1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2014-2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/ratelimit.h> 26 #include <linux/printk.h> 27 #include <linux/slab.h> 28 #include <linux/list.h> 29 #include <linux/types.h> 30 #include <linux/bitops.h> 31 #include <linux/sched.h> 32 #include "kfd_priv.h" 33 #include "kfd_device_queue_manager.h" 34 #include "kfd_mqd_manager.h" 35 #include "cik_regs.h" 36 #include "kfd_kernel_queue.h" 37 #include "amdgpu_amdkfd.h" 38 #include "amdgpu_reset.h" 39 #include "mes_v11_api_def.h" 40 #include "kfd_debug.h" 41 42 /* Size of the per-pipe EOP queue */ 43 #define CIK_HPD_EOP_BYTES_LOG2 11 44 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2) 45 46 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm, 47 u32 pasid, unsigned int vmid); 48 49 static int execute_queues_cpsch(struct device_queue_manager *dqm, 50 enum kfd_unmap_queues_filter filter, 51 uint32_t filter_param, 52 uint32_t grace_period); 53 static int unmap_queues_cpsch(struct device_queue_manager *dqm, 54 enum kfd_unmap_queues_filter filter, 55 uint32_t filter_param, 56 uint32_t grace_period, 57 bool reset); 58 59 static int map_queues_cpsch(struct device_queue_manager *dqm); 60 61 static void deallocate_sdma_queue(struct device_queue_manager *dqm, 62 struct queue *q); 63 64 static inline void deallocate_hqd(struct device_queue_manager *dqm, 65 struct queue *q); 66 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q); 67 static int allocate_sdma_queue(struct device_queue_manager *dqm, 68 struct queue *q, const uint32_t *restore_sdma_id); 69 static void kfd_process_hw_exception(struct work_struct *work); 70 71 static inline 72 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type) 73 { 74 if (type == KFD_QUEUE_TYPE_SDMA || type == KFD_QUEUE_TYPE_SDMA_XGMI) 75 return KFD_MQD_TYPE_SDMA; 76 return KFD_MQD_TYPE_CP; 77 } 78 79 static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe) 80 { 81 int i; 82 int pipe_offset = (mec * dqm->dev->kfd->shared_resources.num_pipe_per_mec 83 + pipe) * dqm->dev->kfd->shared_resources.num_queue_per_pipe; 84 85 /* queue is available for KFD usage if bit is 1 */ 86 for (i = 0; i < dqm->dev->kfd->shared_resources.num_queue_per_pipe; ++i) 87 if (test_bit(pipe_offset + i, 88 dqm->dev->kfd->shared_resources.cp_queue_bitmap)) 89 return true; 90 return false; 91 } 92 93 unsigned int get_cp_queues_num(struct device_queue_manager *dqm) 94 { 95 return bitmap_weight(dqm->dev->kfd->shared_resources.cp_queue_bitmap, 96 AMDGPU_MAX_QUEUES); 97 } 98 99 unsigned int get_queues_per_pipe(struct device_queue_manager *dqm) 100 { 101 return dqm->dev->kfd->shared_resources.num_queue_per_pipe; 102 } 103 104 unsigned int get_pipes_per_mec(struct device_queue_manager *dqm) 105 { 106 return dqm->dev->kfd->shared_resources.num_pipe_per_mec; 107 } 108 109 static unsigned int get_num_all_sdma_engines(struct device_queue_manager *dqm) 110 { 111 return kfd_get_num_sdma_engines(dqm->dev) + 112 kfd_get_num_xgmi_sdma_engines(dqm->dev); 113 } 114 115 unsigned int get_num_sdma_queues(struct device_queue_manager *dqm) 116 { 117 return kfd_get_num_sdma_engines(dqm->dev) * 118 dqm->dev->kfd->device_info.num_sdma_queues_per_engine; 119 } 120 121 unsigned int get_num_xgmi_sdma_queues(struct device_queue_manager *dqm) 122 { 123 return kfd_get_num_xgmi_sdma_engines(dqm->dev) * 124 dqm->dev->kfd->device_info.num_sdma_queues_per_engine; 125 } 126 127 static void init_sdma_bitmaps(struct device_queue_manager *dqm) 128 { 129 bitmap_zero(dqm->sdma_bitmap, KFD_MAX_SDMA_QUEUES); 130 bitmap_set(dqm->sdma_bitmap, 0, get_num_sdma_queues(dqm)); 131 132 bitmap_zero(dqm->xgmi_sdma_bitmap, KFD_MAX_SDMA_QUEUES); 133 bitmap_set(dqm->xgmi_sdma_bitmap, 0, get_num_xgmi_sdma_queues(dqm)); 134 135 /* Mask out the reserved queues */ 136 bitmap_andnot(dqm->sdma_bitmap, dqm->sdma_bitmap, 137 dqm->dev->kfd->device_info.reserved_sdma_queues_bitmap, 138 KFD_MAX_SDMA_QUEUES); 139 } 140 141 void program_sh_mem_settings(struct device_queue_manager *dqm, 142 struct qcm_process_device *qpd) 143 { 144 uint32_t xcc_mask = dqm->dev->xcc_mask; 145 int xcc_id; 146 147 for_each_inst(xcc_id, xcc_mask) 148 dqm->dev->kfd2kgd->program_sh_mem_settings( 149 dqm->dev->adev, qpd->vmid, qpd->sh_mem_config, 150 qpd->sh_mem_ape1_base, qpd->sh_mem_ape1_limit, 151 qpd->sh_mem_bases, xcc_id); 152 } 153 154 static void kfd_hws_hang(struct device_queue_manager *dqm) 155 { 156 struct device_process_node *cur; 157 struct qcm_process_device *qpd; 158 struct queue *q; 159 160 /* Mark all device queues as reset. */ 161 list_for_each_entry(cur, &dqm->queues, list) { 162 qpd = cur->qpd; 163 list_for_each_entry(q, &qpd->queues_list, list) { 164 struct kfd_process_device *pdd = qpd_to_pdd(qpd); 165 166 pdd->has_reset_queue = true; 167 } 168 } 169 170 /* 171 * Issue a GPU reset if HWS is unresponsive 172 */ 173 schedule_work(&dqm->hw_exception_work); 174 } 175 176 static int convert_to_mes_queue_type(int queue_type) 177 { 178 int mes_queue_type; 179 180 switch (queue_type) { 181 case KFD_QUEUE_TYPE_COMPUTE: 182 mes_queue_type = MES_QUEUE_TYPE_COMPUTE; 183 break; 184 case KFD_QUEUE_TYPE_SDMA: 185 mes_queue_type = MES_QUEUE_TYPE_SDMA; 186 break; 187 default: 188 WARN(1, "Invalid queue type %d", queue_type); 189 mes_queue_type = -EINVAL; 190 break; 191 } 192 193 return mes_queue_type; 194 } 195 196 static int add_queue_mes(struct device_queue_manager *dqm, struct queue *q, 197 struct qcm_process_device *qpd) 198 { 199 struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev; 200 struct kfd_process_device *pdd = qpd_to_pdd(qpd); 201 struct mes_add_queue_input queue_input; 202 int r, queue_type; 203 uint64_t wptr_addr_off; 204 205 if (!dqm->sched_running || dqm->sched_halt) 206 return 0; 207 if (!down_read_trylock(&adev->reset_domain->sem)) 208 return -EIO; 209 210 if (!pdd->proc_ctx_cpu_ptr) { 211 r = amdgpu_amdkfd_alloc_gtt_mem(adev, 212 AMDGPU_MES_PROC_CTX_SIZE, 213 &pdd->proc_ctx_bo, 214 &pdd->proc_ctx_gpu_addr, 215 &pdd->proc_ctx_cpu_ptr, 216 false); 217 if (r) { 218 dev_err(adev->dev, 219 "failed to allocate process context bo\n"); 220 return r; 221 } 222 memset(pdd->proc_ctx_cpu_ptr, 0, AMDGPU_MES_PROC_CTX_SIZE); 223 } 224 225 memset(&queue_input, 0x0, sizeof(struct mes_add_queue_input)); 226 queue_input.process_id = qpd->pqm->process->pasid; 227 queue_input.page_table_base_addr = qpd->page_table_base; 228 queue_input.process_va_start = 0; 229 queue_input.process_va_end = adev->vm_manager.max_pfn - 1; 230 /* MES unit for quantum is 100ns */ 231 queue_input.process_quantum = KFD_MES_PROCESS_QUANTUM; /* Equivalent to 10ms. */ 232 queue_input.process_context_addr = pdd->proc_ctx_gpu_addr; 233 queue_input.gang_quantum = KFD_MES_GANG_QUANTUM; /* Equivalent to 1ms */ 234 queue_input.gang_context_addr = q->gang_ctx_gpu_addr; 235 queue_input.inprocess_gang_priority = q->properties.priority; 236 queue_input.gang_global_priority_level = 237 AMDGPU_MES_PRIORITY_LEVEL_NORMAL; 238 queue_input.doorbell_offset = q->properties.doorbell_off; 239 queue_input.mqd_addr = q->gart_mqd_addr; 240 queue_input.wptr_addr = (uint64_t)q->properties.write_ptr; 241 242 wptr_addr_off = (uint64_t)q->properties.write_ptr & (PAGE_SIZE - 1); 243 queue_input.wptr_mc_addr = amdgpu_bo_gpu_offset(q->properties.wptr_bo) + wptr_addr_off; 244 245 queue_input.is_kfd_process = 1; 246 queue_input.is_aql_queue = (q->properties.format == KFD_QUEUE_FORMAT_AQL); 247 queue_input.queue_size = q->properties.queue_size >> 2; 248 249 queue_input.paging = false; 250 queue_input.tba_addr = qpd->tba_addr; 251 queue_input.tma_addr = qpd->tma_addr; 252 queue_input.trap_en = !kfd_dbg_has_cwsr_workaround(q->device); 253 queue_input.skip_process_ctx_clear = 254 qpd->pqm->process->runtime_info.runtime_state == DEBUG_RUNTIME_STATE_ENABLED && 255 (qpd->pqm->process->debug_trap_enabled || 256 kfd_dbg_has_ttmps_always_setup(q->device)); 257 258 queue_type = convert_to_mes_queue_type(q->properties.type); 259 if (queue_type < 0) { 260 dev_err(adev->dev, "Queue type not supported with MES, queue:%d\n", 261 q->properties.type); 262 up_read(&adev->reset_domain->sem); 263 return -EINVAL; 264 } 265 queue_input.queue_type = (uint32_t)queue_type; 266 267 queue_input.exclusively_scheduled = q->properties.is_gws; 268 269 amdgpu_mes_lock(&adev->mes); 270 r = adev->mes.funcs->add_hw_queue(&adev->mes, &queue_input); 271 amdgpu_mes_unlock(&adev->mes); 272 up_read(&adev->reset_domain->sem); 273 if (r) { 274 dev_err(adev->dev, "failed to add hardware queue to MES, doorbell=0x%x\n", 275 q->properties.doorbell_off); 276 dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n"); 277 kfd_hws_hang(dqm); 278 } 279 280 return r; 281 } 282 283 static int remove_queue_mes(struct