 			}
1392 		}
1393 	}
1394 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1395 		retval = execute_queues_cpsch(dqm,
1396 					      KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
1397 	eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp;
1398 	atomic64_add(eviction_duration, &pdd->evict_duration_counter);
1399 vm_not_acquired:
1400 	qpd->evicted = 0;
1401 out:
1402 	dqm_unlock(dqm);
1403 	return retval;
1404 }
1405 
1406 static int register_process(struct device_queue_manager *dqm,
1407 					struct qcm_process_device *qpd)
1408 {
1409 	struct device_process_node *n;
1410 	struct kfd_process_device *pdd;
1411 	uint64_t pd_base;
1412 	int retval;
1413 
1414 	n = kzalloc(sizeof(*n), GFP_KERNEL);
1415 	if (!n)
1416 		return -ENOMEM;
1417 
1418 	n->qpd = qpd;
1419 
1420 	pdd = qpd_to_pdd(qpd);
1421 	/* Retrieve PD base */
1422 	pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1423 
1424 	dqm_lock(dqm);
1425 	list_add(&n->list, &dqm->queues);
1426 
1427 	/* Update PD Base in QPD */
1428 	qpd->page_table_base = pd_base;
1429 	pr_debug("Updated PD address to 0x%llx\n", pd_base);
1430 
1431 	retval = dqm->asic_ops.update_qpd(dqm, qpd);
1432 
1433 	dqm->processes_count++;
1434 
1435 	dqm_unlock(dqm);
1436 
1437 	/* Outside the DQM lock because under the DQM lock we can't do
1438 	 * reclaim or take other locks that others hold while reclaiming.
1439 	 */
1440 	kfd_inc_compute_active(dqm->dev);
1441 
1442 	return retval;
1443 }
1444 
1445 static int unregister_process(struct device_queue_manager *dqm,
1446 					struct qcm_process_device *qpd)
1447 {
1448 	int retval = 0;
1449 	struct device_process_node *cur, *next;
1450 
1451 	pr_debug("qpd->queues_list is %s\n",
1452 			list_empty(&qpd->queues_list) ? "empty" : "not empty");
1453 
1454 	dqm_lock(dqm);
1455 
1456 	list_for_each_entry_safe(cur, next, &dqm->queues, list) {
1457 		if (qpd == cur->qpd) {
1458 			list_del(&cur->list);
1459 			kfree(cur);
1460 			dqm->processes_count--;
1461 			goto out;
1462 		}
1463 	}
1464 	/* qpd not found in dqm list */
1465 	retval = 1;
1466 out:
1467 	dqm_unlock(dqm);
1468 
1469 	/* Outside the DQM lock because under the DQM lock we can't do
1470 	 * reclaim or take other locks that others hold while reclaiming.
1471 	 */
1472 	if (!retval)
1473 		kfd_dec_compute_active(dqm->dev);
1474 
1475 	return retval;
1476 }
1477 
1478 static int
1479 set_pasid_vmid_mapping(struct device_queue_manager *dqm, u32 pasid,
1480 			unsigned int vmid)
1481 {
1482 	uint32_t xcc_mask = dqm->dev->xcc_mask;
1483 	int xcc_id, ret = 0;
1484 
1485 	for_each_inst(xcc_id, xcc_mask) {
1486 		ret = dqm->dev->kfd2kgd->set_pasid_vmid_mapping(
1487 			dqm->dev->adev, pasid, vmid, xcc_id);
1488 		if (ret)
1489 			break;
1490 	}
1491 
1492 	return ret;
1493 }
1494 
1495 static void init_interrupts(struct device_queue_manager *dqm)
1496 {
1497 	uint32_t xcc_mask = dqm->dev->xcc_mask;
1498 	unsigned int i, xcc_id;
1499 
1500 	for_each_inst(xcc_id, xcc_mask) {
1501 		for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++) {
1502 			if (is_pipe_enabled(dqm, 0, i)) {
1503 				dqm->dev->kfd2kgd->init_interrupts(
1504 					dqm->dev->adev, i, xcc_id);
1505 			}
1506 		}
1507 	}
1508 }
1509 
1510 static int initialize_nocpsch(struct device_queue_manager *dqm)
1511 {
1512 	int pipe, queue;
1513 
1514 	pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1515 
1516 	dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm),
1517 					sizeof(unsigned int), GFP_KERNEL);
1518 	if (!dqm->allocated_queues)
1519 		return -ENOMEM;
1520 
1521 	mutex_init(&dqm->lock_hidden);
1522 	INIT_LIST_HEAD(&dqm->queues);
1523 	dqm->active_queue_count = dqm->next_pipe_to_allocate = 0;
1524 	dqm->active_cp_queue_count = 0;
1525 	dqm->gws_queue_count = 0;
1526 
1527 	for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
1528 		int pipe_offset = pipe * get_queues_per_pipe(dqm);
1529 
1530 		for (queue = 0; queue < get_queues_per_pipe(dqm); queue++)
1531 			if (test_bit(pipe_offset + queue,
1532 				     dqm->dev->kfd->shared_resources.cp_queue_bitmap))
1533 				dqm->allocated_queues[pipe] |= 1 << queue;
1534 	}
1535 
1536 	memset(dqm->vmid_pasid, 0, sizeof(dqm->vmid_pasid));
1537 
1538 	init_sdma_bitmaps(dqm);
1539 
1540 	return 0;
1541 }
1542 
1543 static void uninitialize(struct device_queue_manager *dqm)
1544 {
1545 	int i;
1546 
1547 	WARN_ON(dqm->active_queue_count > 0 || dqm->processes_count > 0);
1548 
1549 	kfree(dqm->allocated_queues);
1550 	for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
1551 		kfree(dqm->mqd_mgrs[i]);
1552 	mutex_destroy(&dqm->lock_hidden);
1553 }
1554 
1555 static int start_nocpsch(struct device_queue_manager *dqm)
1556 {
1557 	int r = 0;
1558 
1559 	pr_info("SW scheduler is used");
1560 	init_interrupts(dqm);
1561 
1562 	if (dqm->dev->adev->asic_type == CHIP_HAWAII)
1563 		r = pm_init(&dqm->packet_mgr, dqm);
1564 	if (!r)
1565 		dqm->sched_running = true;
1566 
1567 	return r;
1568 }
1569 
1570 static int stop_nocpsch(struct device_queue_manager *dqm)
1571 {
1572 	dqm_lock(dqm);
1573 	if (!dqm->sched_running) {
1574 		dqm_unlock(dqm);
1575 		return 0;
1576 	}
1577 
1578 	if (dqm->dev->adev->asic_type == CHIP_HAWAII)
1579 		pm_uninit(&dqm->packet_mgr);
1580 	dqm->sched_running = false;
1581 	dqm_unlock(dqm);
1582 
1583 	return 0;
1584 }
1585 
1586 static int allocate_sdma_queue(struct device_queue_manager *dqm,
1587 				struct queue *q, const uint32_t *restore_sdma_id)
1588 {
1589 	struct device *dev = dqm->dev->adev->dev;
1590 	int bit;
1591 
1592 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1593 		if (bitmap_empty(dqm->sdma_bitmap, get_num_sdma_queues(dqm))) {
1594 			dev_warn(dev, "No more SDMA queue to allocate (%d total queues)\n",
1595 				 get_num_sdma_queues(dqm));
1596 			return -ENOMEM;
1597 		}
1598 
1599 		if (restore_sdma_id) {
1600 			/* Re-use existing sdma_id */
1601 			if (!test_bit(*restore_sdma_id, dqm->sdma_bitmap)) {
1602 				dev_err(dev, "SDMA queue already in use\n");
1603 				return -EBUSY;
1604 			}
1605 			clear_bit(*restore_sdma_id, dqm->sdma_bitmap);
1606 			q->sdma_id = *restore_sdma_id;
1607 		} else {
1608 			/* Find first available sdma_id */
1609 			bit = find_first_bit(dqm->sdma_bitmap,
1610 					     get_num_sdma_queues(dqm));
1611 			clear_bit(bit, dqm->sdma_bitmap);
1612 			q->sdma_id = bit;
1613 		}
1614 
1615 		q->properties.sdma_engine_id =
1616 			q->sdma_id % kfd_get_num_sdma_engines(dqm->dev);
1617 		q->properties.sdma_queue_id = q->sdma_id /
1618 				kfd_get_num_sdma_engines(dqm->dev);
1619 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1620 		if (bitmap_empty(dqm->xgmi_sdma_bitmap, get_num_xgmi_sdma_queues(dqm))) {
1621 			dev_warn(dev, "No more XGMI SDMA queue to allocate (%d total queues)\n",
1622 				 get_num_xgmi_sdma_queues(dqm));
1623 			return -ENOMEM;
1624 		}
1625 		if (restore_sdma_id) {
1626 			/* Re-use existing sdma_id */
1627 			if (!test_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap)) {
1628 				dev_err(dev, "SDMA queue already in use\n");
1629 				return -EBUSY;
1630 			}
1631 			clear_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap);
1632 			q->sdma_id = *restore_sdma_id;
1633 		} else {
1634 			bit = find_first_bit(dqm->xgmi_sdma_bitmap,
1635 					     get_num_xgmi_sdma_queues(dqm));
1636 			clear_bit(bit, dqm->xgmi_sdma_bitmap);
1637 			q->sdma_id = bit;
1638 		}
1639 		/* sdma_engine_id is sdma id including
1640 		 * both PCIe-optimized SDMAs and XGMI-
1641 		 * optimized SDMAs. The calculation below
1642 		 * assumes the first N engines are always
1643 		 * PCIe-optimized ones
1644 		 */
1645 		q->properties.sdma_engine_id =
1646 			kfd_get_num_sdma_engines(dqm->dev) +
1647 			q->sdma_id % kfd_get_num_xgmi_sdma_engines(dqm->dev);
1648 		q->properties.sdma_queue_id = q->sdma_id /
1649 			kfd_get_num_xgmi_sdma_engines(dqm->dev);
1650 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_BY_ENG_ID) {
1651 		int i, num_queues, num_engines, eng_offset = 0, start_engine;
1652 		bool free_bit_found = false, is_xgmi = false;
1653 
1654 		if (q->properties.sdma_engine_id < kfd_get_num_sdma_engines(dqm->dev)) {
1655 			num_queues = get_num_sdma_queues(dqm);
1656 			num_engines = kfd_get_num_sdma_engines(dqm->dev);
1657 			q->properties.type = KFD_QUEUE_TYPE_SDMA;
1658 		} else {
1659 			num_queues = get_num_xgmi_sdma_queues(dqm);
1660 			num_engines = kfd_get_num_xgmi_sdma_engines(dqm->dev);
1661 			eng_offset = kfd_get_num_sdma_engines(dqm->dev);
1662 			q->properties.type = KFD_QUEUE_TYPE_SDMA_XGMI;
1663 			is_xgmi = true;
1664 		}
1665 
1666 		/* Scan available bit based on target engine ID. */
1667 		start_engine = q->properties.sdma_engine_id - eng_offset;
1668 		for (i = start_engine; i < num_queues; i += num_engines) {
1669 
1670 			if (!test_bit(i, is_xgmi ? dqm->xgmi_sdma_bitmap : dqm->sdma_bitmap))
1671 				continue;
1672 
1673 			clear_bit(i, is_xgmi ? dqm->xgmi_sdma_bitmap : dqm->sdma_bitmap);
1674 			q->sdma_id = i;
1675 			q->properties.sdma_queue_id = q->sdma_id / num_engines;
1676 			free_bit_found = true;
