xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_device_queue_manager.c (revision 643e2e259c2b25a2af0ae4c23c6e16586d9fd19c)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/ratelimit.h>
26 #include <linux/printk.h>
27 #include <linux/slab.h>
28 #include <linux/list.h>
29 #include <linux/types.h>
30 #include <linux/bitops.h>
31 #include <linux/sched.h>
32 #include "kfd_priv.h"
33 #include "kfd_device_queue_manager.h"
34 #include "kfd_mqd_manager.h"
35 #include "cik_regs.h"
36 #include "kfd_kernel_queue.h"
37 #include "amdgpu_amdkfd.h"
38 #include "amdgpu_reset.h"
39 #include "mes_v11_api_def.h"
40 #include "kfd_debug.h"
41 
42 /* Size of the per-pipe EOP queue */
43 #define CIK_HPD_EOP_BYTES_LOG2 11
44 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
45 
46 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
47 				  u32 pasid, unsigned int vmid);
48 
49 static int execute_queues_cpsch(struct device_queue_manager *dqm,
50 				enum kfd_unmap_queues_filter filter,
51 				uint32_t filter_param,
52 				uint32_t grace_period);
53 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
54 				enum kfd_unmap_queues_filter filter,
55 				uint32_t filter_param,
56 				uint32_t grace_period,
57 				bool reset);
58 
59 static int map_queues_cpsch(struct device_queue_manager *dqm);
60 
61 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
62 				struct queue *q);
63 
64 static inline void deallocate_hqd(struct device_queue_manager *dqm,
65 				struct queue *q);
66 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q);
67 static int allocate_sdma_queue(struct device_queue_manager *dqm,
68 				struct queue *q, const uint32_t *restore_sdma_id);
69 static void kfd_process_hw_exception(struct work_struct *work);
70 
71 static inline
72 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
73 {
74 	if (type == KFD_QUEUE_TYPE_SDMA || type == KFD_QUEUE_TYPE_SDMA_XGMI)
75 		return KFD_MQD_TYPE_SDMA;
76 	return KFD_MQD_TYPE_CP;
77 }
78 
79 static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe)
80 {
81 	int i;
82 	int pipe_offset = (mec * dqm->dev->kfd->shared_resources.num_pipe_per_mec
83 		+ pipe) * dqm->dev->kfd->shared_resources.num_queue_per_pipe;
84 
85 	/* queue is available for KFD usage if bit is 1 */
86 	for (i = 0; i <  dqm->dev->kfd->shared_resources.num_queue_per_pipe; ++i)
87 		if (test_bit(pipe_offset + i,
88 			      dqm->dev->kfd->shared_resources.cp_queue_bitmap))
89 			return true;
90 	return false;
91 }
92 
93 unsigned int get_cp_queues_num(struct device_queue_manager *dqm)
94 {
95 	return bitmap_weight(dqm->dev->kfd->shared_resources.cp_queue_bitmap,
96 				AMDGPU_MAX_QUEUES);
97 }
98 
99 unsigned int get_queues_per_pipe(struct device_queue_manager *dqm)
100 {
101 	return dqm->dev->kfd->shared_resources.num_queue_per_pipe;
102 }
103 
104 unsigned int get_pipes_per_mec(struct device_queue_manager *dqm)
105 {
106 	return dqm->dev->kfd->shared_resources.num_pipe_per_mec;
107 }
108 
109 static unsigned int get_num_all_sdma_engines(struct device_queue_manager *dqm)
110 {
111 	return kfd_get_num_sdma_engines(dqm->dev) +
112 		kfd_get_num_xgmi_sdma_engines(dqm->dev);
113 }
114 
115 unsigned int get_num_sdma_queues(struct device_queue_manager *dqm)
116 {
117 	return kfd_get_num_sdma_engines(dqm->dev) *
118 		dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
119 }
120 
121 unsigned int get_num_xgmi_sdma_queues(struct device_queue_manager *dqm)
122 {
123 	return kfd_get_num_xgmi_sdma_engines(dqm->dev) *
124 		dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
125 }
126 
127 static void init_sdma_bitmaps(struct device_queue_manager *dqm)
128 {
129 	bitmap_zero(dqm->sdma_bitmap, KFD_MAX_SDMA_QUEUES);
130 	bitmap_set(dqm->sdma_bitmap, 0, get_num_sdma_queues(dqm));
131 
132 	bitmap_zero(dqm->xgmi_sdma_bitmap, KFD_MAX_SDMA_QUEUES);
133 	bitmap_set(dqm->xgmi_sdma_bitmap, 0, get_num_xgmi_sdma_queues(dqm));
134 
135 	/* Mask out the reserved queues */
136 	bitmap_andnot(dqm->sdma_bitmap, dqm->sdma_bitmap,
137 		      dqm->dev->kfd->device_info.reserved_sdma_queues_bitmap,
138 		      KFD_MAX_SDMA_QUEUES);
139 }
140 
141 void program_sh_mem_settings(struct device_queue_manager *dqm,
142 					struct qcm_process_device *qpd)
143 {
144 	uint32_t xcc_mask = dqm->dev->xcc_mask;
145 	int xcc_id;
146 
147 	for_each_inst(xcc_id, xcc_mask)
148 		dqm->dev->kfd2kgd->program_sh_mem_settings(
149 			dqm->dev->adev, qpd->vmid, qpd->sh_mem_config,
150 			qpd->sh_mem_ape1_base, qpd->sh_mem_ape1_limit,
151 			qpd->sh_mem_bases, xcc_id);
152 }
153 
154 static void kfd_hws_hang(struct device_queue_manager *dqm)
155 {
156 	struct device_process_node *cur;
157 	struct qcm_process_device *qpd;
158 	struct queue *q;
159 
160 	/* Mark all device queues as reset. */
161 	list_for_each_entry(cur, &dqm->queues, list) {
162 		qpd = cur->qpd;
163 		list_for_each_entry(q, &qpd->queues_list, list) {
164 			struct kfd_process_device *pdd = qpd_to_pdd(qpd);
165 
166 			pdd->has_reset_queue = true;
167 		}
168 	}
169 
170 	/*
171 	 * Issue a GPU reset if HWS is unresponsive
172 	 */
173 	schedule_work(&dqm->hw_exception_work);
174 }
175 
176 static int convert_to_mes_queue_type(int queue_type)
177 {
178 	int mes_queue_type;
179 
180 	switch (queue_type) {
181 	case KFD_QUEUE_TYPE_COMPUTE:
182 		mes_queue_type = MES_QUEUE_TYPE_COMPUTE;
183 		break;
184 	case KFD_QUEUE_TYPE_SDMA:
185 		mes_queue_type = MES_QUEUE_TYPE_SDMA;
186 		break;
187 	default:
188 		WARN(1, "Invalid queue type %d", queue_type);
189 		mes_queue_type = -EINVAL;
190 		break;
191 	}
192 
193 	return mes_queue_type;
194 }
195 
196 static int add_queue_mes(struct device_queue_manager *dqm, struct queue *q,
197 			 struct qcm_process_device *qpd)
198 {
199 	struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
200 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
201 	struct mes_add_queue_input queue_input;
202 	int r, queue_type;
203 	uint64_t wptr_addr_off;
204 
205 	if (!dqm->sched_running || dqm->sched_halt)
206 		return 0;
207 	if (!down_read_trylock(&adev->reset_domain->sem))
208 		return -EIO;
209 
210 	if (!pdd->proc_ctx_cpu_ptr) {
211 		r = amdgpu_amdkfd_alloc_gtt_mem(adev,
212 				AMDGPU_MES_PROC_CTX_SIZE,
213 				&pdd->proc_ctx_bo,
214 				&pdd->proc_ctx_gpu_addr,
215 				&pdd->proc_ctx_cpu_ptr,
216 				false);
217 		if (r) {
218 			dev_err(adev->dev,
219 				"failed to allocate process context bo\n");
220 			return r;
221 		}
222 		memset(pdd->proc_ctx_cpu_ptr, 0, AMDGPU_MES_PROC_CTX_SIZE);
223 	}
224 
225 	memset(&queue_input, 0x0, sizeof(struct mes_add_queue_input));
226 	queue_input.process_id = qpd->pqm->process->pasid;
227 	queue_input.page_table_base_addr =  qpd->page_table_base;
228 	queue_input.process_va_start = 0;
229 	queue_input.process_va_end = adev->vm_manager.max_pfn - 1;
230 	/* MES unit for quantum is 100ns */
231 	queue_input.process_quantum = KFD_MES_PROCESS_QUANTUM;  /* Equivalent to 10ms. */
232 	queue_input.process_context_addr = pdd->proc_ctx_gpu_addr;
233 	queue_input.gang_quantum = KFD_MES_GANG_QUANTUM; /* Equivalent to 1ms */
234 	queue_input.gang_context_addr = q->gang_ctx_gpu_addr;
235 	queue_input.inprocess_gang_priority = q->properties.priority;
236 	queue_input.gang_global_priority_level =
237 					AMDGPU_MES_PRIORITY_LEVEL_NORMAL;
238 	queue_input.doorbell_offset = q->properties.doorbell_off;
239 	queue_input.mqd_addr = q->gart_mqd_addr;
240 	queue_input.wptr_addr = (uint64_t)q->properties.write_ptr;
241 
242 	wptr_addr_off = (uint64_t)q->properties.write_ptr & (PAGE_SIZE - 1);
243 	queue_input.wptr_mc_addr = amdgpu_bo_gpu_offset(q->properties.wptr_bo) + wptr_addr_off;
244 
245 	queue_input.is_kfd_process = 1;
246 	queue_input.is_aql_queue = (q->properties.format == KFD_QUEUE_FORMAT_AQL);
247 	queue_input.queue_size = q->properties.queue_size >> 2;
248 
249 	queue_input.paging = false;
250 	queue_input.tba_addr = qpd->tba_addr;
251 	queue_input.tma_addr = qpd->tma_addr;
252 	queue_input.trap_en = !kfd_dbg_has_cwsr_workaround(q->device);
253 	queue_input.skip_process_ctx_clear =
254 		qpd->pqm->process->runtime_info.runtime_state == DEBUG_RUNTIME_STATE_ENABLED &&
255 						(qpd->pqm->process->debug_trap_enabled ||
256 						 kfd_dbg_has_ttmps_always_setup(q->device));
257 
258 	queue_type = convert_to_mes_queue_type(q->properties.type);
259 	if (queue_type < 0) {
260 		dev_err(adev->dev, "Queue type not supported with MES, queue:%d\n",
261 			q->properties.type);
262 		up_read(&adev->reset_domain->sem);
263 		return -EINVAL;
264 	}
265 	queue_input.queue_type = (uint32_t)queue_type;
266 
267 	queue_input.exclusively_scheduled = q->properties.is_gws;
268 
269 	amdgpu_mes_lock(&adev->mes);
270 	r = adev->mes.funcs->add_hw_queue(&adev->mes, &queue_input);
271 	amdgpu_mes_unlock(&adev->mes);
272 	up_read(&adev->reset_domain->sem);
273 	if (r) {
274 		dev_err(adev->dev, "failed to add hardware queue to MES, doorbell=0x%x\n",
275 			q->properties.doorbell_off);
276 		dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
277 		kfd_hws_hang(dqm);
278 	}
279 
280 	return r;
281 }
282 
283 static int remove_queue_mes(struct device_queue_manager *dqm, struct queue *q,
284 			struct qcm_process_device *qpd)
285 {
286 	struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
287 	int r;
288 	struct mes_remove_queue_input queue_input;
289 
290 	if (!dqm->sched_running || dqm->sched_halt)
291 		return 0;
292 	if (!down_read_trylock(&adev->reset_domain->sem))
293 		return -EIO;
294 
295 	memset(&queue_input, 0x0, sizeof(struct mes_remove_queue_input));
296 	queue_input.doorbell_offset = q->properties.doorbell_off;
297 	queue_input.gang_context_addr = q->gang_ctx_gpu_addr;
298 
299 	amdgpu_mes_lock(&adev->mes);
300 	r = adev->mes.funcs->remove_hw_queue(&adev->mes, &queue_input);
301 	amdgpu_mes_unlock(&adev->mes);
302 	up_read(&adev->reset_domain->sem);
303 
304 	if (r) {
305 		dev_err(adev->dev, "failed to remove hardware queue from MES, doorbell=0x%x\n",
306 			q->properties.doorbell_off);
307 		dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
308 		kfd_hws_hang(dqm);
309 	}
310 
311 	return r;
312 }
313 
314 static int remove_all_kfd_queues_mes(struct device_queue_manager *dqm)
315 {
316 	struct device_process_node *cur;
317 	struct device *dev = dqm->dev->adev->dev;
318 	struct qcm_process_device *qpd;
319 	struct queue *q;
320 	int retval = 0;
321 
322 	list_for_each_entry(cur, &dqm->queues, list) {
323 		qpd = cur->qpd;
324 		list_for_each_entry(q, &qpd->queues_list, list) {
325 			if (q->properties.is_active) {
326 				retval = remove_queue_mes(dqm, q, qpd);
327 				if (retval) {
328 					dev_err(dev, "%s: Failed to remove queue %d for dev %d",
329 						__func__,
330 						q->properties.queue_id,
331 						dqm->dev->id);
332 					return retval;
333 				}
334 			}
335 		}
336 	}
337 
338 	return retval;
339 }
340 
341 static int add_all_kfd_queues_mes(struct device_queue_manager *dqm)
342 {
343 	struct device_process_node *cur;
344 	struct device *dev = dqm->dev->adev->dev;
345 	struct qcm_process_device *qpd;
346 	struct queue *q;
347 	int retval = 0;
348 
349 	list_for_each_entry(cur, &dqm->queues, list) {
350 		qpd = cur->qpd;
351 		list_for_each_entry(q, &qpd->queues_list, list) {
352 			if (!q->properties.is_active)
353 				continue;
354 			retval = add_queue_mes(dqm, q, qpd);
355 			if (retval) {
356 				dev_err(dev, "%s: Failed to add queue %d for dev %d",
357 					__func__,
358 					q->properties.queue_id,
359 					dqm->dev->id);
360 				return retval;
361 			}
362 		}
363 	}
364 
365 	return retval;
366 }
367 
368 static int suspend_all_queues_mes(struct device_queue_manager *dqm)
369 {
370 	struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
371 	int r = 0;
372 
373 	if (!down_read_trylock(&adev->reset_domain->sem))
374 		return -EIO;
375 
376 	r = amdgpu_mes_suspend(adev);
377 	up_read(&adev->reset_domain->sem);
378 
379 	if (r) {
380 		dev_err(adev->dev, "failed to suspend gangs from MES\n");
381 		dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
382 		kfd_hws_hang(dqm);
383 	}
384 
385 	return r;
386 }
387 
388 static int resume_all_queues_mes(struct device_queue_manager *dqm)
389 {
390 	struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
391 	int r = 0;
392 
393 	if (!down_read_trylock(&adev->reset_domain->sem))
394 		return -EIO;
395 
396 	r = amdgpu_mes_resume(adev);
397 	up_read(&adev->reset_domain->sem);
398 
399 	if (r) {
400 		dev_err(adev->dev, "failed to resume gangs from MES\n");
401 		dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
402 		kfd_hws_hang(dqm);
403 	}
404 
405 	return r;
406 }
407 
408 static void increment_queue_count(struct device_queue_manager *dqm,
409 				  struct qcm_process_device *qpd,
410 				  struct queue *q)
411 {
412 	dqm->active_queue_count++;
413 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
414 	    q->properties.type == KFD_QUEUE_TYPE_DIQ)
415 		dqm->active_cp_queue_count++;
416 
417 	if (q->properties.is_gws) {
418 		dqm->gws_queue_count++;
419 		qpd->mapped_gws_queue = true;
420 	}
421 }
422 
423 static void decrement_queue_count(struct device_queue_manager *dqm,
424 				  struct qcm_process_device *qpd,
425 				  struct queue *q)
426 {
427 	dqm->active_queue_count--;
428 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
429 	    q->properties.type == KFD_QUEUE_TYPE_DIQ)
430 		dqm->active_cp_queue_count--;
431 
432 	if (q->properties.is_gws) {
433 		dqm->gws_queue_count--;
434 		qpd->mapped_gws_queue = false;
435 	}
436 }
437 
438 /*
439  * Allocate a doorbell ID to this queue.
440  * If doorbell_id is passed in, make sure requested ID is valid then allocate it.
441  */
442 static int allocate_doorbell(struct qcm_process_device *qpd,
443 			     struct queue *q,
444 			     uint32_t const *restore_id)
445 {
446 	struct kfd_node *dev = qpd->dqm->dev;
447 
448 	if (!KFD_IS_SOC15(dev)) {
449 		/* On pre-SOC15 chips we need to use the queue ID to
450 		 * preserve the user mode ABI.
451 		 */
452 
453 		if (restore_id && *restore_id != q->properties.queue_id)
454 			return -EINVAL;
455 
456 		q->doorbell_id = q->properties.queue_id;
457 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
458 			q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
459 		/* For SDMA queues on SOC15 with 8-byte doorbell, use static
460 		 * doorbell assignments based on the engine and queue id.
461 		 * The doobell index distance between RLC (2*i) and (2*i+1)
462 		 * for a SDMA engine is 512.