device_queue_manager *dqm, struct queue *q, 284 struct qcm_process_device *qpd) 285 { 286 struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev; 287 int r; 288 struct mes_remove_queue_input queue_input; 289 290 if (!dqm->sched_running || dqm->sched_halt) 291 return 0; 292 if (!down_read_trylock(&adev->reset_domain->sem)) 293 return -EIO; 294 295 memset(&queue_input, 0x0, sizeof(struct mes_remove_queue_input)); 296 queue_input.doorbell_offset = q->properties.doorbell_off; 297 queue_input.gang_context_addr = q->gang_ctx_gpu_addr; 298 299 amdgpu_mes_lock(&adev->mes); 300 r = adev->mes.funcs->remove_hw_queue(&adev->mes, &queue_input); 301 amdgpu_mes_unlock(&adev->mes); 302 up_read(&adev->reset_domain->sem); 303 304 if (r) { 305 dev_err(adev->dev, "failed to remove hardware queue from MES, doorbell=0x%x\n", 306 q->properties.doorbell_off); 307 dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n"); 308 kfd_hws_hang(dqm); 309 } 310 311 return r; 312 } 313 314 static int remove_all_kfd_queues_mes(struct device_queue_manager *dqm) 315 { 316 struct device_process_node *cur; 317 struct device *dev = dqm->dev->adev->dev; 318 struct qcm_process_device *qpd; 319 struct queue *q; 320 int retval = 0; 321 322 list_for_each_entry(cur, &dqm->queues, list) { 323 qpd = cur->qpd; 324 list_for_each_entry(q, &qpd->queues_list, list) { 325 if (q->properties.is_active) { 326 retval = remove_queue_mes(dqm, q, qpd); 327 if (retval) { 328 dev_err(dev, "%s: Failed to remove queue %d for dev %d", 329 __func__, 330 q->properties.queue_id, 331 dqm->dev->id); 332 return retval; 333 } 334 } 335 } 336 } 337 338 return retval; 339 } 340 341 static int add_all_kfd_queues_mes(struct device_queue_manager *dqm) 342 { 343 struct device_process_node *cur; 344 struct device *dev = dqm->dev->adev->dev; 345 struct qcm_process_device *qpd; 346 struct queue *q; 347 int retval = 0; 348 349 list_for_each_entry(cur, &dqm->queues, list) { 350 qpd = cur->qpd; 351 list_for_each_entry(q, &qpd->queues_list, list) { 352 if (!q->properties.is_active) 353 continue; 354 retval = add_queue_mes(dqm, q, qpd); 355 if (retval) { 356 dev_err(dev, "%s: Failed to add queue %d for dev %d", 357 __func__, 358 q->properties.queue_id, 359 dqm->dev->id); 360 return retval; 361 } 362 } 363 } 364 365 return retval; 366 } 367 368 static int suspend_all_queues_mes(struct device_queue_manager *dqm) 369 { 370 struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev; 371 int r = 0; 372 373 if (!down_read_trylock(&adev->reset_domain->sem)) 374 return -EIO; 375 376 r = amdgpu_mes_suspend(adev); 377 up_read(&adev->reset_domain->sem); 378 379 if (r) { 380 dev_err(adev->dev, "failed to suspend gangs from MES\n"); 381 dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n"); 382 kfd_hws_hang(dqm); 383 } 384 385 return r; 386 } 387 388 static int resume_all_queues_mes(struct device_queue_manager *dqm) 389 { 390 struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev; 391 int r = 0; 392 393 if (!down_read_trylock(&adev->reset_domain->sem)) 394 return -EIO; 395 396 r = amdgpu_mes_resume(adev); 397 up_read(&adev->reset_domain->sem); 398 399 if (r) { 400 dev_err(adev->dev, "failed to resume gangs from MES\n"); 401 dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n"); 402 kfd_hws_hang(dqm); 403 } 404 405 return r; 406 } 407 408 static void increment_queue_count(struct device_queue_manager *dqm, 409 struct qcm_process_device *qpd, 410 struct queue *q) 411 { 412 dqm->active_queue_count++; 413 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE || 414 q->properties.type == KFD_QUEUE_TYPE_DIQ) 415 dqm->active_cp_queue_count++; 416 417 if (q->properties.is_gws) { 418 dqm->gws_queue_count++; 419 qpd->mapped_gws_queue = true; 420 } 421 } 422 423 static void decrement_queue_count(struct device_queue_manager *dqm, 424 struct qcm_process_device *qpd, 425 struct queue *q) 426 { 427 dqm->active_queue_count--; 428 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE || 429 q->properties.type == KFD_QUEUE_TYPE_DIQ) 430 dqm->active_cp_queue_count--; 431 432 if (q->properties.is_gws) { 433 dqm->gws_queue_count--; 434 qpd->mapped_gws_queue = false; 435 } 436 } 437 438 /* 439 * Allocate a doorbell ID to this queue. 440 * If doorbell_id is passed in, make sure requested ID is valid then allocate it. 441 */ 442 static int allocate_doorbell(struct qcm_process_device *qpd, 443 struct queue *q, 444 uint32_t const *restore_id) 445 { 446 struct kfd_node *dev = qpd->dqm->dev; 447 448 if (!KFD_IS_SOC15(dev)) { 449 /* On pre-SOC15 chips we need to use the queue ID to 450 * preserve the user mode ABI. 451 */ 452 453 if (restore_id && *restore_id != q->properties.queue_id) 454 return -EINVAL; 455 456 q->doorbell_id = q->properties.queue_id; 457 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 458 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 459 /* For SDMA queues on SOC15 with 8-byte doorbell, use static 460 * doorbell assignments based on the engine and queue id. 461 * The doobell index distance between RLC (2*i) and (2*i+1) 462 * for a SDMA engine is 512. 463 */ 464 465 uint32_t *idx_offset = dev->kfd->shared_resources.sdma_doorbell_idx; 466 467 /* 468 * q->properties.sdma_engine_id corresponds to the virtual 469 * sdma engine number. However, for doorbell allocation, 470 * we need the physical sdma engine id in order to get the 471 * correct doorbell offset. 472 */ 473 uint32_t valid_id = idx_offset[qpd->dqm->dev->node_id * 474 get_num_all_sdma_engines(qpd->dqm) + 475 q->properties.sdma_engine_id] 476 + (q->properties.sdma_queue_id & 1) 477 * KFD_QUEUE_DOORBELL_MIRROR_OFFSET 478 + (q->properties.sdma_queue_id >> 1); 479 480 if (restore_id && *restore_id != valid_id) 481 return -EINVAL; 482 q->doorbell_id = valid_id; 483 } else { 484 /* For CP queues on SOC15 */ 485 if (restore_id) { 486 /* make sure that ID is free */ 487 if (__test_and_set_bit(*restore_id, qpd->doorbell_bitmap)) 488 return -EINVAL; 489 490 q->doorbell_id = *restore_id; 491 } else { 492 /* or reserve a free doorbell ID */ 493 unsigned int found; 494 495 found = find_first_zero_bit(qpd->doorbell_bitmap, 496 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS); 497 if (found >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) { 498 pr_debug("No doorbells available"); 499 return -EBUSY; 500 } 501 set_bit(found, qpd->doorbell_bitmap); 502 q->doorbell_id = found; 503 } 504 } 505 506 q->properties.doorbell_off = amdgpu_doorbell_index_on_bar(dev->adev, 507 qpd->proc_doorbells, 508 q->doorbell_id, 509 dev->kfd->device_info.doorbell_size); 510 return 0; 511 } 512 513 static void deallocate_doorbell(struct qcm_process_device *qpd, 514 struct queue *q) 515 { 516 unsigned int old; 517 struct kfd_node *dev = qpd->dqm->dev; 518 519 if (!KFD_IS_SOC15(dev) || 520 q->properties.type == KFD_QUEUE_TYPE_SDMA || 521 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 522 return; 523 524 old = test_and_clear_bit(q->doorbell_id, qpd->doorbell_bitmap); 525 WARN_ON(!old); 526 } 527 528 static void program_trap_handler_settings(struct device_queue_manager *dqm, 529 struct qcm_process_device *qpd) 530 { 531 uint32_t xcc_mask = dqm->dev->xcc_mask; 532 int xcc_id; 533 534 if (dqm->dev->kfd2kgd->program_trap_handler_settings) 535 for_each_inst(xcc_id, xcc_mask) 536 dqm->dev->kfd2kgd->program_trap_handler_settings( 537 dqm->dev->adev, qpd->vmid, qpd->tba_addr, 538 qpd->tma_addr, xcc_id); 539 } 540 541 static int allocate_vmid(struct device_queue_manager *dqm, 542 struct qcm_process_device *qpd, 543 struct queue *q) 544 { 545 struct device *dev = dqm->dev->adev->dev; 546 int allocated_vmid = -1, i; 547 548 for (i = dqm->dev->vm_info.first_vmid_kfd; 549 i <= dqm->dev->vm_info.last_vmid_kfd; i++) { 550 if (!dqm->vmid_pasid[i]) { 551 allocated_vmid = i; 552 break; 553 } 554 } 555 556 if (allocated_vmid < 0) { 557 dev_err(dev, "no more vmid to allocate\n"); 558 return -ENOSPC; 559 } 560 561 pr_debug("vmid allocated: %d\n", allocated_vmid); 562 563 dqm->vmid_pasid[allocated_vmid] = q->process->pasid; 564 565 set_pasid_vmid_mapping(dqm, q->process->pasid, allocated_vmid); 566 567 qpd->vmid = allocated_vmid; 568 q->properties.vmid = allocated_vmid; 569 570 program_sh_mem_settings(dqm, qpd); 571 572 if (KFD_IS_SOC15(dqm->dev) && dqm->dev->kfd->cwsr_enabled) 573 program_trap_handler_settings(dqm, qpd); 574 575 /* qpd->page_table_base is set earlier when register_process() 576 * is called, i.e. when the first queue is created. 