xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_device_queue_manager.c (revision 64b14a184e83eb62ea0615e31a409956049d40e7)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/ratelimit.h>
26 #include <linux/printk.h>
27 #include <linux/slab.h>
28 #include <linux/list.h>
29 #include <linux/types.h>
30 #include <linux/bitops.h>
31 #include <linux/sched.h>
32 #include "kfd_priv.h"
33 #include "kfd_device_queue_manager.h"
34 #include "kfd_mqd_manager.h"
35 #include "cik_regs.h"
36 #include "kfd_kernel_queue.h"
37 #include "amdgpu_amdkfd.h"
38 
39 /* Size of the per-pipe EOP queue */
40 #define CIK_HPD_EOP_BYTES_LOG2 11
41 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
42 
43 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
44 				  u32 pasid, unsigned int vmid);
45 
46 static int execute_queues_cpsch(struct device_queue_manager *dqm,
47 				enum kfd_unmap_queues_filter filter,
48 				uint32_t filter_param);
49 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
50 				enum kfd_unmap_queues_filter filter,
51 				uint32_t filter_param, bool reset);
52 
53 static int map_queues_cpsch(struct device_queue_manager *dqm);
54 
55 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
56 				struct queue *q);
57 
58 static inline void deallocate_hqd(struct device_queue_manager *dqm,
59 				struct queue *q);
60 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q);
61 static int allocate_sdma_queue(struct device_queue_manager *dqm,
62 				struct queue *q, const uint32_t *restore_sdma_id);
63 static void kfd_process_hw_exception(struct work_struct *work);
64 
65 static inline
66 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
67 {
68 	if (type == KFD_QUEUE_TYPE_SDMA || type == KFD_QUEUE_TYPE_SDMA_XGMI)
69 		return KFD_MQD_TYPE_SDMA;
70 	return KFD_MQD_TYPE_CP;
71 }
72 
73 static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe)
74 {
75 	int i;
76 	int pipe_offset = (mec * dqm->dev->shared_resources.num_pipe_per_mec
77 		+ pipe) * dqm->dev->shared_resources.num_queue_per_pipe;
78 
79 	/* queue is available for KFD usage if bit is 1 */
80 	for (i = 0; i <  dqm->dev->shared_resources.num_queue_per_pipe; ++i)
81 		if (test_bit(pipe_offset + i,
82 			      dqm->dev->shared_resources.cp_queue_bitmap))
83 			return true;
84 	return false;
85 }
86 
87 unsigned int get_cp_queues_num(struct device_queue_manager *dqm)
88 {
89 	return bitmap_weight(dqm->dev->shared_resources.cp_queue_bitmap,
90 				KGD_MAX_QUEUES);
91 }
92 
93 unsigned int get_queues_per_pipe(struct device_queue_manager *dqm)
94 {
95 	return dqm->dev->shared_resources.num_queue_per_pipe;
96 }
97 
98 unsigned int get_pipes_per_mec(struct device_queue_manager *dqm)
99 {
100 	return dqm->dev->shared_resources.num_pipe_per_mec;
101 }
102 
103 static unsigned int get_num_all_sdma_engines(struct device_queue_manager *dqm)
104 {
105 	return kfd_get_num_sdma_engines(dqm->dev) +
106 		kfd_get_num_xgmi_sdma_engines(dqm->dev);
107 }
108 
109 unsigned int get_num_sdma_queues(struct device_queue_manager *dqm)
110 {
111 	return kfd_get_num_sdma_engines(dqm->dev) *
112 		dqm->dev->device_info.num_sdma_queues_per_engine;
113 }
114 
115 unsigned int get_num_xgmi_sdma_queues(struct device_queue_manager *dqm)
116 {
117 	return kfd_get_num_xgmi_sdma_engines(dqm->dev) *
118 		dqm->dev->device_info.num_sdma_queues_per_engine;
119 }
120 
121 void program_sh_mem_settings(struct device_queue_manager *dqm,
122 					struct qcm_process_device *qpd)
123 {
124 	return dqm->dev->kfd2kgd->program_sh_mem_settings(
125 						dqm->dev->adev, qpd->vmid,
126 						qpd->sh_mem_config,
127 						qpd->sh_mem_ape1_base,
128 						qpd->sh_mem_ape1_limit,
129 						qpd->sh_mem_bases);
130 }
131 
132 static void increment_queue_count(struct device_queue_manager *dqm,
133 			enum kfd_queue_type type)
134 {
135 	dqm->active_queue_count++;
136 	if (type == KFD_QUEUE_TYPE_COMPUTE || type == KFD_QUEUE_TYPE_DIQ)
137 		dqm->active_cp_queue_count++;
138 }
139 
140 static void decrement_queue_count(struct device_queue_manager *dqm,
141 			enum kfd_queue_type type)
142 {
143 	dqm->active_queue_count--;
144 	if (type == KFD_QUEUE_TYPE_COMPUTE || type == KFD_QUEUE_TYPE_DIQ)
145 		dqm->active_cp_queue_count--;
146 }
147 
148 /*
149  * Allocate a doorbell ID to this queue.
150  * If doorbell_id is passed in, make sure requested ID is valid then allocate it.
151  */
152 static int allocate_doorbell(struct qcm_process_device *qpd,
153 			     struct queue *q,
154 			     uint32_t const *restore_id)
155 {
156 	struct kfd_dev *dev = qpd->dqm->dev;
157 
158 	if (!KFD_IS_SOC15(dev)) {
159 		/* On pre-SOC15 chips we need to use the queue ID to
160 		 * preserve the user mode ABI.
161 		 */
162 
163 		if (restore_id && *restore_id != q->properties.queue_id)
164 			return -EINVAL;
165 
166 		q->doorbell_id = q->properties.queue_id;
167 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
168 			q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
169 		/* For SDMA queues on SOC15 with 8-byte doorbell, use static
170 		 * doorbell assignments based on the engine and queue id.
171 		 * The doobell index distance between RLC (2*i) and (2*i+1)
172 		 * for a SDMA engine is 512.
173 		 */
174 
175 		uint32_t *idx_offset = dev->shared_resources.sdma_doorbell_idx;
176 		uint32_t valid_id = idx_offset[q->properties.sdma_engine_id]
177 						+ (q->properties.sdma_queue_id & 1)
178 						* KFD_QUEUE_DOORBELL_MIRROR_OFFSET
179 						+ (q->properties.sdma_queue_id >> 1);
180 
181 		if (restore_id && *restore_id != valid_id)
182 			return -EINVAL;
183 		q->doorbell_id = valid_id;
184 	} else {
185 		/* For CP queues on SOC15 */
186 		if (restore_id) {
187 			/* make sure that ID is free  */
188 			if (__test_and_set_bit(*restore_id, qpd->doorbell_bitmap))
189 				return -EINVAL;
190 
191 			q->doorbell_id = *restore_id;
192 		} else {
193 			/* or reserve a free doorbell ID */
194 			unsigned int found;
195 
196 			found = find_first_zero_bit(qpd->doorbell_bitmap,
197 						KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
198 			if (found >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) {
199 				pr_debug("No doorbells available");
200 				return -EBUSY;
201 			}
202 			set_bit(found, qpd->doorbell_bitmap);
203 			q->doorbell_id = found;
204 		}
205 	}
206 
207 	q->properties.doorbell_off =
208 		kfd_get_doorbell_dw_offset_in_bar(dev, qpd_to_pdd(qpd),
209 					  q->doorbell_id);
210 	return 0;
211 }
212 
213 static void deallocate_doorbell(struct qcm_process_device *qpd,
214 				struct queue *q)
215 {
216 	unsigned int old;
217 	struct kfd_dev *dev = qpd->dqm->dev;
218 
219 	if (!KFD_IS_SOC15(dev) ||
220 	    q->properties.type == KFD_QUEUE_TYPE_SDMA ||
221 	    q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
222 		return;
223 
224 	old = test_and_clear_bit(q->doorbell_id, qpd->doorbell_bitmap);
225 	WARN_ON(!old);
226 }
227 
228 static void program_trap_handler_settings(struct device_queue_manager *dqm,
229 				struct qcm_process_device *qpd)
230 {
231 	if (dqm->dev->kfd2kgd->program_trap_handler_settings)
232 		dqm->dev->kfd2kgd->program_trap_handler_settings(
233 						dqm->dev->adev, qpd->vmid,
234 						qpd->tba_addr, qpd->tma_addr);
235 }
236 
237 static int allocate_vmid(struct device_queue_manager *dqm,
238 			struct qcm_process_device *qpd,
239 			struct queue *q)
240 {
241 	int allocated_vmid = -1, i;
242 
243 	for (i = dqm->dev->vm_info.first_vmid_kfd;
244 			i <= dqm->dev->vm_info.last_vmid_kfd; i++) {
245 		if (!dqm->vmid_pasid[i]) {
246 			allocated_vmid = i;
247 			break;
248 		}
249 	}
250 
251 	if (allocated_vmid < 0) {
252 		pr_err("no more vmid to allocate\n");
253 		return -ENOSPC;
254 	}
255 
256 	pr_debug("vmid allocated: %d\n", allocated_vmid);
257 
258 	dqm->vmid_pasid[allocated_vmid] = q->process->pasid;
259 
260 	set_pasid_vmid_mapping(dqm, q->process->pasid, allocated_vmid);
261 
262 	qpd->vmid = allocated_vmid;
263 	q->properties.vmid = allocated_vmid;
264 
265 	program_sh_mem_settings(dqm, qpd);
266 
267 	if (KFD_IS_SOC15(dqm->dev) && dqm->dev->cwsr_enabled)
268 		program_trap_handler_settings(dqm, qpd);
269 
270 	/* qpd->page_table_base is set earlier when register_process()
271 	 * is called, i.e. when the first queue is created.