1677 			break;
1678 		}
1679 
1680 		if (!free_bit_found) {
1681 			dev_warn(dev, "No more SDMA queue to allocate for target ID %i (%d total queues)\n",
1682 				 q->properties.sdma_engine_id, num_queues);
1683 			return -ENOMEM;
1684 		}
1685 	}
1686 
1687 	pr_debug("SDMA engine id: %d\n", q->properties.sdma_engine_id);
1688 	pr_debug("SDMA queue id: %d\n", q->properties.sdma_queue_id);
1689 
1690 	return 0;
1691 }
1692 
1693 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
1694 				struct queue *q)
1695 {
1696 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1697 		if (q->sdma_id >= get_num_sdma_queues(dqm))
1698 			return;
1699 		set_bit(q->sdma_id, dqm->sdma_bitmap);
1700 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1701 		if (q->sdma_id >= get_num_xgmi_sdma_queues(dqm))
1702 			return;
1703 		set_bit(q->sdma_id, dqm->xgmi_sdma_bitmap);
1704 	}
1705 }
1706 
1707 /*
1708  * Device Queue Manager implementation for cp scheduler
1709  */
1710 
1711 static int set_sched_resources(struct device_queue_manager *dqm)
1712 {
1713 	int i, mec;
1714 	struct scheduling_resources res;
1715 	struct device *dev = dqm->dev->adev->dev;
1716 
1717 	res.vmid_mask = dqm->dev->compute_vmid_bitmap;
1718 
1719 	res.queue_mask = 0;
1720 	for (i = 0; i < AMDGPU_MAX_QUEUES; ++i) {
1721 		mec = (i / dqm->dev->kfd->shared_resources.num_queue_per_pipe)
1722 			/ dqm->dev->kfd->shared_resources.num_pipe_per_mec;
1723 
1724 		if (!test_bit(i, dqm->dev->kfd->shared_resources.cp_queue_bitmap))
1725 			continue;
1726 
1727 		/* only acquire queues from the first MEC */
1728 		if (mec > 0)
1729 			continue;
1730 
1731 		/* This situation may be hit in the future if a new HW
1732 		 * generation exposes more than 64 queues. If so, the
1733 		 * definition of res.queue_mask needs updating
1734 		 */
1735 		if (WARN_ON(i >= (sizeof(res.queue_mask)*8))) {
1736 			dev_err(dev, "Invalid queue enabled by amdgpu: %d\n", i);
1737 			break;
1738 		}
1739 
1740 		res.queue_mask |= 1ull
1741 			<< amdgpu_queue_mask_bit_to_set_resource_bit(
1742 				dqm->dev->adev, i);
1743 	}
1744 	res.gws_mask = ~0ull;
1745 	res.oac_mask = res.gds_heap_base = res.gds_heap_size = 0;
1746 
1747 	pr_debug("Scheduling resources:\n"
1748 			"vmid mask: 0x%8X\n"
1749 			"queue mask: 0x%8llX\n",
1750 			res.vmid_mask, res.queue_mask);
1751 
1752 	return pm_send_set_resources(&dqm->packet_mgr, &res);
1753 }
1754 
1755 static int initialize_cpsch(struct device_queue_manager *dqm)
1756 {
1757 	pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1758 
1759 	mutex_init(&dqm->lock_hidden);
1760 	INIT_LIST_HEAD(&dqm->queues);
1761 	dqm->active_queue_count = dqm->processes_count = 0;
1762 	dqm->active_cp_queue_count = 0;
1763 	dqm->gws_queue_count = 0;
1764 	dqm->active_runlist = false;
1765 	dqm->trap_debug_vmid = 0;
1766 
1767 	init_sdma_bitmaps(dqm);
1768 
1769 	update_dqm_wait_times(dqm);
1770 	return 0;
1771 }
1772 
1773 /* halt_cpsch:
1774  * Unmap queues so the schedule doesn't continue remaining jobs in the queue.
1775  * Then set dqm->sched_halt so queues don't map to runlist until unhalt_cpsch
1776  * is called.
1777  */
1778 static int halt_cpsch(struct device_queue_manager *dqm)
1779 {
1780 	int ret = 0;
1781 
1782 	dqm_lock(dqm);
1783 	if (!dqm->sched_running) {
1784 		dqm_unlock(dqm);
1785 		return 0;
1786 	}
1787 
1788 	WARN_ONCE(dqm->sched_halt, "Scheduling is already on halt\n");
1789 
1790 	if (!dqm->is_hws_hang) {
1791 		if (!dqm->dev->kfd->shared_resources.enable_mes)
1792 			ret = unmap_queues_cpsch(dqm,
1793 						 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
1794 				USE_DEFAULT_GRACE_PERIOD, false);
1795 		else
1796 			ret = remove_all_kfd_queues_mes(dqm);
1797 	}
1798 	dqm->sched_halt = true;
1799 	dqm_unlock(dqm);
1800 
1801 	return ret;
1802 }
1803 
1804 /* unhalt_cpsch
1805  * Unset dqm->sched_halt and map queues back to runlist
1806  */
1807 static int unhalt_cpsch(struct device_queue_manager *dqm)
1808 {
1809 	int ret = 0;
1810 
1811 	dqm_lock(dqm);
1812 	if (!dqm->sched_running || !dqm->sched_halt) {
1813 		WARN_ONCE(!dqm->sched_halt, "Scheduling is not on halt.\n");
1814 		dqm_unlock(dqm);
1815 		return 0;
1816 	}
1817 	dqm->sched_halt = false;
1818 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1819 		ret = execute_queues_cpsch(dqm,
1820 					   KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
1821 			0, USE_DEFAULT_GRACE_PERIOD);
1822 	else
1823 		ret = add_all_kfd_queues_mes(dqm);
1824 
1825 	dqm_unlock(dqm);
1826 
1827 	return ret;
1828 }
1829 
1830 static int start_cpsch(struct device_queue_manager *dqm)
1831 {
1832 	struct device *dev = dqm->dev->adev->dev;
1833 	int retval, num_hw_queue_slots;
1834 
1835 	dqm_lock(dqm);
1836 
1837 	if (!dqm->dev->kfd->shared_resources.enable_mes) {
1838 		retval = pm_init(&dqm->packet_mgr, dqm);
1839 		if (retval)
1840 			goto fail_packet_manager_init;
1841 
1842 		retval = set_sched_resources(dqm);
1843 		if (retval)
1844 			goto fail_set_sched_resources;
1845 	}
1846 	pr_debug("Allocating fence memory\n");
1847 
1848 	/* allocate fence memory on the gart */
1849 	retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
1850 					&dqm->fence_mem);
1851 
1852 	if (retval)
1853 		goto fail_allocate_vidmem;
1854 
1855 	dqm->fence_addr = (uint64_t *)dqm->fence_mem->cpu_ptr;
1856 	dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
1857 
1858 	init_interrupts(dqm);
1859 
1860 	/* clear hang status when driver try to start the hw scheduler */
1861 	dqm->sched_running = true;
1862 
1863 	if (!dqm->dev->kfd->shared_resources.enable_mes) {
1864 		if (pm_config_dequeue_wait_counts(&dqm->packet_mgr,
1865 				KFD_DEQUEUE_WAIT_INIT, 0 /* unused */))
1866 			dev_err(dev, "Setting optimized dequeue wait failed. Using default values\n");
1867 		execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
1868 	}
1869 
1870 	/* setup per-queue reset detection buffer  */
1871 	num_hw_queue_slots =  dqm->dev->kfd->shared_resources.num_queue_per_pipe *
1872 			      dqm->dev->kfd->shared_resources.num_pipe_per_mec *
1873 			      NUM_XCC(dqm->dev->xcc_mask);
1874 
1875 	dqm->detect_hang_info_size = num_hw_queue_slots * sizeof(struct dqm_detect_hang_info);
1876 	dqm->detect_hang_info = kzalloc(dqm->detect_hang_info_size, GFP_KERNEL);
1877 
1878 	if (!dqm->detect_hang_info) {
1879 		retval = -ENOMEM;
1880 		goto fail_detect_hang_buffer;
1881 	}
1882 
1883 	dqm_unlock(dqm);
1884 
1885 	return 0;
1886 fail_detect_hang_buffer:
1887 	kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
1888 fail_allocate_vidmem:
1889 fail_set_sched_resources:
1890 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1891 		pm_uninit(&dqm->packet_mgr);
1892 fail_packet_manager_init:
1893 	dqm_unlock(dqm);
1894 	return retval;
1895 }
1896 
1897 static int stop_cpsch(struct device_queue_manager *dqm)
1898 {
1899 	int ret = 0;
1900 
1901 	dqm_lock(dqm);
1902 	if (!dqm->sched_running) {
1903 		dqm_unlock(dqm);
1904 		return 0;
1905 	}
1906 
1907 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1908 		ret = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES,
1909 								0, USE_DEFAULT_GRACE_PERIOD, false);
1910 	else
1911 		ret = remove_all_kfd_queues_mes(dqm);
1912 
1913 	dqm->sched_running = false;
1914 
1915 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1916 		pm_release_ib(&dqm->packet_mgr);
1917 
1918 	kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
1919 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1920 		pm_uninit(&dqm->packet_mgr);
1921 	kfree(dqm->detect_hang_info);
1922 	dqm->detect_hang_info = NULL;
1923 	dqm_unlock(dqm);
1924 
1925 	return ret;
1926 }
1927 
1928 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
1929 					struct kernel_queue *kq,
1930 					struct qcm_process_device *qpd)
1931 {
1932 	dqm_lock(dqm);
1933 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1934 		pr_warn("Can't create new kernel queue because %d queues were already created\n",
1935 				dqm->total_queue_count);
1936 		dqm_unlock(dqm);
1937 		return -EPERM;
1938 	}
1939 
1940 	/*
1941 	 * Unconditionally increment this counter, regardless of the queue's
1942 	 * type or whether the queue is active.
1943 	 */
1944 	dqm->total_queue_count++;
1945 	pr_debug("Total of %d queues are accountable so far\n",
1946 			dqm->total_queue_count);
1947 
1948 	list_add(&kq->list, &qpd->priv_queue_list);
1949 	increment_queue_count(dqm, qpd, kq->queue);
1950 	qpd->is_debug = true;
1951 	execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
1952 			USE_DEFAULT_GRACE_PERIOD);
1953 	dqm_unlock(dqm);
1954 
1955 	return 0;
1956 }
1957 
1958 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
1959 					struct kernel_queue *kq,
1960 					struct qcm_process_device *qpd)
1961 {
1962 	dqm_lock(dqm);
1963 	list_del(&kq->list);
1964 	decrement_queue_count(dqm, qpd, kq->queue);
1965 	qpd->is_debug = false;
1966 	execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
1967 			USE_DEFAULT_GRACE_PERIOD);
1968 	/*
1969 	 * Unconditionally decrement this counter, regardless of the queue's
1970 	 * type.