577 */ 578 dqm->dev->kfd2kgd->set_vm_context_page_table_base(dqm->dev->adev, 579 qpd->vmid, 580 qpd->page_table_base); 581 /* invalidate the VM context after pasid and vmid mapping is set up */ 582 kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY); 583 584 if (dqm->dev->kfd2kgd->set_scratch_backing_va) 585 dqm->dev->kfd2kgd->set_scratch_backing_va(dqm->dev->adev, 586 qpd->sh_hidden_private_base, qpd->vmid); 587 588 return 0; 589 } 590 591 static int flush_texture_cache_nocpsch(struct kfd_node *kdev, 592 struct qcm_process_device *qpd) 593 { 594 const struct packet_manager_funcs *pmf = qpd->dqm->packet_mgr.pmf; 595 int ret; 596 597 if (!qpd->ib_kaddr) 598 return -ENOMEM; 599 600 ret = pmf->release_mem(qpd->ib_base, (uint32_t *)qpd->ib_kaddr); 601 if (ret) 602 return ret; 603 604 return amdgpu_amdkfd_submit_ib(kdev->adev, KGD_ENGINE_MEC1, qpd->vmid, 605 qpd->ib_base, (uint32_t *)qpd->ib_kaddr, 606 pmf->release_mem_size / sizeof(uint32_t)); 607 } 608 609 static void deallocate_vmid(struct device_queue_manager *dqm, 610 struct qcm_process_device *qpd, 611 struct queue *q) 612 { 613 struct device *dev = dqm->dev->adev->dev; 614 615 /* On GFX v7, CP doesn't flush TC at dequeue */ 616 if (q->device->adev->asic_type == CHIP_HAWAII) 617 if (flush_texture_cache_nocpsch(q->device, qpd)) 618 dev_err(dev, "Failed to flush TC\n"); 619 620 kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY); 621 622 /* Release the vmid mapping */ 623 set_pasid_vmid_mapping(dqm, 0, qpd->vmid); 624 dqm->vmid_pasid[qpd->vmid] = 0; 625 626 qpd->vmid = 0; 627 q->properties.vmid = 0; 628 } 629 630 static int create_queue_nocpsch(struct device_queue_manager *dqm, 631 struct queue *q, 632 struct qcm_process_device *qpd, 633 const struct kfd_criu_queue_priv_data *qd, 634 const void *restore_mqd, const void *restore_ctl_stack) 635 { 636 struct mqd_manager *mqd_mgr; 637 int retval; 638 639 dqm_lock(dqm); 640 641 if (dqm->total_queue_count >= max_num_of_queues_per_device) { 642 pr_warn("Can't create new usermode queue because %d queues were already created\n", 643 dqm->total_queue_count); 644 retval = -EPERM; 645 goto out_unlock; 646 } 647 648 if (list_empty(&qpd->queues_list)) { 649 retval = allocate_vmid(dqm, qpd, q); 650 if (retval) 651 goto out_unlock; 652 } 653 q->properties.vmid = qpd->vmid; 654 /* 655 * Eviction state logic: mark all queues as evicted, even ones 656 * not currently active. Restoring inactive queues later only 657 * updates the is_evicted flag but is a no-op otherwise. 658 */ 659 q->properties.is_evicted = !!qpd->evicted; 660 661 q->properties.tba_addr = qpd->tba_addr; 662 q->properties.tma_addr = qpd->tma_addr; 663 664 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 665 q->properties.type)]; 666 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) { 667 retval = allocate_hqd(dqm, q); 668 if (retval) 669 goto deallocate_vmid; 670 pr_debug("Loading mqd to hqd on pipe %d, queue %d\n", 671 q->pipe, q->queue); 672 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 673 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 674 retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL); 675 if (retval) 676 goto deallocate_vmid; 677 dqm->asic_ops.init_sdma_vm(dqm, q, qpd); 678 } 679 680 retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL); 681 if (retval) 682 goto out_deallocate_hqd; 683 684 /* Temporarily release dqm lock to avoid a circular lock dependency */ 685 dqm_unlock(dqm); 686 q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties); 687 dqm_lock(dqm); 688 689 if (!q->mqd_mem_obj) { 690 retval = -ENOMEM; 691 goto out_deallocate_doorbell; 692 } 693 694 if (qd) 695 mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr, 696 &q->properties, restore_mqd, restore_ctl_stack, 697 qd->ctl_stack_size); 698 else 699 mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, 700 &q->gart_mqd_addr, &q->properties); 701 702 if (q->properties.is_active) { 703 if (!dqm->sched_running) { 704 WARN_ONCE(1, "Load non-HWS mqd while stopped\n"); 705 goto add_queue_to_list; 706 } 707 708 if (WARN(q->process->mm != current->mm, 709 "should only run in user thread")) 710 retval = -EFAULT; 711 else 712 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe, 713 q->queue, &q->properties, current->mm); 714 if (retval) 715 goto out_free_mqd; 716 } 717 718 add_queue_to_list: 719 list_add(&q->list, &qpd->queues_list); 720 qpd->queue_count++; 721 if (q->properties.is_active) 722 increment_queue_count(dqm, qpd, q); 723 724 /* 725 * Unconditionally increment this counter, regardless of the queue's 726 * type or whether the queue is active. 727 */ 728 dqm->total_queue_count++; 729 pr_debug("Total of %d queues are accountable so far\n", 730 dqm->total_queue_count); 731 goto out_unlock; 732 733 out_free_mqd: 734 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 735 out_deallocate_doorbell: 736 deallocate_doorbell(qpd, q); 737 out_deallocate_hqd: 738 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) 739 deallocate_hqd(dqm, q); 740 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 741 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 742 deallocate_sdma_queue(dqm, q); 743 deallocate_vmid: 744 if (list_empty(&qpd->queues_list)) 745 deallocate_vmid(dqm, qpd, q); 746 out_unlock: 747 dqm_unlock(dqm); 748 return retval; 749 } 750 751 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q) 752 { 753 bool set; 754 int pipe, bit, i; 755 756 set = false; 757 758 for (pipe = dqm->next_pipe_to_allocate, i = 0; 759 i < get_pipes_per_mec(dqm); 760 pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) { 761 762 if (!is_pipe_enabled(dqm, 0, pipe)) 763 continue; 764 765 if (dqm->allocated_queues[pipe] != 0) { 766 bit = ffs(dqm->allocated_queues[pipe]) - 1; 767 dqm->allocated_queues[pipe] &= ~(1 << bit); 768 q->pipe = pipe; 769 q->queue = bit; 770 set = true; 771 break; 772 } 773 } 774 775 if (!set) 776 return -EBUSY; 777 778 pr_debug("hqd slot - pipe %d, queue %d\n", q->pipe, q->queue); 779 /* horizontal hqd allocation */ 780 dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm); 781 782 return 0; 783 } 784 785 static inline void deallocate_hqd(struct device_queue_manager *dqm, 786 struct queue *q) 787 { 788 dqm->allocated_queues[q->pipe] |= (1 << q->queue); 789 } 790 791 #define SQ_IND_CMD_CMD_KILL 0x00000003 792 #define SQ_IND_CMD_MODE_BROADCAST 0x00000001 793 794 static int dbgdev_wave_reset_wavefronts(struct kfd_node *dev, struct kfd_process *p) 795 { 796 int status = 0; 797 unsigned int vmid; 798 uint16_t queried_pasid; 799 union SQ_CMD_BITS reg_sq_cmd; 800 union GRBM_GFX_INDEX_BITS reg_gfx_index; 801 struct kfd_process_device *pdd; 802 int first_vmid_to_scan = dev->vm_info.first_vmid_kfd; 803 int last_vmid_to_scan = dev->vm_info.last_vmid_kfd; 804 uint32_t xcc_mask = dev->xcc_mask; 805 int xcc_id; 806 807 reg_sq_cmd.u32All = 0; 808 reg_gfx_index.u32All = 0; 809 810 pr_debug("Killing all process wavefronts\n"); 811 812 if (!dev->kfd2kgd->get_atc_vmid_pasid_mapping_info) { 813 dev_err(dev->adev->dev, "no vmid pasid mapping supported\n"); 814 return -EOPNOTSUPP; 815 } 816 817 /* Scan all registers in the range ATC_VMID8_PASID_MAPPING .. 818 * ATC_VMID15_PASID_MAPPING 819 * to check which VMID the current process is mapped to. 820 */ 821 822 for (vmid = first_vmid_to_scan; vmid <= last_vmid_to_scan; vmid++) { 823 status = dev->kfd2kgd->get_atc_vmid_pasid_mapping_info 824 (dev->adev, vmid, &queried_pasid); 825 826 if (status && queried_pasid == p->pasid) { 827 pr_debug("Killing wave fronts of vmid %d and pasid 0x%x\n", 828 vmid, p->pasid); 829 break; 830 } 831 } 832 833 if (vmid > last_vmid_to_scan) { 834 dev_err(dev->adev->dev, "Didn't find vmid for pasid 0x%x\n", p->pasid); 835 return -EFAULT; 836 } 837 838 /* taking the VMID for that process on the safe way using PDD */ 839 pdd = kfd_get_process_device_data(dev, p); 840 if (!pdd) 841 return -EFAULT; 842 843 reg_gfx_index.bits.sh_broadcast_writes = 1; 844 reg_gfx_index.bits.se_broadcast_writes = 1; 845 reg_gfx_index.bits.instance_broadcast_writes = 1; 846 reg_sq_cmd.bits.mode = SQ_IND_CMD_MODE_BROADCAST; 847 reg_sq_cmd.bits.cmd = SQ_IND_CMD_CMD_KILL; 848 reg_sq_cmd.bits.vm_id = vmid; 849 850 for_each_inst(xcc_id, xcc_mask) 851 dev->kfd2kgd->wave_control_execute( 852 dev->adev, reg_gfx_index.u32All, 853 reg_sq_cmd.u32All, xcc_id); 854 855 return 0; 856 } 857 858 /* Access to DQM has to be locked before calling destroy_queue_nocpsch_locked 859 * to avoid asynchronized access 860 */ 861 static int destroy_queue_nocpsch_locked(struct device_queue_manager *dqm, 862 struct qcm_process_device *qpd, 863 struct queue *q) 864 { 865 int retval; 866 struct mqd_manager *mqd_mgr; 867 868 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 869 q->properties.type)]; 870 871 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) 872 deallocate_hqd(dqm, q); 873 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA) 874 deallocate_sdma_queue(dqm, q); 875 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 