463 		 */
464 
465 		uint32_t *idx_offset = dev->kfd->shared_resources.sdma_doorbell_idx;
466 
467 		/*
468 		 * q->properties.sdma_engine_id corresponds to the virtual
469 		 * sdma engine number. However, for doorbell allocation,
470 		 * we need the physical sdma engine id in order to get the
471 		 * correct doorbell offset.
472 		 */
473 		uint32_t valid_id = idx_offset[qpd->dqm->dev->node_id *
474 					       get_num_all_sdma_engines(qpd->dqm) +
475 					       q->properties.sdma_engine_id]
476 						+ (q->properties.sdma_queue_id & 1)
477 						* KFD_QUEUE_DOORBELL_MIRROR_OFFSET
478 						+ (q->properties.sdma_queue_id >> 1);
479 
480 		if (restore_id && *restore_id != valid_id)
481 			return -EINVAL;
482 		q->doorbell_id = valid_id;
483 	} else {
484 		/* For CP queues on SOC15 */
485 		if (restore_id) {
486 			/* make sure that ID is free  */
487 			if (__test_and_set_bit(*restore_id, qpd->doorbell_bitmap))
488 				return -EINVAL;
489 
490 			q->doorbell_id = *restore_id;
491 		} else {
492 			/* or reserve a free doorbell ID */
493 			unsigned int found;
494 
495 			found = find_first_zero_bit(qpd->doorbell_bitmap,
496 						    KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
497 			if (found >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) {
498 				pr_debug("No doorbells available");
499 				return -EBUSY;
500 			}
501 			set_bit(found, qpd->doorbell_bitmap);
502 			q->doorbell_id = found;
503 		}
504 	}
505 
506 	q->properties.doorbell_off = amdgpu_doorbell_index_on_bar(dev->adev,
507 								  qpd->proc_doorbells,
508 								  q->doorbell_id,
509 								  dev->kfd->device_info.doorbell_size);
510 	return 0;
511 }
512 
513 static void deallocate_doorbell(struct qcm_process_device *qpd,
514 				struct queue *q)
515 {
516 	unsigned int old;
517 	struct kfd_node *dev = qpd->dqm->dev;
518 
519 	if (!KFD_IS_SOC15(dev) ||
520 	    q->properties.type == KFD_QUEUE_TYPE_SDMA ||
521 	    q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
522 		return;
523 
524 	old = test_and_clear_bit(q->doorbell_id, qpd->doorbell_bitmap);
525 	WARN_ON(!old);
526 }
527 
528 static void program_trap_handler_settings(struct device_queue_manager *dqm,
529 				struct qcm_process_device *qpd)
530 {
531 	uint32_t xcc_mask = dqm->dev->xcc_mask;
532 	int xcc_id;
533 
534 	if (dqm->dev->kfd2kgd->program_trap_handler_settings)
535 		for_each_inst(xcc_id, xcc_mask)
536 			dqm->dev->kfd2kgd->program_trap_handler_settings(
537 				dqm->dev->adev, qpd->vmid, qpd->tba_addr,
538 				qpd->tma_addr, xcc_id);
539 }
540 
541 static int allocate_vmid(struct device_queue_manager *dqm,
542 			struct qcm_process_device *qpd,
543 			struct queue *q)
544 {
545 	struct device *dev = dqm->dev->adev->dev;
546 	int allocated_vmid = -1, i;
547 
548 	for (i = dqm->dev->vm_info.first_vmid_kfd;
549 			i <= dqm->dev->vm_info.last_vmid_kfd; i++) {
550 		if (!dqm->vmid_pasid[i]) {
551 			allocated_vmid = i;
552 			break;
553 		}
554 	}
555 
556 	if (allocated_vmid < 0) {
557 		dev_err(dev, "no more vmid to allocate\n");
558 		return -ENOSPC;
559 	}
560 
561 	pr_debug("vmid allocated: %d\n", allocated_vmid);
562 
563 	dqm->vmid_pasid[allocated_vmid] = q->process->pasid;
564 
565 	set_pasid_vmid_mapping(dqm, q->process->pasid, allocated_vmid);
566 
567 	qpd->vmid = allocated_vmid;
568 	q->properties.vmid = allocated_vmid;
569 
570 	program_sh_mem_settings(dqm, qpd);
571 
572 	if (KFD_IS_SOC15(dqm->dev) && dqm->dev->kfd->cwsr_enabled)
573 		program_trap_handler_settings(dqm, qpd);
574 
575 	/* qpd->page_table_base is set earlier when register_process()
576 	 * is called, i.e. when the first queue is created.
577 	 */
578 	dqm->dev->kfd2kgd->set_vm_context_page_table_base(dqm->dev->adev,
579 			qpd->vmid,
580 			qpd->page_table_base);
581 	/* invalidate the VM context after pasid and vmid mapping is set up */
582 	kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY);
583 
584 	if (dqm->dev->kfd2kgd->set_scratch_backing_va)
585 		dqm->dev->kfd2kgd->set_scratch_backing_va(dqm->dev->adev,
586 				qpd->sh_hidden_private_base, qpd->vmid);
587 
588 	return 0;
589 }
590 
591 static int flush_texture_cache_nocpsch(struct kfd_node *kdev,
592 				struct qcm_process_device *qpd)
593 {
594 	const struct packet_manager_funcs *pmf = qpd->dqm->packet_mgr.pmf;
595 	int ret;
596 
597 	if (!qpd->ib_kaddr)
598 		return -ENOMEM;
599 
600 	ret = pmf->release_mem(qpd->ib_base, (uint32_t *)qpd->ib_kaddr);
601 	if (ret)
602 		return ret;
603 
604 	return amdgpu_amdkfd_submit_ib(kdev->adev, KGD_ENGINE_MEC1, qpd->vmid,
605 				qpd->ib_base, (uint32_t *)qpd->ib_kaddr,
606 				pmf->release_mem_size / sizeof(uint32_t));
607 }
608 
609 static void deallocate_vmid(struct device_queue_manager *dqm,
610 				struct qcm_process_device *qpd,
611 				struct queue *q)
612 {
613 	struct device *dev = dqm->dev->adev->dev;
614 
615 	/* On GFX v7, CP doesn't flush TC at dequeue */
616 	if (q->device->adev->asic_type == CHIP_HAWAII)
617 		if (flush_texture_cache_nocpsch(q->device, qpd))
618 			dev_err(dev, "Failed to flush TC\n");
619 
620 	kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY);
621 
622 	/* Release the vmid mapping */
623 	set_pasid_vmid_mapping(dqm, 0, qpd->vmid);
624 	dqm->vmid_pasid[qpd->vmid] = 0;
625 
626 	qpd->vmid = 0;
627 	q->properties.vmid = 0;
628 }
629 
630 static int create_queue_nocpsch(struct device_queue_manager *dqm,
631 				struct queue *q,
632 				struct qcm_process_device *qpd,
633 				const struct kfd_criu_queue_priv_data *qd,
634 				const void *restore_mqd, const void *restore_ctl_stack)
635 {
636 	struct mqd_manager *mqd_mgr;
637 	int retval;
638 
639 	dqm_lock(dqm);
640 
641 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
642 		pr_warn("Can't create new usermode queue because %d queues were already created\n",
643 				dqm->total_queue_count);
644 		retval = -EPERM;
645 		goto out_unlock;
646 	}
647 
648 	if (list_empty(&qpd->queues_list)) {
649 		retval = allocate_vmid(dqm, qpd, q);
650 		if (retval)
651 			goto out_unlock;
652 	}
653 	q->properties.vmid = qpd->vmid;
654 	/*
655 	 * Eviction state logic: mark all queues as evicted, even ones
656 	 * not currently active. Restoring inactive queues later only
657 	 * updates the is_evicted flag but is a no-op otherwise.
658 	 */
659 	q->properties.is_evicted = !!qpd->evicted;
660 
661 	q->properties.tba_addr = qpd->tba_addr;
662 	q->properties.tma_addr = qpd->tma_addr;
663 
664 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
665 			q->properties.type)];
666 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
667 		retval = allocate_hqd(dqm, q);
668 		if (retval)
669 			goto deallocate_vmid;
670 		pr_debug("Loading mqd to hqd on pipe %d, queue %d\n",
671 			q->pipe, q->queue);
672 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
673 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
674 		retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL);
675 		if (retval)
676 			goto deallocate_vmid;
677 		dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
678 	}
679 
680 	retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL);
681 	if (retval)
682 		goto out_deallocate_hqd;
683 
684 	/* Temporarily release dqm lock to avoid a circular lock dependency */
685 	dqm_unlock(dqm);
686 	q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
687 	dqm_lock(dqm);
688 
689 	if (!q->mqd_mem_obj) {
690 		retval = -ENOMEM;
691 		goto out_deallocate_doorbell;
692 	}
693 
694 	if (qd)
695 		mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr,
696 				     &q->properties, restore_mqd, restore_ctl_stack,
697 				     qd->ctl_stack_size);
698 	else
699 		mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
700 					&q->gart_mqd_addr, &q->properties);
701 
702 	if (q->properties.is_active) {
703 		if (!dqm->sched_running) {
704 			WARN_ONCE(1, "Load non-HWS mqd while stopped\n");
705 			goto add_queue_to_list;
706 		}
707 
708 		if (WARN(q->process->mm != current->mm,
709 					"should only run in user thread"))
710 			retval = -EFAULT;
711 		else
712 			retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
713 					q->queue, &q->properties, current->mm);
714 		if (retval)
715 			goto out_free_mqd;
716 	}
717 
718 add_queue_to_list:
719 	list_add(&q->list, &qpd->queues_list);
720 	qpd->queue_count++;
721 	if (q->properties.is_active)
722 		increment_queue_count(dqm, qpd, q);
723 
724 	/*
725 	 * Unconditionally increment this counter, regardless of the queue's
726 	 * type or whether the queue is active.
727 	 */
728 	dqm->total_queue_count++;
729 	pr_debug("Total of %d queues are accountable so far\n",
730 			dqm->total_queue_count);
731 	goto out_unlock;
732 
733 out_free_mqd:
734 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
735 out_deallocate_doorbell:
736 	deallocate_doorbell(qpd, q);
737 out_deallocate_hqd:
738 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
739 		deallocate_hqd(dqm, q);
740 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
741 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
742 		deallocate_sdma_queue(dqm, q);
743 deallocate_vmid:
744 	if (list_empty(&qpd->queues_list))
745 		deallocate_vmid(dqm, qpd, q);
746 out_unlock:
747 	dqm_unlock(dqm);
748 	return retval;
749 }
750 
751 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
752 {
753 	bool set;
754 	int pipe, bit, i;
755 
756 	set = false;
757 
758 	for (pipe = dqm->next_pipe_to_allocate, i = 0;
759 			i < get_pipes_per_mec(dqm);
760 			pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) {
761 
762 		if (!is_pipe_enabled(dqm, 0, pipe))
763 			continue;
764 
765 		if (dqm->allocated_queues[pipe] != 0) {
766 			bit = ffs(dqm->allocated_queues[pipe]) - 1;
767 			dqm->allocated_queues[pipe] &= ~(1 << bit);
768 			q->pipe = pipe;
769 			q->queue = bit;
770 			set = true;
771 			break;
772 		}
773 	}
774 
775 	if (!set)
776 		return -EBUSY;
777 
778 	pr_debug("hqd slot - pipe %d, queue %d\n", q->pipe, q->queue);
779 	/* horizontal hqd allocation */
780 	dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm);
781 
782 	return 0;
783 }
784 
785 static inline void deallocate_hqd(struct device_queue_manager *dqm,
786 				struct queue *q)
787 {
788 	dqm->allocated_queues[q->pipe] |= (1 << q->queue);
789 }
790 
791 #define SQ_IND_CMD_CMD_KILL		0x00000003
792 #define SQ_IND_CMD_MODE_BROADCAST	0x00000001
793 
794 static int dbgdev_wave_reset_wavefronts(struct kfd_node *dev, struct kfd_process *p)
795 {
796 	int status = 0;
797 	unsigned int vmid;
798 	uint16_t queried_pasid;
799 	union SQ_CMD_BITS reg_sq_cmd;
800 	union GRBM_GFX_INDEX_BITS reg_gfx_index;
801 	struct kfd_process_device *pdd;
802 	int first_vmid_to_scan = dev->vm_info.first_vmid_kfd;
803 	int last_vmid_to_scan = dev->vm_info.last_vmid_kfd;
804 	uint32_t xcc_mask = dev->xcc_mask;
805 	int xcc_id;
806 
807 	reg_sq_cmd.u32All = 0;
808 	reg_gfx_index.u32All = 0;
809 
810 	pr_debug("Killing all process wavefronts\n");
811 
812 	if (!dev->kfd2kgd->get_atc_vmid_pasid_mapping_info) {
813 		dev_err(dev->adev->dev, "no vmid pasid mapping supported\n");
814 		return -EOPNOTSUPP;
815 	}
816 
817 	/* Scan all registers in the range ATC_VMID8_PASID_MAPPING ..
818 	 * ATC_VMID15_PASID_MAPPING
819 	 * to check which VMID the current process is mapped to.
820 	 */
821 
822 	for (vmid = first_vmid_to_scan; vmid <= last_vmid_to_scan; vmid++) {
823 		status = dev->kfd2kgd->get_atc_vmid_pasid_mapping_info
824 				(dev->adev, vmid, &queried_pasid);
825 
826 		if (status && queried_pasid == p->pasid) {
827 			pr_debug("Killing wave fronts of vmid %d and pasid 0x%x\n",
828 					vmid, p->pasid);
829 			break;
830 		}
831 	}
832 
833 	if (vmid > last_vmid_to_scan) {
834 		dev_err(dev->adev->dev, "Didn't find vmid for pasid 0x%x\n", p->pasid);
835 		return -EFAULT;
836 	}
837 
838 	/* taking the VMID for that process on the safe way using PDD */
839 	pdd = kfd_get_process_device_data(dev, p);
840 	if (!pdd)
841 		return -EFAULT;
842 
843 	reg_gfx_index.bits.sh_broadcast_writes = 1;
844 	reg_gfx_index.bits.se_broadcast_writes = 1;
845 	reg_gfx_index.bits.instance_broadcast_writes = 1;
846 	reg_sq_cmd.bits.mode = SQ_IND_CMD_MODE_BROADCAST;
847 	reg_sq_cmd.bits.cmd = SQ_IND_CMD_CMD_KILL;
848 	reg_sq_cmd.bits.vm_id = vmid;
849 
850 	for_each_inst(xcc_id, xcc_mask)
851 		dev->kfd2kgd->wave_control_execute(
852 			dev->adev, reg_gfx_index.u32All,
853 			reg_sq_cmd.u32All, xcc_id);
854 
855 	return 0;
856 }
857 
858 /* Access to DQM has to be locked before calling destroy_queue_nocpsch_locked
859  * to avoid asynchronized access
860  */
861 static int destroy_queue_nocpsch_locked(struct device_queue_manager *dqm,
862 				struct qcm_process_device *qpd,
863 				struct queue *q)
864 {
865 	int retval;
866 	struct mqd_manager *mqd_mgr;
867 
868 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
869 			q->properties.type)];
870 
871 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
872 		deallocate_hqd(dqm, q);
873 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
874 		deallocate_sdma_queue(dqm, q);
875 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
876 		deallocate_sdma_queue(dqm, q);
877 	else {
878 		pr_debug("q->properties.type %d is invalid\n",
879 				q->properties.type);
880 		return -EINVAL;
881 	}
882 	dqm->total_queue_count--;
883 
884 	deallocate_doorbell(qpd, q);
885 
886 	if (!dqm->sched_running) {
887 		WARN_ONCE(1, "Destroy non-HWS queue while stopped\n");
888 		return 0;
889 	}
890 
891 	retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
892 				KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
893 				KFD_UNMAP_LATENCY_MS,
894 				q->pipe, q->queue);
895 	if (retval == -ETIME)
896 		qpd->reset_wavefronts = true;
897 
898 	list_del(&q->list);
899 	if (list_empty(&qpd->queues_list)) {
900 		if (qpd->reset_wavefronts) {
901 			pr_warn("Resetting wave fronts (nocpsch) on dev %p\n",
902 					dqm->dev);
903 			/* dbgdev_wave_reset_wavefronts has to be called before
904 			 * deallocate_vmid(), i.e. when vmid is still in use.