1971 	 */
1972 	dqm->total_queue_count--;
1973 	pr_debug("Total of %d queues are accountable so far\n",
1974 			dqm->total_queue_count);
1975 	dqm_unlock(dqm);
1976 }
1977 
1978 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
1979 			struct qcm_process_device *qpd,
1980 			const struct kfd_criu_queue_priv_data *qd,
1981 			const void *restore_mqd, const void *restore_ctl_stack)
1982 {
1983 	int retval;
1984 	struct mqd_manager *mqd_mgr;
1985 
1986 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1987 		pr_warn("Can't create new usermode queue because %d queues were already created\n",
1988 				dqm->total_queue_count);
1989 		retval = -EPERM;
1990 		goto out;
1991 	}
1992 
1993 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1994 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI ||
1995 		q->properties.type == KFD_QUEUE_TYPE_SDMA_BY_ENG_ID) {
1996 		dqm_lock(dqm);
1997 		retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL);
1998 		dqm_unlock(dqm);
1999 		if (retval)
2000 			goto out;
2001 	}
2002 
2003 	retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL);
2004 	if (retval)
2005 		goto out_deallocate_sdma_queue;
2006 
2007 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2008 			q->properties.type)];
2009 
2010 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
2011 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
2012 		dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
2013 	q->properties.tba_addr = qpd->tba_addr;
2014 	q->properties.tma_addr = qpd->tma_addr;
2015 	q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
2016 	if (!q->mqd_mem_obj) {
2017 		retval = -ENOMEM;
2018 		goto out_deallocate_doorbell;
2019 	}
2020 
2021 	dqm_lock(dqm);
2022 	/*
2023 	 * Eviction state logic: mark all queues as evicted, even ones
2024 	 * not currently active. Restoring inactive queues later only
2025 	 * updates the is_evicted flag but is a no-op otherwise.
2026 	 */
2027 	q->properties.is_evicted = !!qpd->evicted;
2028 	q->properties.is_dbg_wa = qpd->pqm->process->debug_trap_enabled &&
2029 				  kfd_dbg_has_cwsr_workaround(q->device);
2030 
2031 	if (qd)
2032 		mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr,
2033 				     &q->properties, restore_mqd, restore_ctl_stack,
2034 				     qd->ctl_stack_size);
2035 	else
2036 		mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
2037 					&q->gart_mqd_addr, &q->properties);
2038 
2039 	list_add(&q->list, &qpd->queues_list);
2040 	qpd->queue_count++;
2041 
2042 	if (q->properties.is_active) {
2043 		increment_queue_count(dqm, qpd, q);
2044 
2045 		if (!dqm->dev->kfd->shared_resources.enable_mes)
2046 			retval = execute_queues_cpsch(dqm,
2047 					KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
2048 		else
2049 			retval = add_queue_mes(dqm, q, qpd);
2050 		if (retval)
2051 			goto cleanup_queue;
2052 	}
2053 
2054 	/*
2055 	 * Unconditionally increment this counter, regardless of the queue's
2056 	 * type or whether the queue is active.
2057 	 */
2058 	dqm->total_queue_count++;
2059 
2060 	pr_debug("Total of %d queues are accountable so far\n",
2061 			dqm->total_queue_count);
2062 
2063 	dqm_unlock(dqm);
2064 	return retval;
2065 
2066 cleanup_queue:
2067 	qpd->queue_count--;
2068 	list_del(&q->list);
2069 	if (q->properties.is_active)
2070 		decrement_queue_count(dqm, qpd, q);
2071 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2072 	dqm_unlock(dqm);
2073 out_deallocate_doorbell:
2074 	deallocate_doorbell(qpd, q);
2075 out_deallocate_sdma_queue:
2076 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
2077 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
2078 		dqm_lock(dqm);
2079 		deallocate_sdma_queue(dqm, q);
2080 		dqm_unlock(dqm);
2081 	}
2082 out:
2083 	return retval;
2084 }
2085 
2086 int amdkfd_fence_wait_timeout(struct device_queue_manager *dqm,
2087 			      uint64_t fence_value,
2088 			      unsigned int timeout_ms)
2089 {
2090 	unsigned long end_jiffies = msecs_to_jiffies(timeout_ms) + jiffies;
2091 	struct device *dev = dqm->dev->adev->dev;
2092 	uint64_t *fence_addr = dqm->fence_addr;
2093 
2094 	while (*fence_addr != fence_value) {
2095 		/* Fatal err detected, this response won't come */
2096 		if (amdgpu_amdkfd_is_fed(dqm->dev->adev) ||
2097 		    amdgpu_in_reset(dqm->dev->adev))
2098 			return -EIO;
2099 
2100 		if (time_after(jiffies, end_jiffies)) {
2101 			dev_err(dev, "qcm fence wait loop timeout expired\n");
2102 			/* In HWS case, this is used to halt the driver thread
2103 			 * in order not to mess up CP states before doing
2104 			 * scandumps for FW debugging.
2105 			 */
2106 			while (halt_if_hws_hang)
2107 				schedule();
2108 
2109 			return -ETIME;
2110 		}
2111 		schedule();
2112 	}
2113 
2114 	return 0;
2115 }
2116 
2117 /* dqm->lock mutex has to be locked before calling this function */
2118 static int map_queues_cpsch(struct device_queue_manager *dqm)
2119 {
2120 	struct device *dev = dqm->dev->adev->dev;
2121 	int retval;
2122 
2123 	if (!dqm->sched_running || dqm->sched_halt)
2124 		return 0;
2125 	if (dqm->active_queue_count <= 0 || dqm->processes_count <= 0)
2126 		return 0;
2127 	if (dqm->active_runlist)
2128 		return 0;
2129 
2130 	retval = pm_send_runlist(&dqm->packet_mgr, &dqm->queues);
2131 	pr_debug("%s sent runlist\n", __func__);
2132 	if (retval) {
2133 		dev_err(dev, "failed to execute runlist\n");
2134 		return retval;
2135 	}
2136 	dqm->active_runlist = true;
2137 
2138 	return retval;
2139 }
2140 
2141 static void set_queue_as_reset(struct device_queue_manager *dqm, struct queue *q,
2142 			       struct qcm_process_device *qpd)
2143 {
2144 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
2145 
2146 	dev_err(dqm->dev->adev->dev, "queue id 0x%0x at pasid %d is reset\n",
2147 		q->properties.queue_id, pdd->process->lead_thread->pid);
2148 
2149 	pdd->has_reset_queue = true;
2150 	if (q->properties.is_active) {
2151 		q->properties.is_active = false;
2152 		decrement_queue_count(dqm, qpd, q);
2153 	}
2154 }
2155 
2156 static int detect_queue_hang(struct device_queue_manager *dqm)
2157 {
2158 	int i;
2159 
2160 	/* detect should be used only in dqm locked queue reset */
2161 	if (WARN_ON(dqm->detect_hang_count > 0))
2162 		return 0;
2163 
2164 	memset(dqm->detect_hang_info, 0, dqm->detect_hang_info_size);
2165 
2166 	for (i = 0; i < AMDGPU_MAX_QUEUES; ++i) {
2167 		uint32_t mec, pipe, queue;
2168 		int xcc_id;
2169 
2170 		mec = (i / dqm->dev->kfd->shared_resources.num_queue_per_pipe)
2171 			/ dqm->dev->kfd->shared_resources.num_pipe_per_mec;
2172 
2173 		if (mec || !test_bit(i, dqm->dev->kfd->shared_resources.cp_queue_bitmap))
2174 			continue;
2175 
2176 		amdgpu_queue_mask_bit_to_mec_queue(dqm->dev->adev, i, &mec, &pipe, &queue);
2177 
2178 		for_each_inst(xcc_id, dqm->dev->xcc_mask) {
2179 			uint64_t queue_addr = dqm->dev->kfd2kgd->hqd_get_pq_addr(
2180 						dqm->dev->adev, pipe, queue, xcc_id);
2181 			struct dqm_detect_hang_info hang_info;
2182 
2183 			if (!queue_addr)
2184 				continue;
2185 
2186 			hang_info.pipe_id = pipe;
2187 			hang_info.queue_id = queue;
2188 			hang_info.xcc_id = xcc_id;
2189 			hang_info.queue_address = queue_addr;
2190 
2191 			dqm->detect_hang_info[dqm->detect_hang_count] = hang_info;
2192 			dqm->detect_hang_count++;
2193 		}
2194 	}
2195 
2196 	return dqm->detect_hang_count;
2197 }
2198 
2199 static struct queue *find_queue_by_address(struct device_queue_manager *dqm, uint64_t queue_address)
2200 {
2201 	struct device_process_node *cur;
2202 	struct qcm_process_device *qpd;
2203 	struct queue *q;
2204 
2205 	list_for_each_entry(cur, &dqm->queues, list) {
2206 		qpd = cur->qpd;
2207 		list_for_each_entry(q, &qpd->queues_list, list) {
2208 			if (queue_address == q->properties.queue_address)
2209 				return q;
2210 		}
2211 	}
2212 
2213 	return NULL;
2214 }
2215 
2216 static int reset_hung_queues(struct device_queue_manager *dqm)
2217 {
2218 	int r = 0, reset_count = 0, i;
2219 
2220 	if (!dqm->detect_hang_info || dqm->is_hws_hang)
2221 		return -EIO;
2222 
2223 	/* assume dqm locked. */
2224 	if (!detect_queue_hang(dqm))
2225 		return -ENOTRECOVERABLE;
2226 
2227 	for (i = 0; i < dqm->detect_hang_count; i++) {
2228 		struct dqm_detect_hang_info hang_info = dqm->detect_hang_info[i];
2229 		struct queue *q = find_queue_by_address(dqm, hang_info.queue_address);
2230 		struct kfd_process_device *pdd;
2231 		uint64_t queue_addr = 0;
2232 
2233 		if (!q) {
2234 			r = -ENOTRECOVERABLE;
2235 			goto reset_fail;
2236 		}
2237 
2238 		pdd = kfd_get_process_device_data(dqm->dev, q->process);
2239 		if (!pdd) {
2240 			r = -ENOTRECOVERABLE;
2241 			goto reset_fail;
2242 		}
2243 
2244 		queue_addr = dqm->dev->kfd2kgd->hqd_reset(dqm->dev->adev,
2245 				hang_info.pipe_id, hang_info.queue_id, hang_info.xcc_id,
2246 				KFD_UNMAP_LATENCY_MS);
2247 
2248 		/* either reset failed or we reset an unexpected queue. */
2249 		if (queue_addr != q->properties.queue_address) {
2250 			r = -ENOTRECOVERABLE;
2251 			goto reset_fail;
2252 		}
2253 
2254 		set_queue_as_reset(dqm, q, &pdd->qpd);
2255 		reset_count++;
2256 	}
2257 
2258 	if (reset_count == dqm->detect_hang_count)
2259 		kfd_signal_reset_event(dqm->dev);
2260 	else
2261 		r = -ENOTRECOVERABLE;
2262 
2263 reset_fail:
2264 	dqm->detect_hang_count = 0;
2265 
2266 	return r;
2267 }
2268 
2269 static bool sdma_has_hang(struct device_queue_manager *dqm)