272 	 */
273 	dqm->dev->kfd2kgd->set_vm_context_page_table_base(dqm->dev->adev,
274 			qpd->vmid,
275 			qpd->page_table_base);
276 	/* invalidate the VM context after pasid and vmid mapping is set up */
277 	kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY);
278 
279 	if (dqm->dev->kfd2kgd->set_scratch_backing_va)
280 		dqm->dev->kfd2kgd->set_scratch_backing_va(dqm->dev->adev,
281 				qpd->sh_hidden_private_base, qpd->vmid);
282 
283 	return 0;
284 }
285 
286 static int flush_texture_cache_nocpsch(struct kfd_dev *kdev,
287 				struct qcm_process_device *qpd)
288 {
289 	const struct packet_manager_funcs *pmf = qpd->dqm->packet_mgr.pmf;
290 	int ret;
291 
292 	if (!qpd->ib_kaddr)
293 		return -ENOMEM;
294 
295 	ret = pmf->release_mem(qpd->ib_base, (uint32_t *)qpd->ib_kaddr);
296 	if (ret)
297 		return ret;
298 
299 	return amdgpu_amdkfd_submit_ib(kdev->adev, KGD_ENGINE_MEC1, qpd->vmid,
300 				qpd->ib_base, (uint32_t *)qpd->ib_kaddr,
301 				pmf->release_mem_size / sizeof(uint32_t));
302 }
303 
304 static void deallocate_vmid(struct device_queue_manager *dqm,
305 				struct qcm_process_device *qpd,
306 				struct queue *q)
307 {
308 	/* On GFX v7, CP doesn't flush TC at dequeue */
309 	if (q->device->adev->asic_type == CHIP_HAWAII)
310 		if (flush_texture_cache_nocpsch(q->device, qpd))
311 			pr_err("Failed to flush TC\n");
312 
313 	kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY);
314 
315 	/* Release the vmid mapping */
316 	set_pasid_vmid_mapping(dqm, 0, qpd->vmid);
317 	dqm->vmid_pasid[qpd->vmid] = 0;
318 
319 	qpd->vmid = 0;
320 	q->properties.vmid = 0;
321 }
322 
323 static int create_queue_nocpsch(struct device_queue_manager *dqm,
324 				struct queue *q,
325 				struct qcm_process_device *qpd,
326 				const struct kfd_criu_queue_priv_data *qd,
327 				const void *restore_mqd, const void *restore_ctl_stack)
328 {
329 	struct mqd_manager *mqd_mgr;
330 	int retval;
331 
332 	dqm_lock(dqm);
333 
334 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
335 		pr_warn("Can't create new usermode queue because %d queues were already created\n",
336 				dqm->total_queue_count);
337 		retval = -EPERM;
338 		goto out_unlock;
339 	}
340 
341 	if (list_empty(&qpd->queues_list)) {
342 		retval = allocate_vmid(dqm, qpd, q);
343 		if (retval)
344 			goto out_unlock;
345 	}
346 	q->properties.vmid = qpd->vmid;
347 	/*
348 	 * Eviction state logic: mark all queues as evicted, even ones
349 	 * not currently active. Restoring inactive queues later only
350 	 * updates the is_evicted flag but is a no-op otherwise.
351 	 */
352 	q->properties.is_evicted = !!qpd->evicted;
353 
354 	q->properties.tba_addr = qpd->tba_addr;
355 	q->properties.tma_addr = qpd->tma_addr;
356 
357 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
358 			q->properties.type)];
359 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
360 		retval = allocate_hqd(dqm, q);
361 		if (retval)
362 			goto deallocate_vmid;
363 		pr_debug("Loading mqd to hqd on pipe %d, queue %d\n",
364 			q->pipe, q->queue);
365 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
366 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
367 		retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL);
368 		if (retval)
369 			goto deallocate_vmid;
370 		dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
371 	}
372 
373 	retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL);
374 	if (retval)
375 		goto out_deallocate_hqd;
376 
377 	/* Temporarily release dqm lock to avoid a circular lock dependency */
378 	dqm_unlock(dqm);
379 	q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
380 	dqm_lock(dqm);
381 
382 	if (!q->mqd_mem_obj) {
383 		retval = -ENOMEM;
384 		goto out_deallocate_doorbell;
385 	}
386 
387 	if (qd)
388 		mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr,
389 				     &q->properties, restore_mqd, restore_ctl_stack,
390 				     qd->ctl_stack_size);
391 	else
392 		mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
393 					&q->gart_mqd_addr, &q->properties);
394 
395 	if (q->properties.is_active) {
396 		if (!dqm->sched_running) {
397 			WARN_ONCE(1, "Load non-HWS mqd while stopped\n");
398 			goto add_queue_to_list;
399 		}
400 
401 		if (WARN(q->process->mm != current->mm,
402 					"should only run in user thread"))
403 			retval = -EFAULT;
404 		else
405 			retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
406 					q->queue, &q->properties, current->mm);
407 		if (retval)
408 			goto out_free_mqd;
409 	}
410 
411 add_queue_to_list:
412 	list_add(&q->list, &qpd->queues_list);
413 	qpd->queue_count++;
414 	if (q->properties.is_active)
415 		increment_queue_count(dqm, q->properties.type);
416 
417 	/*
418 	 * Unconditionally increment this counter, regardless of the queue's
419 	 * type or whether the queue is active.
420 	 */
421 	dqm->total_queue_count++;
422 	pr_debug("Total of %d queues are accountable so far\n",
423 			dqm->total_queue_count);
424 	goto out_unlock;
425 
426 out_free_mqd:
427 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
428 out_deallocate_doorbell:
429 	deallocate_doorbell(qpd, q);
430 out_deallocate_hqd:
431 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
432 		deallocate_hqd(dqm, q);
433 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
434 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
435 		deallocate_sdma_queue(dqm, q);
436 deallocate_vmid:
437 	if (list_empty(&qpd->queues_list))
438 		deallocate_vmid(dqm, qpd, q);
439 out_unlock:
440 	dqm_unlock(dqm);
441 	return retval;
442 }
443 
444 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
445 {
446 	bool set;
447 	int pipe, bit, i;
448 
449 	set = false;
450 
451 	for (pipe = dqm->next_pipe_to_allocate, i = 0;
452 			i < get_pipes_per_mec(dqm);
453 			pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) {
454 
455 		if (!is_pipe_enabled(dqm, 0, pipe))
456 			continue;
457 
458 		if (dqm->allocated_queues[pipe] != 0) {
459 			bit = ffs(dqm->allocated_queues[pipe]) - 1;
460 			dqm->allocated_queues[pipe] &= ~(1 << bit);
461 			q->pipe = pipe;
462 			q->queue = bit;
463 			set = true;
464 			break;
465 		}
466 	}
467 
468 	if (!set)
469 		return -EBUSY;
470 
471 	pr_debug("hqd slot - pipe %d, queue %d\n", q->pipe, q->queue);
472 	/* horizontal hqd allocation */
473 	dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm);
474 
475 	return 0;
476 }
477 
478 static inline void deallocate_hqd(struct device_queue_manager *dqm,
479 				struct queue *q)
480 {
481 	dqm->allocated_queues[q->pipe] |= (1 << q->queue);
482 }
483 
484 #define SQ_IND_CMD_CMD_KILL		0x00000003
485 #define SQ_IND_CMD_MODE_BROADCAST	0x00000001
486 
487 static int dbgdev_wave_reset_wavefronts(struct kfd_dev *dev, struct kfd_process *p)
488 {
489 	int status = 0;
490 	unsigned int vmid;
491 	uint16_t queried_pasid;
492 	union SQ_CMD_BITS reg_sq_cmd;
493 	union GRBM_GFX_INDEX_BITS reg_gfx_index;
494 	struct kfd_process_device *pdd;
495 	int first_vmid_to_scan = dev->vm_info.first_vmid_kfd;
496 	int last_vmid_to_scan = dev->vm_info.last_vmid_kfd;
497 
498 	reg_sq_cmd.u32All = 0;
499 	reg_gfx_index.u32All = 0;
500 
501 	pr_debug("Killing all process wavefronts\n");
502 
503 	/* Scan all registers in the range ATC_VMID8_PASID_MAPPING ..
504 	 * ATC_VMID15_PASID_MAPPING
505 	 * to check which VMID the current process is mapped to.
506 	 */
507 
508 	for (vmid = first_vmid_to_scan; vmid <= last_vmid_to_scan; vmid++) {
509 		status = dev->kfd2kgd->get_atc_vmid_pasid_mapping_info
510 				(dev->adev, vmid, &queried_pasid);
511 
512 		if (status && queried_pasid == p->pasid) {
513 			pr_debug("Killing wave fronts of vmid %d and pasid 0x%x\n",
514 					vmid, p->pasid);
515 			break;
516 		}
517 	}
518 
519 	if (vmid > last_vmid_to_scan) {
520 		pr_err("Didn't find vmid for pasid 0x%x\n", p->pasid);
521 		return -EFAULT;
522 	}
523 
524 	/* taking the VMID for that process on the safe way using PDD */
525 	pdd = kfd_get_process_device_data(dev, p);
526 	if (!pdd)
527 		return -EFAULT;
528 
529 	reg_gfx_index.bits.sh_broadcast_writes = 1;
530 	reg_gfx_index.bits.se_broadcast_writes = 1;
531 	reg_gfx_index.bits.instance_broadcast_writes = 1;
532 	reg_sq_cmd.bits.mode = SQ_IND_CMD_MODE_BROADCAST;
533 	reg_sq_cmd.bits.cmd = SQ_IND_CMD_CMD_KILL;
534 	reg_sq_cmd.bits.vm_id = vmid;
535 
536 	dev->kfd2kgd->wave_control_execute(dev->adev,
537 					reg_gfx_index.u32All,
538 					reg_sq_cmd.u32All);
539 
540 	return 0;
541 }
542 
543 /* Access to DQM has to be locked before calling destroy_queue_nocpsch_locked
544  * to avoid asynchronized access
545  */
546 static int destroy_queue_nocpsch_locked(struct device_queue_manager *dqm,
547 				struct qcm_process_device *qpd,
548 				struct queue *q)
549 {
550 	int retval;
551 	struct mqd_manager *mqd_mgr;
552 
553 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
554 			q->properties.type)];
555 
556 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
557 		deallocate_hqd(dqm, q);
558 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
559 		deallocate_sdma_queue(dqm, q);
560 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
561 		deallocate_sdma_queue(dqm, q);
562 	else {
563 		pr_debug("q->properties.type %d is invalid\n",
564 				q->properties.type);
565 		return -EINVAL;
566 	}
567 	dqm->total_queue_count--;
568 
569 	deallocate_doorbell(qpd, q);
570 
571 	if (!dqm->sched_running) {
572 		WARN_ONCE(1, "Destroy non-HWS queue while stopped\n");
573 		return 0;
574 	}
575 
576 	retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
577 				KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
578 				KFD_UNMAP_LATENCY_MS,
579 				q->pipe, q->queue);
580 	if (retval == -ETIME)
581 		qpd->reset_wavefronts = true;
582 
583 	list_del(&q->list);
584 	if (list_empty(&qpd->queues_list)) {
585 		if (qpd->reset_wavefronts) {
586 			pr_warn("Resetting wave fronts (nocpsch) on dev %p\n",
587 					dqm->dev);
588 			/* dbgdev_wave_reset_wavefronts has to be called before
589 			 * deallocate_vmid(), i.e. when vmid is still in use.