905 			 */
906 			dbgdev_wave_reset_wavefronts(dqm->dev,
907 					qpd->pqm->process);
908 			qpd->reset_wavefronts = false;
909 		}
910 
911 		deallocate_vmid(dqm, qpd, q);
912 	}
913 	qpd->queue_count--;
914 	if (q->properties.is_active)
915 		decrement_queue_count(dqm, qpd, q);
916 
917 	return retval;
918 }
919 
920 static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
921 				struct qcm_process_device *qpd,
922 				struct queue *q)
923 {
924 	int retval;
925 	uint64_t sdma_val = 0;
926 	struct device *dev = dqm->dev->adev->dev;
927 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
928 	struct mqd_manager *mqd_mgr =
929 		dqm->mqd_mgrs[get_mqd_type_from_queue_type(q->properties.type)];
930 
931 	/* Get the SDMA queue stats */
932 	if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
933 	    (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
934 		retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr,
935 							&sdma_val);
936 		if (retval)
937 			dev_err(dev, "Failed to read SDMA queue counter for queue: %d\n",
938 				q->properties.queue_id);
939 	}
940 
941 	dqm_lock(dqm);
942 	retval = destroy_queue_nocpsch_locked(dqm, qpd, q);
943 	if (!retval)
944 		pdd->sdma_past_activity_counter += sdma_val;
945 	dqm_unlock(dqm);
946 
947 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
948 
949 	return retval;
950 }
951 
952 static int update_queue(struct device_queue_manager *dqm, struct queue *q,
953 			struct mqd_update_info *minfo)
954 {
955 	int retval = 0;
956 	struct device *dev = dqm->dev->adev->dev;
957 	struct mqd_manager *mqd_mgr;
958 	struct kfd_process_device *pdd;
959 	bool prev_active = false;
960 
961 	dqm_lock(dqm);
962 	pdd = kfd_get_process_device_data(q->device, q->process);
963 	if (!pdd) {
964 		retval = -ENODEV;
965 		goto out_unlock;
966 	}
967 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
968 			q->properties.type)];
969 
970 	/* Save previous activity state for counters */
971 	prev_active = q->properties.is_active;
972 
973 	/* Make sure the queue is unmapped before updating the MQD */
974 	if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
975 		if (!dqm->dev->kfd->shared_resources.enable_mes)
976 			retval = unmap_queues_cpsch(dqm,
977 						    KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD, false);
978 		else if (prev_active)
979 			retval = remove_queue_mes(dqm, q, &pdd->qpd);
980 
981 		/* queue is reset so inaccessable  */
982 		if (pdd->has_reset_queue) {
983 			retval = -EACCES;
984 			goto out_unlock;
985 		}
986 
987 		if (retval) {
988 			dev_err(dev, "unmap queue failed\n");
989 			goto out_unlock;
990 		}
991 	} else if (prev_active &&
992 		   (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
993 		    q->properties.type == KFD_QUEUE_TYPE_SDMA ||
994 		    q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
995 
996 		if (!dqm->sched_running) {
997 			WARN_ONCE(1, "Update non-HWS queue while stopped\n");
998 			goto out_unlock;
999 		}
1000 
1001 		retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
1002 				(dqm->dev->kfd->cwsr_enabled ?
1003 				 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE :
1004 				 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN),
1005 				KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
1006 		if (retval) {
1007 			dev_err(dev, "destroy mqd failed\n");
1008 			goto out_unlock;
1009 		}
1010 	}
1011 
1012 	mqd_mgr->update_mqd(mqd_mgr, q->mqd, &q->properties, minfo);
1013 
1014 	/*
1015 	 * check active state vs. the previous state and modify
1016 	 * counter accordingly. map_queues_cpsch uses the
1017 	 * dqm->active_queue_count to determine whether a new runlist must be
1018 	 * uploaded.
1019 	 */
1020 	if (q->properties.is_active && !prev_active) {
1021 		increment_queue_count(dqm, &pdd->qpd, q);
1022 	} else if (!q->properties.is_active && prev_active) {
1023 		decrement_queue_count(dqm, &pdd->qpd, q);
1024 	} else if (q->gws && !q->properties.is_gws) {
1025 		if (q->properties.is_active) {
1026 			dqm->gws_queue_count++;
1027 			pdd->qpd.mapped_gws_queue = true;
1028 		}
1029 		q->properties.is_gws = true;
1030 	} else if (!q->gws && q->properties.is_gws) {
1031 		if (q->properties.is_active) {
1032 			dqm->gws_queue_count--;
1033 			pdd->qpd.mapped_gws_queue = false;
1034 		}
1035 		q->properties.is_gws = false;
1036 	}
1037 
1038 	if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
1039 		if (!dqm->dev->kfd->shared_resources.enable_mes)
1040 			retval = map_queues_cpsch(dqm);
1041 		else if (q->properties.is_active)
1042 			retval = add_queue_mes(dqm, q, &pdd->qpd);
1043 	} else if (q->properties.is_active &&
1044 		 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
1045 		  q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1046 		  q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
1047 		if (WARN(q->process->mm != current->mm,
1048 			 "should only run in user thread"))
1049 			retval = -EFAULT;
1050 		else
1051 			retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd,
1052 						   q->pipe, q->queue,
1053 						   &q->properties, current->mm);
1054 	}
1055 
1056 out_unlock:
1057 	dqm_unlock(dqm);
1058 	return retval;
1059 }
1060 
1061 /* suspend_single_queue does not lock the dqm like the
1062  * evict_process_queues_cpsch or evict_process_queues_nocpsch. You should
1063  * lock the dqm before calling, and unlock after calling.
1064  *
1065  * The reason we don't lock the dqm is because this function may be
1066  * called on multiple queues in a loop, so rather than locking/unlocking
1067  * multiple times, we will just keep the dqm locked for all of the calls.
1068  */
1069 static int suspend_single_queue(struct device_queue_manager *dqm,
1070 				      struct kfd_process_device *pdd,
1071 				      struct queue *q)
1072 {
1073 	bool is_new;
1074 
1075 	if (q->properties.is_suspended)
1076 		return 0;
1077 
1078 	pr_debug("Suspending PASID %u queue [%i]\n",
1079 			pdd->process->pasid,
1080 			q->properties.queue_id);
1081 
1082 	is_new = q->properties.exception_status & KFD_EC_MASK(EC_QUEUE_NEW);
1083 
1084 	if (is_new || q->properties.is_being_destroyed) {
1085 		pr_debug("Suspend: skip %s queue id %i\n",
1086 				is_new ? "new" : "destroyed",
1087 				q->properties.queue_id);
1088 		return -EBUSY;
1089 	}
1090 
1091 	q->properties.is_suspended = true;
1092 	if (q->properties.is_active) {
1093 		if (dqm->dev->kfd->shared_resources.enable_mes) {
1094 			int r = remove_queue_mes(dqm, q, &pdd->qpd);
1095 
1096 			if (r)
1097 				return r;
1098 		}
1099 
1100 		decrement_queue_count(dqm, &pdd->qpd, q);
1101 		q->properties.is_active = false;
1102 	}
1103 
1104 	return 0;
1105 }
1106 
1107 /* resume_single_queue does not lock the dqm like the functions
1108  * restore_process_queues_cpsch or restore_process_queues_nocpsch. You should
1109  * lock the dqm before calling, and unlock after calling.
1110  *
1111  * The reason we don't lock the dqm is because this function may be
1112  * called on multiple queues in a loop, so rather than locking/unlocking
1113  * multiple times, we will just keep the dqm locked for all of the calls.
1114  */
1115 static int resume_single_queue(struct device_queue_manager *dqm,
1116 				      struct qcm_process_device *qpd,
1117 				      struct queue *q)
1118 {
1119 	struct kfd_process_device *pdd;
1120 
1121 	if (!q->properties.is_suspended)
1122 		return 0;
1123 
1124 	pdd = qpd_to_pdd(qpd);
1125 
1126 	pr_debug("Restoring from suspend PASID %u queue [%i]\n",
1127 			    pdd->process->pasid,
1128 			    q->properties.queue_id);
1129 
1130 	q->properties.is_suspended = false;
1131 
1132 	if (QUEUE_IS_ACTIVE(q->properties)) {
1133 		if (dqm->dev->kfd->shared_resources.enable_mes) {
1134 			int r = add_queue_mes(dqm, q, &pdd->qpd);
1135 
1136 			if (r)
1137 				return r;
1138 		}
1139 
1140 		q->properties.is_active = true;
1141 		increment_queue_count(dqm, qpd, q);
1142 	}
1143 
1144 	return 0;
1145 }
1146 
1147 static int evict_process_queues_nocpsch(struct device_queue_manager *dqm,
1148 					struct qcm_process_device *qpd)
1149 {
1150 	struct queue *q;
1151 	struct mqd_manager *mqd_mgr;
1152 	struct kfd_process_device *pdd;
1153 	int retval, ret = 0;
1154 
1155 	dqm_lock(dqm);
1156 	if (qpd->evicted++ > 0) /* already evicted, do nothing */
1157 		goto out;
1158 
1159 	pdd = qpd_to_pdd(qpd);
1160 	pr_debug_ratelimited("Evicting PASID 0x%x queues\n",
1161 			    pdd->process->pasid);
1162 
1163 	pdd->last_evict_timestamp = get_jiffies_64();
1164 	/* Mark all queues as evicted. Deactivate all active queues on
1165 	 * the qpd.
1166 	 */
1167 	list_for_each_entry(q, &qpd->queues_list, list) {
1168 		q->properties.is_evicted = true;
1169 		if (!q->properties.is_active)
1170 			continue;
1171 
1172 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1173 				q->properties.type)];
1174 		q->properties.is_active = false;
1175 		decrement_queue_count(dqm, qpd, q);
1176 
1177 		if (WARN_ONCE(!dqm->sched_running, "Evict when stopped\n"))
1178 			continue;
1179 
1180 		retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
1181 				(dqm->dev->kfd->cwsr_enabled ?
1182 				 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE :
1183 				 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN),
1184 				KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
1185 		if (retval && !ret)
1186 			/* Return the first error, but keep going to
1187 			 * maintain a consistent eviction state
1188 			 */
1189 			ret = retval;
1190 	}
1191 
1192 out:
1193 	dqm_unlock(dqm);
1194 	return ret;
1195 }
1196 
1197 static int evict_process_queues_cpsch(struct device_queue_manager *dqm,
1198 				      struct qcm_process_device *qpd)
1199 {
1200 	struct queue *q;
1201 	struct device *dev = dqm->dev->adev->dev;
1202 	struct kfd_process_device *pdd;
1203 	int retval = 0;
1204 
1205 	dqm_lock(dqm);
1206 	if (qpd->evicted++ > 0) /* already evicted, do nothing */
1207 		goto out;
1208 
1209 	pdd = qpd_to_pdd(qpd);
1210 
1211 	/* The debugger creates processes that temporarily have not acquired
1212 	 * all VMs for all devices and has no VMs itself.
1213 	 * Skip queue eviction on process eviction.
1214 	 */
1215 	if (!pdd->drm_priv)
1216 		goto out;
1217 
1218 	pr_debug_ratelimited("Evicting PASID 0x%x queues\n",
1219 			    pdd->process->pasid);
1220 
1221 	/* Mark all queues as evicted. Deactivate all active queues on
1222 	 * the qpd.
1223 	 */
1224 	list_for_each_entry(q, &qpd->queues_list, list) {
1225 		q->properties.is_evicted = true;
1226 		if (!q->properties.is_active)
1227 			continue;
1228 
1229 		q->properties.is_active = false;
1230 		decrement_queue_count(dqm, qpd, q);
1231 
1232 		if (dqm->dev->kfd->shared_resources.enable_mes) {
1233 			retval = remove_queue_mes(dqm, q, qpd);
1234 			if (retval) {
1235 				dev_err(dev, "Failed to evict queue %d\n",
1236 					q->properties.queue_id);
1237 				goto out;
1238 			}
1239 		}
1240 	}
1241 	pdd->last_evict_timestamp = get_jiffies_64();
1242 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1243 		retval = execute_queues_cpsch(dqm,
1244 					      qpd->is_debug ?
1245 					      KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES :
1246 					      KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
1247 					      USE_DEFAULT_GRACE_PERIOD);
1248 
1249 out:
1250 	dqm_unlock(dqm);
1251 	return retval;
1252 }
1253 
1254 static int restore_process_queues_nocpsch(struct device_queue_manager *dqm,
1255 					  struct qcm_process_device *qpd)
1256 {
1257 	struct mm_struct *mm = NULL;
1258 	struct queue *q;
1259 	struct mqd_manager *mqd_mgr;
1260 	struct kfd_process_device *pdd;
1261 	uint64_t pd_base;
1262 	uint64_t eviction_duration;
1263 	int retval, ret = 0;
1264 
1265 	pdd = qpd_to_pdd(qpd);
1266 	/* Retrieve PD base */
1267 	pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1268 
1269 	dqm_lock(dqm);
1270 	if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
1271 		goto out;
1272 	if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
1273 		qpd->evicted--;
1274 		goto out;
1275 	}
1276 
1277 	pr_debug_ratelimited("Restoring PASID 0x%x queues\n",
1278 			    pdd->process->pasid);
1279 
1280 	/* Update PD Base in QPD */
1281 	qpd->page_table_base = pd_base;
1282 	pr_debug("Updated PD address to 0x%llx\n", pd_base);
1283 
1284 	if (!list_empty(&qpd->queues_list)) {
1285 		dqm->dev->kfd2kgd->set_vm_context_page_table_base(
1286 				dqm->dev->adev,
1287 				qpd->vmid,
1288 				qpd->page_table_base);
1289 		kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
1290 	}
1291 
1292 	/* Take a safe reference to the mm_struct, which may otherwise
1293 	 * disappear even while the kfd_process is still referenced.
1294 	 */
1295 	mm = get_task_mm(pdd->process->lead_thread);
1296 	if (!mm) {
1297 		ret = -EFAULT;
1298 		goto out;
1299 	}
1300 
1301 	/* Remove the eviction flags. Activate queues that are not
1302 	 * inactive for other reasons.
1303 	 */
1304 	list_for_each_entry(q, &qpd->queues_list, list) {
1305 		q->properties.is_evicted = false;
1306 		if (!QUEUE_IS_ACTIVE(q->properties))
1307 			continue;
1308 
1309 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1310 				q->properties.type)];
1311 		q->properties.is_active = true;
1312 		increment_queue_count(dqm, qpd, q);
1313 
1314 		if (WARN_ONCE(!dqm->sched_running, "Restore when stopped\n"))
1315 			continue;
1316 
1317 		retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
1318 				       q->queue, &q->properties, mm);
1319 		if (retval && !ret)
1320 			/* Return the first error, but keep going to
1321 			 * maintain a consistent eviction state
1322 			 */
1323 			ret = retval;
1324 	}
1325 	qpd->evicted = 0;
1326 	eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp;
1327 	atomic64_add(eviction_duration, &pdd->evict_duration_counter);
1328 out:
1329 	if (mm)
1330 		mmput(mm);
1331 	dqm_unlock(dqm);
1332 	return ret;
1333 }
1334 
1335 static int restore_process_queues_cpsch(struct device_queue_manager *dqm,
1336 					struct qcm_process_device *qpd)
1337 {
1338 	struct queue *q;
1339 	struct device *dev = dqm->dev->adev->dev;
1340 	struct kfd_process_device *pdd;
1341 	uint64_t eviction_duration;
1342 	int retval = 0;
1343 
1344 	pdd = qpd_to_pdd(qpd);
1345 
1346 	dqm_lock(dqm);
1347 	if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
1348 		goto out;
1349 	if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
1350 		qpd->evicted--;
1351 		goto out;
1352 	}
1353 
1354 	/* The debugger creates processes that temporarily have not acquired
1355 	 * all VMs for all devices and has no VMs itself.
1356 	 * Skip queue restore on process restore.
1357 	 */
1358 	if (!pdd->drm_priv)
1359 		goto vm_not_acquired;
1360 
1361 	pr_debug_ratelimited("Restoring PASID 0x%x queues\n",
1362 			    pdd->process->pasid);
1363 
1364 	/* Update PD Base in QPD */
1365 	qpd->page_table_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1366 	pr_debug("Updated PD address to 0x%llx\n", qpd->page_table_base);
1367 
1368 	/* activate all active queues on the qpd */
1369 	list_for_each_entry(q, &qpd->queues_list, list) {
1370 		q->properties.is_evicted = false;
1371 		if (!QUEUE_IS_ACTIVE(q->properties))
1372 			continue;
1373 
1374 		q->properties.is_active = true;
1375 		increment_queue_count(dqm, &pdd->qpd, q);
1376 
1377 		if (dqm->dev->kfd->shared_resources.enable_mes) {
1378 			retval = add_queue_mes(dqm, q, qpd);
1379 			if (retval) {
1380 				dev_err(dev, "Failed to restore queue %d\n",
1381 					q->properties.queue_id);
1382 				goto out;
1383 			}
1384 		}
1385 	}
1386 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1387 		retval = execute_queues_cpsch(dqm,
1388 					      KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
1389 	eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp;
1390 	atomic64_add(eviction_duration, &pdd->evict_duration_counter);
1391 vm_not_acquired:
1392 	qpd->evicted = 0;
1393 out:
1394 	dqm_unlock(dqm);
1395 	return retval;
1396 }
1397 
1398 static int register_process(struct device_queue_manager *dqm,
1399 					struct qcm_process_device *qpd)
1400 {
1401 	struct device_process_node *n;
1402 	struct kfd_process_device *pdd;
1403 	uint64_t pd_base;
1404 	int retval;
1405 
1406 	n = kzalloc(sizeof(*n), GFP_KERNEL);
1407 	if (!n)
1408 		return -ENOMEM;
1409 
1410 	n->qpd = qpd;
1411 
1412 	pdd = qpd_to_pdd(qpd);
1413 	/* Retrieve PD base */
1414 	pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1415 
1416 	dqm_lock(dqm);
1417 	list_add(&n->list, &dqm->queues);
1418 
1419 	/* Update PD Base in QPD */
1420 	qpd->page_table_base = pd_base;
1421 	pr_debug("Updated PD address to 0x%llx\n", pd_base);
1422 
1423 	retval = dqm->asic_ops.update_qpd(dqm, qpd);
1424 
1425 	dqm->processes_count++;
1426 
1427 	dqm_unlock(dqm);
1428 
1429 	/* Outside the DQM lock because under the DQM lock we can't do
1430 	 * reclaim or take other locks that others hold while reclaiming.