876 deallocate_sdma_queue(dqm, q); 877 else { 878 pr_debug("q->properties.type %d is invalid\n", 879 q->properties.type); 880 return -EINVAL; 881 } 882 dqm->total_queue_count--; 883 884 deallocate_doorbell(qpd, q); 885 886 if (!dqm->sched_running) { 887 WARN_ONCE(1, "Destroy non-HWS queue while stopped\n"); 888 return 0; 889 } 890 891 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd, 892 KFD_PREEMPT_TYPE_WAVEFRONT_RESET, 893 KFD_UNMAP_LATENCY_MS, 894 q->pipe, q->queue); 895 if (retval == -ETIME) 896 qpd->reset_wavefronts = true; 897 898 list_del(&q->list); 899 if (list_empty(&qpd->queues_list)) { 900 if (qpd->reset_wavefronts) { 901 pr_warn("Resetting wave fronts (nocpsch) on dev %p\n", 902 dqm->dev); 903 /* dbgdev_wave_reset_wavefronts has to be called before 904 * deallocate_vmid(), i.e. when vmid is still in use. 905 */ 906 dbgdev_wave_reset_wavefronts(dqm->dev, 907 qpd->pqm->process); 908 qpd->reset_wavefronts = false; 909 } 910 911 deallocate_vmid(dqm, qpd, q); 912 } 913 qpd->queue_count--; 914 if (q->properties.is_active) 915 decrement_queue_count(dqm, qpd, q); 916 917 return retval; 918 } 919 920 static int destroy_queue_nocpsch(struct device_queue_manager *dqm, 921 struct qcm_process_device *qpd, 922 struct queue *q) 923 { 924 int retval; 925 uint64_t sdma_val = 0; 926 struct device *dev = dqm->dev->adev->dev; 927 struct kfd_process_device *pdd = qpd_to_pdd(qpd); 928 struct mqd_manager *mqd_mgr = 929 dqm->mqd_mgrs[get_mqd_type_from_queue_type(q->properties.type)]; 930 931 /* Get the SDMA queue stats */ 932 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) || 933 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { 934 retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr, 935 &sdma_val); 936 if (retval) 937 dev_err(dev, "Failed to read SDMA queue counter for queue: %d\n", 938 q->properties.queue_id); 939 } 940 941 dqm_lock(dqm); 942 retval = destroy_queue_nocpsch_locked(dqm, qpd, q); 943 if (!retval) 944 pdd->sdma_past_activity_counter += sdma_val; 945 dqm_unlock(dqm); 946 947 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 948 949 return retval; 950 } 951 952 static int update_queue(struct device_queue_manager *dqm, struct queue *q, 953 struct mqd_update_info *minfo) 954 { 955 int retval = 0; 956 struct device *dev = dqm->dev->adev->dev; 957 struct mqd_manager *mqd_mgr; 958 struct kfd_process_device *pdd; 959 bool prev_active = false; 960 961 dqm_lock(dqm); 962 pdd = kfd_get_process_device_data(q->device, q->process); 963 if (!pdd) { 964 retval = -ENODEV; 965 goto out_unlock; 966 } 967 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 968 q->properties.type)]; 969 970 /* Save previous activity state for counters */ 971 prev_active = q->properties.is_active; 972 973 /* Make sure the queue is unmapped before updating the MQD */ 974 if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) { 975 if (!dqm->dev->kfd->shared_resources.enable_mes) 976 retval = unmap_queues_cpsch(dqm, 977 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD, false); 978 else if (prev_active) 979 retval = remove_queue_mes(dqm, q, &pdd->qpd); 980 981 /* queue is reset so inaccessable */ 982 if (pdd->has_reset_queue) { 983 retval = -EACCES; 984 goto out_unlock; 985 } 986 987 if (retval) { 988 dev_err(dev, "unmap queue failed\n"); 989 goto out_unlock; 990 } 991 } else if (prev_active && 992 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE || 993 q->properties.type == KFD_QUEUE_TYPE_SDMA || 994 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { 995 996 if (!dqm->sched_running) { 997 WARN_ONCE(1, "Update non-HWS queue while stopped\n"); 998 goto out_unlock; 999 } 1000 1001 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd, 1002 (dqm->dev->kfd->cwsr_enabled ? 1003 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE : 1004 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN), 1005 KFD_UNMAP_LATENCY_MS, q->pipe, q->queue); 1006 if (retval) { 1007 dev_err(dev, "destroy mqd failed\n"); 1008 goto out_unlock; 1009 } 1010 } 1011 1012 mqd_mgr->update_mqd(mqd_mgr, q->mqd, &q->properties, minfo); 1013 1014 /* 1015 * check active state vs. the previous state and modify 1016 * counter accordingly. map_queues_cpsch uses the 1017 * dqm->active_queue_count to determine whether a new runlist must be 1018 * uploaded. 1019 */ 1020 if (q->properties.is_active && !prev_active) { 1021 increment_queue_count(dqm, &pdd->qpd, q); 1022 } else if (!q->properties.is_active && prev_active) { 1023 decrement_queue_count(dqm, &pdd->qpd, q); 1024 } else if (q->gws && !q->properties.is_gws) { 1025 if (q->properties.is_active) { 1026 dqm->gws_queue_count++; 1027 pdd->qpd.mapped_gws_queue = true; 1028 } 1029 q->properties.is_gws = true; 1030 } else if (!q->gws && q->properties.is_gws) { 1031 if (q->properties.is_active) { 1032 dqm->gws_queue_count--; 1033 pdd->qpd.mapped_gws_queue = false; 1034 } 1035 q->properties.is_gws = false; 1036 } 1037 1038 if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) { 1039 if (!dqm->dev->kfd->shared_resources.enable_mes) 1040 retval = map_queues_cpsch(dqm); 1041 else if (q->properties.is_active) 1042 retval = add_queue_mes(dqm, q, &pdd->qpd); 1043 } else if (q->properties.is_active && 1044 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE || 1045 q->properties.type == KFD_QUEUE_TYPE_SDMA || 1046 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { 1047 if (WARN(q->process->mm != current->mm, 1048 "should only run in user thread")) 1049 retval = -EFAULT; 1050 else 1051 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, 1052 q->pipe, q->queue, 1053 &q->properties, current->mm); 1054 } 1055 1056 out_unlock: 1057 dqm_unlock(dqm); 1058 return retval; 1059 } 1060 1061 /* suspend_single_queue does not lock the dqm like the 1062 * evict_process_queues_cpsch or evict_process_queues_nocpsch. You should 1063 * lock the dqm before calling, and unlock after calling. 1064 * 1065 * The reason we don't lock the dqm is because this function may be 1066 * called on multiple queues in a loop, so rather than locking/unlocking 1067 * multiple times, we will just keep the dqm locked for all of the calls. 1068 */ 1069 static int suspend_single_queue(struct device_queue_manager *dqm, 1070 struct kfd_process_device *pdd, 1071 struct queue *q) 1072 { 1073 bool is_new; 1074 1075 if (q->properties.is_suspended) 1076 return 0; 1077 1078 pr_debug("Suspending PASID %u queue [%i]\n", 1079 pdd->process->pasid, 1080 q->properties.queue_id); 1081 1082 is_new = q->properties.exception_status & KFD_EC_MASK(EC_QUEUE_NEW); 1083 1084 if (is_new || q->properties.is_being_destroyed) { 1085 pr_debug("Suspend: skip %s queue id %i\n", 1086 is_new ? "new" : "destroyed", 1087 q->properties.queue_id); 1088 return -EBUSY; 1089 } 1090 1091 q->properties.is_suspended = true; 1092 if (q->properties.is_active) { 1093 if (dqm->dev->kfd->shared_resources.enable_mes) { 1094 int r = remove_queue_mes(dqm, q, &pdd->qpd); 1095 1096 if (r) 1097 return r; 1098 } 1099 1100 decrement_queue_count(dqm, &pdd->qpd, q); 1101 q->properties.is_active = false; 1102 } 1103 1104 return 0; 1105 } 1106 1107 /* resume_single_queue does not lock the dqm like the functions 1108 * restore_process_queues_cpsch or restore_process_queues_nocpsch. You should 1109 * lock the dqm before calling, and unlock after calling. 1110 * 1111 * The reason we don't lock the dqm is because this function may be 1112 * called on multiple queues in a loop, so rather than locking/unlocking 1113 * multiple times, we will just keep the dqm locked for all of the calls. 1114 */ 1115 static int resume_single_queue(struct device_queue_manager *dqm, 1116 struct qcm_process_device *qpd, 1117 struct queue *q) 1118 { 1119 struct kfd_process_device *pdd; 1120 1121 if (!q->properties.is_suspended) 1122 return 0; 1123 1124 pdd = qpd_to_pdd(qpd); 1125 1126 pr_debug("Restoring from suspend PASID %u queue [%i]\n", 1127 pdd->process->pasid, 1128 q->properties.queue_id); 1129 1130 q->properties.is_suspended = false; 1131 1132 if (QUEUE_IS_ACTIVE(q->properties)) { 1133 if (dqm->dev->kfd->shared_resources.enable_mes) { 1134 int r = add_queue_mes(dqm, q, &pdd->qpd); 1135 1136 if (r) 1137 return r; 1138 } 1139 1140 q->properties.is_active = true; 1141 increment_queue_count(dqm, qpd, q); 1142 } 1143 1144 return 0; 1145 } 1146 1147 static int evict_process_queues_nocpsch(struct device_queue_manager *dqm, 1148 struct qcm_process_device *qpd) 1149 { 1150 struct queue *q; 1151 struct mqd_manager *mqd_mgr; 1152 struct kfd_process_device *pdd; 1153 int retval, ret = 0; 1154 1155 dqm_lock(dqm); 1156 if (qpd->evicted++ > 0) /* already evicted, do nothing */ 1157 goto out; 1158 1159 pdd = qpd_to_pdd(qpd); 1160 pr_debug_ratelimited("Evicting PASID 0x%x queues\n", 1161 pdd->process->pasid); 1162 1163 pdd->last_evict_timestamp = get_jiffies_64(); 1164 /* Mark all queues as evicted. Deactivate all active queues on 1165 * the qpd. 1166 */ 1167 list_for_each_entry(q, &qpd->queues_list, list) { 1168 q->properties.is_evicted = true; 1169 if (!q->properties.is_active) 1170 continue; 1171 1172 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 1173 q->properties.type)]; 1174 q->properties.is_active = false; 1175 decrement_queue_count(dqm, qpd, q); 1176 1177 if (WARN_ONCE(!dqm->sched_running, "Evict when stopped\n")) 1178 continue; 1179 1180 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd, 1181 (dqm->dev->kfd->cwsr_enabled ? 