2270 {
2271 	int engine_start = dqm->dev->node_id * get_num_all_sdma_engines(dqm);
2272 	int engine_end = engine_start + get_num_all_sdma_engines(dqm);
2273 	int num_queues_per_eng =  dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
2274 	int i, j;
2275 
2276 	for (i = engine_start; i < engine_end; i++) {
2277 		for (j = 0; j < num_queues_per_eng; j++) {
2278 			if (!dqm->dev->kfd2kgd->hqd_sdma_get_doorbell(dqm->dev->adev, i, j))
2279 				continue;
2280 
2281 			return true;
2282 		}
2283 	}
2284 
2285 	return false;
2286 }
2287 
2288 static bool set_sdma_queue_as_reset(struct device_queue_manager *dqm,
2289 				    uint32_t doorbell_off)
2290 {
2291 	struct device_process_node *cur;
2292 	struct qcm_process_device *qpd;
2293 	struct queue *q;
2294 
2295 	list_for_each_entry(cur, &dqm->queues, list) {
2296 		qpd = cur->qpd;
2297 		list_for_each_entry(q, &qpd->queues_list, list) {
2298 			if ((q->properties.type == KFD_QUEUE_TYPE_SDMA ||
2299 			     q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) &&
2300 			     q->properties.doorbell_off == doorbell_off) {
2301 				set_queue_as_reset(dqm, q, qpd);
2302 				return true;
2303 			}
2304 		}
2305 	}
2306 
2307 	return false;
2308 }
2309 
2310 static int reset_hung_queues_sdma(struct device_queue_manager *dqm)
2311 {
2312 	int engine_start = dqm->dev->node_id * get_num_all_sdma_engines(dqm);
2313 	int engine_end = engine_start + get_num_all_sdma_engines(dqm);
2314 	int num_queues_per_eng =  dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
2315 	int r = 0, i, j;
2316 
2317 	if (dqm->is_hws_hang)
2318 		return -EIO;
2319 
2320 	/* Scan for hung HW queues and reset engine. */
2321 	dqm->detect_hang_count = 0;
2322 	for (i = engine_start; i < engine_end; i++) {
2323 		for (j = 0; j < num_queues_per_eng; j++) {
2324 			uint32_t doorbell_off =
2325 				dqm->dev->kfd2kgd->hqd_sdma_get_doorbell(dqm->dev->adev, i, j);
2326 
2327 			if (!doorbell_off)
2328 				continue;
2329 
2330 			/* Reset engine and check. */
2331 			if (amdgpu_sdma_reset_engine(dqm->dev->adev, i, false) ||
2332 			    dqm->dev->kfd2kgd->hqd_sdma_get_doorbell(dqm->dev->adev, i, j) ||
2333 			    !set_sdma_queue_as_reset(dqm, doorbell_off)) {
2334 				r = -ENOTRECOVERABLE;
2335 				goto reset_fail;
2336 			}
2337 
2338 			/* Should only expect one queue active per engine */
2339 			dqm->detect_hang_count++;
2340 			break;
2341 		}
2342 	}
2343 
2344 	/* Signal process reset */
2345 	if (dqm->detect_hang_count)
2346 		kfd_signal_reset_event(dqm->dev);
2347 	else
2348 		r = -ENOTRECOVERABLE;
2349 
2350 reset_fail:
2351 	dqm->detect_hang_count = 0;
2352 
2353 	return r;
2354 }
2355 
2356 static int reset_queues_on_hws_hang(struct device_queue_manager *dqm, bool is_sdma)
2357 {
2358 	struct amdgpu_device *adev = dqm->dev->adev;
2359 
2360 	while (halt_if_hws_hang)
2361 		schedule();
2362 
2363 	if (adev->debug_disable_gpu_ring_reset) {
2364 		dev_info_once(adev->dev,
2365 			      "%s queue hung, but ring reset disabled",
2366 			      is_sdma ? "sdma" : "compute");
2367 
2368 		return -EPERM;
2369 	}
2370 	if (!amdgpu_gpu_recovery)
2371 		return -ENOTRECOVERABLE;
2372 
2373 	return is_sdma ? reset_hung_queues_sdma(dqm) : reset_hung_queues(dqm);
2374 }
2375 
2376 /* dqm->lock mutex has to be locked before calling this function
2377  *
2378  * @grace_period: If USE_DEFAULT_GRACE_PERIOD then default wait time
2379  *   for context switch latency. Lower values are used by debugger
2380  *   since context switching are triggered at high frequency.
2381  *   This is configured by setting CP_IQ_WAIT_TIME2.SCH_WAVE
2382  *
2383  */
2384 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
2385 				enum kfd_unmap_queues_filter filter,
2386 				uint32_t filter_param,
2387 				uint32_t grace_period,
2388 				bool reset)
2389 {
2390 	struct device *dev = dqm->dev->adev->dev;
2391 	struct mqd_manager *mqd_mgr;
2392 	int retval;
2393 
2394 	if (!dqm->sched_running)
2395 		return 0;
2396 	if (!dqm->active_runlist)
2397 		return 0;
2398 	if (!down_read_trylock(&dqm->dev->adev->reset_domain->sem))
2399 		return -EIO;
2400 
2401 	if (grace_period != USE_DEFAULT_GRACE_PERIOD) {
2402 		retval = pm_config_dequeue_wait_counts(&dqm->packet_mgr,
2403 				KFD_DEQUEUE_WAIT_SET_SCH_WAVE, grace_period);
2404 		if (retval)
2405 			goto out;
2406 	}
2407 
2408 	retval = pm_send_unmap_queue(&dqm->packet_mgr, filter, filter_param, reset);
2409 	if (retval)
2410 		goto out;
2411 
2412 	*dqm->fence_addr = KFD_FENCE_INIT;
2413 	mb();
2414 	pm_send_query_status(&dqm->packet_mgr, dqm->fence_gpu_addr,
2415 				KFD_FENCE_COMPLETED);
2416 	/* should be timed out */
2417 	retval = amdkfd_fence_wait_timeout(dqm, KFD_FENCE_COMPLETED,
2418 					   queue_preemption_timeout_ms);
2419 	if (retval) {
2420 		dev_err(dev, "The cp might be in an unrecoverable state due to an unsuccessful queues preemption\n");
2421 		kfd_hws_hang(dqm);
2422 		goto out;
2423 	}
2424 
2425 	/* In the current MEC firmware implementation, if compute queue
2426 	 * doesn't response to the preemption request in time, HIQ will
2427 	 * abandon the unmap request without returning any timeout error
2428 	 * to driver. Instead, MEC firmware will log the doorbell of the
2429 	 * unresponding compute queue to HIQ.MQD.queue_doorbell_id fields.
2430 	 * To make sure the queue unmap was successful, driver need to
2431 	 * check those fields
2432 	 */
2433 	mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ];
2434 	if (mqd_mgr->check_preemption_failed(mqd_mgr, dqm->packet_mgr.priv_queue->queue->mqd) &&
2435 	    reset_queues_on_hws_hang(dqm, false))
2436 		goto reset_fail;
2437 
2438 	/* Check for SDMA hang and attempt SDMA reset */
2439 	if (sdma_has_hang(dqm) && reset_queues_on_hws_hang(dqm, true))
2440 		goto reset_fail;
2441 
2442 	/* We need to reset the grace period value for this device */
2443 	if (grace_period != USE_DEFAULT_GRACE_PERIOD) {
2444 		if (pm_config_dequeue_wait_counts(&dqm->packet_mgr,
2445 				KFD_DEQUEUE_WAIT_RESET, 0 /* unused */))
2446 			dev_err(dev, "Failed to reset grace period\n");
2447 	}
2448 
2449 	pm_release_ib(&dqm->packet_mgr);
2450 	dqm->active_runlist = false;
2451 out:
2452 	up_read(&dqm->dev->adev->reset_domain->sem);
2453 	return retval;
2454 
2455 reset_fail:
2456 	dqm->is_hws_hang = true;
2457 	kfd_hws_hang(dqm);
2458 	up_read(&dqm->dev->adev->reset_domain->sem);
2459 	return -ETIME;
2460 }
2461 
2462 /* only for compute queue */
2463 static int reset_queues_cpsch(struct device_queue_manager *dqm, uint16_t pasid)
2464 {
2465 	int retval;
2466 
2467 	dqm_lock(dqm);
2468 
2469 	retval = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_BY_PASID,
2470 			pasid, USE_DEFAULT_GRACE_PERIOD, true);
2471 
2472 	dqm_unlock(dqm);
2473 	return retval;
2474 }
2475 
2476 /* dqm->lock mutex has to be locked before calling this function */
2477 static int execute_queues_cpsch(struct device_queue_manager *dqm,
2478 				enum kfd_unmap_queues_filter filter,
2479 				uint32_t filter_param,
2480 				uint32_t grace_period)
2481 {
2482 	int retval;
2483 
2484 	if (!down_read_trylock(&dqm->dev->adev->reset_domain->sem))
2485 		return -EIO;
2486 	retval = unmap_queues_cpsch(dqm, filter, filter_param, grace_period, false);
2487 	if (!retval)
2488 		retval = map_queues_cpsch(dqm);
2489 	up_read(&dqm->dev->adev->reset_domain->sem);
2490 	return retval;
2491 }
2492 
2493 static int wait_on_destroy_queue(struct device_queue_manager *dqm,
2494 				 struct queue *q)
2495 {
2496 	struct kfd_process_device *pdd = kfd_get_process_device_data(q->device,
2497 								q->process);
2498 	int ret = 0;
2499 
2500 	if (WARN_ON(!pdd))
2501 		return ret;
2502 
2503 	if (pdd->qpd.is_debug)
2504 		return ret;
2505 
2506 	q->properties.is_being_destroyed = true;
2507 
2508 	if (pdd->process->debug_trap_enabled && q->properties.is_suspended) {
2509 		dqm_unlock(dqm);
2510 		mutex_unlock(&q->process->mutex);
2511 		ret = wait_event_interruptible(dqm->destroy_wait,
2512 						!q->properties.is_suspended);
2513 
2514 		mutex_lock(&q->process->mutex);
2515 		dqm_lock(dqm);
2516 	}
2517 
2518 	return ret;
2519 }
2520 
2521 static int destroy_queue_cpsch(struct device_queue_manager *dqm,
2522 				struct qcm_process_device *qpd,
2523 				struct queue *q)
2524 {
2525 	int retval;
2526 	struct mqd_manager *mqd_mgr;
2527 	uint64_t sdma_val = 0;
2528 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
2529 	struct device *dev = dqm->dev->adev->dev;
2530 
2531 	/* Get the SDMA queue stats */
2532 	if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
2533 	    (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
2534 		retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr,
2535 							&sdma_val);
2536 		if (retval)
2537 			dev_err(dev, "Failed to read SDMA queue counter for queue: %d\n",
2538 				q->properties.queue_id);
2539 	}
2540 
2541 	/* remove queue from list to prevent rescheduling after preemption */
2542 	dqm_lock(dqm);
2543 
2544 	retval = wait_on_destroy_queue(dqm, q);
2545 
2546 	if (retval) {
2547 		dqm_unlock(dqm);
2548 		return retval;
2549 	}
2550 
2551 	if (qpd->is_debug) {
2552 		/*
2553 		 * error, currently we do not allow to destroy a queue
2554 		 * of a currently debugged process
2555 		 */
2556 		retval = -EBUSY;
2557 		goto failed_try_destroy_debugged_queue;
2558 
2559 	}
2560 