590 			 */
591 			dbgdev_wave_reset_wavefronts(dqm->dev,
592 					qpd->pqm->process);
593 			qpd->reset_wavefronts = false;
594 		}
595 
596 		deallocate_vmid(dqm, qpd, q);
597 	}
598 	qpd->queue_count--;
599 	if (q->properties.is_active) {
600 		decrement_queue_count(dqm, q->properties.type);
601 		if (q->properties.is_gws) {
602 			dqm->gws_queue_count--;
603 			qpd->mapped_gws_queue = false;
604 		}
605 	}
606 
607 	return retval;
608 }
609 
610 static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
611 				struct qcm_process_device *qpd,
612 				struct queue *q)
613 {
614 	int retval;
615 	uint64_t sdma_val = 0;
616 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
617 	struct mqd_manager *mqd_mgr =
618 		dqm->mqd_mgrs[get_mqd_type_from_queue_type(q->properties.type)];
619 
620 	/* Get the SDMA queue stats */
621 	if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
622 	    (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
623 		retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr,
624 							&sdma_val);
625 		if (retval)
626 			pr_err("Failed to read SDMA queue counter for queue: %d\n",
627 				q->properties.queue_id);
628 	}
629 
630 	dqm_lock(dqm);
631 	retval = destroy_queue_nocpsch_locked(dqm, qpd, q);
632 	if (!retval)
633 		pdd->sdma_past_activity_counter += sdma_val;
634 	dqm_unlock(dqm);
635 
636 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
637 
638 	return retval;
639 }
640 
641 static int update_queue(struct device_queue_manager *dqm, struct queue *q,
642 			struct mqd_update_info *minfo)
643 {
644 	int retval = 0;
645 	struct mqd_manager *mqd_mgr;
646 	struct kfd_process_device *pdd;
647 	bool prev_active = false;
648 
649 	dqm_lock(dqm);
650 	pdd = kfd_get_process_device_data(q->device, q->process);
651 	if (!pdd) {
652 		retval = -ENODEV;
653 		goto out_unlock;
654 	}
655 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
656 			q->properties.type)];
657 
658 	/* Save previous activity state for counters */
659 	prev_active = q->properties.is_active;
660 
661 	/* Make sure the queue is unmapped before updating the MQD */
662 	if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
663 		retval = unmap_queues_cpsch(dqm,
664 				KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, false);
665 		if (retval) {
666 			pr_err("unmap queue failed\n");
667 			goto out_unlock;
668 		}
669 	} else if (prev_active &&
670 		   (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
671 		    q->properties.type == KFD_QUEUE_TYPE_SDMA ||
672 		    q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
673 
674 		if (!dqm->sched_running) {
675 			WARN_ONCE(1, "Update non-HWS queue while stopped\n");
676 			goto out_unlock;
677 		}
678 
679 		retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
680 				(dqm->dev->cwsr_enabled ?
681 				 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE :
682 				 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN),
683 				KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
684 		if (retval) {
685 			pr_err("destroy mqd failed\n");
686 			goto out_unlock;
687 		}
688 	}
689 
690 	mqd_mgr->update_mqd(mqd_mgr, q->mqd, &q->properties, minfo);
691 
692 	/*
693 	 * check active state vs. the previous state and modify
694 	 * counter accordingly. map_queues_cpsch uses the
695 	 * dqm->active_queue_count to determine whether a new runlist must be
696 	 * uploaded.
697 	 */
698 	if (q->properties.is_active && !prev_active)
699 		increment_queue_count(dqm, q->properties.type);
700 	else if (!q->properties.is_active && prev_active)
701 		decrement_queue_count(dqm, q->properties.type);
702 
703 	if (q->gws && !q->properties.is_gws) {
704 		if (q->properties.is_active) {
705 			dqm->gws_queue_count++;
706 			pdd->qpd.mapped_gws_queue = true;
707 		}
708 		q->properties.is_gws = true;
709 	} else if (!q->gws && q->properties.is_gws) {
710 		if (q->properties.is_active) {
711 			dqm->gws_queue_count--;
712 			pdd->qpd.mapped_gws_queue = false;
713 		}
714 		q->properties.is_gws = false;
715 	}
716 
717 	if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS)
718 		retval = map_queues_cpsch(dqm);
719 	else if (q->properties.is_active &&
720 		 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
721 		  q->properties.type == KFD_QUEUE_TYPE_SDMA ||
722 		  q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
723 		if (WARN(q->process->mm != current->mm,
724 			 "should only run in user thread"))
725 			retval = -EFAULT;
726 		else
727 			retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd,
728 						   q->pipe, q->queue,
729 						   &q->properties, current->mm);
730 	}
731 
732 out_unlock:
733 	dqm_unlock(dqm);
734 	return retval;
735 }
736 
737 static int evict_process_queues_nocpsch(struct device_queue_manager *dqm,
738 					struct qcm_process_device *qpd)
739 {
740 	struct queue *q;
741 	struct mqd_manager *mqd_mgr;
742 	struct kfd_process_device *pdd;
743 	int retval, ret = 0;
744 
745 	dqm_lock(dqm);
746 	if (qpd->evicted++ > 0) /* already evicted, do nothing */
747 		goto out;
748 
749 	pdd = qpd_to_pdd(qpd);
750 	pr_debug_ratelimited("Evicting PASID 0x%x queues\n",
751 			    pdd->process->pasid);
752 
753 	pdd->last_evict_timestamp = get_jiffies_64();
754 	/* Mark all queues as evicted. Deactivate all active queues on
755 	 * the qpd.
756 	 */
757 	list_for_each_entry(q, &qpd->queues_list, list) {
758 		q->properties.is_evicted = true;
759 		if (!q->properties.is_active)
760 			continue;
761 
762 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
763 				q->properties.type)];
764 		q->properties.is_active = false;
765 		decrement_queue_count(dqm, q->properties.type);
766 		if (q->properties.is_gws) {
767 			dqm->gws_queue_count--;
768 			qpd->mapped_gws_queue = false;
769 		}
770 
771 		if (WARN_ONCE(!dqm->sched_running, "Evict when stopped\n"))
772 			continue;
773 
774 		retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
775 				(dqm->dev->cwsr_enabled ?
776 				 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE :
777 				 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN),
778 				KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
779 		if (retval && !ret)
780 			/* Return the first error, but keep going to
781 			 * maintain a consistent eviction state
782 			 */
783 			ret = retval;
784 	}
785 
786 out:
787 	dqm_unlock(dqm);
788 	return ret;
789 }
790 
791 static int evict_process_queues_cpsch(struct device_queue_manager *dqm,
792 				      struct qcm_process_device *qpd)
793 {
794 	struct queue *q;
795 	struct kfd_process_device *pdd;
796 	int retval = 0;
797 
798 	dqm_lock(dqm);
799 	if (qpd->evicted++ > 0) /* already evicted, do nothing */
800 		goto out;
801 
802 	pdd = qpd_to_pdd(qpd);
803 	pr_debug_ratelimited("Evicting PASID 0x%x queues\n",
804 			    pdd->process->pasid);
805 
806 	/* Mark all queues as evicted. Deactivate all active queues on
807 	 * the qpd.
808 	 */
809 	list_for_each_entry(q, &qpd->queues_list, list) {
810 		q->properties.is_evicted = true;
811 		if (!q->properties.is_active)
812 			continue;
813 
814 		q->properties.is_active = false;
815 		decrement_queue_count(dqm, q->properties.type);
816 	}
817 	pdd->last_evict_timestamp = get_jiffies_64();
818 	retval = execute_queues_cpsch(dqm,
819 				qpd->is_debug ?
820 				KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES :
821 				KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
822 
823 out:
824 	dqm_unlock(dqm);
825 	return retval;
826 }
827 
828 static int restore_process_queues_nocpsch(struct device_queue_manager *dqm,
829 					  struct qcm_process_device *qpd)
830 {
831 	struct mm_struct *mm = NULL;
832 	struct queue *q;
833 	struct mqd_manager *mqd_mgr;
834 	struct kfd_process_device *pdd;
835 	uint64_t pd_base;
836 	uint64_t eviction_duration;
837 	int retval, ret = 0;
838 
839 	pdd = qpd_to_pdd(qpd);
840 	/* Retrieve PD base */
841 	pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
842 
843 	dqm_lock(dqm);
844 	if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
845 		goto out;
846 	if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
847 		qpd->evicted--;
848 		goto out;
849 	}
850 
851 	pr_debug_ratelimited("Restoring PASID 0x%x queues\n",
852 			    pdd->process->pasid);
853 
854 	/* Update PD Base in QPD */
855 	qpd->page_table_base = pd_base;
856 	pr_debug("Updated PD address to 0x%llx\n", pd_base);
857 
858 	if (!list_empty(&qpd->queues_list)) {
859 		dqm->dev->kfd2kgd->set_vm_context_page_table_base(
860 				dqm->dev->adev,
861 				qpd->vmid,
862 				qpd->page_table_base);
863 		kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
864 	}
865 
866 	/* Take a safe reference to the mm_struct, which may otherwise
867 	 * disappear even while the kfd_process is still referenced.
868 	 */
869 	mm = get_task_mm(pdd->process->lead_thread);
870 	if (!mm) {
871 		ret = -EFAULT;
872 		goto out;
873 	}
874 
875 	/* Remove the eviction flags. Activate queues that are not
876 	 * inactive for other reasons.