1182 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE : 1183 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN), 1184 KFD_UNMAP_LATENCY_MS, q->pipe, q->queue); 1185 if (retval && !ret) 1186 /* Return the first error, but keep going to 1187 * maintain a consistent eviction state 1188 */ 1189 ret = retval; 1190 } 1191 1192 out: 1193 dqm_unlock(dqm); 1194 return ret; 1195 } 1196 1197 static int evict_process_queues_cpsch(struct device_queue_manager *dqm, 1198 struct qcm_process_device *qpd) 1199 { 1200 struct queue *q; 1201 struct device *dev = dqm->dev->adev->dev; 1202 struct kfd_process_device *pdd; 1203 int retval = 0; 1204 1205 dqm_lock(dqm); 1206 if (qpd->evicted++ > 0) /* already evicted, do nothing */ 1207 goto out; 1208 1209 pdd = qpd_to_pdd(qpd); 1210 1211 /* The debugger creates processes that temporarily have not acquired 1212 * all VMs for all devices and has no VMs itself. 1213 * Skip queue eviction on process eviction. 1214 */ 1215 if (!pdd->drm_priv) 1216 goto out; 1217 1218 pr_debug_ratelimited("Evicting PASID 0x%x queues\n", 1219 pdd->process->pasid); 1220 1221 /* Mark all queues as evicted. Deactivate all active queues on 1222 * the qpd. 1223 */ 1224 list_for_each_entry(q, &qpd->queues_list, list) { 1225 q->properties.is_evicted = true; 1226 if (!q->properties.is_active) 1227 continue; 1228 1229 q->properties.is_active = false; 1230 decrement_queue_count(dqm, qpd, q); 1231 1232 if (dqm->dev->kfd->shared_resources.enable_mes) { 1233 retval = remove_queue_mes(dqm, q, qpd); 1234 if (retval) { 1235 dev_err(dev, "Failed to evict queue %d\n", 1236 q->properties.queue_id); 1237 goto out; 1238 } 1239 } 1240 } 1241 pdd->last_evict_timestamp = get_jiffies_64(); 1242 if (!dqm->dev->kfd->shared_resources.enable_mes) 1243 retval = execute_queues_cpsch(dqm, 1244 qpd->is_debug ? 1245 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES : 1246 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, 1247 USE_DEFAULT_GRACE_PERIOD); 1248 1249 out: 1250 dqm_unlock(dqm); 1251 return retval; 1252 } 1253 1254 static int restore_process_queues_nocpsch(struct device_queue_manager *dqm, 1255 struct qcm_process_device *qpd) 1256 { 1257 struct mm_struct *mm = NULL; 1258 struct queue *q; 1259 struct mqd_manager *mqd_mgr; 1260 struct kfd_process_device *pdd; 1261 uint64_t pd_base; 1262 uint64_t eviction_duration; 1263 int retval, ret = 0; 1264 1265 pdd = qpd_to_pdd(qpd); 1266 /* Retrieve PD base */ 1267 pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv); 1268 1269 dqm_lock(dqm); 1270 if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */ 1271 goto out; 1272 if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */ 1273 qpd->evicted--; 1274 goto out; 1275 } 1276 1277 pr_debug_ratelimited("Restoring PASID 0x%x queues\n", 1278 pdd->process->pasid); 1279 1280 /* Update PD Base in QPD */ 1281 qpd->page_table_base = pd_base; 1282 pr_debug("Updated PD address to 0x%llx\n", pd_base); 1283 1284 if (!list_empty(&qpd->queues_list)) { 1285 dqm->dev->kfd2kgd->set_vm_context_page_table_base( 1286 dqm->dev->adev, 1287 qpd->vmid, 1288 qpd->page_table_base); 1289 kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY); 1290 } 1291 1292 /* Take a safe reference to the mm_struct, which may otherwise 1293 * disappear even while the kfd_process is still referenced. 1294 */ 1295 mm = get_task_mm(pdd->process->lead_thread); 1296 if (!mm) { 1297 ret = -EFAULT; 1298 goto out; 1299 } 1300 1301 /* Remove the eviction flags. Activate queues that are not 1302 * inactive for other reasons. 1303 */ 1304 list_for_each_entry(q, &qpd->queues_list, list) { 1305 q->properties.is_evicted = false; 1306 if (!QUEUE_IS_ACTIVE(q->properties)) 1307 continue; 1308 1309 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 1310 q->properties.type)]; 1311 q->properties.is_active = true; 1312 increment_queue_count(dqm, qpd, q); 1313 1314 if (WARN_ONCE(!dqm->sched_running, "Restore when stopped\n")) 1315 continue; 1316 1317 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe, 1318 q->queue, &q->properties, mm); 1319 if (retval && !ret) 1320 /* Return the first error, but keep going to 1321 * maintain a consistent eviction state 1322 */ 1323 ret = retval; 1324 } 1325 qpd->evicted = 0; 1326 eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp; 1327 atomic64_add(eviction_duration, &pdd->evict_duration_counter); 1328 out: 1329 if (mm) 1330 mmput(mm); 1331 dqm_unlock(dqm); 1332 return ret; 1333 } 1334 1335 static int restore_process_queues_cpsch(struct device_queue_manager *dqm, 1336 struct qcm_process_device *qpd) 1337 { 1338 struct queue *q; 1339 struct device *dev = dqm->dev->adev->dev; 1340 struct kfd_process_device *pdd; 1341 uint64_t eviction_duration; 1342 int retval = 0; 1343 1344 pdd = qpd_to_pdd(qpd); 1345 1346 dqm_lock(dqm); 1347 if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */ 1348 goto out; 1349 if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */ 1350 qpd->evicted--; 1351 goto out; 1352 } 1353 1354 /* The debugger creates processes that temporarily have not acquired 1355 * all VMs for all devices and has no VMs itself. 1356 * Skip queue restore on process restore. 1357 */ 1358 if (!pdd->drm_priv) 1359 goto vm_not_acquired; 1360 1361 pr_debug_ratelimited("Restoring PASID 0x%x queues\n", 1362 pdd->process->pasid); 1363 1364 /* Update PD Base in QPD */ 1365 qpd->page_table_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv); 1366 pr_debug("Updated PD address to 0x%llx\n", qpd->page_table_base); 1367 1368 /* activate all active queues on the qpd */ 1369 list_for_each_entry(q, &qpd->queues_list, list) { 1370 q->properties.is_evicted = false; 1371 if (!QUEUE_IS_ACTIVE(q->properties)) 1372 continue; 1373 1374 q->properties.is_active = true; 1375 increment_queue_count(dqm, &pdd->qpd, q); 1376 1377 if (dqm->dev->kfd->shared_resources.enable_mes) { 1378 retval = add_queue_mes(dqm, q, qpd); 1379 if (retval) { 1380 dev_err(dev, "Failed to restore queue %d\n", 1381 q->properties.queue_id); 1382 goto out; 1383 } 1384 } 1385 } 1386 if (!dqm->dev->kfd->shared_resources.enable_mes) 1387 retval = execute_queues_cpsch(dqm, 1388 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD); 1389 eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp; 1390 atomic64_add(eviction_duration, &pdd->evict_duration_counter); 1391 vm_not_acquired: 1392 qpd->evicted = 0; 1393 out: 1394 dqm_unlock(dqm); 1395 return retval; 1396 } 1397 1398 static int register_process(struct device_queue_manager *dqm, 1399 struct qcm_process_device *qpd) 1400 { 1401 struct device_process_node *n; 1402 struct kfd_process_device *pdd; 1403 uint64_t pd_base; 1404 int retval; 1405 1406 n = kzalloc(sizeof(*n), GFP_KERNEL); 1407 if (!n) 1408 return -ENOMEM; 1409 1410 n->qpd = qpd; 1411 1412 pdd = qpd_to_pdd(qpd); 1413 /* Retrieve PD base */ 1414 pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv); 1415 1416 dqm_lock(dqm); 1417 list_add(&n->list, &dqm->queues); 1418 1419 /* Update PD Base in QPD */ 1420 qpd->page_table_base = pd_base; 1421 pr_debug("Updated PD address to 0x%llx\n", pd_base); 1422 1423 retval = dqm->asic_ops.update_qpd(dqm, qpd); 1424 1425 dqm->processes_count++; 1426 1427 dqm_unlock(dqm); 1428 1429 /* Outside the DQM lock because under the DQM lock we can't do 1430 * reclaim or take other locks that others hold while reclaiming. 1431 */ 1432 kfd_inc_compute_active(dqm->dev); 1433 1434 return retval; 1435 } 1436 1437 static int unregister_process(struct device_queue_manager *dqm, 1438 struct qcm_process_device *qpd) 1439 { 1440 int retval; 1441 struct device_process_node *cur, *next; 1442 1443 pr_debug("qpd->queues_list is %s\n", 1444 list_empty(&qpd->queues_list) ? "empty" : "not empty"); 1445 1446 retval = 0; 1447 dqm_lock(dqm); 1448 1449 list_for_each_entry_safe(cur, next, &dqm->queues, list) { 1450 if (qpd == cur->qpd) { 1451 list_del(&cur->list); 1452 kfree(cur); 1453 dqm->processes_count--; 1454 goto out; 1455 } 1456 } 1457 /* qpd not found in dqm list */ 1458 retval = 1; 1459 out: 1460 dqm_unlock(dqm); 1461 1462 /* Outside the DQM lock because under the DQM lock we can't do 1463 * reclaim or take other locks that others hold while reclaiming. 