1431 	 */
1432 	kfd_inc_compute_active(dqm->dev);
1433 
1434 	return retval;
1435 }
1436 
1437 static int unregister_process(struct device_queue_manager *dqm,
1438 					struct qcm_process_device *qpd)
1439 {
1440 	int retval;
1441 	struct device_process_node *cur, *next;
1442 
1443 	pr_debug("qpd->queues_list is %s\n",
1444 			list_empty(&qpd->queues_list) ? "empty" : "not empty");
1445 
1446 	retval = 0;
1447 	dqm_lock(dqm);
1448 
1449 	list_for_each_entry_safe(cur, next, &dqm->queues, list) {
1450 		if (qpd == cur->qpd) {
1451 			list_del(&cur->list);
1452 			kfree(cur);
1453 			dqm->processes_count--;
1454 			goto out;
1455 		}
1456 	}
1457 	/* qpd not found in dqm list */
1458 	retval = 1;
1459 out:
1460 	dqm_unlock(dqm);
1461 
1462 	/* Outside the DQM lock because under the DQM lock we can't do
1463 	 * reclaim or take other locks that others hold while reclaiming.
1464 	 */
1465 	if (!retval)
1466 		kfd_dec_compute_active(dqm->dev);
1467 
1468 	return retval;
1469 }
1470 
1471 static int
1472 set_pasid_vmid_mapping(struct device_queue_manager *dqm, u32 pasid,
1473 			unsigned int vmid)
1474 {
1475 	uint32_t xcc_mask = dqm->dev->xcc_mask;
1476 	int xcc_id, ret;
1477 
1478 	for_each_inst(xcc_id, xcc_mask) {
1479 		ret = dqm->dev->kfd2kgd->set_pasid_vmid_mapping(
1480 			dqm->dev->adev, pasid, vmid, xcc_id);
1481 		if (ret)
1482 			break;
1483 	}
1484 
1485 	return ret;
1486 }
1487 
1488 static void init_interrupts(struct device_queue_manager *dqm)
1489 {
1490 	uint32_t xcc_mask = dqm->dev->xcc_mask;
1491 	unsigned int i, xcc_id;
1492 
1493 	for_each_inst(xcc_id, xcc_mask) {
1494 		for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++) {
1495 			if (is_pipe_enabled(dqm, 0, i)) {
1496 				dqm->dev->kfd2kgd->init_interrupts(
1497 					dqm->dev->adev, i, xcc_id);
1498 			}
1499 		}
1500 	}
1501 }
1502 
1503 static int initialize_nocpsch(struct device_queue_manager *dqm)
1504 {
1505 	int pipe, queue;
1506 
1507 	pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1508 
1509 	dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm),
1510 					sizeof(unsigned int), GFP_KERNEL);
1511 	if (!dqm->allocated_queues)
1512 		return -ENOMEM;
1513 
1514 	mutex_init(&dqm->lock_hidden);
1515 	INIT_LIST_HEAD(&dqm->queues);
1516 	dqm->active_queue_count = dqm->next_pipe_to_allocate = 0;
1517 	dqm->active_cp_queue_count = 0;
1518 	dqm->gws_queue_count = 0;
1519 
1520 	for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
1521 		int pipe_offset = pipe * get_queues_per_pipe(dqm);
1522 
1523 		for (queue = 0; queue < get_queues_per_pipe(dqm); queue++)
1524 			if (test_bit(pipe_offset + queue,
1525 				     dqm->dev->kfd->shared_resources.cp_queue_bitmap))
1526 				dqm->allocated_queues[pipe] |= 1 << queue;
1527 	}
1528 
1529 	memset(dqm->vmid_pasid, 0, sizeof(dqm->vmid_pasid));
1530 
1531 	init_sdma_bitmaps(dqm);
1532 
1533 	return 0;
1534 }
1535 
1536 static void uninitialize(struct device_queue_manager *dqm)
1537 {
1538 	int i;
1539 
1540 	WARN_ON(dqm->active_queue_count > 0 || dqm->processes_count > 0);
1541 
1542 	kfree(dqm->allocated_queues);
1543 	for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
1544 		kfree(dqm->mqd_mgrs[i]);
1545 	mutex_destroy(&dqm->lock_hidden);
1546 }
1547 
1548 static int start_nocpsch(struct device_queue_manager *dqm)
1549 {
1550 	int r = 0;
1551 
1552 	pr_info("SW scheduler is used");
1553 	init_interrupts(dqm);
1554 
1555 	if (dqm->dev->adev->asic_type == CHIP_HAWAII)
1556 		r = pm_init(&dqm->packet_mgr, dqm);
1557 	if (!r)
1558 		dqm->sched_running = true;
1559 
1560 	return r;
1561 }
1562 
1563 static int stop_nocpsch(struct device_queue_manager *dqm)
1564 {
1565 	dqm_lock(dqm);
1566 	if (!dqm->sched_running) {
1567 		dqm_unlock(dqm);
1568 		return 0;
1569 	}
1570 
1571 	if (dqm->dev->adev->asic_type == CHIP_HAWAII)
1572 		pm_uninit(&dqm->packet_mgr);
1573 	dqm->sched_running = false;
1574 	dqm_unlock(dqm);
1575 
1576 	return 0;
1577 }
1578 
1579 static int allocate_sdma_queue(struct device_queue_manager *dqm,
1580 				struct queue *q, const uint32_t *restore_sdma_id)
1581 {
1582 	struct device *dev = dqm->dev->adev->dev;
1583 	int bit;
1584 
1585 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1586 		if (bitmap_empty(dqm->sdma_bitmap, KFD_MAX_SDMA_QUEUES)) {
1587 			dev_err(dev, "No more SDMA queue to allocate\n");
1588 			return -ENOMEM;
1589 		}
1590 
1591 		if (restore_sdma_id) {
1592 			/* Re-use existing sdma_id */
1593 			if (!test_bit(*restore_sdma_id, dqm->sdma_bitmap)) {
1594 				dev_err(dev, "SDMA queue already in use\n");
1595 				return -EBUSY;
1596 			}
1597 			clear_bit(*restore_sdma_id, dqm->sdma_bitmap);
1598 			q->sdma_id = *restore_sdma_id;
1599 		} else {
1600 			/* Find first available sdma_id */
1601 			bit = find_first_bit(dqm->sdma_bitmap,
1602 					     get_num_sdma_queues(dqm));
1603 			clear_bit(bit, dqm->sdma_bitmap);
1604 			q->sdma_id = bit;
1605 		}
1606 
1607 		q->properties.sdma_engine_id =
1608 			q->sdma_id % kfd_get_num_sdma_engines(dqm->dev);
1609 		q->properties.sdma_queue_id = q->sdma_id /
1610 				kfd_get_num_sdma_engines(dqm->dev);
1611 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1612 		if (bitmap_empty(dqm->xgmi_sdma_bitmap, KFD_MAX_SDMA_QUEUES)) {
1613 			dev_err(dev, "No more XGMI SDMA queue to allocate\n");
1614 			return -ENOMEM;
1615 		}
1616 		if (restore_sdma_id) {
1617 			/* Re-use existing sdma_id */
1618 			if (!test_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap)) {
1619 				dev_err(dev, "SDMA queue already in use\n");
1620 				return -EBUSY;
1621 			}
1622 			clear_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap);
1623 			q->sdma_id = *restore_sdma_id;
1624 		} else {
1625 			bit = find_first_bit(dqm->xgmi_sdma_bitmap,
1626 					     get_num_xgmi_sdma_queues(dqm));
1627 			clear_bit(bit, dqm->xgmi_sdma_bitmap);
1628 			q->sdma_id = bit;
1629 		}
1630 		/* sdma_engine_id is sdma id including
1631 		 * both PCIe-optimized SDMAs and XGMI-
1632 		 * optimized SDMAs. The calculation below
1633 		 * assumes the first N engines are always
1634 		 * PCIe-optimized ones
1635 		 */
1636 		q->properties.sdma_engine_id =
1637 			kfd_get_num_sdma_engines(dqm->dev) +
1638 			q->sdma_id % kfd_get_num_xgmi_sdma_engines(dqm->dev);
1639 		q->properties.sdma_queue_id = q->sdma_id /
1640 			kfd_get_num_xgmi_sdma_engines(dqm->dev);
1641 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_BY_ENG_ID) {
1642 		int i, num_queues, num_engines, eng_offset = 0, start_engine;
1643 		bool free_bit_found = false, is_xgmi = false;
1644 
1645 		if (q->properties.sdma_engine_id < kfd_get_num_sdma_engines(dqm->dev)) {
1646 			num_queues = get_num_sdma_queues(dqm);
1647 			num_engines = kfd_get_num_sdma_engines(dqm->dev);
1648 			q->properties.type = KFD_QUEUE_TYPE_SDMA;
1649 		} else {
1650 			num_queues = get_num_xgmi_sdma_queues(dqm);
1651 			num_engines = kfd_get_num_xgmi_sdma_engines(dqm->dev);
1652 			eng_offset = kfd_get_num_sdma_engines(dqm->dev);
1653 			q->properties.type = KFD_QUEUE_TYPE_SDMA_XGMI;
1654 			is_xgmi = true;
1655 		}
1656 
1657 		/* Scan available bit based on target engine ID. */
1658 		start_engine = q->properties.sdma_engine_id - eng_offset;
1659 		for (i = start_engine; i < num_queues; i += num_engines) {
1660 
1661 			if (!test_bit(i, is_xgmi ? dqm->xgmi_sdma_bitmap : dqm->sdma_bitmap))
1662 				continue;
1663 
1664 			clear_bit(i, is_xgmi ? dqm->xgmi_sdma_bitmap : dqm->sdma_bitmap);
1665 			q->sdma_id = i;
1666 			q->properties.sdma_queue_id = q->sdma_id / num_engines;
1667 			free_bit_found = true;
1668 			break;
1669 		}
1670 
1671 		if (!free_bit_found) {
1672 			dev_err(dev, "No more SDMA queue to allocate for target ID %i\n",
1673 				q->properties.sdma_engine_id);
1674 			return -ENOMEM;
1675 		}
1676 	}
1677 
1678 	pr_debug("SDMA engine id: %d\n", q->properties.sdma_engine_id);
1679 	pr_debug("SDMA queue id: %d\n", q->properties.sdma_queue_id);
1680 
1681 	return 0;
1682 }
1683 
1684 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
1685 				struct queue *q)
1686 {
1687 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1688 		if (q->sdma_id >= get_num_sdma_queues(dqm))
1689 			return;
1690 		set_bit(q->sdma_id, dqm->sdma_bitmap);
1691 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1692 		if (q->sdma_id >= get_num_xgmi_sdma_queues(dqm))
1693 			return;
1694 		set_bit(q->sdma_id, dqm->xgmi_sdma_bitmap);
1695 	}
1696 }
1697 
1698 /*
1699  * Device Queue Manager implementation for cp scheduler
1700  */
1701 
1702 static int set_sched_resources(struct device_queue_manager *dqm)
1703 {
1704 	int i, mec;
1705 	struct scheduling_resources res;
1706 	struct device *dev = dqm->dev->adev->dev;
1707 
1708 	res.vmid_mask = dqm->dev->compute_vmid_bitmap;
1709 
1710 	res.queue_mask = 0;
1711 	for (i = 0; i < AMDGPU_MAX_QUEUES; ++i) {
1712 		mec = (i / dqm->dev->kfd->shared_resources.num_queue_per_pipe)
1713 			/ dqm->dev->kfd->shared_resources.num_pipe_per_mec;
1714 
1715 		if (!test_bit(i, dqm->dev->kfd->shared_resources.cp_queue_bitmap))
1716 			continue;
1717 
1718 		/* only acquire queues from the first MEC */
1719 		if (mec > 0)
1720 			continue;
1721 
1722 		/* This situation may be hit in the future if a new HW
1723 		 * generation exposes more than 64 queues. If so, the
1724 		 * definition of res.queue_mask needs updating
1725 		 */
1726 		if (WARN_ON(i >= (sizeof(res.queue_mask)*8))) {
1727 			dev_err(dev, "Invalid queue enabled by amdgpu: %d\n", i);
1728 			break;
1729 		}
1730 
1731 		res.queue_mask |= 1ull
1732 			<< amdgpu_queue_mask_bit_to_set_resource_bit(
1733 				dqm->dev->adev, i);
1734 	}
1735 	res.gws_mask = ~0ull;
1736 	res.oac_mask = res.gds_heap_base = res.gds_heap_size = 0;
1737 
1738 	pr_debug("Scheduling resources:\n"
1739 			"vmid mask: 0x%8X\n"
1740 			"queue mask: 0x%8llX\n",
1741 			res.vmid_mask, res.queue_mask);
1742 
1743 	return pm_send_set_resources(&dqm->packet_mgr, &res);
1744 }
1745 
1746 static int initialize_cpsch(struct device_queue_manager *dqm)
1747 {
1748 	pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1749 
1750 	mutex_init(&dqm->lock_hidden);
1751 	INIT_LIST_HEAD(&dqm->queues);
1752 	dqm->active_queue_count = dqm->processes_count = 0;
1753 	dqm->active_cp_queue_count = 0;
1754 	dqm->gws_queue_count = 0;
1755 	dqm->active_runlist = false;
1756 	INIT_WORK(&dqm->hw_exception_work, kfd_process_hw_exception);
1757 	dqm->trap_debug_vmid = 0;
1758 
1759 	init_sdma_bitmaps(dqm);
1760 
1761 	if (dqm->dev->kfd2kgd->get_iq_wait_times)
1762 		dqm->dev->kfd2kgd->get_iq_wait_times(dqm->dev->adev,
1763 					&dqm->wait_times,
1764 					ffs(dqm->dev->xcc_mask) - 1);
1765 	return 0;
1766 }
1767 
1768 /* halt_cpsch:
1769  * Unmap queues so the schedule doesn't continue remaining jobs in the queue.
1770  * Then set dqm->sched_halt so queues don't map to runlist until unhalt_cpsch
1771  * is called.
1772  */
1773 static int halt_cpsch(struct device_queue_manager *dqm)
1774 {
1775 	int ret = 0;
1776 
1777 	dqm_lock(dqm);
1778 	if (!dqm->sched_running) {
1779 		dqm_unlock(dqm);
1780 		return 0;
1781 	}
1782 
1783 	WARN_ONCE(dqm->sched_halt, "Scheduling is already on halt\n");
1784 
1785 	if (!dqm->is_hws_hang) {
1786 		if (!dqm->dev->kfd->shared_resources.enable_mes)
1787 			ret = unmap_queues_cpsch(dqm,
1788 						 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
1789 				USE_DEFAULT_GRACE_PERIOD, false);
1790 		else
1791 			ret = remove_all_kfd_queues_mes(dqm);
1792 	}
1793 	dqm->sched_halt = true;
1794 	dqm_unlock(dqm);
1795 
1796 	return ret;
1797 }
1798 
1799 /* unhalt_cpsch
1800  * Unset dqm->sched_halt and map queues back to runlist
1801  */
1802 static int unhalt_cpsch(struct device_queue_manager *dqm)
1803 {
1804 	int ret = 0;
1805 
1806 	dqm_lock(dqm);
1807 	if (!dqm->sched_running || !dqm->sched_halt) {
1808 		WARN_ONCE(!dqm->sched_halt, "Scheduling is not on halt.\n");
1809 		dqm_unlock(dqm);
1810 		return 0;
1811 	}
1812 	dqm->sched_halt = false;
1813 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1814 		ret = execute_queues_cpsch(dqm,
1815 					   KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
1816 			0, USE_DEFAULT_GRACE_PERIOD);
1817 	else
1818 		ret = add_all_kfd_queues_mes(dqm);
1819 
1820 	dqm_unlock(dqm);
1821 
1822 	return ret;
1823 }
1824 
1825 static int start_cpsch(struct device_queue_manager *dqm)
1826 {
1827 	struct device *dev = dqm->dev->adev->dev;
1828 	int retval, num_hw_queue_slots;
1829 
1830 	retval = 0;
1831 
1832 	dqm_lock(dqm);
1833 
1834 	if (!dqm->dev->kfd->shared_resources.enable_mes) {
1835 		retval = pm_init(&dqm->packet_mgr, dqm);
1836 		if (retval)
1837 			goto fail_packet_manager_init;
1838 
1839 		retval = set_sched_resources(dqm);
1840 		if (retval)
1841 			goto fail_set_sched_resources;
1842 	}
1843 	pr_debug("Allocating fence memory\n");
1844 
1845 	/* allocate fence memory on the gart */
1846 	retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
1847 					&dqm->fence_mem);
1848 
1849 	if (retval)
1850 		goto fail_allocate_vidmem;
1851 
1852 	dqm->fence_addr = (uint64_t *)dqm->fence_mem->cpu_ptr;
1853 	dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
1854 
1855 	init_interrupts(dqm);
1856 
1857 	/* clear hang status when driver try to start the hw scheduler */
1858 	dqm->sched_running = true;
1859 
1860 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1861 		execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
1862 
1863 	/* Set CWSR grace period to 1x1000 cycle for GFX9.4.3 APU */
1864 	if (amdgpu_emu_mode == 0 && dqm->dev->adev->gmc.is_app_apu &&
1865 	    (KFD_GC_VERSION(dqm->dev) == IP_VERSION(9, 4, 3))) {
1866 		uint32_t reg_offset = 0;
1867 		uint32_t grace_period = 1;
1868 
1869 		retval = pm_update_grace_period(&dqm->packet_mgr,
1870 						grace_period);
1871 		if (retval)
1872 			dev_err(dev, "Setting grace timeout failed\n");
1873 		else if (dqm->dev->kfd2kgd->build_grace_period_packet_info)
1874 			/* Update dqm->wait_times maintained in software */
1875 			dqm->dev->kfd2kgd->build_grace_period_packet_info(
1876 					dqm->dev->adev,	dqm->wait_times,
1877 					grace_period, &reg_offset,
1878 					&dqm->wait_times);
1879 	}
1880 
1881 	/* setup per-queue reset detection buffer  */
1882 	num_hw_queue_slots =  dqm->dev->kfd->shared_resources.num_queue_per_pipe *
1883 			      dqm->dev->kfd->shared_resources.num_pipe_per_mec *
1884 			      NUM_XCC(dqm->dev->xcc_mask);
1885 
1886 	dqm->detect_hang_info_size = num_hw_queue_slots * sizeof(struct dqm_detect_hang_info);
1887 	dqm->detect_hang_info = kzalloc(dqm->detect_hang_info_size, GFP_KERNEL);
1888 
1889 	if (!dqm->detect_hang_info) {
1890 		retval = -ENOMEM;
1891 		goto fail_detect_hang_buffer;
1892 	}
1893 
1894 	dqm_unlock(dqm);
1895 
1896 	return 0;
1897 fail_detect_hang_buffer:
1898 	kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
1899 fail_allocate_vidmem:
1900 fail_set_sched_resources:
1901 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1902 		pm_uninit(&dqm->packet_mgr);
1903 fail_packet_manager_init:
1904 	dqm_unlock(dqm);
1905 	return retval;
1906 }
1907 
1908 static int stop_cpsch(struct device_queue_manager *dqm)
1909 {
1910 	dqm_lock(dqm);
1911 	if (!dqm->sched_running) {
1912 		dqm_unlock(dqm);
1913 		return 0;
1914 	}
1915 
1916 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1917 		unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD, false);
1918 	else
1919 		remove_all_kfd_queues_mes(dqm);
1920 
1921 	dqm->sched_running = false;
1922 
1923 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1924 		pm_release_ib(&dqm->packet_mgr);
1925 
1926 	kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
1927 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1928 		pm_uninit(&dqm->packet_mgr);
1929 	kfree(dqm->detect_hang_info);
1930 	dqm->detect_hang_info = NULL;
1931 	dqm_unlock(dqm);
1932 
1933 	return 0;
1934 }
1935 
1936 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
1937 					struct kernel_queue *kq,
1938 					struct qcm_process_device *qpd)
1939 {
1940 	dqm_lock(dqm);
1941 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1942 		pr_warn("Can't create new kernel queue because %d queues were already created\n",
1943 				dqm->total_queue_count);
1944 		dqm_unlock(dqm);
1945 		return -EPERM;
1946 	}
1947 
1948 	/*
1949 	 * Unconditionally increment this counter, regardless of the queue's
1950 	 * type or whether the queue is active.