877 	 */
878 	list_for_each_entry(q, &qpd->queues_list, list) {
879 		q->properties.is_evicted = false;
880 		if (!QUEUE_IS_ACTIVE(q->properties))
881 			continue;
882 
883 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
884 				q->properties.type)];
885 		q->properties.is_active = true;
886 		increment_queue_count(dqm, q->properties.type);
887 		if (q->properties.is_gws) {
888 			dqm->gws_queue_count++;
889 			qpd->mapped_gws_queue = true;
890 		}
891 
892 		if (WARN_ONCE(!dqm->sched_running, "Restore when stopped\n"))
893 			continue;
894 
895 		retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
896 				       q->queue, &q->properties, mm);
897 		if (retval && !ret)
898 			/* Return the first error, but keep going to
899 			 * maintain a consistent eviction state
900 			 */
901 			ret = retval;
902 	}
903 	qpd->evicted = 0;
904 	eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp;
905 	atomic64_add(eviction_duration, &pdd->evict_duration_counter);
906 out:
907 	if (mm)
908 		mmput(mm);
909 	dqm_unlock(dqm);
910 	return ret;
911 }
912 
913 static int restore_process_queues_cpsch(struct device_queue_manager *dqm,
914 					struct qcm_process_device *qpd)
915 {
916 	struct queue *q;
917 	struct kfd_process_device *pdd;
918 	uint64_t pd_base;
919 	uint64_t eviction_duration;
920 	int retval = 0;
921 
922 	pdd = qpd_to_pdd(qpd);
923 	/* Retrieve PD base */
924 	pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
925 
926 	dqm_lock(dqm);
927 	if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
928 		goto out;
929 	if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
930 		qpd->evicted--;
931 		goto out;
932 	}
933 
934 	pr_debug_ratelimited("Restoring PASID 0x%x queues\n",
935 			    pdd->process->pasid);
936 
937 	/* Update PD Base in QPD */
938 	qpd->page_table_base = pd_base;
939 	pr_debug("Updated PD address to 0x%llx\n", pd_base);
940 
941 	/* activate all active queues on the qpd */
942 	list_for_each_entry(q, &qpd->queues_list, list) {
943 		q->properties.is_evicted = false;
944 		if (!QUEUE_IS_ACTIVE(q->properties))
945 			continue;
946 
947 		q->properties.is_active = true;
948 		increment_queue_count(dqm, q->properties.type);
949 	}
950 	retval = execute_queues_cpsch(dqm,
951 				KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
952 	qpd->evicted = 0;
953 	eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp;
954 	atomic64_add(eviction_duration, &pdd->evict_duration_counter);
955 out:
956 	dqm_unlock(dqm);
957 	return retval;
958 }
959 
960 static int register_process(struct device_queue_manager *dqm,
961 					struct qcm_process_device *qpd)
962 {
963 	struct device_process_node *n;
964 	struct kfd_process_device *pdd;
965 	uint64_t pd_base;
966 	int retval;
967 
968 	n = kzalloc(sizeof(*n), GFP_KERNEL);
969 	if (!n)
970 		return -ENOMEM;
971 
972 	n->qpd = qpd;
973 
974 	pdd = qpd_to_pdd(qpd);
975 	/* Retrieve PD base */
976 	pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
977 
978 	dqm_lock(dqm);
979 	list_add(&n->list, &dqm->queues);
980 
981 	/* Update PD Base in QPD */
982 	qpd->page_table_base = pd_base;
983 	pr_debug("Updated PD address to 0x%llx\n", pd_base);
984 
985 	retval = dqm->asic_ops.update_qpd(dqm, qpd);
986 
987 	dqm->processes_count++;
988 
989 	dqm_unlock(dqm);
990 
991 	/* Outside the DQM lock because under the DQM lock we can't do
992 	 * reclaim or take other locks that others hold while reclaiming.
993 	 */
994 	kfd_inc_compute_active(dqm->dev);
995 
996 	return retval;
997 }
998 
999 static int unregister_process(struct device_queue_manager *dqm,
1000 					struct qcm_process_device *qpd)
1001 {
1002 	int retval;
1003 	struct device_process_node *cur, *next;
1004 
1005 	pr_debug("qpd->queues_list is %s\n",
1006 			list_empty(&qpd->queues_list) ? "empty" : "not empty");
1007 
1008 	retval = 0;
1009 	dqm_lock(dqm);
1010 
1011 	list_for_each_entry_safe(cur, next, &dqm->queues, list) {
1012 		if (qpd == cur->qpd) {
1013 			list_del(&cur->list);
1014 			kfree(cur);
1015 			dqm->processes_count--;
1016 			goto out;
1017 		}
1018 	}
1019 	/* qpd not found in dqm list */
1020 	retval = 1;
1021 out:
1022 	dqm_unlock(dqm);
1023 
1024 	/* Outside the DQM lock because under the DQM lock we can't do
1025 	 * reclaim or take other locks that others hold while reclaiming.
1026 	 */
1027 	if (!retval)
1028 		kfd_dec_compute_active(dqm->dev);
1029 
1030 	return retval;
1031 }
1032 
1033 static int
1034 set_pasid_vmid_mapping(struct device_queue_manager *dqm, u32 pasid,
1035 			unsigned int vmid)
1036 {
1037 	return dqm->dev->kfd2kgd->set_pasid_vmid_mapping(
1038 						dqm->dev->adev, pasid, vmid);
1039 }
1040 
1041 static void init_interrupts(struct device_queue_manager *dqm)
1042 {
1043 	unsigned int i;
1044 
1045 	for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++)
1046 		if (is_pipe_enabled(dqm, 0, i))
1047 			dqm->dev->kfd2kgd->init_interrupts(dqm->dev->adev, i);
1048 }
1049 
1050 static int initialize_nocpsch(struct device_queue_manager *dqm)
1051 {
1052 	int pipe, queue;
1053 
1054 	pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1055 
1056 	dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm),
1057 					sizeof(unsigned int), GFP_KERNEL);
1058 	if (!dqm->allocated_queues)
1059 		return -ENOMEM;
1060 
1061 	mutex_init(&dqm->lock_hidden);
1062 	INIT_LIST_HEAD(&dqm->queues);
1063 	dqm->active_queue_count = dqm->next_pipe_to_allocate = 0;
1064 	dqm->active_cp_queue_count = 0;
1065 	dqm->gws_queue_count = 0;
1066 
1067 	for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
1068 		int pipe_offset = pipe * get_queues_per_pipe(dqm);
1069 
1070 		for (queue = 0; queue < get_queues_per_pipe(dqm); queue++)
1071 			if (test_bit(pipe_offset + queue,
1072 				     dqm->dev->shared_resources.cp_queue_bitmap))
1073 				dqm->allocated_queues[pipe] |= 1 << queue;
1074 	}
1075 
1076 	memset(dqm->vmid_pasid, 0, sizeof(dqm->vmid_pasid));
1077 
1078 	dqm->sdma_bitmap = ~0ULL >> (64 - get_num_sdma_queues(dqm));
1079 	dqm->xgmi_sdma_bitmap = ~0ULL >> (64 - get_num_xgmi_sdma_queues(dqm));
1080 
1081 	return 0;
1082 }
1083 
1084 static void uninitialize(struct device_queue_manager *dqm)
1085 {
1086 	int i;
1087 
1088 	WARN_ON(dqm->active_queue_count > 0 || dqm->processes_count > 0);
1089 
1090 	kfree(dqm->allocated_queues);
1091 	for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
1092 		kfree(dqm->mqd_mgrs[i]);
1093 	mutex_destroy(&dqm->lock_hidden);
1094 }
1095 
1096 static int start_nocpsch(struct device_queue_manager *dqm)
1097 {
1098 	int r = 0;
1099 
1100 	pr_info("SW scheduler is used");
1101 	init_interrupts(dqm);
1102 
1103 	if (dqm->dev->adev->asic_type == CHIP_HAWAII)
1104 		r = pm_init(&dqm->packet_mgr, dqm);
1105 	if (!r)
1106 		dqm->sched_running = true;
1107 
1108 	return r;
1109 }
1110 
1111 static int stop_nocpsch(struct device_queue_manager *dqm)
1112 {
1113 	if (dqm->dev->adev->asic_type == CHIP_HAWAII)
1114 		pm_uninit(&dqm->packet_mgr, false);
1115 	dqm->sched_running = false;
1116 
1117 	return 0;
1118 }
1119 
1120 static void pre_reset(struct device_queue_manager *dqm)
1121 {
1122 	dqm_lock(dqm);
1123 	dqm->is_resetting = true;
1124 	dqm_unlock(dqm);
1125 }
1126 
1127 static int allocate_sdma_queue(struct device_queue_manager *dqm,
1128 				struct queue *q, const uint32_t *restore_sdma_id)
1129 {
1130 	int bit;
1131 
1132 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1133 		if (dqm->sdma_bitmap == 0) {
1134 			pr_err("No more SDMA queue to allocate\n");
1135 			return -ENOMEM;
1136 		}
1137 
1138 		if (restore_sdma_id) {
1139 			/* Re-use existing sdma_id */
1140 			if (!(dqm->sdma_bitmap & (1ULL << *restore_sdma_id))) {
1141 				pr_err("SDMA queue already in use\n");
1142 				return -EBUSY;
1143 			}
1144 			dqm->sdma_bitmap &= ~(1ULL << *restore_sdma_id);
1145 			q->sdma_id = *restore_sdma_id;
1146 		} else {
1147 			/* Find first available sdma_id */
1148 			bit = __ffs64(dqm->sdma_bitmap);
1149 			dqm->sdma_bitmap &= ~(1ULL << bit);
1150 			q->sdma_id = bit;
1151 		}
1152 
1153 		q->properties.sdma_engine_id = q->sdma_id %
1154 				kfd_get_num_sdma_engines(dqm->dev);
1155 		q->properties.sdma_queue_id = q->sdma_id /
1156 				kfd_get_num_sdma_engines(dqm->dev);
1157 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1158 		if (dqm->xgmi_sdma_bitmap == 0) {
1159 			pr_err("No more XGMI SDMA queue to allocate\n");
1160 			return -ENOMEM;
1161 		}
1162 		if (restore_sdma_id) {
1163 			/* Re-use existing sdma_id */
1164 			if (!(dqm->xgmi_sdma_bitmap & (1ULL << *restore_sdma_id))) {
1165 				pr_err("SDMA queue already in use\n");
1166 				return -EBUSY;
1167 			}
1168 			dqm->xgmi_sdma_bitmap &= ~(1ULL << *restore_sdma_id);
1169 			q->sdma_id = *restore_sdma_id;
1170 		} else {
1171 			bit = __ffs64(dqm->xgmi_sdma_bitmap);
1172 			dqm->xgmi_sdma_bitmap &= ~(1ULL << bit);
1173 			q->sdma_id = bit;
1174 		}
1175 		/* sdma_engine_id is sdma id including
1176 		 * both PCIe-optimized SDMAs and XGMI-
1177 		 * optimized SDMAs. The calculation below
1178 		 * assumes the first N engines are always
1179 		 * PCIe-optimized ones
1180 		 */
1181 		q->properties.sdma_engine_id =
1182 			kfd_get_num_sdma_engines(dqm->dev) +