1464 */ 1465 if (!retval) 1466 kfd_dec_compute_active(dqm->dev); 1467 1468 return retval; 1469 } 1470 1471 static int 1472 set_pasid_vmid_mapping(struct device_queue_manager *dqm, u32 pasid, 1473 unsigned int vmid) 1474 { 1475 uint32_t xcc_mask = dqm->dev->xcc_mask; 1476 int xcc_id, ret; 1477 1478 for_each_inst(xcc_id, xcc_mask) { 1479 ret = dqm->dev->kfd2kgd->set_pasid_vmid_mapping( 1480 dqm->dev->adev, pasid, vmid, xcc_id); 1481 if (ret) 1482 break; 1483 } 1484 1485 return ret; 1486 } 1487 1488 static void init_interrupts(struct device_queue_manager *dqm) 1489 { 1490 uint32_t xcc_mask = dqm->dev->xcc_mask; 1491 unsigned int i, xcc_id; 1492 1493 for_each_inst(xcc_id, xcc_mask) { 1494 for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++) { 1495 if (is_pipe_enabled(dqm, 0, i)) { 1496 dqm->dev->kfd2kgd->init_interrupts( 1497 dqm->dev->adev, i, xcc_id); 1498 } 1499 } 1500 } 1501 } 1502 1503 static int initialize_nocpsch(struct device_queue_manager *dqm) 1504 { 1505 int pipe, queue; 1506 1507 pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm)); 1508 1509 dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm), 1510 sizeof(unsigned int), GFP_KERNEL); 1511 if (!dqm->allocated_queues) 1512 return -ENOMEM; 1513 1514 mutex_init(&dqm->lock_hidden); 1515 INIT_LIST_HEAD(&dqm->queues); 1516 dqm->active_queue_count = dqm->next_pipe_to_allocate = 0; 1517 dqm->active_cp_queue_count = 0; 1518 dqm->gws_queue_count = 0; 1519 1520 for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) { 1521 int pipe_offset = pipe * get_queues_per_pipe(dqm); 1522 1523 for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) 1524 if (test_bit(pipe_offset + queue, 1525 dqm->dev->kfd->shared_resources.cp_queue_bitmap)) 1526 dqm->allocated_queues[pipe] |= 1 << queue; 1527 } 1528 1529 memset(dqm->vmid_pasid, 0, sizeof(dqm->vmid_pasid)); 1530 1531 init_sdma_bitmaps(dqm); 1532 1533 return 0; 1534 } 1535 1536 static void uninitialize(struct device_queue_manager *dqm) 1537 { 1538 int i; 1539 1540 WARN_ON(dqm->active_queue_count > 0 || dqm->processes_count > 0); 1541 1542 kfree(dqm->allocated_queues); 1543 for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++) 1544 kfree(dqm->mqd_mgrs[i]); 1545 mutex_destroy(&dqm->lock_hidden); 1546 } 1547 1548 static int start_nocpsch(struct device_queue_manager *dqm) 1549 { 1550 int r = 0; 1551 1552 pr_info("SW scheduler is used"); 1553 init_interrupts(dqm); 1554 1555 if (dqm->dev->adev->asic_type == CHIP_HAWAII) 1556 r = pm_init(&dqm->packet_mgr, dqm); 1557 if (!r) 1558 dqm->sched_running = true; 1559 1560 return r; 1561 } 1562 1563 static int stop_nocpsch(struct device_queue_manager *dqm) 1564 { 1565 dqm_lock(dqm); 1566 if (!dqm->sched_running) { 1567 dqm_unlock(dqm); 1568 return 0; 1569 } 1570 1571 if (dqm->dev->adev->asic_type == CHIP_HAWAII) 1572 pm_uninit(&dqm->packet_mgr); 1573 dqm->sched_running = false; 1574 dqm_unlock(dqm); 1575 1576 return 0; 1577 } 1578 1579 static int allocate_sdma_queue(struct device_queue_manager *dqm, 1580 struct queue *q, const uint32_t *restore_sdma_id) 1581 { 1582 struct device *dev = dqm->dev->adev->dev; 1583 int bit; 1584 1585 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) { 1586 if (bitmap_empty(dqm->sdma_bitmap, KFD_MAX_SDMA_QUEUES)) { 1587 dev_err(dev, "No more SDMA queue to allocate\n"); 1588 return -ENOMEM; 1589 } 1590 1591 if (restore_sdma_id) { 1592 /* Re-use existing sdma_id */ 1593 if (!test_bit(*restore_sdma_id, dqm->sdma_bitmap)) { 1594 dev_err(dev, "SDMA queue already in use\n"); 1595 return -EBUSY; 1596 } 1597 clear_bit(*restore_sdma_id, dqm->sdma_bitmap); 1598 q->sdma_id = *restore_sdma_id; 1599 } else { 1600 /* Find first available sdma_id */ 1601 bit = find_first_bit(dqm->sdma_bitmap, 1602 get_num_sdma_queues(dqm)); 1603 clear_bit(bit, dqm->sdma_bitmap); 1604 q->sdma_id = bit; 1605 } 1606 1607 q->properties.sdma_engine_id = 1608 q->sdma_id % kfd_get_num_sdma_engines(dqm->dev); 1609 q->properties.sdma_queue_id = q->sdma_id / 1610 kfd_get_num_sdma_engines(dqm->dev); 1611 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 1612 if (bitmap_empty(dqm->xgmi_sdma_bitmap, KFD_MAX_SDMA_QUEUES)) { 1613 dev_err(dev, "No more XGMI SDMA queue to allocate\n"); 1614 return -ENOMEM; 1615 } 1616 if (restore_sdma_id) { 1617 /* Re-use existing sdma_id */ 1618 if (!test_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap)) { 1619 dev_err(dev, "SDMA queue already in use\n"); 1620 return -EBUSY; 1621 } 1622 clear_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap); 1623 q->sdma_id = *restore_sdma_id; 1624 } else { 1625 bit = find_first_bit(dqm->xgmi_sdma_bitmap, 1626 get_num_xgmi_sdma_queues(dqm)); 1627 clear_bit(bit, dqm->xgmi_sdma_bitmap); 1628 q->sdma_id = bit; 1629 } 1630 /* sdma_engine_id is sdma id including 1631 * both PCIe-optimized SDMAs and XGMI- 1632 * optimized SDMAs. The calculation below 1633 * assumes the first N engines are always 1634 * PCIe-optimized ones 1635 */ 1636 q->properties.sdma_engine_id = 1637 kfd_get_num_sdma_engines(dqm->dev) + 1638 q->sdma_id % kfd_get_num_xgmi_sdma_engines(dqm->dev); 1639 q->properties.sdma_queue_id = q->sdma_id / 1640 kfd_get_num_xgmi_sdma_engines(dqm->dev); 1641 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_BY_ENG_ID) { 1642 int i, num_queues, num_engines, eng_offset = 0, start_engine; 1643 bool free_bit_found = false, is_xgmi = false; 1644 1645 if (q->properties.sdma_engine_id < kfd_get_num_sdma_engines(dqm->dev)) { 1646 num_queues = get_num_sdma_queues(dqm); 1647 num_engines = kfd_get_num_sdma_engines(dqm->dev); 1648 q->properties.type = KFD_QUEUE_TYPE_SDMA; 1649 } else { 1650 num_queues = get_num_xgmi_sdma_queues(dqm); 1651 num_engines = kfd_get_num_xgmi_sdma_engines(dqm->dev); 1652 eng_offset = kfd_get_num_sdma_engines(dqm->dev); 1653 q->properties.type = KFD_QUEUE_TYPE_SDMA_XGMI; 1654 is_xgmi = true; 1655 } 1656 1657 /* Scan available bit based on target engine ID. */ 1658 start_engine = q->properties.sdma_engine_id - eng_offset; 1659 for (i = start_engine; i < num_queues; i += num_engines) { 1660 1661 if (!test_bit(i, is_xgmi ? dqm->xgmi_sdma_bitmap : dqm->sdma_bitmap)) 1662 continue; 1663 1664 clear_bit(i, is_xgmi ? dqm->xgmi_sdma_bitmap : dqm->sdma_bitmap); 1665 q->sdma_id = i; 1666 q->properties.sdma_queue_id = q->sdma_id / num_engines; 1667 free_bit_found = true; 1668 break; 1669 } 1670 1671 if (!free_bit_found) { 1672 dev_err(dev, "No more SDMA queue to allocate for target ID %i\n", 1673 q->properties.sdma_engine_id); 1674 return -ENOMEM; 1675 } 1676 } 1677 1678 pr_debug("SDMA engine id: %d\n", q->properties.sdma_engine_id); 1679 pr_debug("SDMA queue id: %d\n", q->properties.sdma_queue_id); 1680 1681 return 0; 1682 } 1683 1684 static void deallocate_sdma_queue(struct device_queue_manager *dqm, 1685 struct queue *q) 1686 { 1687 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) { 1688 if (q->sdma_id >= get_num_sdma_queues(dqm)) 1689 return; 1690 set_bit(q->sdma_id, dqm->sdma_bitmap); 1691 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 1692 if (q->sdma_id >= get_num_xgmi_sdma_queues(dqm)) 1693 return; 1694 set_bit(q->sdma_id, dqm->xgmi_sdma_bitmap); 1695 } 1696 } 1697 1698 /* 1699 * Device Queue Manager implementation for cp scheduler 1700 */ 1701 1702 static int set_sched_resources(struct device_queue_manager *dqm) 1703 { 1704 int i, mec; 1705 struct scheduling_resources res; 1706 struct device *dev = dqm->dev->adev->dev; 1707 1708 res.vmid_mask = dqm->dev->compute_vmid_bitmap; 1709 1710 res.queue_mask = 0; 1711 for (i = 0; i < AMDGPU_MAX_QUEUES; ++i) { 1712 mec = (i / dqm->dev->kfd->shared_resources.num_queue_per_pipe) 1713 / dqm->dev->kfd->shared_resources.num_pipe_per_mec; 1714 1715 if (!test_bit(i, dqm->dev->kfd->shared_resources.cp_queue_bitmap)) 1716 continue; 1717 1718 /* only acquire queues from the first MEC */ 1719 if (mec > 0) 1720 continue; 1721 1722 /* This situation may be hit in the future if a new HW 1723 * generation exposes more than 64 queues. If so, the 1724 * definition of res.queue_mask needs updating 1725 */ 1726 if (WARN_ON(i >= (sizeof(res.queue_mask)*8))) { 1727 dev_err(dev, "Invalid queue enabled by amdgpu: %d\n", i); 1728 break; 1729 } 1730 1731 res.queue_mask |= 1ull 1732 << amdgpu_queue_mask_bit_to_set_resource_bit( 1733 dqm->dev->adev, i); 1734 } 1735 res.gws_mask = ~0ull; 1736 res.oac_mask = res.gds_heap_base = res.gds_heap_size = 0; 1737 1738 pr_debug("Scheduling resources:\n" 1739 "vmid mask: 0x%8X\n" 1740 "queue mask: 0x%8llX\n", 1741 res.vmid_mask, res.queue_mask); 1742 1743 return pm_send_set_resources(&dqm->packet_mgr, &res); 1744 } 1745 1746 static int initialize_cpsch(struct device_queue_manager *dqm) 1747 { 1748 pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm)); 1749 1750 mutex_init(&dqm->lock_hidden); 1751 INIT_LIST_HEAD(&dqm->queues); 1752 dqm->active_queue_count = dqm->processes_count = 0; 1753 dqm->active_cp_queue_count = 0; 1754 dqm->gws_queue_count = 0; 1755 dqm->active_runlist = false; 1756 INIT_WORK(&dqm->hw_exception_work, kfd_process_hw_exception); 1757 dqm->trap_debug_vmid = 0; 1758 1759 init_sdma_bitmaps(dqm); 1760 1761 if (dqm->dev->kfd2kgd->get_iq_wait_times) 1762 dqm->dev->kfd2kgd->get_iq_wait_times(dqm->dev->adev, 1763 &dqm->wait_times, 1764 ffs(dqm->dev->xcc_mask) - 1); 1765 return 0; 1766 } 1767 1768 /* halt_cpsch: 1769 * Unmap queues so the schedule doesn't continue remaining jobs in the queue. 