1951 	 */
1952 	dqm->total_queue_count++;
1953 	pr_debug("Total of %d queues are accountable so far\n",
1954 			dqm->total_queue_count);
1955 
1956 	list_add(&kq->list, &qpd->priv_queue_list);
1957 	increment_queue_count(dqm, qpd, kq->queue);
1958 	qpd->is_debug = true;
1959 	execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
1960 			USE_DEFAULT_GRACE_PERIOD);
1961 	dqm_unlock(dqm);
1962 
1963 	return 0;
1964 }
1965 
1966 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
1967 					struct kernel_queue *kq,
1968 					struct qcm_process_device *qpd)
1969 {
1970 	dqm_lock(dqm);
1971 	list_del(&kq->list);
1972 	decrement_queue_count(dqm, qpd, kq->queue);
1973 	qpd->is_debug = false;
1974 	execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
1975 			USE_DEFAULT_GRACE_PERIOD);
1976 	/*
1977 	 * Unconditionally decrement this counter, regardless of the queue's
1978 	 * type.
1979 	 */
1980 	dqm->total_queue_count--;
1981 	pr_debug("Total of %d queues are accountable so far\n",
1982 			dqm->total_queue_count);
1983 	dqm_unlock(dqm);
1984 }
1985 
1986 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
1987 			struct qcm_process_device *qpd,
1988 			const struct kfd_criu_queue_priv_data *qd,
1989 			const void *restore_mqd, const void *restore_ctl_stack)
1990 {
1991 	int retval;
1992 	struct mqd_manager *mqd_mgr;
1993 
1994 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1995 		pr_warn("Can't create new usermode queue because %d queues were already created\n",
1996 				dqm->total_queue_count);
1997 		retval = -EPERM;
1998 		goto out;
1999 	}
2000 
2001 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
2002 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI ||
2003 		q->properties.type == KFD_QUEUE_TYPE_SDMA_BY_ENG_ID) {
2004 		dqm_lock(dqm);
2005 		retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL);
2006 		dqm_unlock(dqm);
2007 		if (retval)
2008 			goto out;
2009 	}
2010 
2011 	retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL);
2012 	if (retval)
2013 		goto out_deallocate_sdma_queue;
2014 
2015 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2016 			q->properties.type)];
2017 
2018 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
2019 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
2020 		dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
2021 	q->properties.tba_addr = qpd->tba_addr;
2022 	q->properties.tma_addr = qpd->tma_addr;
2023 	q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
2024 	if (!q->mqd_mem_obj) {
2025 		retval = -ENOMEM;
2026 		goto out_deallocate_doorbell;
2027 	}
2028 
2029 	dqm_lock(dqm);
2030 	/*
2031 	 * Eviction state logic: mark all queues as evicted, even ones
2032 	 * not currently active. Restoring inactive queues later only
2033 	 * updates the is_evicted flag but is a no-op otherwise.
2034 	 */
2035 	q->properties.is_evicted = !!qpd->evicted;
2036 	q->properties.is_dbg_wa = qpd->pqm->process->debug_trap_enabled &&
2037 				  kfd_dbg_has_cwsr_workaround(q->device);
2038 
2039 	if (qd)
2040 		mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr,
2041 				     &q->properties, restore_mqd, restore_ctl_stack,
2042 				     qd->ctl_stack_size);
2043 	else
2044 		mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
2045 					&q->gart_mqd_addr, &q->properties);
2046 
2047 	list_add(&q->list, &qpd->queues_list);
2048 	qpd->queue_count++;
2049 
2050 	if (q->properties.is_active) {
2051 		increment_queue_count(dqm, qpd, q);
2052 
2053 		if (!dqm->dev->kfd->shared_resources.enable_mes)
2054 			retval = execute_queues_cpsch(dqm,
2055 					KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
2056 		else
2057 			retval = add_queue_mes(dqm, q, qpd);
2058 		if (retval)
2059 			goto cleanup_queue;
2060 	}
2061 
2062 	/*
2063 	 * Unconditionally increment this counter, regardless of the queue's
2064 	 * type or whether the queue is active.
2065 	 */
2066 	dqm->total_queue_count++;
2067 
2068 	pr_debug("Total of %d queues are accountable so far\n",
2069 			dqm->total_queue_count);
2070 
2071 	dqm_unlock(dqm);
2072 	return retval;
2073 
2074 cleanup_queue:
2075 	qpd->queue_count--;
2076 	list_del(&q->list);
2077 	if (q->properties.is_active)
2078 		decrement_queue_count(dqm, qpd, q);
2079 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2080 	dqm_unlock(dqm);
2081 out_deallocate_doorbell:
2082 	deallocate_doorbell(qpd, q);
2083 out_deallocate_sdma_queue:
2084 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
2085 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
2086 		dqm_lock(dqm);
2087 		deallocate_sdma_queue(dqm, q);
2088 		dqm_unlock(dqm);
2089 	}
2090 out:
2091 	return retval;
2092 }
2093 
2094 int amdkfd_fence_wait_timeout(struct device_queue_manager *dqm,
2095 			      uint64_t fence_value,
2096 			      unsigned int timeout_ms)
2097 {
2098 	unsigned long end_jiffies = msecs_to_jiffies(timeout_ms) + jiffies;
2099 	struct device *dev = dqm->dev->adev->dev;
2100 	uint64_t *fence_addr = dqm->fence_addr;
2101 
2102 	while (*fence_addr != fence_value) {
2103 		/* Fatal err detected, this response won't come */
2104 		if (amdgpu_amdkfd_is_fed(dqm->dev->adev))
2105 			return -EIO;
2106 
2107 		if (time_after(jiffies, end_jiffies)) {
2108 			dev_err(dev, "qcm fence wait loop timeout expired\n");
2109 			/* In HWS case, this is used to halt the driver thread
2110 			 * in order not to mess up CP states before doing
2111 			 * scandumps for FW debugging.
2112 			 */
2113 			while (halt_if_hws_hang)
2114 				schedule();
2115 
2116 			return -ETIME;
2117 		}
2118 		schedule();
2119 	}
2120 
2121 	return 0;
2122 }
2123 
2124 /* dqm->lock mutex has to be locked before calling this function */
2125 static int map_queues_cpsch(struct device_queue_manager *dqm)
2126 {
2127 	struct device *dev = dqm->dev->adev->dev;
2128 	int retval;
2129 
2130 	if (!dqm->sched_running || dqm->sched_halt)
2131 		return 0;
2132 	if (dqm->active_queue_count <= 0 || dqm->processes_count <= 0)
2133 		return 0;
2134 	if (dqm->active_runlist)
2135 		return 0;
2136 
2137 	retval = pm_send_runlist(&dqm->packet_mgr, &dqm->queues);
2138 	pr_debug("%s sent runlist\n", __func__);
2139 	if (retval) {
2140 		dev_err(dev, "failed to execute runlist\n");
2141 		return retval;
2142 	}
2143 	dqm->active_runlist = true;
2144 
2145 	return retval;
2146 }
2147 
2148 static void set_queue_as_reset(struct device_queue_manager *dqm, struct queue *q,
2149 			       struct qcm_process_device *qpd)
2150 {
2151 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
2152 
2153 	dev_err(dqm->dev->adev->dev, "queue id 0x%0x at pasid 0x%0x is reset\n",
2154 		q->properties.queue_id, q->process->pasid);
2155 
2156 	pdd->has_reset_queue = true;
2157 	if (q->properties.is_active) {
2158 		q->properties.is_active = false;
2159 		decrement_queue_count(dqm, qpd, q);
2160 	}
2161 }
2162 
2163 static int detect_queue_hang(struct device_queue_manager *dqm)
2164 {
2165 	int i;
2166 
2167 	/* detect should be used only in dqm locked queue reset */
2168 	if (WARN_ON(dqm->detect_hang_count > 0))
2169 		return 0;
2170 
2171 	memset(dqm->detect_hang_info, 0, dqm->detect_hang_info_size);
2172 
2173 	for (i = 0; i < AMDGPU_MAX_QUEUES; ++i) {
2174 		uint32_t mec, pipe, queue;
2175 		int xcc_id;
2176 
2177 		mec = (i / dqm->dev->kfd->shared_resources.num_queue_per_pipe)
2178 			/ dqm->dev->kfd->shared_resources.num_pipe_per_mec;
2179 
2180 		if (mec || !test_bit(i, dqm->dev->kfd->shared_resources.cp_queue_bitmap))
2181 			continue;
2182 
2183 		amdgpu_queue_mask_bit_to_mec_queue(dqm->dev->adev, i, &mec, &pipe, &queue);
2184 
2185 		for_each_inst(xcc_id, dqm->dev->xcc_mask) {
2186 			uint64_t queue_addr = dqm->dev->kfd2kgd->hqd_get_pq_addr(
2187 						dqm->dev->adev, pipe, queue, xcc_id);
2188 			struct dqm_detect_hang_info hang_info;
2189 
2190 			if (!queue_addr)
2191 				continue;
2192 
2193 			hang_info.pipe_id = pipe;
2194 			hang_info.queue_id = queue;
2195 			hang_info.xcc_id = xcc_id;
2196 			hang_info.queue_address = queue_addr;
2197 
2198 			dqm->detect_hang_info[dqm->detect_hang_count] = hang_info;
2199 			dqm->detect_hang_count++;
2200 		}
2201 	}
2202 
2203 	return dqm->detect_hang_count;
2204 }
2205 
2206 static struct queue *find_queue_by_address(struct device_queue_manager *dqm, uint64_t queue_address)
2207 {
2208 	struct device_process_node *cur;
2209 	struct qcm_process_device *qpd;
2210 	struct queue *q;
2211 
2212 	list_for_each_entry(cur, &dqm->queues, list) {
2213 		qpd = cur->qpd;
2214 		list_for_each_entry(q, &qpd->queues_list, list) {
2215 			if (queue_address == q->properties.queue_address)
2216 				return q;
2217 		}
2218 	}
2219 
2220 	return NULL;
2221 }
2222 
2223 /* only for compute queue */
2224 static int reset_queues_on_hws_hang(struct device_queue_manager *dqm)
2225 {
2226 	int r = 0, reset_count = 0, i;
2227 
2228 	if (!dqm->detect_hang_info || dqm->is_hws_hang)
2229 		return -EIO;
2230 
2231 	/* assume dqm locked. */
2232 	if (!detect_queue_hang(dqm))
2233 		return -ENOTRECOVERABLE;
2234 
2235 	for (i = 0; i < dqm->detect_hang_count; i++) {
2236 		struct dqm_detect_hang_info hang_info = dqm->detect_hang_info[i];
2237 		struct queue *q = find_queue_by_address(dqm, hang_info.queue_address);
2238 		struct kfd_process_device *pdd;
2239 		uint64_t queue_addr = 0;
2240 
2241 		if (!q) {
2242 			r = -ENOTRECOVERABLE;
2243 			goto reset_fail;
2244 		}
2245 
2246 		pdd = kfd_get_process_device_data(dqm->dev, q->process);
2247 		if (!pdd) {
2248 			r = -ENOTRECOVERABLE;
2249 			goto reset_fail;
2250 		}
2251 
2252 		queue_addr = dqm->dev->kfd2kgd->hqd_reset(dqm->dev->adev,
2253 				hang_info.pipe_id, hang_info.queue_id, hang_info.xcc_id,
2254 				KFD_UNMAP_LATENCY_MS);
2255 
2256 		/* either reset failed or we reset an unexpected queue. */
2257 		if (queue_addr != q->properties.queue_address) {
2258 			r = -ENOTRECOVERABLE;
2259 			goto reset_fail;
2260 		}
2261 
2262 		set_queue_as_reset(dqm, q, &pdd->qpd);
2263 		reset_count++;
2264 	}
2265 
2266 	if (reset_count == dqm->detect_hang_count)
2267 		kfd_signal_reset_event(dqm->dev);
2268 	else
2269 		r = -ENOTRECOVERABLE;
2270 
2271 reset_fail:
2272 	dqm->detect_hang_count = 0;
2273 
2274 	return r;
2275 }
2276 
2277 /* dqm->lock mutex has to be locked before calling this function */
2278 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
2279 				enum kfd_unmap_queues_filter filter,
2280 				uint32_t filter_param,
2281 				uint32_t grace_period,
2282 				bool reset)
2283 {
2284 	struct device *dev = dqm->dev->adev->dev;
2285 	struct mqd_manager *mqd_mgr;
2286 	int retval;
2287 
2288 	if (!dqm->sched_running)
2289 		return 0;
2290 	if (!dqm->active_runlist)
2291 		return 0;
2292 	if (!down_read_trylock(&dqm->dev->adev->reset_domain->sem))
2293 		return -EIO;
2294 
2295 	if (grace_period != USE_DEFAULT_GRACE_PERIOD) {
2296 		retval = pm_update_grace_period(&dqm->packet_mgr, grace_period);
2297 		if (retval)
2298 			goto out;
2299 	}
2300 
2301 	retval = pm_send_unmap_queue(&dqm->packet_mgr, filter, filter_param, reset);
2302 	if (retval)
2303 		goto out;
2304 
2305 	*dqm->fence_addr = KFD_FENCE_INIT;
2306 	mb();
2307 	pm_send_query_status(&dqm->packet_mgr, dqm->fence_gpu_addr,
2308 				KFD_FENCE_COMPLETED);
2309 	/* should be timed out */
2310 	retval = amdkfd_fence_wait_timeout(dqm, KFD_FENCE_COMPLETED,
2311 					   queue_preemption_timeout_ms);
2312 	if (retval) {
2313 		dev_err(dev, "The cp might be in an unrecoverable state due to an unsuccessful queues preemption\n");
2314 		kfd_hws_hang(dqm);
2315 		goto out;
2316 	}
2317 
2318 	/* In the current MEC firmware implementation, if compute queue
2319 	 * doesn't response to the preemption request in time, HIQ will
2320 	 * abandon the unmap request without returning any timeout error
2321 	 * to driver. Instead, MEC firmware will log the doorbell of the
2322 	 * unresponding compute queue to HIQ.MQD.queue_doorbell_id fields.