1183 			q->sdma_id % kfd_get_num_xgmi_sdma_engines(dqm->dev);
1184 		q->properties.sdma_queue_id = q->sdma_id /
1185 			kfd_get_num_xgmi_sdma_engines(dqm->dev);
1186 	}
1187 
1188 	pr_debug("SDMA engine id: %d\n", q->properties.sdma_engine_id);
1189 	pr_debug("SDMA queue id: %d\n", q->properties.sdma_queue_id);
1190 
1191 	return 0;
1192 }
1193 
1194 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
1195 				struct queue *q)
1196 {
1197 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1198 		if (q->sdma_id >= get_num_sdma_queues(dqm))
1199 			return;
1200 		dqm->sdma_bitmap |= (1ULL << q->sdma_id);
1201 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1202 		if (q->sdma_id >= get_num_xgmi_sdma_queues(dqm))
1203 			return;
1204 		dqm->xgmi_sdma_bitmap |= (1ULL << q->sdma_id);
1205 	}
1206 }
1207 
1208 /*
1209  * Device Queue Manager implementation for cp scheduler
1210  */
1211 
1212 static int set_sched_resources(struct device_queue_manager *dqm)
1213 {
1214 	int i, mec;
1215 	struct scheduling_resources res;
1216 
1217 	res.vmid_mask = dqm->dev->shared_resources.compute_vmid_bitmap;
1218 
1219 	res.queue_mask = 0;
1220 	for (i = 0; i < KGD_MAX_QUEUES; ++i) {
1221 		mec = (i / dqm->dev->shared_resources.num_queue_per_pipe)
1222 			/ dqm->dev->shared_resources.num_pipe_per_mec;
1223 
1224 		if (!test_bit(i, dqm->dev->shared_resources.cp_queue_bitmap))
1225 			continue;
1226 
1227 		/* only acquire queues from the first MEC */
1228 		if (mec > 0)
1229 			continue;
1230 
1231 		/* This situation may be hit in the future if a new HW
1232 		 * generation exposes more than 64 queues. If so, the
1233 		 * definition of res.queue_mask needs updating
1234 		 */
1235 		if (WARN_ON(i >= (sizeof(res.queue_mask)*8))) {
1236 			pr_err("Invalid queue enabled by amdgpu: %d\n", i);
1237 			break;
1238 		}
1239 
1240 		res.queue_mask |= 1ull
1241 			<< amdgpu_queue_mask_bit_to_set_resource_bit(
1242 				dqm->dev->adev, i);
1243 	}
1244 	res.gws_mask = ~0ull;
1245 	res.oac_mask = res.gds_heap_base = res.gds_heap_size = 0;
1246 
1247 	pr_debug("Scheduling resources:\n"
1248 			"vmid mask: 0x%8X\n"
1249 			"queue mask: 0x%8llX\n",
1250 			res.vmid_mask, res.queue_mask);
1251 
1252 	return pm_send_set_resources(&dqm->packet_mgr, &res);
1253 }
1254 
1255 static int initialize_cpsch(struct device_queue_manager *dqm)
1256 {
1257 	uint64_t num_sdma_queues;
1258 	uint64_t num_xgmi_sdma_queues;
1259 
1260 	pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1261 
1262 	mutex_init(&dqm->lock_hidden);
1263 	INIT_LIST_HEAD(&dqm->queues);
1264 	dqm->active_queue_count = dqm->processes_count = 0;
1265 	dqm->active_cp_queue_count = 0;
1266 	dqm->gws_queue_count = 0;
1267 	dqm->active_runlist = false;
1268 
1269 	num_sdma_queues = get_num_sdma_queues(dqm);
1270 	if (num_sdma_queues >= BITS_PER_TYPE(dqm->sdma_bitmap))
1271 		dqm->sdma_bitmap = ULLONG_MAX;
1272 	else
1273 		dqm->sdma_bitmap = (BIT_ULL(num_sdma_queues) - 1);
1274 
1275 	num_xgmi_sdma_queues = get_num_xgmi_sdma_queues(dqm);
1276 	if (num_xgmi_sdma_queues >= BITS_PER_TYPE(dqm->xgmi_sdma_bitmap))
1277 		dqm->xgmi_sdma_bitmap = ULLONG_MAX;
1278 	else
1279 		dqm->xgmi_sdma_bitmap = (BIT_ULL(num_xgmi_sdma_queues) - 1);
1280 
1281 	INIT_WORK(&dqm->hw_exception_work, kfd_process_hw_exception);
1282 
1283 	return 0;
1284 }
1285 
1286 static int start_cpsch(struct device_queue_manager *dqm)
1287 {
1288 	int retval;
1289 
1290 	retval = 0;
1291 
1292 	dqm_lock(dqm);
1293 	retval = pm_init(&dqm->packet_mgr, dqm);
1294 	if (retval)
1295 		goto fail_packet_manager_init;
1296 
1297 	retval = set_sched_resources(dqm);
1298 	if (retval)
1299 		goto fail_set_sched_resources;
1300 
1301 	pr_debug("Allocating fence memory\n");
1302 
1303 	/* allocate fence memory on the gart */
1304 	retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
1305 					&dqm->fence_mem);
1306 
1307 	if (retval)
1308 		goto fail_allocate_vidmem;
1309 
1310 	dqm->fence_addr = (uint64_t *)dqm->fence_mem->cpu_ptr;
1311 	dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
1312 
1313 	init_interrupts(dqm);
1314 
1315 	/* clear hang status when driver try to start the hw scheduler */
1316 	dqm->is_hws_hang = false;
1317 	dqm->is_resetting = false;
1318 	dqm->sched_running = true;
1319 	execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1320 	dqm_unlock(dqm);
1321 
1322 	return 0;
1323 fail_allocate_vidmem:
1324 fail_set_sched_resources:
1325 	pm_uninit(&dqm->packet_mgr, false);
1326 fail_packet_manager_init:
1327 	dqm_unlock(dqm);
1328 	return retval;
1329 }
1330 
1331 static int stop_cpsch(struct device_queue_manager *dqm)
1332 {
1333 	bool hanging;
1334 
1335 	dqm_lock(dqm);
1336 	if (!dqm->sched_running) {
1337 		dqm_unlock(dqm);
1338 		return 0;
1339 	}
1340 
1341 	if (!dqm->is_hws_hang)
1342 		unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, false);
1343 	hanging = dqm->is_hws_hang || dqm->is_resetting;
1344 	dqm->sched_running = false;
1345 
1346 	pm_release_ib(&dqm->packet_mgr);
1347 
1348 	kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
1349 	pm_uninit(&dqm->packet_mgr, hanging);
1350 	dqm_unlock(dqm);
1351 
1352 	return 0;
1353 }
1354 
1355 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
1356 					struct kernel_queue *kq,
1357 					struct qcm_process_device *qpd)
1358 {
1359 	dqm_lock(dqm);
1360 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1361 		pr_warn("Can't create new kernel queue because %d queues were already created\n",
1362 				dqm->total_queue_count);
1363 		dqm_unlock(dqm);
1364 		return -EPERM;
1365 	}
1366 
1367 	/*
1368 	 * Unconditionally increment this counter, regardless of the queue's
1369 	 * type or whether the queue is active.
1370 	 */
1371 	dqm->total_queue_count++;
1372 	pr_debug("Total of %d queues are accountable so far\n",
1373 			dqm->total_queue_count);
1374 
1375 	list_add(&kq->list, &qpd->priv_queue_list);
1376 	increment_queue_count(dqm, kq->queue->properties.type);
1377 	qpd->is_debug = true;
1378 	execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1379 	dqm_unlock(dqm);
1380 
1381 	return 0;
1382 }
1383 
1384 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
1385 					struct kernel_queue *kq,
1386 					struct qcm_process_device *qpd)
1387 {
1388 	dqm_lock(dqm);
1389 	list_del(&kq->list);
1390 	decrement_queue_count(dqm, kq->queue->properties.type);
1391 	qpd->is_debug = false;
1392 	execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0);
1393 	/*
1394 	 * Unconditionally decrement this counter, regardless of the queue's
1395 	 * type.
1396 	 */
1397 	dqm->total_queue_count--;
1398 	pr_debug("Total of %d queues are accountable so far\n",
1399 			dqm->total_queue_count);
1400 	dqm_unlock(dqm);
1401 }
1402 
1403 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
1404 			struct qcm_process_device *qpd,
1405 			const struct kfd_criu_queue_priv_data *qd,
1406 			const void *restore_mqd, const void *restore_ctl_stack)
1407 {
1408 	int retval;
1409 	struct mqd_manager *mqd_mgr;
1410 
1411 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1412 		pr_warn("Can't create new usermode queue because %d queues were already created\n",
1413 				dqm->total_queue_count);
1414 		retval = -EPERM;
1415 		goto out;
1416 	}
1417 
1418 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1419 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1420 		dqm_lock(dqm);
1421 		retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL);
1422 		dqm_unlock(dqm);
1423 		if (retval)
1424 			goto out;
1425 	}
1426 
1427 	retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL);
1428 	if (retval)
1429 		goto out_deallocate_sdma_queue;
1430 
1431 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1432 			q->properties.type)];
1433 
1434 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1435 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
1436 		dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
1437 	q->properties.tba_addr = qpd->tba_addr;
1438 	q->properties.tma_addr = qpd->tma_addr;
1439 	q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
1440 	if (!q->mqd_mem_obj) {
1441 		retval = -ENOMEM;
1442 		goto out_deallocate_doorbell;
1443 	}
1444 
1445 	dqm_lock(dqm);
1446 	/*
1447 	 * Eviction state logic: mark all queues as evicted, even ones
1448 	 * not currently active. Restoring inactive queues later only
1449 	 * updates the is_evicted flag but is a no-op otherwise.
1450 	 */
1451 	q->properties.is_evicted = !!qpd->evicted;
1452 
1453 	if (qd)
1454 		mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr,
1455 				     &q->properties, restore_mqd, restore_ctl_stack,
1456 				     qd->ctl_stack_size);
1457 	else
1458 		mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
1459 					&q->gart_mqd_addr, &q->properties);
1460 
1461 	list_add(&q->list, &qpd->queues_list);
1462 	qpd->queue_count++;
1463 
1464 	if (q->properties.is_active) {
1465 		increment_queue_count(dqm, q->properties.type);
1466 
1467 		execute_queues_cpsch(dqm,
1468 				KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1469 	}
1470 
1471 	/*
1472 	 * Unconditionally increment this counter, regardless of the queue's
1473 	 * type or whether the queue is active.