2561 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2562 			q->properties.type)];
2563 
2564 	deallocate_doorbell(qpd, q);
2565 
2566 	if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
2567 	    (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
2568 		deallocate_sdma_queue(dqm, q);
2569 		pdd->sdma_past_activity_counter += sdma_val;
2570 	}
2571 
2572 	if (q->properties.is_active) {
2573 		decrement_queue_count(dqm, qpd, q);
2574 		q->properties.is_active = false;
2575 		if (!dqm->dev->kfd->shared_resources.enable_mes) {
2576 			retval = execute_queues_cpsch(dqm,
2577 						      KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
2578 						      USE_DEFAULT_GRACE_PERIOD);
2579 			if (retval == -ETIME)
2580 				qpd->reset_wavefronts = true;
2581 		} else {
2582 			retval = remove_queue_mes(dqm, q, qpd);
2583 		}
2584 	}
2585 	list_del(&q->list);
2586 	qpd->queue_count--;
2587 
2588 	/*
2589 	 * Unconditionally decrement this counter, regardless of the queue's
2590 	 * type
2591 	 */
2592 	dqm->total_queue_count--;
2593 	pr_debug("Total of %d queues are accountable so far\n",
2594 			dqm->total_queue_count);
2595 
2596 	dqm_unlock(dqm);
2597 
2598 	/*
2599 	 * Do free_mqd and raise delete event after dqm_unlock(dqm) to avoid
2600 	 * circular locking
2601 	 */
2602 	kfd_dbg_ev_raise(KFD_EC_MASK(EC_DEVICE_QUEUE_DELETE),
2603 				qpd->pqm->process, q->device,
2604 				-1, false, NULL, 0);
2605 
2606 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2607 
2608 	return retval;
2609 
2610 failed_try_destroy_debugged_queue:
2611 
2612 	dqm_unlock(dqm);
2613 	return retval;
2614 }
2615 
2616 static bool set_cache_memory_policy(struct device_queue_manager *dqm,
2617 				   struct qcm_process_device *qpd,
2618 				   enum cache_policy default_policy,
2619 				   enum cache_policy alternate_policy,
2620 				   void __user *alternate_aperture_base,
2621 				   uint64_t alternate_aperture_size,
2622 				   u32 misc_process_properties)
2623 {
2624 	bool retval = true;
2625 
2626 	if (!dqm->asic_ops.set_cache_memory_policy)
2627 		return retval;
2628 
2629 	dqm_lock(dqm);
2630 
2631 	retval = dqm->asic_ops.set_cache_memory_policy(
2632 			dqm,
2633 			qpd,
2634 			default_policy,
2635 			alternate_policy,
2636 			alternate_aperture_base,
2637 			alternate_aperture_size,
2638 			misc_process_properties);
2639 
2640 	if (retval)
2641 		goto out;
2642 
2643 	if ((dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
2644 		program_sh_mem_settings(dqm, qpd);
2645 
2646 	pr_debug("sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
2647 		qpd->sh_mem_config, qpd->sh_mem_ape1_base,
2648 		qpd->sh_mem_ape1_limit);
2649 
2650 out:
2651 	dqm_unlock(dqm);
2652 	return retval;
2653 }
2654 
2655 static int process_termination_nocpsch(struct device_queue_manager *dqm,
2656 		struct qcm_process_device *qpd)
2657 {
2658 	struct queue *q;
2659 	struct device_process_node *cur, *next_dpn;
2660 	int retval = 0;
2661 	bool found = false;
2662 
2663 	dqm_lock(dqm);
2664 
2665 	/* Clear all user mode queues */
2666 	while (!list_empty(&qpd->queues_list)) {
2667 		struct mqd_manager *mqd_mgr;
2668 		int ret;
2669 
2670 		q = list_first_entry(&qpd->queues_list, struct queue, list);
2671 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2672 				q->properties.type)];
2673 		ret = destroy_queue_nocpsch_locked(dqm, qpd, q);
2674 		if (ret)
2675 			retval = ret;
2676 		dqm_unlock(dqm);
2677 		mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2678 		dqm_lock(dqm);
2679 	}
2680 
2681 	/* Unregister process */
2682 	list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
2683 		if (qpd == cur->qpd) {
2684 			list_del(&cur->list);
2685 			kfree(cur);
2686 			dqm->processes_count--;
2687 			found = true;
2688 			break;
2689 		}
2690 	}
2691 
2692 	dqm_unlock(dqm);
2693 
2694 	/* Outside the DQM lock because under the DQM lock we can't do
2695 	 * reclaim or take other locks that others hold while reclaiming.
2696 	 */
2697 	if (found)
2698 		kfd_dec_compute_active(dqm->dev);
2699 
2700 	return retval;
2701 }
2702 
2703 static int get_wave_state(struct device_queue_manager *dqm,
2704 			  struct queue *q,
2705 			  void __user *ctl_stack,
2706 			  u32 *ctl_stack_used_size,
2707 			  u32 *save_area_used_size)
2708 {
2709 	struct mqd_manager *mqd_mgr;
2710 
2711 	dqm_lock(dqm);
2712 
2713 	mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP];
2714 
2715 	if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE ||
2716 	    q->properties.is_active || !q->device->kfd->cwsr_enabled ||
2717 	    !mqd_mgr->get_wave_state) {
2718 		dqm_unlock(dqm);
2719 		return -EINVAL;
2720 	}
2721 
2722 	dqm_unlock(dqm);
2723 
2724 	/*
2725 	 * get_wave_state is outside the dqm lock to prevent circular locking
2726 	 * and the queue should be protected against destruction by the process
2727 	 * lock.
2728 	 */
2729 	return mqd_mgr->get_wave_state(mqd_mgr, q->mqd, &q->properties,
2730 			ctl_stack, ctl_stack_used_size, save_area_used_size);
2731 }
2732 
2733 static void get_queue_checkpoint_info(struct device_queue_manager *dqm,
2734 			const struct queue *q,
2735 			u32 *mqd_size,
2736 			u32 *ctl_stack_size)
2737 {
2738 	struct mqd_manager *mqd_mgr;
2739 	enum KFD_MQD_TYPE mqd_type =
2740 			get_mqd_type_from_queue_type(q->properties.type);
2741 
2742 	dqm_lock(dqm);
2743 	mqd_mgr = dqm->mqd_mgrs[mqd_type];
2744 	*mqd_size = mqd_mgr->mqd_size * NUM_XCC(mqd_mgr->dev->xcc_mask);
2745 	*ctl_stack_size = 0;
2746 
2747 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE && mqd_mgr->get_checkpoint_info)
2748 		mqd_mgr->get_checkpoint_info(mqd_mgr, q->mqd, ctl_stack_size);
2749 
2750 	dqm_unlock(dqm);
2751 }
2752 
2753 static int checkpoint_mqd(struct device_queue_manager *dqm,
2754 			  const struct queue *q,
2755 			  void *mqd,
2756 			  void *ctl_stack)
2757 {
2758 	struct mqd_manager *mqd_mgr;
2759 	int r = 0;
2760 	enum KFD_MQD_TYPE mqd_type =
2761 			get_mqd_type_from_queue_type(q->properties.type);
2762 
2763 	dqm_lock(dqm);
2764 
2765 	if (q->properties.is_active || !q->device->kfd->cwsr_enabled) {
2766 		r = -EINVAL;
2767 		goto dqm_unlock;
2768 	}
2769 
2770 	mqd_mgr = dqm->mqd_mgrs[mqd_type];
2771 	if (!mqd_mgr->checkpoint_mqd) {
2772 		r = -EOPNOTSUPP;
2773 		goto dqm_unlock;
2774 	}
2775 
2776 	mqd_mgr->checkpoint_mqd(mqd_mgr, q->mqd, mqd, ctl_stack);
2777 
2778 dqm_unlock:
2779 	dqm_unlock(dqm);
2780 	return r;
2781 }
2782 
2783 static int process_termination_cpsch(struct device_queue_manager *dqm,
2784 		struct qcm_process_device *qpd)
2785 {
2786 	int retval = 0;
2787 	struct queue *q;
2788 	struct device *dev = dqm->dev->adev->dev;
2789 	struct kernel_queue *kq, *kq_next;
2790 	struct mqd_manager *mqd_mgr;
2791 	struct device_process_node *cur, *next_dpn;
2792 	enum kfd_unmap_queues_filter filter =
2793 		KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES;
2794 	bool found = false;
2795 
2796 	dqm_lock(dqm);
2797 
2798 	/* Clean all kernel queues */
2799 	list_for_each_entry_safe(kq, kq_next, &qpd->priv_queue_list, list) {
2800 		list_del(&kq->list);
2801 		decrement_queue_count(dqm, qpd, kq->queue);
2802 		qpd->is_debug = false;
2803 		dqm->total_queue_count--;
2804 		filter = KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES;
2805 	}
2806 
2807 	/* Clear all user mode queues */
2808 	list_for_each_entry(q, &qpd->queues_list, list) {
2809 		if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
2810 			deallocate_sdma_queue(dqm, q);
2811 		else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
2812 			deallocate_sdma_queue(dqm, q);
2813 
2814 		if (q->properties.is_active) {
2815 			decrement_queue_count(dqm, qpd, q);
2816 
2817 			if (dqm->dev->kfd->shared_resources.enable_mes) {
2818 				retval = remove_queue_mes(dqm, q, qpd);
2819 				if (retval)
2820 					dev_err(dev, "Failed to remove queue %d\n",
2821 						q->properties.queue_id);
2822 			}
2823 		}
2824 
2825 		dqm->total_queue_count--;
2826 	}
2827 
2828 	/* Unregister process */
2829 	list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
2830 		if (qpd == cur->qpd) {
2831 			list_del(&cur->list);
2832 			kfree(cur);
2833 			dqm->processes_count--;
2834 			found = true;
2835 			break;
2836 		}
2837 	}
2838 
2839 	if (!dqm->dev->kfd->shared_resources.enable_mes)
2840 		retval = execute_queues_cpsch(dqm, filter, 0, USE_DEFAULT_GRACE_PERIOD);
2841 
2842 	if ((retval || qpd->reset_wavefronts) &&
2843 	    down_read_trylock(&dqm->dev->adev->reset_domain->sem)) {
2844 		pr_warn("Resetting wave fronts (cpsch) on dev %p\n", dqm->dev);
2845 		dbgdev_wave_reset_wavefronts(dqm->dev, qpd->pqm->process);
2846 		qpd->reset_wavefronts = false;
2847 		up_read(&dqm->dev->adev->reset_domain->sem);
2848 	}
2849 
2850 	/* Lastly, free mqd resources.
2851 	 * Do free_mqd() after dqm_unlock to avoid circular locking.
2852 	 */
2853 	while (!list_empty(&qpd->queues_list)) {
2854 		q = list_first_entry(&qpd->queues_list, struct queue, list);
2855 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2856 				q->properties.type)];
2857 		list_del(&q->list);
2858 		qpd->queue_count--;
2859 		dqm_unlock(dqm);
2860 		mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2861 		dqm_lock(dqm);
2862 	}
2863 	dqm_unlock(dqm);
2864 
2865 	/* Outside the DQM lock because under the DQM lock we can't do
2866 	 * reclaim or take other locks that others hold while reclaiming.