2323 	 * To make sure the queue unmap was successful, driver need to
2324 	 * check those fields
2325 	 */
2326 	mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ];
2327 	if (mqd_mgr->check_preemption_failed(mqd_mgr, dqm->packet_mgr.priv_queue->queue->mqd)) {
2328 		if (reset_queues_on_hws_hang(dqm)) {
2329 			while (halt_if_hws_hang)
2330 				schedule();
2331 			dqm->is_hws_hang = true;
2332 			kfd_hws_hang(dqm);
2333 			retval = -ETIME;
2334 			goto out;
2335 		}
2336 	}
2337 
2338 	/* We need to reset the grace period value for this device */
2339 	if (grace_period != USE_DEFAULT_GRACE_PERIOD) {
2340 		if (pm_update_grace_period(&dqm->packet_mgr,
2341 					USE_DEFAULT_GRACE_PERIOD))
2342 			dev_err(dev, "Failed to reset grace period\n");
2343 	}
2344 
2345 	pm_release_ib(&dqm->packet_mgr);
2346 	dqm->active_runlist = false;
2347 
2348 out:
2349 	up_read(&dqm->dev->adev->reset_domain->sem);
2350 	return retval;
2351 }
2352 
2353 /* only for compute queue */
2354 static int reset_queues_cpsch(struct device_queue_manager *dqm, uint16_t pasid)
2355 {
2356 	int retval;
2357 
2358 	dqm_lock(dqm);
2359 
2360 	retval = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_BY_PASID,
2361 			pasid, USE_DEFAULT_GRACE_PERIOD, true);
2362 
2363 	dqm_unlock(dqm);
2364 	return retval;
2365 }
2366 
2367 /* dqm->lock mutex has to be locked before calling this function */
2368 static int execute_queues_cpsch(struct device_queue_manager *dqm,
2369 				enum kfd_unmap_queues_filter filter,
2370 				uint32_t filter_param,
2371 				uint32_t grace_period)
2372 {
2373 	int retval;
2374 
2375 	if (!down_read_trylock(&dqm->dev->adev->reset_domain->sem))
2376 		return -EIO;
2377 	retval = unmap_queues_cpsch(dqm, filter, filter_param, grace_period, false);
2378 	if (!retval)
2379 		retval = map_queues_cpsch(dqm);
2380 	up_read(&dqm->dev->adev->reset_domain->sem);
2381 	return retval;
2382 }
2383 
2384 static int wait_on_destroy_queue(struct device_queue_manager *dqm,
2385 				 struct queue *q)
2386 {
2387 	struct kfd_process_device *pdd = kfd_get_process_device_data(q->device,
2388 								q->process);
2389 	int ret = 0;
2390 
2391 	if (pdd->qpd.is_debug)
2392 		return ret;
2393 
2394 	q->properties.is_being_destroyed = true;
2395 
2396 	if (pdd->process->debug_trap_enabled && q->properties.is_suspended) {
2397 		dqm_unlock(dqm);
2398 		mutex_unlock(&q->process->mutex);
2399 		ret = wait_event_interruptible(dqm->destroy_wait,
2400 						!q->properties.is_suspended);
2401 
2402 		mutex_lock(&q->process->mutex);
2403 		dqm_lock(dqm);
2404 	}
2405 
2406 	return ret;
2407 }
2408 
2409 static int destroy_queue_cpsch(struct device_queue_manager *dqm,
2410 				struct qcm_process_device *qpd,
2411 				struct queue *q)
2412 {
2413 	int retval;
2414 	struct mqd_manager *mqd_mgr;
2415 	uint64_t sdma_val = 0;
2416 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
2417 	struct device *dev = dqm->dev->adev->dev;
2418 
2419 	/* Get the SDMA queue stats */
2420 	if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
2421 	    (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
2422 		retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr,
2423 							&sdma_val);
2424 		if (retval)
2425 			dev_err(dev, "Failed to read SDMA queue counter for queue: %d\n",
2426 				q->properties.queue_id);
2427 	}
2428 
2429 	/* remove queue from list to prevent rescheduling after preemption */
2430 	dqm_lock(dqm);
2431 
2432 	retval = wait_on_destroy_queue(dqm, q);
2433 
2434 	if (retval) {
2435 		dqm_unlock(dqm);
2436 		return retval;
2437 	}
2438 
2439 	if (qpd->is_debug) {
2440 		/*
2441 		 * error, currently we do not allow to destroy a queue
2442 		 * of a currently debugged process
2443 		 */
2444 		retval = -EBUSY;
2445 		goto failed_try_destroy_debugged_queue;
2446 
2447 	}
2448 
2449 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2450 			q->properties.type)];
2451 
2452 	deallocate_doorbell(qpd, q);
2453 
2454 	if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
2455 	    (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
2456 		deallocate_sdma_queue(dqm, q);
2457 		pdd->sdma_past_activity_counter += sdma_val;
2458 	}
2459 
2460 	if (q->properties.is_active) {
2461 		decrement_queue_count(dqm, qpd, q);
2462 		q->properties.is_active = false;
2463 		if (!dqm->dev->kfd->shared_resources.enable_mes) {
2464 			retval = execute_queues_cpsch(dqm,
2465 						      KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
2466 						      USE_DEFAULT_GRACE_PERIOD);
2467 			if (retval == -ETIME)
2468 				qpd->reset_wavefronts = true;
2469 		} else {
2470 			retval = remove_queue_mes(dqm, q, qpd);
2471 		}
2472 	}
2473 	list_del(&q->list);
2474 	qpd->queue_count--;
2475 
2476 	/*
2477 	 * Unconditionally decrement this counter, regardless of the queue's
2478 	 * type
2479 	 */
2480 	dqm->total_queue_count--;
2481 	pr_debug("Total of %d queues are accountable so far\n",
2482 			dqm->total_queue_count);
2483 
2484 	dqm_unlock(dqm);
2485 
2486 	/*
2487 	 * Do free_mqd and raise delete event after dqm_unlock(dqm) to avoid
2488 	 * circular locking
2489 	 */
2490 	kfd_dbg_ev_raise(KFD_EC_MASK(EC_DEVICE_QUEUE_DELETE),
2491 				qpd->pqm->process, q->device,
2492 				-1, false, NULL, 0);
2493 
2494 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2495 
2496 	return retval;
2497 
2498 failed_try_destroy_debugged_queue:
2499 
2500 	dqm_unlock(dqm);
2501 	return retval;
2502 }
2503 
2504 /*
2505  * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to
2506  * stay in user mode.
2507  */
2508 #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL
2509 /* APE1 limit is inclusive and 64K aligned. */
2510 #define APE1_LIMIT_ALIGNMENT 0xFFFF
2511 
2512 static bool set_cache_memory_policy(struct device_queue_manager *dqm,
2513 				   struct qcm_process_device *qpd,
2514 				   enum cache_policy default_policy,
2515 				   enum cache_policy alternate_policy,
2516 				   void __user *alternate_aperture_base,
2517 				   uint64_t alternate_aperture_size)
2518 {
2519 	bool retval = true;
2520 
2521 	if (!dqm->asic_ops.set_cache_memory_policy)
2522 		return retval;
2523 
2524 	dqm_lock(dqm);
2525 
2526 	if (alternate_aperture_size == 0) {
2527 		/* base > limit disables APE1 */
2528 		qpd->sh_mem_ape1_base = 1;
2529 		qpd->sh_mem_ape1_limit = 0;
2530 	} else {
2531 		/*
2532 		 * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]},
2533 		 *			SH_MEM_APE1_BASE[31:0], 0x0000 }
2534 		 * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]},
2535 		 *			SH_MEM_APE1_LIMIT[31:0], 0xFFFF }
2536 		 * Verify that the base and size parameters can be
2537 		 * represented in this format and convert them.
2538 		 * Additionally restrict APE1 to user-mode addresses.
2539 		 */
2540 
2541 		uint64_t base = (uintptr_t)alternate_aperture_base;
2542 		uint64_t limit = base + alternate_aperture_size - 1;
2543 
2544 		if (limit <= base || (base & APE1_FIXED_BITS_MASK) != 0 ||
2545 		   (limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT) {
2546 			retval = false;
2547 			goto out;
2548 		}
2549 
2550 		qpd->sh_mem_ape1_base = base >> 16;
2551 		qpd->sh_mem_ape1_limit = limit >> 16;
2552 	}
2553 
2554 	retval = dqm->asic_ops.set_cache_memory_policy(
2555 			dqm,
2556 			qpd,
2557 			default_policy,
2558 			alternate_policy,
2559 			alternate_aperture_base,
2560 			alternate_aperture_size);
2561 
2562 	if ((dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
2563 		program_sh_mem_settings(dqm, qpd);
2564 
2565 	pr_debug("sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
2566 		qpd->sh_mem_config, qpd->sh_mem_ape1_base,
2567 		qpd->sh_mem_ape1_limit);
2568 
2569 out:
2570 	dqm_unlock(dqm);
2571 	return retval;
2572 }
2573 
2574 static int process_termination_nocpsch(struct device_queue_manager *dqm,
2575 		struct qcm_process_device *qpd)
2576 {
2577 	struct queue *q;
2578 	struct device_process_node *cur, *next_dpn;
2579 	int retval = 0;
2580 	bool found = false;
2581 
2582 	dqm_lock(dqm);
2583 
2584 	/* Clear all user mode queues */
2585 	while (!list_empty(&qpd->queues_list)) {
2586 		struct mqd_manager *mqd_mgr;
2587 		int ret;
2588 
2589 		q = list_first_entry(&qpd->queues_list, struct queue, list);
2590 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2591 				q->properties.type)];
2592 		ret = destroy_queue_nocpsch_locked(dqm, qpd, q);
2593 		if (ret)
2594 			retval = ret;
2595 		dqm_unlock(dqm);
2596 		mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2597 		dqm_lock(dqm);
2598 	}
2599 
2600 	/* Unregister process */
2601 	list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
2602 		if (qpd == cur->qpd) {
2603 			list_del(&cur->list);
2604 			kfree(cur);
2605 			dqm->processes_count--;
2606 			found = true;
2607 			break;
2608 		}
2609 	}
2610 
2611 	dqm_unlock(dqm);
2612 
2613 	/* Outside the DQM lock because under the DQM lock we can't do
2614 	 * reclaim or take other locks that others hold while reclaiming.
2615 	 */
2616 	if (found)
2617 		kfd_dec_compute_active(dqm->dev);
2618 
2619 	return retval;
2620 }
2621 
2622 static int get_wave_state(struct device_queue_manager *dqm,
2623 			  struct queue *q,
2624 			  void __user *ctl_stack,
2625 			  u32 *ctl_stack_used_size,
2626 			  u32 *save_area_used_size)
2627 {
2628 	struct mqd_manager *mqd_mgr;
2629 
2630 	dqm_lock(dqm);
2631 
2632 	mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP];
2633 
2634 	if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE ||
2635 	    q->properties.is_active || !q->device->kfd->cwsr_enabled ||
2636 	    !mqd_mgr->get_wave_state) {
2637 		dqm_unlock(dqm);
2638 		return -EINVAL;
2639 	}
2640 
2641 	dqm_unlock(dqm);
2642 
2643 	/*
2644 	 * get_wave_state is outside the dqm lock to prevent circular locking
2645 	 * and the queue should be protected against destruction by the process
2646 	 * lock.
2647 	 */
2648 	return mqd_mgr->get_wave_state(mqd_mgr, q->mqd, &q->properties,
2649 			ctl_stack, ctl_stack_used_size, save_area_used_size);
2650 }
2651 
2652 static void get_queue_checkpoint_info(struct device_queue_manager *dqm,
2653 			const struct queue *q,
2654 			u32 *mqd_size,
2655 			u32 *ctl_stack_size)
2656 {
2657 	struct mqd_manager *mqd_mgr;
2658 	enum KFD_MQD_TYPE mqd_type =
2659 			get_mqd_type_from_queue_type(q->properties.type);
2660 
2661 	dqm_lock(dqm);
2662 	mqd_mgr = dqm->mqd_mgrs[mqd_type];
2663 	*mqd_size = mqd_mgr->mqd_size;
2664 	*ctl_stack_size = 0;
2665 
2666 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE && mqd_mgr->get_checkpoint_info)
2667 		mqd_mgr->get_checkpoint_info(mqd_mgr, q->mqd, ctl_stack_size);
2668 
2669 	dqm_unlock(dqm);
2670 }
2671 
2672 static int checkpoint_mqd(struct device_queue_manager *dqm,
2673 			  const struct queue *q,
2674 			  void *mqd,
2675 			  void *ctl_stack)
2676 {
2677 	struct mqd_manager *mqd_mgr;
2678 	int r = 0;
2679 	enum KFD_MQD_TYPE mqd_type =
2680 			get_mqd_type_from_queue_type(q->properties.type);
2681 
2682 	dqm_lock(dqm);
2683 
2684 	if (q->properties.is_active || !q->device->kfd->cwsr_enabled) {
2685 		r = -EINVAL;
2686 		goto dqm_unlock;
2687 	}
2688 
2689 	mqd_mgr = dqm->mqd_mgrs[mqd_type];
2690 	if (!mqd_mgr->checkpoint_mqd) {
2691 		r = -EOPNOTSUPP;
2692 		goto dqm_unlock;
2693 	}
2694 
2695 	mqd_mgr->checkpoint_mqd(mqd_mgr, q->mqd, mqd, ctl_stack);
2696 
2697 dqm_unlock:
2698 	dqm_unlock(dqm);
2699 	return r;
2700 }
2701 
2702 static int process_termination_cpsch(struct device_queue_manager *dqm,
2703 		struct qcm_process_device *qpd)
2704 {
2705 	int retval;
2706 	struct queue *q;
2707 	struct device *dev = dqm->dev->adev->dev;
2708 	struct kernel_queue *kq, *kq_next;
2709 	struct mqd_manager *mqd_mgr;
2710 	struct device_process_node *cur, *next_dpn;
2711 	enum kfd_unmap_queues_filter filter =
2712 		KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES;
2713 	bool found = false;
2714 
2715 	retval = 0;
2716 
2717 	dqm_lock(dqm);
2718 
2719 	/* Clean all kernel queues */
2720 	list_for_each_entry_safe(kq, kq_next, &qpd->priv_queue_list, list) {
2721 		list_del(&kq->list);
2722 		decrement_queue_count(dqm, qpd, kq->queue);
2723 		qpd->is_debug = false;
2724 		dqm->total_queue_count--;
2725 		filter = KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES;
2726 	}
2727 
2728 	/* Clear all user mode queues */
2729 	list_for_each_entry(q, &qpd->queues_list, list) {
2730 		if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
2731 			deallocate_sdma_queue(dqm, q);
2732 		else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
2733 			deallocate_sdma_queue(dqm, q);
2734 
2735 		if (q->properties.is_active) {
2736 			decrement_queue_count(dqm, qpd, q);
2737 
2738 			if (dqm->dev->kfd->shared_resources.enable_mes) {
2739 				retval = remove_queue_mes(dqm, q, qpd);
2740 				if (retval)
2741 					dev_err(dev, "Failed to remove queue %d\n",
2742 						q->properties.queue_id);
2743 			}
2744 		}
2745 
2746 		dqm->total_queue_count--;
2747 	}
2748 
2749 	/* Unregister process */
2750 	list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
2751 		if (qpd == cur->qpd) {
2752 			list_del(&cur->list);
2753 			kfree(cur);
2754 			dqm->processes_count--;
2755 			found = true;
2756 			break;
2757 		}
2758 	}
2759 
2760 	if (!dqm->dev->kfd->shared_resources.enable_mes)
2761 		retval = execute_queues_cpsch(dqm, filter, 0, USE_DEFAULT_GRACE_PERIOD);
2762 
2763 	if ((retval || qpd->reset_wavefronts) &&
2764 	    down_read_trylock(&dqm->dev->adev->reset_domain->sem)) {
2765 		pr_warn("Resetting wave fronts (cpsch) on dev %p\n", dqm->dev);
2766 		dbgdev_wave_reset_wavefronts(dqm->dev, qpd->pqm->process);
2767 		qpd->reset_wavefronts = false;
2768 		up_read(&dqm->dev->adev->reset_domain->sem);
2769 	}
2770 
2771 	/* Lastly, free mqd resources.
2772 	 * Do free_mqd() after dqm_unlock to avoid circular locking.
2773 	 */
2774 	while (!list_empty(&qpd->queues_list)) {
2775 		q = list_first_entry(&qpd->queues_list, struct queue, list);
2776 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2777 				q->properties.type)];
2778 		list_del(&q->list);
2779 		qpd->queue_count--;
2780 		dqm_unlock(dqm);
2781 		mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2782 		dqm_lock(dqm);
2783 	}
2784 	dqm_unlock(dqm);
2785 
2786 	/* Outside the DQM lock because under the DQM lock we can't do
2787 	 * reclaim or take other locks that others hold while reclaiming.