1474 	 */
1475 	dqm->total_queue_count++;
1476 
1477 	pr_debug("Total of %d queues are accountable so far\n",
1478 			dqm->total_queue_count);
1479 
1480 	dqm_unlock(dqm);
1481 	return retval;
1482 
1483 out_deallocate_doorbell:
1484 	deallocate_doorbell(qpd, q);
1485 out_deallocate_sdma_queue:
1486 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1487 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1488 		dqm_lock(dqm);
1489 		deallocate_sdma_queue(dqm, q);
1490 		dqm_unlock(dqm);
1491 	}
1492 out:
1493 	return retval;
1494 }
1495 
1496 int amdkfd_fence_wait_timeout(uint64_t *fence_addr,
1497 				uint64_t fence_value,
1498 				unsigned int timeout_ms)
1499 {
1500 	unsigned long end_jiffies = msecs_to_jiffies(timeout_ms) + jiffies;
1501 
1502 	while (*fence_addr != fence_value) {
1503 		if (time_after(jiffies, end_jiffies)) {
1504 			pr_err("qcm fence wait loop timeout expired\n");
1505 			/* In HWS case, this is used to halt the driver thread
1506 			 * in order not to mess up CP states before doing
1507 			 * scandumps for FW debugging.
1508 			 */
1509 			while (halt_if_hws_hang)
1510 				schedule();
1511 
1512 			return -ETIME;
1513 		}
1514 		schedule();
1515 	}
1516 
1517 	return 0;
1518 }
1519 
1520 /* dqm->lock mutex has to be locked before calling this function */
1521 static int map_queues_cpsch(struct device_queue_manager *dqm)
1522 {
1523 	int retval;
1524 
1525 	if (!dqm->sched_running)
1526 		return 0;
1527 	if (dqm->active_queue_count <= 0 || dqm->processes_count <= 0)
1528 		return 0;
1529 	if (dqm->active_runlist)
1530 		return 0;
1531 
1532 	retval = pm_send_runlist(&dqm->packet_mgr, &dqm->queues);
1533 	pr_debug("%s sent runlist\n", __func__);
1534 	if (retval) {
1535 		pr_err("failed to execute runlist\n");
1536 		return retval;
1537 	}
1538 	dqm->active_runlist = true;
1539 
1540 	return retval;
1541 }
1542 
1543 /* dqm->lock mutex has to be locked before calling this function */
1544 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
1545 				enum kfd_unmap_queues_filter filter,
1546 				uint32_t filter_param, bool reset)
1547 {
1548 	int retval = 0;
1549 	struct mqd_manager *mqd_mgr;
1550 
1551 	if (!dqm->sched_running)
1552 		return 0;
1553 	if (dqm->is_hws_hang || dqm->is_resetting)
1554 		return -EIO;
1555 	if (!dqm->active_runlist)
1556 		return retval;
1557 
1558 	retval = pm_send_unmap_queue(&dqm->packet_mgr, filter, filter_param, reset);
1559 	if (retval)
1560 		return retval;
1561 
1562 	*dqm->fence_addr = KFD_FENCE_INIT;
1563 	pm_send_query_status(&dqm->packet_mgr, dqm->fence_gpu_addr,
1564 				KFD_FENCE_COMPLETED);
1565 	/* should be timed out */
1566 	retval = amdkfd_fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED,
1567 				queue_preemption_timeout_ms);
1568 	if (retval) {
1569 		pr_err("The cp might be in an unrecoverable state due to an unsuccessful queues preemption\n");
1570 		dqm->is_hws_hang = true;
1571 		/* It's possible we're detecting a HWS hang in the
1572 		 * middle of a GPU reset. No need to schedule another
1573 		 * reset in this case.
1574 		 */
1575 		if (!dqm->is_resetting)
1576 			schedule_work(&dqm->hw_exception_work);
1577 		return retval;
1578 	}
1579 
1580 	/* In the current MEC firmware implementation, if compute queue
1581 	 * doesn't response to the preemption request in time, HIQ will
1582 	 * abandon the unmap request without returning any timeout error
1583 	 * to driver. Instead, MEC firmware will log the doorbell of the
1584 	 * unresponding compute queue to HIQ.MQD.queue_doorbell_id fields.
1585 	 * To make sure the queue unmap was successful, driver need to
1586 	 * check those fields
1587 	 */
1588 	mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ];
1589 	if (mqd_mgr->read_doorbell_id(dqm->packet_mgr.priv_queue->queue->mqd)) {
1590 		pr_err("HIQ MQD's queue_doorbell_id0 is not 0, Queue preemption time out\n");
1591 		while (halt_if_hws_hang)
1592 			schedule();
1593 		return -ETIME;
1594 	}
1595 
1596 	pm_release_ib(&dqm->packet_mgr);
1597 	dqm->active_runlist = false;
1598 
1599 	return retval;
1600 }
1601 
1602 /* only for compute queue */
1603 static int reset_queues_cpsch(struct device_queue_manager *dqm,
1604 			uint16_t pasid)
1605 {
1606 	int retval;
1607 
1608 	dqm_lock(dqm);
1609 
1610 	retval = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_BY_PASID,
1611 			pasid, true);
1612 
1613 	dqm_unlock(dqm);
1614 	return retval;
1615 }
1616 
1617 /* dqm->lock mutex has to be locked before calling this function */
1618 static int execute_queues_cpsch(struct device_queue_manager *dqm,
1619 				enum kfd_unmap_queues_filter filter,
1620 				uint32_t filter_param)
1621 {
1622 	int retval;
1623 
1624 	if (dqm->is_hws_hang)
1625 		return -EIO;
1626 	retval = unmap_queues_cpsch(dqm, filter, filter_param, false);
1627 	if (retval)
1628 		return retval;
1629 
1630 	return map_queues_cpsch(dqm);
1631 }
1632 
1633 static int destroy_queue_cpsch(struct device_queue_manager *dqm,
1634 				struct qcm_process_device *qpd,
1635 				struct queue *q)
1636 {
1637 	int retval;
1638 	struct mqd_manager *mqd_mgr;
1639 	uint64_t sdma_val = 0;
1640 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
1641 
1642 	/* Get the SDMA queue stats */
1643 	if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
1644 	    (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
1645 		retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr,
1646 							&sdma_val);
1647 		if (retval)
1648 			pr_err("Failed to read SDMA queue counter for queue: %d\n",
1649 				q->properties.queue_id);
1650 	}
1651 
1652 	retval = 0;
1653 
1654 	/* remove queue from list to prevent rescheduling after preemption */
1655 	dqm_lock(dqm);
1656 
1657 	if (qpd->is_debug) {
1658 		/*
1659 		 * error, currently we do not allow to destroy a queue
1660 		 * of a currently debugged process
1661 		 */
1662 		retval = -EBUSY;
1663 		goto failed_try_destroy_debugged_queue;
1664 
1665 	}
1666 
1667 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1668 			q->properties.type)];
1669 
1670 	deallocate_doorbell(qpd, q);
1671 
1672 	if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
1673 	    (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
1674 		deallocate_sdma_queue(dqm, q);
1675 		pdd->sdma_past_activity_counter += sdma_val;
1676 	}
1677 
1678 	list_del(&q->list);
1679 	qpd->queue_count--;
1680 	if (q->properties.is_active) {
1681 		decrement_queue_count(dqm, q->properties.type);
1682 		retval = execute_queues_cpsch(dqm,
1683 				KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1684 		if (retval == -ETIME)
1685 			qpd->reset_wavefronts = true;
1686 		if (q->properties.is_gws) {
1687 			dqm->gws_queue_count--;
1688 			qpd->mapped_gws_queue = false;
1689 		}
1690 	}
1691 
1692 	/*
1693 	 * Unconditionally decrement this counter, regardless of the queue's
1694 	 * type
1695 	 */
1696 	dqm->total_queue_count--;
1697 	pr_debug("Total of %d queues are accountable so far\n",
1698 			dqm->total_queue_count);
1699 
1700 	dqm_unlock(dqm);
1701 
1702 	/* Do free_mqd after dqm_unlock(dqm) to avoid circular locking */
1703 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
1704 
1705 	return retval;
1706 
1707 failed_try_destroy_debugged_queue:
1708 
1709 	dqm_unlock(dqm);
1710 	return retval;
1711 }
1712 
1713 /*
1714  * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to
1715  * stay in user mode.
1716  */
1717 #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL
1718 /* APE1 limit is inclusive and 64K aligned. */
1719 #define APE1_LIMIT_ALIGNMENT 0xFFFF
1720 
1721 static bool set_cache_memory_policy(struct device_queue_manager *dqm,
1722 				   struct qcm_process_device *qpd,
1723 				   enum cache_policy default_policy,
1724 				   enum cache_policy alternate_policy,
1725 				   void __user *alternate_aperture_base,
1726 				   uint64_t alternate_aperture_size)
1727 {
1728 	bool retval = true;
1729 
1730 	if (!dqm->asic_ops.set_cache_memory_policy)
1731 		return retval;
1732 
1733 	dqm_lock(dqm);
1734 
1735 	if (alternate_aperture_size == 0) {
1736 		/* base > limit disables APE1 */
1737 		qpd->sh_mem_ape1_base = 1;
1738 		qpd->sh_mem_ape1_limit = 0;
1739 	} else {
1740 		/*
1741 		 * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]},
1742 		 *			SH_MEM_APE1_BASE[31:0], 0x0000 }
1743 		 * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]},
1744 		 *			SH_MEM_APE1_LIMIT[31:0], 0xFFFF }
1745 		 * Verify that the base and size parameters can be
1746 		 * represented in this format and convert them.
1747 		 * Additionally restrict APE1 to user-mode addresses.