2867 	 */
2868 	if (found)
2869 		kfd_dec_compute_active(dqm->dev);
2870 
2871 	return retval;
2872 }
2873 
2874 static int init_mqd_managers(struct device_queue_manager *dqm)
2875 {
2876 	int i, j;
2877 	struct device *dev = dqm->dev->adev->dev;
2878 	struct mqd_manager *mqd_mgr;
2879 
2880 	for (i = 0; i < KFD_MQD_TYPE_MAX; i++) {
2881 		mqd_mgr = dqm->asic_ops.mqd_manager_init(i, dqm->dev);
2882 		if (!mqd_mgr) {
2883 			dev_err(dev, "mqd manager [%d] initialization failed\n", i);
2884 			goto out_free;
2885 		}
2886 		dqm->mqd_mgrs[i] = mqd_mgr;
2887 	}
2888 
2889 	return 0;
2890 
2891 out_free:
2892 	for (j = 0; j < i; j++) {
2893 		kfree(dqm->mqd_mgrs[j]);
2894 		dqm->mqd_mgrs[j] = NULL;
2895 	}
2896 
2897 	return -ENOMEM;
2898 }
2899 
2900 /* Allocate one hiq mqd (HWS) and all SDMA mqd in a continuous trunk*/
2901 static int allocate_hiq_sdma_mqd(struct device_queue_manager *dqm)
2902 {
2903 	int retval;
2904 	struct kfd_node *dev = dqm->dev;
2905 	struct kfd_mem_obj *mem_obj = &dqm->hiq_sdma_mqd;
2906 	uint32_t size = dqm->mqd_mgrs[KFD_MQD_TYPE_SDMA]->mqd_size *
2907 		get_num_all_sdma_engines(dqm) *
2908 		dev->kfd->device_info.num_sdma_queues_per_engine +
2909 		(dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]->mqd_size *
2910 		NUM_XCC(dqm->dev->xcc_mask));
2911 
2912 	retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev, size,
2913 		&(mem_obj->gtt_mem), &(mem_obj->gpu_addr),
2914 		(void *)&(mem_obj->cpu_ptr), false);
2915 
2916 	return retval;
2917 }
2918 
2919 static void deallocate_hiq_sdma_mqd(struct kfd_node *dev,
2920 				    struct kfd_mem_obj *mqd)
2921 {
2922 	WARN(!mqd, "No hiq sdma mqd trunk to free");
2923 
2924 	amdgpu_amdkfd_free_gtt_mem(dev->adev, &mqd->gtt_mem);
2925 }
2926 
2927 struct device_queue_manager *device_queue_manager_init(struct kfd_node *dev)
2928 {
2929 	struct device_queue_manager *dqm;
2930 
2931 	pr_debug("Loading device queue manager\n");
2932 
2933 	dqm = kzalloc(sizeof(*dqm), GFP_KERNEL);
2934 	if (!dqm)
2935 		return NULL;
2936 
2937 	switch (dev->adev->asic_type) {
2938 	/* HWS is not available on Hawaii. */
2939 	case CHIP_HAWAII:
2940 	/* HWS depends on CWSR for timely dequeue. CWSR is not
2941 	 * available on Tonga.
2942 	 *
2943 	 * FIXME: This argument also applies to Kaveri.
2944 	 */
2945 	case CHIP_TONGA:
2946 		dqm->sched_policy = KFD_SCHED_POLICY_NO_HWS;
2947 		break;
2948 	default:
2949 		dqm->sched_policy = sched_policy;
2950 		break;
2951 	}
2952 
2953 	dqm->dev = dev;
2954 	switch (dqm->sched_policy) {
2955 	case KFD_SCHED_POLICY_HWS:
2956 	case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
2957 		/* initialize dqm for cp scheduling */
2958 		dqm->ops.create_queue = create_queue_cpsch;
2959 		dqm->ops.initialize = initialize_cpsch;
2960 		dqm->ops.start = start_cpsch;
2961 		dqm->ops.stop = stop_cpsch;
2962 		dqm->ops.halt = halt_cpsch;
2963 		dqm->ops.unhalt = unhalt_cpsch;
2964 		dqm->ops.destroy_queue = destroy_queue_cpsch;
2965 		dqm->ops.update_queue = update_queue;
2966 		dqm->ops.register_process = register_process;
2967 		dqm->ops.unregister_process = unregister_process;
2968 		dqm->ops.uninitialize = uninitialize;
2969 		dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
2970 		dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
2971 		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
2972 		dqm->ops.process_termination = process_termination_cpsch;
2973 		dqm->ops.evict_process_queues = evict_process_queues_cpsch;
2974 		dqm->ops.restore_process_queues = restore_process_queues_cpsch;
2975 		dqm->ops.get_wave_state = get_wave_state;
2976 		dqm->ops.reset_queues = reset_queues_cpsch;
2977 		dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info;
2978 		dqm->ops.checkpoint_mqd = checkpoint_mqd;
2979 		break;
2980 	case KFD_SCHED_POLICY_NO_HWS:
2981 		/* initialize dqm for no cp scheduling */
2982 		dqm->ops.start = start_nocpsch;
2983 		dqm->ops.stop = stop_nocpsch;
2984 		dqm->ops.create_queue = create_queue_nocpsch;
2985 		dqm->ops.destroy_queue = destroy_queue_nocpsch;
2986 		dqm->ops.update_queue = update_queue;
2987 		dqm->ops.register_process = register_process;
2988 		dqm->ops.unregister_process = unregister_process;
2989 		dqm->ops.initialize = initialize_nocpsch;
2990 		dqm->ops.uninitialize = uninitialize;
2991 		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
2992 		dqm->ops.process_termination = process_termination_nocpsch;
2993 		dqm->ops.evict_process_queues = evict_process_queues_nocpsch;
2994 		dqm->ops.restore_process_queues =
2995 			restore_process_queues_nocpsch;
2996 		dqm->ops.get_wave_state = get_wave_state;
2997 		dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info;
2998 		dqm->ops.checkpoint_mqd = checkpoint_mqd;
2999 		break;
3000 	default:
3001 		dev_err(dev->adev->dev, "Invalid scheduling policy %d\n", dqm->sched_policy);
3002 		goto out_free;
3003 	}
3004 
3005 	switch (dev->adev->asic_type) {
3006 	case CHIP_KAVERI:
3007 	case CHIP_HAWAII:
3008 		device_queue_manager_init_cik(&dqm->asic_ops);
3009 		break;
3010 
3011 	case CHIP_CARRIZO:
3012 	case CHIP_TONGA:
3013 	case CHIP_FIJI:
3014 	case CHIP_POLARIS10:
3015 	case CHIP_POLARIS11:
3016 	case CHIP_POLARIS12:
3017 	case CHIP_VEGAM:
3018 		device_queue_manager_init_vi(&dqm->asic_ops);
3019 		break;
3020 
3021 	default:
3022 		if (KFD_GC_VERSION(dev) >= IP_VERSION(12, 1, 0))
3023 			device_queue_manager_init_v12_1(&dqm->asic_ops);
3024 		else if (KFD_GC_VERSION(dev) >= IP_VERSION(12, 0, 0))
3025 			device_queue_manager_init_v12(&dqm->asic_ops);
3026 		else if (KFD_GC_VERSION(dev) >= IP_VERSION(11, 0, 0))
3027 			device_queue_manager_init_v11(&dqm->asic_ops);
3028 		else if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
3029 			device_queue_manager_init_v10(&dqm->asic_ops);
3030 		else if (KFD_GC_VERSION(dev) >= IP_VERSION(9, 0, 1))
3031 			device_queue_manager_init_v9(&dqm->asic_ops);
3032 		else {
3033 			WARN(1, "Unexpected ASIC family %u",
3034 			     dev->adev->asic_type);
3035 			goto out_free;
3036 		}
3037 	}
3038 
3039 	if (init_mqd_managers(dqm))
3040 		goto out_free;
3041 
3042 	if (!dev->kfd->shared_resources.enable_mes && allocate_hiq_sdma_mqd(dqm)) {
3043 		dev_err(dev->adev->dev, "Failed to allocate hiq sdma mqd trunk buffer\n");
3044 		goto out_free;
3045 	}
3046 
3047 	if (!dqm->ops.initialize(dqm)) {
3048 		init_waitqueue_head(&dqm->destroy_wait);
3049 		return dqm;
3050 	}
3051 
3052 	if (!dev->kfd->shared_resources.enable_mes)
3053 		deallocate_hiq_sdma_mqd(dev, &dqm->hiq_sdma_mqd);
3054 
3055 out_free:
3056 	kfree(dqm);
3057 	return NULL;
3058 }
3059 
3060 void device_queue_manager_uninit(struct device_queue_manager *dqm)
3061 {
3062 	dqm->ops.stop(dqm);
3063 	dqm->ops.uninitialize(dqm);
3064 	if (!dqm->dev->kfd->shared_resources.enable_mes)
3065 		deallocate_hiq_sdma_mqd(dqm->dev, &dqm->hiq_sdma_mqd);
3066 	kfree(dqm);
3067 }
3068 
3069 int kfd_dqm_suspend_bad_queue_mes(struct kfd_node *knode, u32 pasid, u32 doorbell_id)
3070 {
3071 	struct kfd_process_device *pdd = NULL;
3072 	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid, &pdd);
3073 	struct device_queue_manager *dqm = knode->dqm;
3074 	struct device *dev = dqm->dev->adev->dev;
3075 	struct qcm_process_device *qpd;
3076 	struct queue *q = NULL;
3077 	int ret = 0;
3078 
3079 	if (!pdd)
3080 		return -EINVAL;
3081 
3082 	dqm_lock(dqm);
3083 
3084 	if (pdd) {
3085 		qpd = &pdd->qpd;
3086 
3087 		list_for_each_entry(q, &qpd->queues_list, list) {
3088 			if (q->doorbell_id == doorbell_id && q->properties.is_active) {
3089 				ret = suspend_all_queues_mes(dqm);
3090 				if (ret) {
3091 					dev_err(dev, "Suspending all queues failed");
3092 					goto out;
3093 				}
3094 
3095 				q->properties.is_evicted = true;
3096 				q->properties.is_active = false;
3097 				decrement_queue_count(dqm, qpd, q);
3098 
3099 				ret = remove_queue_mes(dqm, q, qpd);
3100 				if (ret) {
3101 					dev_err(dev, "Removing bad queue failed");
3102 					goto out;
3103 				}
3104 
3105 				ret = resume_all_queues_mes(dqm);
3106 				if (ret)
3107 					dev_err(dev, "Resuming all queues failed");
3108 
3109 				break;
3110 			}
3111 		}
3112 	}
3113 
3114 out:
3115 	dqm_unlock(dqm);
3116 	kfd_unref_process(p);
3117 	return ret;
3118 }
3119 
3120 int kfd_evict_process_device(struct kfd_process_device *pdd)
3121 {
3122 	struct device_queue_manager *dqm;
3123 	struct kfd_process *p;
3124 
3125 	p = pdd->process;
3126 	dqm = pdd->dev->dqm;
3127 
3128 	WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
3129 
3130 	return dqm->ops.evict_process_queues(dqm, &pdd->qpd);
3131 }
3132 
3133 int reserve_debug_trap_vmid(struct device_queue_manager *dqm,
3134 				struct qcm_process_device *qpd)
3135 {
3136 	int r;
3137 	struct device *dev = dqm->dev->adev->dev;
3138 	int updated_vmid_mask;
3139 
3140 	if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3141 		dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3142 		return -EINVAL;
3143 	}
3144 
3145 	dqm_lock(dqm);
3146 