2788 	 */
2789 	if (found)
2790 		kfd_dec_compute_active(dqm->dev);
2791 
2792 	return retval;
2793 }
2794 
2795 static int init_mqd_managers(struct device_queue_manager *dqm)
2796 {
2797 	int i, j;
2798 	struct device *dev = dqm->dev->adev->dev;
2799 	struct mqd_manager *mqd_mgr;
2800 
2801 	for (i = 0; i < KFD_MQD_TYPE_MAX; i++) {
2802 		mqd_mgr = dqm->asic_ops.mqd_manager_init(i, dqm->dev);
2803 		if (!mqd_mgr) {
2804 			dev_err(dev, "mqd manager [%d] initialization failed\n", i);
2805 			goto out_free;
2806 		}
2807 		dqm->mqd_mgrs[i] = mqd_mgr;
2808 	}
2809 
2810 	return 0;
2811 
2812 out_free:
2813 	for (j = 0; j < i; j++) {
2814 		kfree(dqm->mqd_mgrs[j]);
2815 		dqm->mqd_mgrs[j] = NULL;
2816 	}
2817 
2818 	return -ENOMEM;
2819 }
2820 
2821 /* Allocate one hiq mqd (HWS) and all SDMA mqd in a continuous trunk*/
2822 static int allocate_hiq_sdma_mqd(struct device_queue_manager *dqm)
2823 {
2824 	int retval;
2825 	struct kfd_node *dev = dqm->dev;
2826 	struct kfd_mem_obj *mem_obj = &dqm->hiq_sdma_mqd;
2827 	uint32_t size = dqm->mqd_mgrs[KFD_MQD_TYPE_SDMA]->mqd_size *
2828 		get_num_all_sdma_engines(dqm) *
2829 		dev->kfd->device_info.num_sdma_queues_per_engine +
2830 		(dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]->mqd_size *
2831 		NUM_XCC(dqm->dev->xcc_mask));
2832 
2833 	retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev, size,
2834 		&(mem_obj->gtt_mem), &(mem_obj->gpu_addr),
2835 		(void *)&(mem_obj->cpu_ptr), false);
2836 
2837 	return retval;
2838 }
2839 
2840 struct device_queue_manager *device_queue_manager_init(struct kfd_node *dev)
2841 {
2842 	struct device_queue_manager *dqm;
2843 
2844 	pr_debug("Loading device queue manager\n");
2845 
2846 	dqm = kzalloc(sizeof(*dqm), GFP_KERNEL);
2847 	if (!dqm)
2848 		return NULL;
2849 
2850 	switch (dev->adev->asic_type) {
2851 	/* HWS is not available on Hawaii. */
2852 	case CHIP_HAWAII:
2853 	/* HWS depends on CWSR for timely dequeue. CWSR is not
2854 	 * available on Tonga.
2855 	 *
2856 	 * FIXME: This argument also applies to Kaveri.
2857 	 */
2858 	case CHIP_TONGA:
2859 		dqm->sched_policy = KFD_SCHED_POLICY_NO_HWS;
2860 		break;
2861 	default:
2862 		dqm->sched_policy = sched_policy;
2863 		break;
2864 	}
2865 
2866 	dqm->dev = dev;
2867 	switch (dqm->sched_policy) {
2868 	case KFD_SCHED_POLICY_HWS:
2869 	case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
2870 		/* initialize dqm for cp scheduling */
2871 		dqm->ops.create_queue = create_queue_cpsch;
2872 		dqm->ops.initialize = initialize_cpsch;
2873 		dqm->ops.start = start_cpsch;
2874 		dqm->ops.stop = stop_cpsch;
2875 		dqm->ops.halt = halt_cpsch;
2876 		dqm->ops.unhalt = unhalt_cpsch;
2877 		dqm->ops.destroy_queue = destroy_queue_cpsch;
2878 		dqm->ops.update_queue = update_queue;
2879 		dqm->ops.register_process = register_process;
2880 		dqm->ops.unregister_process = unregister_process;
2881 		dqm->ops.uninitialize = uninitialize;
2882 		dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
2883 		dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
2884 		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
2885 		dqm->ops.process_termination = process_termination_cpsch;
2886 		dqm->ops.evict_process_queues = evict_process_queues_cpsch;
2887 		dqm->ops.restore_process_queues = restore_process_queues_cpsch;
2888 		dqm->ops.get_wave_state = get_wave_state;
2889 		dqm->ops.reset_queues = reset_queues_cpsch;
2890 		dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info;
2891 		dqm->ops.checkpoint_mqd = checkpoint_mqd;
2892 		break;
2893 	case KFD_SCHED_POLICY_NO_HWS:
2894 		/* initialize dqm for no cp scheduling */
2895 		dqm->ops.start = start_nocpsch;
2896 		dqm->ops.stop = stop_nocpsch;
2897 		dqm->ops.create_queue = create_queue_nocpsch;
2898 		dqm->ops.destroy_queue = destroy_queue_nocpsch;
2899 		dqm->ops.update_queue = update_queue;
2900 		dqm->ops.register_process = register_process;
2901 		dqm->ops.unregister_process = unregister_process;
2902 		dqm->ops.initialize = initialize_nocpsch;
2903 		dqm->ops.uninitialize = uninitialize;
2904 		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
2905 		dqm->ops.process_termination = process_termination_nocpsch;
2906 		dqm->ops.evict_process_queues = evict_process_queues_nocpsch;
2907 		dqm->ops.restore_process_queues =
2908 			restore_process_queues_nocpsch;
2909 		dqm->ops.get_wave_state = get_wave_state;
2910 		dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info;
2911 		dqm->ops.checkpoint_mqd = checkpoint_mqd;
2912 		break;
2913 	default:
2914 		dev_err(dev->adev->dev, "Invalid scheduling policy %d\n", dqm->sched_policy);
2915 		goto out_free;
2916 	}
2917 
2918 	switch (dev->adev->asic_type) {
2919 	case CHIP_KAVERI:
2920 	case CHIP_HAWAII:
2921 		device_queue_manager_init_cik(&dqm->asic_ops);
2922 		break;
2923 
2924 	case CHIP_CARRIZO:
2925 	case CHIP_TONGA:
2926 	case CHIP_FIJI:
2927 	case CHIP_POLARIS10:
2928 	case CHIP_POLARIS11:
2929 	case CHIP_POLARIS12:
2930 	case CHIP_VEGAM:
2931 		device_queue_manager_init_vi(&dqm->asic_ops);
2932 		break;
2933 
2934 	default:
2935 		if (KFD_GC_VERSION(dev) >= IP_VERSION(12, 0, 0))
2936 			device_queue_manager_init_v12(&dqm->asic_ops);
2937 		else if (KFD_GC_VERSION(dev) >= IP_VERSION(11, 0, 0))
2938 			device_queue_manager_init_v11(&dqm->asic_ops);
2939 		else if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
2940 			device_queue_manager_init_v10(&dqm->asic_ops);
2941 		else if (KFD_GC_VERSION(dev) >= IP_VERSION(9, 0, 1))
2942 			device_queue_manager_init_v9(&dqm->asic_ops);
2943 		else {
2944 			WARN(1, "Unexpected ASIC family %u",
2945 			     dev->adev->asic_type);
2946 			goto out_free;
2947 		}
2948 	}
2949 
2950 	if (init_mqd_managers(dqm))
2951 		goto out_free;
2952 
2953 	if (!dev->kfd->shared_resources.enable_mes && allocate_hiq_sdma_mqd(dqm)) {
2954 		dev_err(dev->adev->dev, "Failed to allocate hiq sdma mqd trunk buffer\n");
2955 		goto out_free;
2956 	}
2957 
2958 	if (!dqm->ops.initialize(dqm)) {
2959 		init_waitqueue_head(&dqm->destroy_wait);
2960 		return dqm;
2961 	}
2962 
2963 out_free:
2964 	kfree(dqm);
2965 	return NULL;
2966 }
2967 
2968 static void deallocate_hiq_sdma_mqd(struct kfd_node *dev,
2969 				    struct kfd_mem_obj *mqd)
2970 {
2971 	WARN(!mqd, "No hiq sdma mqd trunk to free");
2972 
2973 	amdgpu_amdkfd_free_gtt_mem(dev->adev, &mqd->gtt_mem);
2974 }
2975 
2976 void device_queue_manager_uninit(struct device_queue_manager *dqm)
2977 {
2978 	dqm->ops.stop(dqm);
2979 	dqm->ops.uninitialize(dqm);
2980 	if (!dqm->dev->kfd->shared_resources.enable_mes)
2981 		deallocate_hiq_sdma_mqd(dqm->dev, &dqm->hiq_sdma_mqd);
2982 	kfree(dqm);
2983 }
2984 
2985 int kfd_dqm_suspend_bad_queue_mes(struct kfd_node *knode, u32 pasid, u32 doorbell_id)
2986 {
2987 	struct kfd_process_device *pdd;
2988 	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
2989 	struct device_queue_manager *dqm = knode->dqm;
2990 	struct device *dev = dqm->dev->adev->dev;
2991 	struct qcm_process_device *qpd;
2992 	struct queue *q = NULL;
2993 	int ret = 0;
2994 
2995 	if (!p)
2996 		return -EINVAL;
2997 
2998 	dqm_lock(dqm);
2999 
3000 	pdd = kfd_get_process_device_data(dqm->dev, p);
3001 	if (pdd) {
3002 		qpd = &pdd->qpd;
3003 
3004 		list_for_each_entry(q, &qpd->queues_list, list) {
3005 			if (q->doorbell_id == doorbell_id && q->properties.is_active) {
3006 				ret = suspend_all_queues_mes(dqm);
3007 				if (ret) {
3008 					dev_err(dev, "Suspending all queues failed");
3009 					goto out;
3010 				}
3011 
3012 				q->properties.is_evicted = true;
3013 				q->properties.is_active = false;
3014 				decrement_queue_count(dqm, qpd, q);
3015 
3016 				ret = remove_queue_mes(dqm, q, qpd);
3017 				if (ret) {
3018 					dev_err(dev, "Removing bad queue failed");
3019 					goto out;
3020 				}
3021 
3022 				ret = resume_all_queues_mes(dqm);
3023 				if (ret)
3024 					dev_err(dev, "Resuming all queues failed");
3025 
3026 				break;
3027 			}
3028 		}
3029 	}
3030 
3031 out:
3032 	dqm_unlock(dqm);
3033 	return ret;
3034 }
3035 
3036 static int kfd_dqm_evict_pasid_mes(struct device_queue_manager *dqm,
3037 				   struct qcm_process_device *qpd)
3038 {
3039 	struct device *dev = dqm->dev->adev->dev;
3040 	int ret = 0;
3041 
3042 	/* Check if process is already evicted */
3043 	dqm_lock(dqm);
3044 	if (qpd->evicted) {
3045 		/* Increment the evicted count to make sure the
3046 		 * process stays evicted before its terminated.
3047 		 */
3048 		qpd->evicted++;
3049 		dqm_unlock(dqm);
3050 		goto out;
3051 	}
3052 	dqm_unlock(dqm);
3053 
3054 	ret = suspend_all_queues_mes(dqm);
3055 	if (ret) {
3056 		dev_err(dev, "Suspending all queues failed");
3057 		goto out;
3058 	}
3059 
3060 	ret = dqm->ops.evict_process_queues(dqm, qpd);
3061 	if (ret) {
3062 		dev_err(dev, "Evicting process queues failed");
3063 		goto out;
3064 	}
3065 
3066 	ret = resume_all_queues_mes(dqm);
3067 	if (ret)
3068 		dev_err(dev, "Resuming all queues failed");
3069 
3070 out:
3071 	return ret;
3072 }
3073 
3074 int kfd_dqm_evict_pasid(struct device_queue_manager *dqm, u32 pasid)
3075 {
3076 	struct kfd_process_device *pdd;
3077 	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
3078 	int ret = 0;
3079 
3080 	if (!p)
3081 		return -EINVAL;
3082 	WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
3083 	pdd = kfd_get_process_device_data(dqm->dev, p);
3084 	if (pdd) {
3085 		if (dqm->dev->kfd->shared_resources.enable_mes)
3086 			ret = kfd_dqm_evict_pasid_mes(dqm, &pdd->qpd);
3087 		else
3088 			ret = dqm->ops.evict_process_queues(dqm, &pdd->qpd);
3089 	}
3090 
3091 	kfd_unref_process(p);
3092 
3093 	return ret;
3094 }
3095 
3096 static void kfd_process_hw_exception(struct work_struct *work)
3097 {
3098 	struct device_queue_manager *dqm = container_of(work,
3099 			struct device_queue_manager, hw_exception_work);
3100 	amdgpu_amdkfd_gpu_reset(dqm->dev->adev);
3101 }
3102 
3103 int reserve_debug_trap_vmid(struct device_queue_manager *dqm,
3104 				struct qcm_process_device *qpd)
3105 {
3106 	int r;
3107 	struct device *dev = dqm->dev->adev->dev;
3108 	int updated_vmid_mask;
3109 
3110 	if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3111 		dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3112 		return -EINVAL;
3113 	}
3114 
3115 	dqm_lock(dqm);
3116 
3117 	if (dqm->trap_debug_vmid != 0) {
3118 		dev_err(dev, "Trap debug id already reserved\n");
3119 		r = -EBUSY;
3120 		goto out_unlock;
3121 	}
3122 
3123 	r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
3124 			USE_DEFAULT_GRACE_PERIOD, false);
3125 	if (r)
3126 		goto out_unlock;
3127 
3128 	updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap;
3129 	updated_vmid_mask &= ~(1 << dqm->dev->vm_info.last_vmid_kfd);
3130 
3131 	dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask;
3132 	dqm->trap_debug_vmid = dqm->dev->vm_info.last_vmid_kfd;
3133 	r = set_sched_resources(dqm);
3134 	if (r)
3135 		goto out_unlock;
3136 
3137 	r = map_queues_cpsch(dqm);
3138 	if (r)
3139 		goto out_unlock;
3140 
3141 	pr_debug("Reserved VMID for trap debug: %i\n", dqm->trap_debug_vmid);
3142 
3143 out_unlock:
3144 	dqm_unlock(dqm);
3145 	return r;
3146 }
3147 
3148 /*
3149  * Releases vmid for the trap debugger
3150  */
3151 int release_debug_trap_vmid(struct device_queue_manager *dqm,
3152 			struct qcm_process_device *qpd)
3153 {
3154 	struct device *dev = dqm->dev->adev->dev;
3155 	int r;
3156 	int updated_vmid_mask;
3157 	uint32_t trap_debug_vmid;
3158 
3159 	if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3160 		dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3161 		return -EINVAL;
3162 	}
3163 
3164 	dqm_lock(dqm);
3165 	trap_debug_vmid = dqm->trap_debug_vmid;
3166 	if (dqm->trap_debug_vmid == 0) {
3167 		dev_err(dev, "Trap debug id is not reserved\n");
3168 		r = -EINVAL;
3169 		goto out_unlock;
3170 	}
3171 
3172 	r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
3173 			USE_DEFAULT_GRACE_PERIOD, false);
3174 	if (r)
3175 		goto out_unlock;
3176 
3177 	updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap;
3178 	updated_vmid_mask |= (1 << dqm->dev->vm_info.last_vmid_kfd);
3179 
3180 	dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask;
3181 	dqm->trap_debug_vmid = 0;
3182 	r = set_sched_resources(dqm);
3183 	if (r)
3184 		goto out_unlock;
3185 
3186 	r = map_queues_cpsch(dqm);
3187 	if (r)
3188 		goto out_unlock;
3189 
3190 	pr_debug("Released VMID for trap debug: %i\n", trap_debug_vmid);
3191 
3192 out_unlock:
3193 	dqm_unlock(dqm);
3194 	return r;
3195 }
3196 
3197 #define QUEUE_NOT_FOUND		-1
3198 /* invalidate queue operation in array */
3199 static void q_array_invalidate(uint32_t num_queues, uint32_t *queue_ids)
3200 {
3201 	int i;
3202 
3203 	for (i = 0; i < num_queues; i++)
3204 		queue_ids[i] |= KFD_DBG_QUEUE_INVALID_MASK;
3205 }
3206 
3207 /* find queue index in array */
3208 static int q_array_get_index(unsigned int queue_id,
3209 		uint32_t num_queues,
3210 		uint32_t *queue_ids)
3211 {
3212 	int i;
3213 
3214 	for (i = 0; i < num_queues; i++)
3215 		if (queue_id == (queue_ids[i] & ~KFD_DBG_QUEUE_INVALID_MASK))
3216 			return i;
3217 
3218 	return QUEUE_NOT_FOUND;
3219 }
3220 
3221 struct copy_context_work_handler_workarea {
3222 	struct work_struct copy_context_work;
3223 	struct kfd_process *p;
3224 };
3225 
3226 static void copy_context_work_handler(struct work_struct *work)
3227 {
3228 	struct copy_context_work_handler_workarea *workarea;
3229 	struct mqd_manager *mqd_mgr;
3230 	struct queue *q;
3231 	struct mm_struct *mm;
3232 	struct kfd_process *p;
3233 	uint32_t tmp_ctl_stack_used_size, tmp_save_area_used_size;
3234 	int i;
3235 
3236 	workarea = container_of(work,
3237 			struct copy_context_work_handler_workarea,
3238 			copy_context_work);
3239 
3240 	p = workarea->p;
3241 	mm = get_task_mm(p->lead_thread);
3242 
3243 	if (!mm)
3244 		return;
3245 
3246 	kthread_use_mm(mm);
3247 	for (i = 0; i < p->n_pdds; i++) {
3248 		struct kfd_process_device *pdd = p->pdds[i];
3249 		struct device_queue_manager *dqm = pdd->dev->dqm;
3250 		struct qcm_process_device *qpd = &pdd->qpd;
3251 
3252 		list_for_each_entry(q, &qpd->queues_list, list) {
3253 			if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE)
3254 				continue;
3255 
3256 			mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP];
3257 
3258 			/* We ignore the return value from get_wave_state
3259 			 * because
3260 			 * i) right now, it always returns 0, and
3261 			 * ii) if we hit an error, we would continue to the
3262 			 *      next queue anyway.