1770 * Then set dqm->sched_halt so queues don't map to runlist until unhalt_cpsch 1771 * is called. 1772 */ 1773 static int halt_cpsch(struct device_queue_manager *dqm) 1774 { 1775 int ret = 0; 1776 1777 dqm_lock(dqm); 1778 if (!dqm->sched_running) { 1779 dqm_unlock(dqm); 1780 return 0; 1781 } 1782 1783 WARN_ONCE(dqm->sched_halt, "Scheduling is already on halt\n"); 1784 1785 if (!dqm->is_hws_hang) { 1786 if (!dqm->dev->kfd->shared_resources.enable_mes) 1787 ret = unmap_queues_cpsch(dqm, 1788 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, 1789 USE_DEFAULT_GRACE_PERIOD, false); 1790 else 1791 ret = remove_all_kfd_queues_mes(dqm); 1792 } 1793 dqm->sched_halt = true; 1794 dqm_unlock(dqm); 1795 1796 return ret; 1797 } 1798 1799 /* unhalt_cpsch 1800 * Unset dqm->sched_halt and map queues back to runlist 1801 */ 1802 static int unhalt_cpsch(struct device_queue_manager *dqm) 1803 { 1804 int ret = 0; 1805 1806 dqm_lock(dqm); 1807 if (!dqm->sched_running || !dqm->sched_halt) { 1808 WARN_ONCE(!dqm->sched_halt, "Scheduling is not on halt.\n"); 1809 dqm_unlock(dqm); 1810 return 0; 1811 } 1812 dqm->sched_halt = false; 1813 if (!dqm->dev->kfd->shared_resources.enable_mes) 1814 ret = execute_queues_cpsch(dqm, 1815 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 1816 0, USE_DEFAULT_GRACE_PERIOD); 1817 else 1818 ret = add_all_kfd_queues_mes(dqm); 1819 1820 dqm_unlock(dqm); 1821 1822 return ret; 1823 } 1824 1825 static int start_cpsch(struct device_queue_manager *dqm) 1826 { 1827 struct device *dev = dqm->dev->adev->dev; 1828 int retval, num_hw_queue_slots; 1829 1830 retval = 0; 1831 1832 dqm_lock(dqm); 1833 1834 if (!dqm->dev->kfd->shared_resources.enable_mes) { 1835 retval = pm_init(&dqm->packet_mgr, dqm); 1836 if (retval) 1837 goto fail_packet_manager_init; 1838 1839 retval = set_sched_resources(dqm); 1840 if (retval) 1841 goto fail_set_sched_resources; 1842 } 1843 pr_debug("Allocating fence memory\n"); 1844 1845 /* allocate fence memory on the gart */ 1846 retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr), 1847 &dqm->fence_mem); 1848 1849 if (retval) 1850 goto fail_allocate_vidmem; 1851 1852 dqm->fence_addr = (uint64_t *)dqm->fence_mem->cpu_ptr; 1853 dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr; 1854 1855 init_interrupts(dqm); 1856 1857 /* clear hang status when driver try to start the hw scheduler */ 1858 dqm->sched_running = true; 1859 1860 if (!dqm->dev->kfd->shared_resources.enable_mes) 1861 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD); 1862 1863 /* Set CWSR grace period to 1x1000 cycle for GFX9.4.3 APU */ 1864 if (amdgpu_emu_mode == 0 && dqm->dev->adev->gmc.is_app_apu && 1865 (KFD_GC_VERSION(dqm->dev) == IP_VERSION(9, 4, 3))) { 1866 uint32_t reg_offset = 0; 1867 uint32_t grace_period = 1; 1868 1869 retval = pm_update_grace_period(&dqm->packet_mgr, 1870 grace_period); 1871 if (retval) 1872 dev_err(dev, "Setting grace timeout failed\n"); 1873 else if (dqm->dev->kfd2kgd->build_grace_period_packet_info) 1874 /* Update dqm->wait_times maintained in software */ 1875 dqm->dev->kfd2kgd->build_grace_period_packet_info( 1876 dqm->dev->adev, dqm->wait_times, 1877 grace_period, ®_offset, 1878 &dqm->wait_times); 1879 } 1880 1881 /* setup per-queue reset detection buffer */ 1882 num_hw_queue_slots = dqm->dev->kfd->shared_resources.num_queue_per_pipe * 1883 dqm->dev->kfd->shared_resources.num_pipe_per_mec * 1884 NUM_XCC(dqm->dev->xcc_mask); 1885 1886 dqm->detect_hang_info_size = num_hw_queue_slots * sizeof(struct dqm_detect_hang_info); 1887 dqm->detect_hang_info = kzalloc(dqm->detect_hang_info_size, GFP_KERNEL); 1888 1889 if (!dqm->detect_hang_info) { 1890 retval = -ENOMEM; 1891 goto fail_detect_hang_buffer; 1892 } 1893 1894 dqm_unlock(dqm); 1895 1896 return 0; 1897 fail_detect_hang_buffer: 1898 kfd_gtt_sa_free(dqm->dev, dqm->fence_mem); 1899 fail_allocate_vidmem: 1900 fail_set_sched_resources: 1901 if (!dqm->dev->kfd->shared_resources.enable_mes) 1902 pm_uninit(&dqm->packet_mgr); 1903 fail_packet_manager_init: 1904 dqm_unlock(dqm); 1905 return retval; 1906 } 1907 1908 static int stop_cpsch(struct device_queue_manager *dqm) 1909 { 1910 dqm_lock(dqm); 1911 if (!dqm->sched_running) { 1912 dqm_unlock(dqm); 1913 return 0; 1914 } 1915 1916 if (!dqm->dev->kfd->shared_resources.enable_mes) 1917 unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD, false); 1918 else 1919 remove_all_kfd_queues_mes(dqm); 1920 1921 dqm->sched_running = false; 1922 1923 if (!dqm->dev->kfd->shared_resources.enable_mes) 1924 pm_release_ib(&dqm->packet_mgr); 1925 1926 kfd_gtt_sa_free(dqm->dev, dqm->fence_mem); 1927 if (!dqm->dev->kfd->shared_resources.enable_mes) 1928 pm_uninit(&dqm->packet_mgr); 1929 kfree(dqm->detect_hang_info); 1930 dqm->detect_hang_info = NULL; 1931 dqm_unlock(dqm); 1932 1933 return 0; 1934 } 1935 1936 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm, 1937 struct kernel_queue *kq, 1938 struct qcm_process_device *qpd) 1939 { 1940 dqm_lock(dqm); 1941 if (dqm->total_queue_count >= max_num_of_queues_per_device) { 1942 pr_warn("Can't create new kernel queue because %d queues were already created\n", 1943 dqm->total_queue_count); 1944 dqm_unlock(dqm); 1945 return -EPERM; 1946 } 1947 1948 /* 1949 * Unconditionally increment this counter, regardless of the queue's 1950 * type or whether the queue is active. 1951 */ 1952 dqm->total_queue_count++; 1953 pr_debug("Total of %d queues are accountable so far\n", 1954 dqm->total_queue_count); 1955 1956 list_add(&kq->list, &qpd->priv_queue_list); 1957 increment_queue_count(dqm, qpd, kq->queue); 1958 qpd->is_debug = true; 1959 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, 1960 USE_DEFAULT_GRACE_PERIOD); 1961 dqm_unlock(dqm); 1962 1963 return 0; 1964 } 1965 1966 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm, 1967 struct kernel_queue *kq, 1968 struct qcm_process_device *qpd) 1969 { 1970 dqm_lock(dqm); 1971 list_del(&kq->list); 1972 decrement_queue_count(dqm, qpd, kq->queue); 1973 qpd->is_debug = false; 1974 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, 1975 USE_DEFAULT_GRACE_PERIOD); 1976 /* 1977 * Unconditionally decrement this counter, regardless of the queue's 1978 * type. 1979 */ 1980 dqm->total_queue_count--; 1981 pr_debug("Total of %d queues are accountable so far\n", 1982 dqm->total_queue_count); 1983 dqm_unlock(dqm); 1984 } 1985 1986 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q, 1987 struct qcm_process_device *qpd, 1988 const struct kfd_criu_queue_priv_data *qd, 1989 const void *restore_mqd, const void *restore_ctl_stack) 1990 { 1991 int retval; 1992 struct mqd_manager *mqd_mgr; 1993 1994 if (dqm->total_queue_count >= max_num_of_queues_per_device) { 1995 pr_warn("Can't create new usermode queue because %d queues were already created\n", 1996 dqm->total_queue_count); 1997 retval = -EPERM; 1998 goto out; 1999 } 2000 2001 if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 2002 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI || 2003 q->properties.type == KFD_QUEUE_TYPE_SDMA_BY_ENG_ID) { 2004 dqm_lock(dqm); 2005 retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL); 2006 dqm_unlock(dqm); 2007 if (retval) 2008 goto out; 2009 } 2010 2011 retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL); 2012 if (retval) 2013 goto out_deallocate_sdma_queue; 2014 2015 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 2016 q->properties.type)]; 2017 2018 if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 2019 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 2020 dqm->asic_ops.init_sdma_vm(dqm, q, qpd); 2021 q->properties.tba_addr = qpd->tba_addr; 2022 q->properties.tma_addr = qpd->tma_addr; 2023 q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties); 2024 if (!q->mqd_mem_obj) { 2025 retval = -ENOMEM; 2026 goto out_deallocate_doorbell; 2027 } 2028 2029 dqm_lock(dqm); 2030 /* 2031 * Eviction state logic: mark all queues as evicted, even ones 2032 * not currently active. Restoring inactive queues later only 2033 * updates the is_evicted flag but is a no-op otherwise. 