3147 	if (dqm->trap_debug_vmid != 0) {
3148 		dev_err(dev, "Trap debug id already reserved\n");
3149 		r = -EBUSY;
3150 		goto out_unlock;
3151 	}
3152 
3153 	r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
3154 			USE_DEFAULT_GRACE_PERIOD, false);
3155 	if (r)
3156 		goto out_unlock;
3157 
3158 	updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap;
3159 	updated_vmid_mask &= ~(1 << dqm->dev->vm_info.last_vmid_kfd);
3160 
3161 	dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask;
3162 	dqm->trap_debug_vmid = dqm->dev->vm_info.last_vmid_kfd;
3163 	r = set_sched_resources(dqm);
3164 	if (r)
3165 		goto out_unlock;
3166 
3167 	r = map_queues_cpsch(dqm);
3168 	if (r)
3169 		goto out_unlock;
3170 
3171 	pr_debug("Reserved VMID for trap debug: %i\n", dqm->trap_debug_vmid);
3172 
3173 out_unlock:
3174 	dqm_unlock(dqm);
3175 	return r;
3176 }
3177 
3178 /*
3179  * Releases vmid for the trap debugger
3180  */
3181 int release_debug_trap_vmid(struct device_queue_manager *dqm,
3182 			struct qcm_process_device *qpd)
3183 {
3184 	struct device *dev = dqm->dev->adev->dev;
3185 	int r;
3186 	int updated_vmid_mask;
3187 	uint32_t trap_debug_vmid;
3188 
3189 	if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3190 		dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3191 		return -EINVAL;
3192 	}
3193 
3194 	dqm_lock(dqm);
3195 	trap_debug_vmid = dqm->trap_debug_vmid;
3196 	if (dqm->trap_debug_vmid == 0) {
3197 		dev_err(dev, "Trap debug id is not reserved\n");
3198 		r = -EINVAL;
3199 		goto out_unlock;
3200 	}
3201 
3202 	r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
3203 			USE_DEFAULT_GRACE_PERIOD, false);
3204 	if (r)
3205 		goto out_unlock;
3206 
3207 	updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap;
3208 	updated_vmid_mask |= (1 << dqm->dev->vm_info.last_vmid_kfd);
3209 
3210 	dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask;
3211 	dqm->trap_debug_vmid = 0;
3212 	r = set_sched_resources(dqm);
3213 	if (r)
3214 		goto out_unlock;
3215 
3216 	r = map_queues_cpsch(dqm);
3217 	if (r)
3218 		goto out_unlock;
3219 
3220 	pr_debug("Released VMID for trap debug: %i\n", trap_debug_vmid);
3221 
3222 out_unlock:
3223 	dqm_unlock(dqm);
3224 	return r;
3225 }
3226 
3227 #define QUEUE_NOT_FOUND		-1
3228 /* invalidate queue operation in array */
3229 static void q_array_invalidate(uint32_t num_queues, uint32_t *queue_ids)
3230 {
3231 	int i;
3232 
3233 	for (i = 0; i < num_queues; i++)
3234 		queue_ids[i] |= KFD_DBG_QUEUE_INVALID_MASK;
3235 }
3236 
3237 /* find queue index in array */
3238 static int q_array_get_index(unsigned int queue_id,
3239 		uint32_t num_queues,
3240 		uint32_t *queue_ids)
3241 {
3242 	int i;
3243 
3244 	for (i = 0; i < num_queues; i++)
3245 		if (queue_id == (queue_ids[i] & ~KFD_DBG_QUEUE_INVALID_MASK))
3246 			return i;
3247 
3248 	return QUEUE_NOT_FOUND;
3249 }
3250 
3251 struct copy_context_work_handler_workarea {
3252 	struct work_struct copy_context_work;
3253 	struct kfd_process *p;
3254 };
3255 
3256 static void copy_context_work_handler(struct work_struct *work)
3257 {
3258 	struct copy_context_work_handler_workarea *workarea;
3259 	struct mqd_manager *mqd_mgr;
3260 	struct queue *q;
3261 	struct mm_struct *mm;
3262 	struct kfd_process *p;
3263 	uint32_t tmp_ctl_stack_used_size, tmp_save_area_used_size;
3264 	int i;
3265 
3266 	workarea = container_of(work,
3267 			struct copy_context_work_handler_workarea,
3268 			copy_context_work);
3269 
3270 	p = workarea->p;
3271 	mm = get_task_mm(p->lead_thread);
3272 
3273 	if (!mm)
3274 		return;
3275 
3276 	kthread_use_mm(mm);
3277 	for (i = 0; i < p->n_pdds; i++) {
3278 		struct kfd_process_device *pdd = p->pdds[i];
3279 		struct device_queue_manager *dqm = pdd->dev->dqm;
3280 		struct qcm_process_device *qpd = &pdd->qpd;
3281 
3282 		list_for_each_entry(q, &qpd->queues_list, list) {
3283 			if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE)
3284 				continue;
3285 
3286 			mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP];
3287 
3288 			/* We ignore the return value from get_wave_state
3289 			 * because
3290 			 * i) right now, it always returns 0, and
3291 			 * ii) if we hit an error, we would continue to the
3292 			 *      next queue anyway.
3293 			 */
3294 			mqd_mgr->get_wave_state(mqd_mgr,
3295 					q->mqd,
3296 					&q->properties,
3297 					(void __user *)	q->properties.ctx_save_restore_area_address,
3298 					&tmp_ctl_stack_used_size,
3299 					&tmp_save_area_used_size);
3300 		}
3301 	}
3302 	kthread_unuse_mm(mm);
3303 	mmput(mm);
3304 }
3305 
3306 static uint32_t *get_queue_ids(uint32_t num_queues, uint32_t *usr_queue_id_array)
3307 {
3308 	size_t array_size = num_queues * sizeof(uint32_t);
3309 
3310 	if (!usr_queue_id_array)
3311 		return NULL;
3312 
3313 	return memdup_user(usr_queue_id_array, array_size);
3314 }
3315 
3316 int resume_queues(struct kfd_process *p,
3317 		uint32_t num_queues,
3318 		uint32_t *usr_queue_id_array)
3319 {
3320 	uint32_t *queue_ids = NULL;
3321 	int total_resumed = 0;
3322 	int i;
3323 
3324 	if (usr_queue_id_array) {
3325 		queue_ids = get_queue_ids(num_queues, usr_queue_id_array);
3326 
3327 		if (IS_ERR(queue_ids))
3328 			return PTR_ERR(queue_ids);
3329 
3330 		/* mask all queues as invalid.  unmask per successful request */
3331 		q_array_invalidate(num_queues, queue_ids);
3332 	}
3333 
3334 	for (i = 0; i < p->n_pdds; i++) {
3335 		struct kfd_process_device *pdd = p->pdds[i];
3336 		struct device_queue_manager *dqm = pdd->dev->dqm;
3337 		struct device *dev = dqm->dev->adev->dev;
3338 		struct qcm_process_device *qpd = &pdd->qpd;
3339 		struct queue *q;
3340 		int r, per_device_resumed = 0;
3341 
3342 		dqm_lock(dqm);
3343 
3344 		/* unmask queues that resume or already resumed as valid */
3345 		list_for_each_entry(q, &qpd->queues_list, list) {
3346 			int q_idx = QUEUE_NOT_FOUND;
3347 
3348 			if (queue_ids)
3349 				q_idx = q_array_get_index(
3350 						q->properties.queue_id,
3351 						num_queues,
3352 						queue_ids);
3353 
3354 			if (!queue_ids || q_idx != QUEUE_NOT_FOUND) {
3355 				int err = resume_single_queue(dqm, &pdd->qpd, q);
3356 
3357 				if (queue_ids) {
3358 					if (!err) {
3359 						queue_ids[q_idx] &=
3360 							~KFD_DBG_QUEUE_INVALID_MASK;
3361 					} else {
3362 						queue_ids[q_idx] |=
3363 							KFD_DBG_QUEUE_ERROR_MASK;
3364 						break;
3365 					}
3366 				}
3367 
3368 				if (dqm->dev->kfd->shared_resources.enable_mes) {
3369 					wake_up_all(&dqm->destroy_wait);
3370 					if (!err)
3371 						total_resumed++;
3372 				} else {
3373 					per_device_resumed++;
3374 				}
3375 			}
3376 		}
3377 
3378 		if (!per_device_resumed) {
3379 			dqm_unlock(dqm);
3380 			continue;
3381 		}
3382 
3383 		r = execute_queues_cpsch(dqm,
3384 					KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
3385 					0,
3386 					USE_DEFAULT_GRACE_PERIOD);
3387 		if (r) {
3388 			dev_err(dev, "Failed to resume process queues\n");
3389 			if (queue_ids) {
3390 				list_for_each_entry(q, &qpd->queues_list, list) {
3391 					int q_idx = q_array_get_index(
3392 							q->properties.queue_id,
3393 							num_queues,
3394 							queue_ids);
3395 
3396 					/* mask queue as error on resume fail */
3397 					if (q_idx != QUEUE_NOT_FOUND)
3398 						queue_ids[q_idx] |=
3399 							KFD_DBG_QUEUE_ERROR_MASK;
3400 				}
3401 			}
3402 		} else {
3403 			wake_up_all(&dqm->destroy_wait);
3404 			total_resumed += per_device_resumed;
3405 		}
3406 
3407 		dqm_unlock(dqm);
3408 	}
3409 
3410 	if (queue_ids) {
3411 		if (copy_to_user((void __user *)usr_queue_id_array, queue_ids,
3412 				num_queues * sizeof(uint32_t)))
3413 			pr_err("copy_to_user failed on queue resume\n");
3414 
3415 		kfree(queue_ids);
3416 	}
3417 
3418 	return total_resumed;
3419 }
3420 
3421 int suspend_queues(struct kfd_process *p,
3422 			uint32_t num_queues,
3423 			uint32_t grace_period,
3424 			uint64_t exception_clear_mask,
3425 			uint32_t *usr_queue_id_array)
3426 {
3427 	uint32_t *queue_ids = get_queue_ids(num_queues, usr_queue_id_array);
3428 	int total_suspended = 0;
3429 	int i;
3430 
3431 	if (IS_ERR(queue_ids))
3432 		return PTR_ERR(queue_ids);
3433 
3434 	/* mask all queues as invalid.  umask on successful request */
3435 	q_array_invalidate(num_queues, queue_ids);
3436 
3437 	for (i = 0; i < p->n_pdds; i++) {
3438 		struct kfd_process_device *pdd = p->pdds[i];
3439 		struct device_queue_manager *dqm = pdd->dev->dqm;
3440 		struct device *dev = dqm->dev->adev->dev;
3441 		struct qcm_process_device *qpd = &pdd->qpd;
3442 		struct queue *q;
3443 		int r, per_device_suspended = 0;
3444 
3445 		mutex_lock(&p->event_mutex);
3446 		dqm_lock(dqm);
3447 
3448 		/* unmask queues that suspend or already suspended */
3449 		list_for_each_entry(q, &qpd->queues_list, list) {
3450 			int q_idx = q_array_get_index(q->properties.queue_id,
3451 							num_queues,
3452 							queue_ids);
3453 
3454 			if (q_idx != QUEUE_NOT_FOUND) {
3455 				int err = suspend_single_queue(dqm, pdd, q);