3263 			 */
3264 			mqd_mgr->get_wave_state(mqd_mgr,
3265 					q->mqd,
3266 					&q->properties,
3267 					(void __user *)	q->properties.ctx_save_restore_area_address,
3268 					&tmp_ctl_stack_used_size,
3269 					&tmp_save_area_used_size);
3270 		}
3271 	}
3272 	kthread_unuse_mm(mm);
3273 	mmput(mm);
3274 }
3275 
3276 static uint32_t *get_queue_ids(uint32_t num_queues, uint32_t *usr_queue_id_array)
3277 {
3278 	size_t array_size = num_queues * sizeof(uint32_t);
3279 
3280 	if (!usr_queue_id_array)
3281 		return NULL;
3282 
3283 	return memdup_user(usr_queue_id_array, array_size);
3284 }
3285 
3286 int resume_queues(struct kfd_process *p,
3287 		uint32_t num_queues,
3288 		uint32_t *usr_queue_id_array)
3289 {
3290 	uint32_t *queue_ids = NULL;
3291 	int total_resumed = 0;
3292 	int i;
3293 
3294 	if (usr_queue_id_array) {
3295 		queue_ids = get_queue_ids(num_queues, usr_queue_id_array);
3296 
3297 		if (IS_ERR(queue_ids))
3298 			return PTR_ERR(queue_ids);
3299 
3300 		/* mask all queues as invalid.  unmask per successful request */
3301 		q_array_invalidate(num_queues, queue_ids);
3302 	}
3303 
3304 	for (i = 0; i < p->n_pdds; i++) {
3305 		struct kfd_process_device *pdd = p->pdds[i];
3306 		struct device_queue_manager *dqm = pdd->dev->dqm;
3307 		struct device *dev = dqm->dev->adev->dev;
3308 		struct qcm_process_device *qpd = &pdd->qpd;
3309 		struct queue *q;
3310 		int r, per_device_resumed = 0;
3311 
3312 		dqm_lock(dqm);
3313 
3314 		/* unmask queues that resume or already resumed as valid */
3315 		list_for_each_entry(q, &qpd->queues_list, list) {
3316 			int q_idx = QUEUE_NOT_FOUND;
3317 
3318 			if (queue_ids)
3319 				q_idx = q_array_get_index(
3320 						q->properties.queue_id,
3321 						num_queues,
3322 						queue_ids);
3323 
3324 			if (!queue_ids || q_idx != QUEUE_NOT_FOUND) {
3325 				int err = resume_single_queue(dqm, &pdd->qpd, q);
3326 
3327 				if (queue_ids) {
3328 					if (!err) {
3329 						queue_ids[q_idx] &=
3330 							~KFD_DBG_QUEUE_INVALID_MASK;
3331 					} else {
3332 						queue_ids[q_idx] |=
3333 							KFD_DBG_QUEUE_ERROR_MASK;
3334 						break;
3335 					}
3336 				}
3337 
3338 				if (dqm->dev->kfd->shared_resources.enable_mes) {
3339 					wake_up_all(&dqm->destroy_wait);
3340 					if (!err)
3341 						total_resumed++;
3342 				} else {
3343 					per_device_resumed++;
3344 				}
3345 			}
3346 		}
3347 
3348 		if (!per_device_resumed) {
3349 			dqm_unlock(dqm);
3350 			continue;
3351 		}
3352 
3353 		r = execute_queues_cpsch(dqm,
3354 					KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
3355 					0,
3356 					USE_DEFAULT_GRACE_PERIOD);
3357 		if (r) {
3358 			dev_err(dev, "Failed to resume process queues\n");
3359 			if (queue_ids) {
3360 				list_for_each_entry(q, &qpd->queues_list, list) {
3361 					int q_idx = q_array_get_index(
3362 							q->properties.queue_id,
3363 							num_queues,
3364 							queue_ids);
3365 
3366 					/* mask queue as error on resume fail */
3367 					if (q_idx != QUEUE_NOT_FOUND)
3368 						queue_ids[q_idx] |=
3369 							KFD_DBG_QUEUE_ERROR_MASK;
3370 				}
3371 			}
3372 		} else {
3373 			wake_up_all(&dqm->destroy_wait);
3374 			total_resumed += per_device_resumed;
3375 		}
3376 
3377 		dqm_unlock(dqm);
3378 	}
3379 
3380 	if (queue_ids) {
3381 		if (copy_to_user((void __user *)usr_queue_id_array, queue_ids,
3382 				num_queues * sizeof(uint32_t)))
3383 			pr_err("copy_to_user failed on queue resume\n");
3384 
3385 		kfree(queue_ids);
3386 	}
3387 
3388 	return total_resumed;
3389 }
3390 
3391 int suspend_queues(struct kfd_process *p,
3392 			uint32_t num_queues,
3393 			uint32_t grace_period,
3394 			uint64_t exception_clear_mask,
3395 			uint32_t *usr_queue_id_array)
3396 {
3397 	uint32_t *queue_ids = get_queue_ids(num_queues, usr_queue_id_array);
3398 	int total_suspended = 0;
3399 	int i;
3400 
3401 	if (IS_ERR(queue_ids))
3402 		return PTR_ERR(queue_ids);
3403 
3404 	/* mask all queues as invalid.  umask on successful request */
3405 	q_array_invalidate(num_queues, queue_ids);
3406 
3407 	for (i = 0; i < p->n_pdds; i++) {
3408 		struct kfd_process_device *pdd = p->pdds[i];
3409 		struct device_queue_manager *dqm = pdd->dev->dqm;
3410 		struct device *dev = dqm->dev->adev->dev;
3411 		struct qcm_process_device *qpd = &pdd->qpd;
3412 		struct queue *q;
3413 		int r, per_device_suspended = 0;
3414 
3415 		mutex_lock(&p->event_mutex);
3416 		dqm_lock(dqm);
3417 
3418 		/* unmask queues that suspend or already suspended */
3419 		list_for_each_entry(q, &qpd->queues_list, list) {
3420 			int q_idx = q_array_get_index(q->properties.queue_id,
3421 							num_queues,
3422 							queue_ids);
3423 
3424 			if (q_idx != QUEUE_NOT_FOUND) {
3425 				int err = suspend_single_queue(dqm, pdd, q);
3426 				bool is_mes = dqm->dev->kfd->shared_resources.enable_mes;
3427 
3428 				if (!err) {
3429 					queue_ids[q_idx] &= ~KFD_DBG_QUEUE_INVALID_MASK;
3430 					if (exception_clear_mask && is_mes)
3431 						q->properties.exception_status &=
3432 							~exception_clear_mask;
3433 
3434 					if (is_mes)
3435 						total_suspended++;
3436 					else
3437 						per_device_suspended++;
3438 				} else if (err != -EBUSY) {
3439 					r = err;
3440 					queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK;
3441 					break;
3442 				}
3443 			}
3444 		}
3445 
3446 		if (!per_device_suspended) {
3447 			dqm_unlock(dqm);
3448 			mutex_unlock(&p->event_mutex);
3449 			if (total_suspended)
3450 				amdgpu_amdkfd_debug_mem_fence(dqm->dev->adev);
3451 			continue;
3452 		}
3453 
3454 		r = execute_queues_cpsch(dqm,
3455 			KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
3456 			grace_period);
3457 
3458 		if (r)
3459 			dev_err(dev, "Failed to suspend process queues.\n");
3460 		else
3461 			total_suspended += per_device_suspended;
3462 
3463 		list_for_each_entry(q, &qpd->queues_list, list) {
3464 			int q_idx = q_array_get_index(q->properties.queue_id,
3465 						num_queues, queue_ids);
3466 
3467 			if (q_idx == QUEUE_NOT_FOUND)
3468 				continue;
3469 
3470 			/* mask queue as error on suspend fail */
3471 			if (r)
3472 				queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK;
3473 			else if (exception_clear_mask)
3474 				q->properties.exception_status &=
3475 							~exception_clear_mask;
3476 		}
3477 
3478 		dqm_unlock(dqm);
3479 		mutex_unlock(&p->event_mutex);
3480 		amdgpu_device_flush_hdp(dqm->dev->adev, NULL);
3481 	}
3482 
3483 	if (total_suspended) {
3484 		struct copy_context_work_handler_workarea copy_context_worker;
3485 
3486 		INIT_WORK_ONSTACK(
3487 				&copy_context_worker.copy_context_work,
3488 				copy_context_work_handler);
3489 
3490 		copy_context_worker.p = p;
3491 
3492 		schedule_work(&copy_context_worker.copy_context_work);
3493 
3494 
3495 		flush_work(&copy_context_worker.copy_context_work);
3496 		destroy_work_on_stack(&copy_context_worker.copy_context_work);
3497 	}
3498 
3499 	if (copy_to_user((void __user *)usr_queue_id_array, queue_ids,
3500 			num_queues * sizeof(uint32_t)))
3501 		pr_err("copy_to_user failed on queue suspend\n");
3502 
3503 	kfree(queue_ids);
3504 
3505 	return total_suspended;
3506 }
3507 
3508 static uint32_t set_queue_type_for_user(struct queue_properties *q_props)
3509 {
3510 	switch (q_props->type) {
3511 	case KFD_QUEUE_TYPE_COMPUTE:
3512 		return q_props->format == KFD_QUEUE_FORMAT_PM4
3513 					? KFD_IOC_QUEUE_TYPE_COMPUTE
3514 					: KFD_IOC_QUEUE_TYPE_COMPUTE_AQL;
3515 	case KFD_QUEUE_TYPE_SDMA:
3516 		return KFD_IOC_QUEUE_TYPE_SDMA;
3517 	case KFD_QUEUE_TYPE_SDMA_XGMI:
3518 		return KFD_IOC_QUEUE_TYPE_SDMA_XGMI;
3519 	default:
3520 		WARN_ONCE(true, "queue type not recognized!");
3521 		return 0xffffffff;
3522 	};
3523 }
3524 
3525 void set_queue_snapshot_entry(struct queue *q,
3526 			      uint64_t exception_clear_mask,
3527 			      struct kfd_queue_snapshot_entry *qss_entry)
3528 {
3529 	qss_entry->ring_base_address = q->properties.queue_address;
3530 	qss_entry->write_pointer_address = (uint64_t)q->properties.write_ptr;
3531 	qss_entry->read_pointer_address = (uint64_t)q->properties.read_ptr;
3532 	qss_entry->ctx_save_restore_address =
3533 				q->properties.ctx_save_restore_area_address;
3534 	qss_entry->ctx_save_restore_area_size =
3535 				q->properties.ctx_save_restore_area_size;
3536 	qss_entry->exception_status = q->properties.exception_status;
3537 	qss_entry->queue_id = q->properties.queue_id;
3538 	qss_entry->gpu_id = q->device->id;
3539 	qss_entry->ring_size = (uint32_t)q->properties.queue_size;
3540 	qss_entry->queue_type = set_queue_type_for_user(&q->properties);
3541 	q->properties.exception_status &= ~exception_clear_mask;
3542 }
3543 
3544 int debug_lock_and_unmap(struct device_queue_manager *dqm)
3545 {
3546 	struct device *dev = dqm->dev->adev->dev;
3547 	int r;
3548 
3549 	if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3550 		dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3551 		return -EINVAL;
3552 	}
3553 
3554 	if (!kfd_dbg_is_per_vmid_supported(dqm->dev))
3555 		return 0;
3556 
3557 	dqm_lock(dqm);
3558 
3559 	r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, 0, false);
3560 	if (r)
3561 		dqm_unlock(dqm);
3562 
3563 	return r;
3564 }
3565 
3566 int debug_map_and_unlock(struct device_queue_manager *dqm)
3567 {
3568 	struct device *dev = dqm->dev->adev->dev;
3569 	int r;
3570 
3571 	if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3572 		dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3573 		return -EINVAL;
3574 	}
3575 
3576 	if (!kfd_dbg_is_per_vmid_supported(dqm->dev))
3577 		return 0;
3578 
3579 	r = map_queues_cpsch(dqm);
3580 
3581 	dqm_unlock(dqm);
3582 
3583 	return r;
3584 }
3585 
3586 int debug_refresh_runlist(struct device_queue_manager *dqm)
3587 {
3588 	int r = debug_lock_and_unmap(dqm);
3589 
3590 	if (r)
3591 		return r;
3592 
3593 	return debug_map_and_unlock(dqm);
3594 }
3595 
3596 bool kfd_dqm_is_queue_in_process(struct device_queue_manager *dqm,
3597 				 struct qcm_process_device *qpd,
3598 				 int doorbell_off, u32 *queue_format)
3599 {
3600 	struct queue *q;
3601 	bool r = false;
3602 
3603 	if (!queue_format)
3604 		return r;
3605 
3606 	dqm_lock(dqm);
3607 
3608 	list_for_each_entry(q, &qpd->queues_list, list) {
3609 		if (q->properties.doorbell_off == doorbell_off) {
3610 			*queue_format = q->properties.format;
3611 			r = true;
3612 			goto out;
3613 		}
3614 	}
3615 
3616 out:
3617 	dqm_unlock(dqm);
3618 	return r;
3619 }
3620 #if defined(CONFIG_DEBUG_FS)
3621 
3622 static void seq_reg_dump(struct seq_file *m,
3623 			 uint32_t (*dump)[2], uint32_t n_regs)
3624 {
3625 	uint32_t i, count;
3626 
3627 	for (i = 0, count = 0; i < n_regs; i++) {
3628 		if (count == 0 ||
3629 		    dump[i-1][0] + sizeof(uint32_t) != dump[i][0]) {
3630 			seq_printf(m, "%s    %08x: %08x",
3631 				   i ? "\n" : "",
3632 				   dump[i][0], dump[i][1]);
3633 			count = 7;
3634 		} else {
3635 			seq_printf(m, " %08x", dump[i][1]);
3636 			count--;
3637 		}
3638 	}
3639 
3640 	seq_puts(m, "\n");
3641 }
3642 
3643 int dqm_debugfs_hqds(struct seq_file *m, void *data)
3644 {
3645 	struct device_queue_manager *dqm = data;
3646 	uint32_t xcc_mask = dqm->dev->xcc_mask;
3647 	uint32_t (*dump)[2], n_regs;
3648 	int pipe, queue;
3649 	int r = 0, xcc_id;
3650 	uint32_t sdma_engine_start;
3651 
3652 	if (!dqm->sched_running) {
3653 		seq_puts(m, " Device is stopped\n");
3654 		return 0;
3655 	}
3656 
3657 	for_each_inst(xcc_id, xcc_mask) {
3658 		r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev,
3659 						KFD_CIK_HIQ_PIPE,
3660 						KFD_CIK_HIQ_QUEUE, &dump,
3661 						&n_regs, xcc_id);
3662 		if (!r) {
3663 			seq_printf(
3664 				m,
3665 				"   Inst %d, HIQ on MEC %d Pipe %d Queue %d\n",
3666 				xcc_id,
3667 				KFD_CIK_HIQ_PIPE / get_pipes_per_mec(dqm) + 1,
3668 				KFD_CIK_HIQ_PIPE % get_pipes_per_mec(dqm),
3669 				KFD_CIK_HIQ_QUEUE);
3670 			seq_reg_dump(m, dump, n_regs);
3671 
3672 			kfree(dump);
3673 		}
3674 
3675 		for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
3676 			int pipe_offset = pipe * get_queues_per_pipe(dqm);
3677 
3678 			for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) {
3679 				if (!test_bit(pipe_offset + queue,
3680 				      dqm->dev->kfd->shared_resources.cp_queue_bitmap))
3681 					continue;
3682 
3683 				r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev,
3684 								pipe, queue,
3685 								&dump, &n_regs,
3686 								xcc_id);
3687 				if (r)
3688 					break;
3689 
3690 				seq_printf(m,
3691 					   " Inst %d,  CP Pipe %d, Queue %d\n",
3692 					   xcc_id, pipe, queue);
3693 				seq_reg_dump(m, dump, n_regs);
3694 
3695 				kfree(dump);
3696 			}
3697 		}
3698 	}
3699 
3700 	sdma_engine_start = dqm->dev->node_id * get_num_all_sdma_engines(dqm);
3701 	for (pipe = sdma_engine_start;
3702 	     pipe < (sdma_engine_start + get_num_all_sdma_engines(dqm));
3703 	     pipe++) {
3704 		for (queue = 0;
3705 		     queue < dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
3706 		     queue++) {
3707 			r = dqm->dev->kfd2kgd->hqd_sdma_dump(
3708 				dqm->dev->adev, pipe, queue, &dump, &n_regs);
3709 			if (r)
3710 				break;
3711 
3712 			seq_printf(m, "  SDMA Engine %d, RLC %d\n",
3713 				  pipe, queue);
3714 			seq_reg_dump(m, dump, n_regs);
3715 
3716 			kfree(dump);
3717 		}
3718 	}
3719 
3720 	return r;
3721 }
3722 
3723 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm)
3724 {
3725 	int r = 0;
3726 
3727 	dqm_lock(dqm);
3728 	r = pm_debugfs_hang_hws(&dqm->packet_mgr);
3729 	if (r) {
3730 		dqm_unlock(dqm);
3731 		return r;
3732 	}
3733 	dqm->active_runlist = true;
3734 	r = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES,
3735 				0, USE_DEFAULT_GRACE_PERIOD);
3736 	dqm_unlock(dqm);
3737 
3738 	return r;
3739 }
3740 
3741 #endif
3742