1748 		 */
1749 
1750 		uint64_t base = (uintptr_t)alternate_aperture_base;
1751 		uint64_t limit = base + alternate_aperture_size - 1;
1752 
1753 		if (limit <= base || (base & APE1_FIXED_BITS_MASK) != 0 ||
1754 		   (limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT) {
1755 			retval = false;
1756 			goto out;
1757 		}
1758 
1759 		qpd->sh_mem_ape1_base = base >> 16;
1760 		qpd->sh_mem_ape1_limit = limit >> 16;
1761 	}
1762 
1763 	retval = dqm->asic_ops.set_cache_memory_policy(
1764 			dqm,
1765 			qpd,
1766 			default_policy,
1767 			alternate_policy,
1768 			alternate_aperture_base,
1769 			alternate_aperture_size);
1770 
1771 	if ((dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
1772 		program_sh_mem_settings(dqm, qpd);
1773 
1774 	pr_debug("sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
1775 		qpd->sh_mem_config, qpd->sh_mem_ape1_base,
1776 		qpd->sh_mem_ape1_limit);
1777 
1778 out:
1779 	dqm_unlock(dqm);
1780 	return retval;
1781 }
1782 
1783 static int process_termination_nocpsch(struct device_queue_manager *dqm,
1784 		struct qcm_process_device *qpd)
1785 {
1786 	struct queue *q;
1787 	struct device_process_node *cur, *next_dpn;
1788 	int retval = 0;
1789 	bool found = false;
1790 
1791 	dqm_lock(dqm);
1792 
1793 	/* Clear all user mode queues */
1794 	while (!list_empty(&qpd->queues_list)) {
1795 		struct mqd_manager *mqd_mgr;
1796 		int ret;
1797 
1798 		q = list_first_entry(&qpd->queues_list, struct queue, list);
1799 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1800 				q->properties.type)];
1801 		ret = destroy_queue_nocpsch_locked(dqm, qpd, q);
1802 		if (ret)
1803 			retval = ret;
1804 		dqm_unlock(dqm);
1805 		mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
1806 		dqm_lock(dqm);
1807 	}
1808 
1809 	/* Unregister process */
1810 	list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
1811 		if (qpd == cur->qpd) {
1812 			list_del(&cur->list);
1813 			kfree(cur);
1814 			dqm->processes_count--;
1815 			found = true;
1816 			break;
1817 		}
1818 	}
1819 
1820 	dqm_unlock(dqm);
1821 
1822 	/* Outside the DQM lock because under the DQM lock we can't do
1823 	 * reclaim or take other locks that others hold while reclaiming.
1824 	 */
1825 	if (found)
1826 		kfd_dec_compute_active(dqm->dev);
1827 
1828 	return retval;
1829 }
1830 
1831 static int get_wave_state(struct device_queue_manager *dqm,
1832 			  struct queue *q,
1833 			  void __user *ctl_stack,
1834 			  u32 *ctl_stack_used_size,
1835 			  u32 *save_area_used_size)
1836 {
1837 	struct mqd_manager *mqd_mgr;
1838 
1839 	dqm_lock(dqm);
1840 
1841 	mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP];
1842 
1843 	if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE ||
1844 	    q->properties.is_active || !q->device->cwsr_enabled ||
1845 	    !mqd_mgr->get_wave_state) {
1846 		dqm_unlock(dqm);
1847 		return -EINVAL;
1848 	}
1849 
1850 	dqm_unlock(dqm);
1851 
1852 	/*
1853 	 * get_wave_state is outside the dqm lock to prevent circular locking
1854 	 * and the queue should be protected against destruction by the process
1855 	 * lock.
1856 	 */
1857 	return mqd_mgr->get_wave_state(mqd_mgr, q->mqd, ctl_stack,
1858 			ctl_stack_used_size, save_area_used_size);
1859 }
1860 
1861 static void get_queue_checkpoint_info(struct device_queue_manager *dqm,
1862 			const struct queue *q,
1863 			u32 *mqd_size,
1864 			u32 *ctl_stack_size)
1865 {
1866 	struct mqd_manager *mqd_mgr;
1867 	enum KFD_MQD_TYPE mqd_type =
1868 			get_mqd_type_from_queue_type(q->properties.type);
1869 
1870 	dqm_lock(dqm);
1871 	mqd_mgr = dqm->mqd_mgrs[mqd_type];
1872 	*mqd_size = mqd_mgr->mqd_size;
1873 	*ctl_stack_size = 0;
1874 
1875 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE && mqd_mgr->get_checkpoint_info)
1876 		mqd_mgr->get_checkpoint_info(mqd_mgr, q->mqd, ctl_stack_size);
1877 
1878 	dqm_unlock(dqm);
1879 }
1880 
1881 static int checkpoint_mqd(struct device_queue_manager *dqm,
1882 			  const struct queue *q,
1883 			  void *mqd,
1884 			  void *ctl_stack)
1885 {
1886 	struct mqd_manager *mqd_mgr;
1887 	int r = 0;
1888 	enum KFD_MQD_TYPE mqd_type =
1889 			get_mqd_type_from_queue_type(q->properties.type);
1890 
1891 	dqm_lock(dqm);
1892 
1893 	if (q->properties.is_active || !q->device->cwsr_enabled) {
1894 		r = -EINVAL;
1895 		goto dqm_unlock;
1896 	}
1897 
1898 	mqd_mgr = dqm->mqd_mgrs[mqd_type];
1899 	if (!mqd_mgr->checkpoint_mqd) {
1900 		r = -EOPNOTSUPP;
1901 		goto dqm_unlock;
1902 	}
1903 
1904 	mqd_mgr->checkpoint_mqd(mqd_mgr, q->mqd, mqd, ctl_stack);
1905 
1906 dqm_unlock:
1907 	dqm_unlock(dqm);
1908 	return r;
1909 }
1910 
1911 static int process_termination_cpsch(struct device_queue_manager *dqm,
1912 		struct qcm_process_device *qpd)
1913 {
1914 	int retval;
1915 	struct queue *q;
1916 	struct kernel_queue *kq, *kq_next;
1917 	struct mqd_manager *mqd_mgr;
1918 	struct device_process_node *cur, *next_dpn;
1919 	enum kfd_unmap_queues_filter filter =
1920 		KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES;
1921 	bool found = false;
1922 
1923 	retval = 0;
1924 
1925 	dqm_lock(dqm);
1926 
1927 	/* Clean all kernel queues */
1928 	list_for_each_entry_safe(kq, kq_next, &qpd->priv_queue_list, list) {
1929 		list_del(&kq->list);
1930 		decrement_queue_count(dqm, kq->queue->properties.type);
1931 		qpd->is_debug = false;
1932 		dqm->total_queue_count--;
1933 		filter = KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES;
1934 	}
1935 
1936 	/* Clear all user mode queues */
1937 	list_for_each_entry(q, &qpd->queues_list, list) {
1938 		if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
1939 			deallocate_sdma_queue(dqm, q);
1940 		else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
1941 			deallocate_sdma_queue(dqm, q);
1942 
1943 		if (q->properties.is_active) {
1944 			decrement_queue_count(dqm, q->properties.type);
1945 			if (q->properties.is_gws) {
1946 				dqm->gws_queue_count--;
1947 				qpd->mapped_gws_queue = false;
1948 			}
1949 		}
1950 
1951 		dqm->total_queue_count--;
1952 	}
1953 
1954 	/* Unregister process */
1955 	list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
1956 		if (qpd == cur->qpd) {
1957 			list_del(&cur->list);
1958 			kfree(cur);
1959 			dqm->processes_count--;
1960 			found = true;
1961 			break;
1962 		}
1963 	}
1964 
1965 	retval = execute_queues_cpsch(dqm, filter, 0);
1966 	if ((!dqm->is_hws_hang) && (retval || qpd->reset_wavefronts)) {
1967 		pr_warn("Resetting wave fronts (cpsch) on dev %p\n", dqm->dev);
1968 		dbgdev_wave_reset_wavefronts(dqm->dev, qpd->pqm->process);
1969 		qpd->reset_wavefronts = false;
1970 	}
1971 
1972 	/* Lastly, free mqd resources.
1973 	 * Do free_mqd() after dqm_unlock to avoid circular locking.
1974 	 */
1975 	while (!list_empty(&qpd->queues_list)) {
1976 		q = list_first_entry(&qpd->queues_list, struct queue, list);
1977 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1978 				q->properties.type)];
1979 		list_del(&q->list);
1980 		qpd->queue_count--;
1981 		dqm_unlock(dqm);
1982 		mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
1983 		dqm_lock(dqm);
1984 	}
1985 	dqm_unlock(dqm);
1986 
1987 	/* Outside the DQM lock because under the DQM lock we can't do
1988 	 * reclaim or take other locks that others hold while reclaiming.
1989 	 */
1990 	if (found)
1991 		kfd_dec_compute_active(dqm->dev);
1992 
1993 	return retval;
1994 }
1995 
1996 static int init_mqd_managers(struct device_queue_manager *dqm)
1997 {
1998 	int i, j;
1999 	struct mqd_manager *mqd_mgr;
2000 
2001 	for (i = 0; i < KFD_MQD_TYPE_MAX; i++) {
2002 		mqd_mgr = dqm->asic_ops.mqd_manager_init(i, dqm->dev);
2003 		if (!mqd_mgr) {
2004 			pr_err("mqd manager [%d] initialization failed\n", i);
2005 			goto out_free;
2006 		}
2007 		dqm->mqd_mgrs[i] = mqd_mgr;
2008 	}
2009 
2010 	return 0;
2011 
2012 out_free:
2013 	for (j = 0; j < i; j++) {
2014 		kfree(dqm->mqd_mgrs[j]);
2015 		dqm->mqd_mgrs[j] = NULL;
2016 	}
2017 
2018 	return -ENOMEM;
2019 }
2020 
2021 /* Allocate one hiq mqd (HWS) and all SDMA mqd in a continuous trunk*/
2022 static int allocate_hiq_sdma_mqd(struct device_queue_manager *dqm)
2023 {
2024 	int retval;
2025 	struct kfd_dev *dev = dqm->dev;
2026 	struct kfd_mem_obj *mem_obj = &dqm->hiq_sdma_mqd;
2027 	uint32_t size = dqm->mqd_mgrs[KFD_MQD_TYPE_SDMA]->mqd_size *
2028 		get_num_all_sdma_engines(dqm) *
2029 		dev->device_info.num_sdma_queues_per_engine +
2030 		dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]->mqd_size;
2031 
2032 	retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev, size,
2033 		&(mem_obj->gtt_mem), &(mem_obj->gpu_addr),
2034 		(void *)&(mem_obj->cpu_ptr), false);
2035 
2036 	return retval;
2037 }
2038 
2039 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev)
2040 {
2041 	struct device_queue_manager *dqm;
2042 
2043 	pr_debug("Loading device queue manager\n");
2044 
2045 	dqm = kzalloc(sizeof(*dqm), GFP_KERNEL);
2046 	if (!dqm)
2047 		return NULL;
2048 
2049 	switch (dev->adev->asic_type) {
2050 	/* HWS is not available on Hawaii. */
2051 	case CHIP_HAWAII:
2052 	/* HWS depends on CWSR for timely dequeue. CWSR is not
2053 	 * available on Tonga.