3456 				bool is_mes = dqm->dev->kfd->shared_resources.enable_mes;
3457 
3458 				if (!err) {
3459 					queue_ids[q_idx] &= ~KFD_DBG_QUEUE_INVALID_MASK;
3460 					if (exception_clear_mask && is_mes)
3461 						q->properties.exception_status &=
3462 							~exception_clear_mask;
3463 
3464 					if (is_mes)
3465 						total_suspended++;
3466 					else
3467 						per_device_suspended++;
3468 				} else if (err != -EBUSY) {
3469 					queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK;
3470 					break;
3471 				}
3472 			}
3473 		}
3474 
3475 		if (!per_device_suspended) {
3476 			dqm_unlock(dqm);
3477 			mutex_unlock(&p->event_mutex);
3478 			if (total_suspended)
3479 				amdgpu_amdkfd_debug_mem_fence(dqm->dev->adev);
3480 			continue;
3481 		}
3482 
3483 		r = execute_queues_cpsch(dqm,
3484 			KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
3485 			grace_period);
3486 
3487 		if (r)
3488 			dev_err(dev, "Failed to suspend process queues.\n");
3489 		else
3490 			total_suspended += per_device_suspended;
3491 
3492 		list_for_each_entry(q, &qpd->queues_list, list) {
3493 			int q_idx = q_array_get_index(q->properties.queue_id,
3494 						num_queues, queue_ids);
3495 
3496 			if (q_idx == QUEUE_NOT_FOUND)
3497 				continue;
3498 
3499 			/* mask queue as error on suspend fail */
3500 			if (r)
3501 				queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK;
3502 			else if (exception_clear_mask)
3503 				q->properties.exception_status &=
3504 							~exception_clear_mask;
3505 		}
3506 
3507 		dqm_unlock(dqm);
3508 		mutex_unlock(&p->event_mutex);
3509 		amdgpu_device_flush_hdp(dqm->dev->adev, NULL);
3510 	}
3511 
3512 	if (total_suspended) {
3513 		struct copy_context_work_handler_workarea copy_context_worker;
3514 
3515 		INIT_WORK_ONSTACK(
3516 				&copy_context_worker.copy_context_work,
3517 				copy_context_work_handler);
3518 
3519 		copy_context_worker.p = p;
3520 
3521 		schedule_work(&copy_context_worker.copy_context_work);
3522 
3523 
3524 		flush_work(&copy_context_worker.copy_context_work);
3525 		destroy_work_on_stack(&copy_context_worker.copy_context_work);
3526 	}
3527 
3528 	if (copy_to_user((void __user *)usr_queue_id_array, queue_ids,
3529 			num_queues * sizeof(uint32_t)))
3530 		pr_err("copy_to_user failed on queue suspend\n");
3531 
3532 	kfree(queue_ids);
3533 
3534 	return total_suspended;
3535 }
3536 
3537 static uint32_t set_queue_type_for_user(struct queue_properties *q_props)
3538 {
3539 	switch (q_props->type) {
3540 	case KFD_QUEUE_TYPE_COMPUTE:
3541 		return q_props->format == KFD_QUEUE_FORMAT_PM4
3542 					? KFD_IOC_QUEUE_TYPE_COMPUTE
3543 					: KFD_IOC_QUEUE_TYPE_COMPUTE_AQL;
3544 	case KFD_QUEUE_TYPE_SDMA:
3545 		return KFD_IOC_QUEUE_TYPE_SDMA;
3546 	case KFD_QUEUE_TYPE_SDMA_XGMI:
3547 		return KFD_IOC_QUEUE_TYPE_SDMA_XGMI;
3548 	default:
3549 		WARN_ONCE(true, "queue type not recognized!");
3550 		return 0xffffffff;
3551 	};
3552 }
3553 
3554 void set_queue_snapshot_entry(struct queue *q,
3555 			      uint64_t exception_clear_mask,
3556 			      struct kfd_queue_snapshot_entry *qss_entry)
3557 {
3558 	qss_entry->ring_base_address = q->properties.queue_address;
3559 	qss_entry->write_pointer_address = (uint64_t)q->properties.write_ptr;
3560 	qss_entry->read_pointer_address = (uint64_t)q->properties.read_ptr;
3561 	qss_entry->ctx_save_restore_address =
3562 				q->properties.ctx_save_restore_area_address;
3563 	qss_entry->ctx_save_restore_area_size =
3564 				q->properties.ctx_save_restore_area_size;
3565 	qss_entry->exception_status = q->properties.exception_status;
3566 	qss_entry->queue_id = q->properties.queue_id;
3567 	qss_entry->gpu_id = q->device->id;
3568 	qss_entry->ring_size = (uint32_t)q->properties.queue_size;
3569 	qss_entry->queue_type = set_queue_type_for_user(&q->properties);
3570 	q->properties.exception_status &= ~exception_clear_mask;
3571 }
3572 
3573 int debug_lock_and_unmap(struct device_queue_manager *dqm)
3574 {
3575 	struct device *dev = dqm->dev->adev->dev;
3576 	int r;
3577 
3578 	if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3579 		dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3580 		return -EINVAL;
3581 	}
3582 
3583 	if (!kfd_dbg_is_per_vmid_supported(dqm->dev))
3584 		return 0;
3585 
3586 	dqm_lock(dqm);
3587 
3588 	r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, 0, false);
3589 	if (r)
3590 		dqm_unlock(dqm);
3591 
3592 	return r;
3593 }
3594 
3595 int debug_map_and_unlock(struct device_queue_manager *dqm)
3596 {
3597 	struct device *dev = dqm->dev->adev->dev;
3598 	int r;
3599 
3600 	if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3601 		dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3602 		return -EINVAL;
3603 	}
3604 
3605 	if (!kfd_dbg_is_per_vmid_supported(dqm->dev))
3606 		return 0;
3607 
3608 	r = map_queues_cpsch(dqm);
3609 
3610 	dqm_unlock(dqm);
3611 
3612 	return r;
3613 }
3614 
3615 int debug_refresh_runlist(struct device_queue_manager *dqm)
3616 {
3617 	int r = debug_lock_and_unmap(dqm);
3618 
3619 	if (r)
3620 		return r;
3621 
3622 	return debug_map_and_unlock(dqm);
3623 }
3624 
3625 bool kfd_dqm_is_queue_in_process(struct device_queue_manager *dqm,
3626 				 struct qcm_process_device *qpd,
3627 				 int doorbell_off, u32 *queue_format)
3628 {
3629 	struct queue *q;
3630 	bool r = false;
3631 
3632 	if (!queue_format)
3633 		return r;
3634 
3635 	dqm_lock(dqm);
3636 
3637 	list_for_each_entry(q, &qpd->queues_list, list) {
3638 		if (q->properties.doorbell_off == doorbell_off) {
3639 			*queue_format = q->properties.format;
3640 			r = true;
3641 			goto out;
3642 		}
3643 	}
3644 
3645 out:
3646 	dqm_unlock(dqm);
3647 	return r;
3648 }
3649 #if defined(CONFIG_DEBUG_FS)
3650 
3651 static void seq_reg_dump(struct seq_file *m,
3652 			 uint32_t (*dump)[2], uint32_t n_regs)
3653 {
3654 	uint32_t i, count;
3655 
3656 	for (i = 0, count = 0; i < n_regs; i++) {
3657 		if (count == 0 ||
3658 		    dump[i-1][0] + sizeof(uint32_t) != dump[i][0]) {
3659 			seq_printf(m, "%s    %08x: %08x",
3660 				   i ? "\n" : "",
3661 				   dump[i][0], dump[i][1]);
3662 			count = 7;
3663 		} else {
3664 			seq_printf(m, " %08x", dump[i][1]);
3665 			count--;
3666 		}
3667 	}
3668 
3669 	seq_puts(m, "\n");
3670 }
3671 
3672 int dqm_debugfs_hqds(struct seq_file *m, void *data)
3673 {
3674 	struct device_queue_manager *dqm = data;
3675 	uint32_t xcc_mask = dqm->dev->xcc_mask;
3676 	uint32_t (*dump)[2], n_regs;
3677 	int pipe, queue;
3678 	int r = 0, xcc_id;
3679 	uint32_t sdma_engine_start;
3680 
3681 	if (!dqm->sched_running) {
3682 		seq_puts(m, " Device is stopped\n");
3683 		return 0;
3684 	}
3685 
3686 	for_each_inst(xcc_id, xcc_mask) {
3687 		r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev,
3688 						KFD_CIK_HIQ_PIPE,
3689 						KFD_CIK_HIQ_QUEUE, &dump,
3690 						&n_regs, xcc_id);
3691 		if (!r) {
3692 			seq_printf(
3693 				m,
3694 				"   Inst %d, HIQ on MEC %d Pipe %d Queue %d\n",
3695 				xcc_id,
3696 				KFD_CIK_HIQ_PIPE / get_pipes_per_mec(dqm) + 1,
3697 				KFD_CIK_HIQ_PIPE % get_pipes_per_mec(dqm),
3698 				KFD_CIK_HIQ_QUEUE);
3699 			seq_reg_dump(m, dump, n_regs);
3700 
3701 			kfree(dump);
3702 		}
3703 
3704 		for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
3705 			int pipe_offset = pipe * get_queues_per_pipe(dqm);
3706 
3707 			for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) {
3708 				if (!test_bit(pipe_offset + queue,
3709 				      dqm->dev->kfd->shared_resources.cp_queue_bitmap))
3710 					continue;
3711 
3712 				r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev,
3713 								pipe, queue,
3714 								&dump, &n_regs,
3715 								xcc_id);
3716 				if (r)
3717 					break;
3718 
3719 				seq_printf(m,
3720 					   " Inst %d,  CP Pipe %d, Queue %d\n",
3721 					   xcc_id, pipe, queue);
3722 				seq_reg_dump(m, dump, n_regs);
3723 
3724 				kfree(dump);
3725 			}
3726 		}
3727 	}
3728 
3729 	sdma_engine_start = dqm->dev->node_id * get_num_all_sdma_engines(dqm);
3730 	for (pipe = sdma_engine_start;
3731 	     pipe < (sdma_engine_start + get_num_all_sdma_engines(dqm));
3732 	     pipe++) {
3733 		for (queue = 0;
3734 		     queue < dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
3735 		     queue++) {
3736 			r = dqm->dev->kfd2kgd->hqd_sdma_dump(
3737 				dqm->dev->adev, pipe, queue, &dump, &n_regs);
3738 			if (r)
3739 				break;
3740 
3741 			seq_printf(m, "  SDMA Engine %d, RLC %d\n",
3742 				  pipe, queue);
3743 			seq_reg_dump(m, dump, n_regs);
3744 
3745 			kfree(dump);
3746 		}
3747 	}
3748 
3749 	return r;
3750 }
3751 
3752 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm)
3753 {
3754 	int r = 0;
3755 
3756 	dqm_lock(dqm);
3757 	r = pm_debugfs_hang_hws(&dqm->packet_mgr);
3758 	if (r) {
3759 		dqm_unlock(dqm);
3760 		return r;
3761 	}
3762 	dqm->active_runlist = true;
3763 	r = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES,
3764 				0, USE_DEFAULT_GRACE_PERIOD);
3765 	dqm_unlock(dqm);
3766 
3767 	return r;
3768 }
3769 
3770 #endif
3771