2054 	 *
2055 	 * FIXME: This argument also applies to Kaveri.
2056 	 */
2057 	case CHIP_TONGA:
2058 		dqm->sched_policy = KFD_SCHED_POLICY_NO_HWS;
2059 		break;
2060 	default:
2061 		dqm->sched_policy = sched_policy;
2062 		break;
2063 	}
2064 
2065 	dqm->dev = dev;
2066 	switch (dqm->sched_policy) {
2067 	case KFD_SCHED_POLICY_HWS:
2068 	case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
2069 		/* initialize dqm for cp scheduling */
2070 		dqm->ops.create_queue = create_queue_cpsch;
2071 		dqm->ops.initialize = initialize_cpsch;
2072 		dqm->ops.start = start_cpsch;
2073 		dqm->ops.stop = stop_cpsch;
2074 		dqm->ops.pre_reset = pre_reset;
2075 		dqm->ops.destroy_queue = destroy_queue_cpsch;
2076 		dqm->ops.update_queue = update_queue;
2077 		dqm->ops.register_process = register_process;
2078 		dqm->ops.unregister_process = unregister_process;
2079 		dqm->ops.uninitialize = uninitialize;
2080 		dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
2081 		dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
2082 		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
2083 		dqm->ops.process_termination = process_termination_cpsch;
2084 		dqm->ops.evict_process_queues = evict_process_queues_cpsch;
2085 		dqm->ops.restore_process_queues = restore_process_queues_cpsch;
2086 		dqm->ops.get_wave_state = get_wave_state;
2087 		dqm->ops.reset_queues = reset_queues_cpsch;
2088 		dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info;
2089 		dqm->ops.checkpoint_mqd = checkpoint_mqd;
2090 		break;
2091 	case KFD_SCHED_POLICY_NO_HWS:
2092 		/* initialize dqm for no cp scheduling */
2093 		dqm->ops.start = start_nocpsch;
2094 		dqm->ops.stop = stop_nocpsch;
2095 		dqm->ops.pre_reset = pre_reset;
2096 		dqm->ops.create_queue = create_queue_nocpsch;
2097 		dqm->ops.destroy_queue = destroy_queue_nocpsch;
2098 		dqm->ops.update_queue = update_queue;
2099 		dqm->ops.register_process = register_process;
2100 		dqm->ops.unregister_process = unregister_process;
2101 		dqm->ops.initialize = initialize_nocpsch;
2102 		dqm->ops.uninitialize = uninitialize;
2103 		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
2104 		dqm->ops.process_termination = process_termination_nocpsch;
2105 		dqm->ops.evict_process_queues = evict_process_queues_nocpsch;
2106 		dqm->ops.restore_process_queues =
2107 			restore_process_queues_nocpsch;
2108 		dqm->ops.get_wave_state = get_wave_state;
2109 		dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info;
2110 		dqm->ops.checkpoint_mqd = checkpoint_mqd;
2111 		break;
2112 	default:
2113 		pr_err("Invalid scheduling policy %d\n", dqm->sched_policy);
2114 		goto out_free;
2115 	}
2116 
2117 	switch (dev->adev->asic_type) {
2118 	case CHIP_CARRIZO:
2119 		device_queue_manager_init_vi(&dqm->asic_ops);
2120 		break;
2121 
2122 	case CHIP_KAVERI:
2123 		device_queue_manager_init_cik(&dqm->asic_ops);
2124 		break;
2125 
2126 	case CHIP_HAWAII:
2127 		device_queue_manager_init_cik_hawaii(&dqm->asic_ops);
2128 		break;
2129 
2130 	case CHIP_TONGA:
2131 	case CHIP_FIJI:
2132 	case CHIP_POLARIS10:
2133 	case CHIP_POLARIS11:
2134 	case CHIP_POLARIS12:
2135 	case CHIP_VEGAM:
2136 		device_queue_manager_init_vi_tonga(&dqm->asic_ops);
2137 		break;
2138 
2139 	default:
2140 		if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
2141 			device_queue_manager_init_v10_navi10(&dqm->asic_ops);
2142 		else if (KFD_GC_VERSION(dev) >= IP_VERSION(9, 0, 1))
2143 			device_queue_manager_init_v9(&dqm->asic_ops);
2144 		else {
2145 			WARN(1, "Unexpected ASIC family %u",
2146 			     dev->adev->asic_type);
2147 			goto out_free;
2148 		}
2149 	}
2150 
2151 	if (init_mqd_managers(dqm))
2152 		goto out_free;
2153 
2154 	if (allocate_hiq_sdma_mqd(dqm)) {
2155 		pr_err("Failed to allocate hiq sdma mqd trunk buffer\n");
2156 		goto out_free;
2157 	}
2158 
2159 	if (!dqm->ops.initialize(dqm))
2160 		return dqm;
2161 
2162 out_free:
2163 	kfree(dqm);
2164 	return NULL;
2165 }
2166 
2167 static void deallocate_hiq_sdma_mqd(struct kfd_dev *dev,
2168 				    struct kfd_mem_obj *mqd)
2169 {
2170 	WARN(!mqd, "No hiq sdma mqd trunk to free");
2171 
2172 	amdgpu_amdkfd_free_gtt_mem(dev->adev, mqd->gtt_mem);
2173 }
2174 
2175 void device_queue_manager_uninit(struct device_queue_manager *dqm)
2176 {
2177 	dqm->ops.uninitialize(dqm);
2178 	deallocate_hiq_sdma_mqd(dqm->dev, &dqm->hiq_sdma_mqd);
2179 	kfree(dqm);
2180 }
2181 
2182 int kfd_dqm_evict_pasid(struct device_queue_manager *dqm, u32 pasid)
2183 {
2184 	struct kfd_process_device *pdd;
2185 	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
2186 	int ret = 0;
2187 
2188 	if (!p)
2189 		return -EINVAL;
2190 	WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
2191 	pdd = kfd_get_process_device_data(dqm->dev, p);
2192 	if (pdd)
2193 		ret = dqm->ops.evict_process_queues(dqm, &pdd->qpd);
2194 	kfd_unref_process(p);
2195 
2196 	return ret;
2197 }
2198 
2199 static void kfd_process_hw_exception(struct work_struct *work)
2200 {
2201 	struct device_queue_manager *dqm = container_of(work,
2202 			struct device_queue_manager, hw_exception_work);
2203 	amdgpu_amdkfd_gpu_reset(dqm->dev->adev);
2204 }
2205 
2206 #if defined(CONFIG_DEBUG_FS)
2207 
2208 static void seq_reg_dump(struct seq_file *m,
2209 			 uint32_t (*dump)[2], uint32_t n_regs)
2210 {
2211 	uint32_t i, count;
2212 
2213 	for (i = 0, count = 0; i < n_regs; i++) {
2214 		if (count == 0 ||
2215 		    dump[i-1][0] + sizeof(uint32_t) != dump[i][0]) {
2216 			seq_printf(m, "%s    %08x: %08x",
2217 				   i ? "\n" : "",
2218 				   dump[i][0], dump[i][1]);
2219 			count = 7;
2220 		} else {
2221 			seq_printf(m, " %08x", dump[i][1]);
2222 			count--;
2223 		}
2224 	}
2225 
2226 	seq_puts(m, "\n");
2227 }
2228 
2229 int dqm_debugfs_hqds(struct seq_file *m, void *data)
2230 {
2231 	struct device_queue_manager *dqm = data;
2232 	uint32_t (*dump)[2], n_regs;
2233 	int pipe, queue;
2234 	int r = 0;
2235 
2236 	if (!dqm->sched_running) {
2237 		seq_puts(m, " Device is stopped\n");
2238 		return 0;
2239 	}
2240 
2241 	r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev,
2242 					KFD_CIK_HIQ_PIPE, KFD_CIK_HIQ_QUEUE,
2243 					&dump, &n_regs);
2244 	if (!r) {
2245 		seq_printf(m, "  HIQ on MEC %d Pipe %d Queue %d\n",
2246 			   KFD_CIK_HIQ_PIPE/get_pipes_per_mec(dqm)+1,
2247 			   KFD_CIK_HIQ_PIPE%get_pipes_per_mec(dqm),
2248 			   KFD_CIK_HIQ_QUEUE);
2249 		seq_reg_dump(m, dump, n_regs);
2250 
2251 		kfree(dump);
2252 	}
2253 
2254 	for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
2255 		int pipe_offset = pipe * get_queues_per_pipe(dqm);
2256 
2257 		for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) {
2258 			if (!test_bit(pipe_offset + queue,
2259 				      dqm->dev->shared_resources.cp_queue_bitmap))
2260 				continue;
2261 
2262 			r = dqm->dev->kfd2kgd->hqd_dump(
2263 				dqm->dev->adev, pipe, queue, &dump, &n_regs);
2264 			if (r)
2265 				break;
2266 
2267 			seq_printf(m, "  CP Pipe %d, Queue %d\n",
2268 				  pipe, queue);
2269 			seq_reg_dump(m, dump, n_regs);
2270 
2271 			kfree(dump);
2272 		}
2273 	}
2274 
2275 	for (pipe = 0; pipe < get_num_all_sdma_engines(dqm); pipe++) {
2276 		for (queue = 0;
2277 		     queue < dqm->dev->device_info.num_sdma_queues_per_engine;
2278 		     queue++) {
2279 			r = dqm->dev->kfd2kgd->hqd_sdma_dump(
2280 				dqm->dev->adev, pipe, queue, &dump, &n_regs);
2281 			if (r)
2282 				break;
2283 
2284 			seq_printf(m, "  SDMA Engine %d, RLC %d\n",
2285 				  pipe, queue);
2286 			seq_reg_dump(m, dump, n_regs);
2287 
2288 			kfree(dump);
2289 		}
2290 	}
2291 
2292 	return r;
2293 }
2294 
2295 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm)
2296 {
2297 	int r = 0;
2298 
2299 	dqm_lock(dqm);
2300 	r = pm_debugfs_hang_hws(&dqm->packet_mgr);
2301 	if (r) {
2302 		dqm_unlock(dqm);
2303 		return r;
2304 	}
2305 	dqm->active_runlist = true;
2306 	r = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0);
2307 	dqm_unlock(dqm);
2308 
2309 	return r;
2310 }
2311 
2312 #endif
2313