2034 */ 2035 q->properties.is_evicted = !!qpd->evicted; 2036 q->properties.is_dbg_wa = qpd->pqm->process->debug_trap_enabled && 2037 kfd_dbg_has_cwsr_workaround(q->device); 2038 2039 if (qd) 2040 mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr, 2041 &q->properties, restore_mqd, restore_ctl_stack, 2042 qd->ctl_stack_size); 2043 else 2044 mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, 2045 &q->gart_mqd_addr, &q->properties); 2046 2047 list_add(&q->list, &qpd->queues_list); 2048 qpd->queue_count++; 2049 2050 if (q->properties.is_active) { 2051 increment_queue_count(dqm, qpd, q); 2052 2053 if (!dqm->dev->kfd->shared_resources.enable_mes) 2054 retval = execute_queues_cpsch(dqm, 2055 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD); 2056 else 2057 retval = add_queue_mes(dqm, q, qpd); 2058 if (retval) 2059 goto cleanup_queue; 2060 } 2061 2062 /* 2063 * Unconditionally increment this counter, regardless of the queue's 2064 * type or whether the queue is active. 2065 */ 2066 dqm->total_queue_count++; 2067 2068 pr_debug("Total of %d queues are accountable so far\n", 2069 dqm->total_queue_count); 2070 2071 dqm_unlock(dqm); 2072 return retval; 2073 2074 cleanup_queue: 2075 qpd->queue_count--; 2076 list_del(&q->list); 2077 if (q->properties.is_active) 2078 decrement_queue_count(dqm, qpd, q); 2079 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 2080 dqm_unlock(dqm); 2081 out_deallocate_doorbell: 2082 deallocate_doorbell(qpd, q); 2083 out_deallocate_sdma_queue: 2084 if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 2085 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 2086 dqm_lock(dqm); 2087 deallocate_sdma_queue(dqm, q); 2088 dqm_unlock(dqm); 2089 } 2090 out: 2091 return retval; 2092 } 2093 2094 int amdkfd_fence_wait_timeout(struct device_queue_manager *dqm, 2095 uint64_t fence_value, 2096 unsigned int timeout_ms) 2097 { 2098 unsigned long end_jiffies = msecs_to_jiffies(timeout_ms) + jiffies; 2099 struct device *dev = dqm->dev->adev->dev; 2100 uint64_t *fence_addr = dqm->fence_addr; 2101 2102 while (*fence_addr != fence_value) { 2103 /* Fatal err detected, this response won't come */ 2104 if (amdgpu_amdkfd_is_fed(dqm->dev->adev)) 2105 return -EIO; 2106 2107 if (time_after(jiffies, end_jiffies)) { 2108 dev_err(dev, "qcm fence wait loop timeout expired\n"); 2109 /* In HWS case, this is used to halt the driver thread 2110 * in order not to mess up CP states before doing 2111 * scandumps for FW debugging. 2112 */ 2113 while (halt_if_hws_hang) 2114 schedule(); 2115 2116 return -ETIME; 2117 } 2118 schedule(); 2119 } 2120 2121 return 0; 2122 } 2123 2124 /* dqm->lock mutex has to be locked before calling this function */ 2125 static int map_queues_cpsch(struct device_queue_manager *dqm) 2126 { 2127 struct device *dev = dqm->dev->adev->dev; 2128 int retval; 2129 2130 if (!dqm->sched_running || dqm->sched_halt) 2131 return 0; 2132 if (dqm->active_queue_count <= 0 || dqm->processes_count <= 0) 2133 return 0; 2134 if (dqm->active_runlist) 2135 return 0; 2136 2137 retval = pm_send_runlist(&dqm->packet_mgr, &dqm->queues); 2138 pr_debug("%s sent runlist\n", __func__); 2139 if (retval) { 2140 dev_err(dev, "failed to execute runlist\n"); 2141 return retval; 2142 } 2143 dqm->active_runlist = true; 2144 2145 return retval; 2146 } 2147 2148 static void set_queue_as_reset(struct device_queue_manager *dqm, struct queue *q, 2149 struct qcm_process_device *qpd) 2150 { 2151 struct kfd_process_device *pdd = qpd_to_pdd(qpd); 2152 2153 dev_err(dqm->dev->adev->dev, "queue id 0x%0x at pasid 0x%0x is reset\n", 2154 q->properties.queue_id, q->process->pasid); 2155 2156 pdd->has_reset_queue = true; 2157 if (q->properties.is_active) { 2158 q->properties.is_active = false; 2159 decrement_queue_count(dqm, qpd, q); 2160 } 2161 } 2162 2163 static int detect_queue_hang(struct device_queue_manager *dqm) 2164 { 2165 int i; 2166 2167 /* detect should be used only in dqm locked queue reset */ 2168 if (WARN_ON(dqm->detect_hang_count > 0)) 2169 return 0; 2170 2171 memset(dqm->detect_hang_info, 0, dqm->detect_hang_info_size); 2172 2173 for (i = 0; i < AMDGPU_MAX_QUEUES; ++i) { 2174 uint32_t mec, pipe, queue; 2175 int xcc_id; 2176 2177 mec = (i / dqm->dev->kfd->shared_resources.num_queue_per_pipe) 2178 / dqm->dev->kfd->shared_resources.num_pipe_per_mec; 2179 2180 if (mec || !test_bit(i, dqm->dev->kfd->shared_resources.cp_queue_bitmap)) 2181 continue; 2182 2183 amdgpu_queue_mask_bit_to_mec_queue(dqm->dev->adev, i, &mec, &pipe, &queue); 2184 2185 for_each_inst(xcc_id, dqm->dev->xcc_mask) { 2186 uint64_t queue_addr = dqm->dev->kfd2kgd->hqd_get_pq_addr( 2187 dqm->dev->adev, pipe, queue, xcc_id); 2188 struct dqm_detect_hang_info hang_info; 2189 2190 if (!queue_addr) 2191 continue; 2192 2193 hang_info.pipe_id = pipe; 2194 hang_info.queue_id = queue; 2195 hang_info.xcc_id = xcc_id; 2196 hang_info.queue_address = queue_addr; 2197 2198 dqm->detect_hang_info[dqm->detect_hang_count] = hang_info; 2199 dqm->detect_hang_count++; 2200 } 2201 } 2202 2203 return dqm->detect_hang_count; 2204 } 2205 2206 static struct queue *find_queue_by_address(struct device_queue_manager *dqm, uint64_t queue_address) 2207 { 2208 struct device_process_node *cur; 2209 struct qcm_process_device *qpd; 2210 struct queue *q; 2211 2212 list_for_each_entry(cur, &dqm->queues, list) { 2213 qpd = cur->qpd; 2214 list_for_each_entry(q, &qpd->queues_list, list) { 2215 if (queue_address == q->properties.queue_address) 2216 return q; 2217 } 2218 } 2219 2220 return NULL; 2221 } 2222 2223 /* only for compute queue */ 2224 static int reset_queues_on_hws_hang(struct device_queue_manager *dqm) 2225 { 2226 int r = 0, reset_count = 0, i; 2227 2228 if (!dqm->detect_hang_info || dqm->is_hws_hang) 2229 return -EIO; 2230 2231 /* assume dqm locked. */ 2232 if (!detect_queue_hang(dqm)) 2233 return -ENOTRECOVERABLE; 2234 2235 for (i = 0; i < dqm->detect_hang_count; i++) { 2236 struct dqm_detect_hang_info hang_info = dqm->detect_hang_info[i]; 2237 struct queue *q = find_queue_by_address(dqm, hang_info.queue_address); 2238 struct kfd_process_device *pdd; 2239 uint64_t queue_addr = 0; 2240 2241 if (!q) { 2242 r = -ENOTRECOVERABLE; 2243 goto reset_fail; 2244 } 2245 2246 pdd = kfd_get_process_device_data(dqm->dev, q->process); 2247 if (!pdd) { 2248 r = -ENOTRECOVERABLE; 2249 goto reset_fail; 2250 } 2251 2252 queue_addr = dqm->dev->kfd2kgd->hqd_reset(dqm->dev->adev, 2253 hang_info.pipe_id, hang_info.queue_id, hang_info.xcc_id, 2254 KFD_UNMAP_LATENCY_MS); 2255 2256 /* either reset failed or we reset an unexpected queue. */ 2257 if (queue_addr != q->properties.queue_address) { 2258 r = -ENOTRECOVERABLE; 2259 goto reset_fail; 2260 } 2261 2262 set_queue_as_reset(dqm, q, &pdd->qpd); 2263 reset_count++; 2264 } 2265 2266 if (reset_count == dqm->detect_hang_count) 2267 kfd_signal_reset_event(dqm->dev); 2268 else 2269 r = -ENOTRECOVERABLE; 2270 2271 reset_fail: 2272 dqm->detect_hang_count = 0; 2273 2274 return r; 2275 } 2276 2277 /* dqm->lock mutex has to be locked before calling this function */ 2278 static int unmap_queues_cpsch(struct device_queue_manager *dqm, 2279 enum kfd_unmap_queues_filter filter, 2280 uint32_t filter_param, 2281 uint32_t grace_period, 2282 bool reset) 2283 { 2284 struct device *dev = dqm->dev->adev->dev; 2285 struct mqd_manager *mqd_mgr; 2286 int retval; 2287 2288 if (!dqm->sched_running) 2289 return 0; 2290 if (!dqm->active_runlist) 2291 return 0; 2292 if (!down_read_trylock(&dqm->dev->adev->reset_domain->sem)) 2293 return -EIO; 2294 2295 if (grace_period != USE_DEFAULT_GRACE_PERIOD) { 2296 retval = pm_update_grace_period(&dqm->packet_mgr, grace_period); 2297 if (retval) 2298 goto out; 2299 } 2300 2301 retval = pm_send_unmap_queue(&dqm->packet_mgr, filter, filter_param, reset); 2302 if (retval) 2303 goto out; 2304 2305 *dqm->fence_addr = KFD_FENCE_INIT; 2306 mb(); 2307 pm_send_query_status(&dqm->packet_mgr, dqm->fence_gpu_addr, 2308 KFD_FENCE_COMPLETED); 2309 /* should be timed out */ 2310 retval = amdkfd_fence_wait_timeout(dqm, KFD_FENCE_COMPLETED, 2311 queue_preemption_timeout_ms); 2312 if (retval) { 2313 dev_err(dev, "The cp might be in an unrecoverable state due to an unsuccessful queues preemption\n"); 2314 kfd_hws_hang(dqm); 2315 goto out; 2316 } 2317 2318 /* In the current MEC firmware implementation, if compute queue 2319 * doesn't response to the preemption request in time, HIQ will 2320 * abandon the unmap request without returning any timeout error 2321 * to driver. Instead, MEC firmware will log the doorbell of the 2322 * unresponding compute queue to HIQ.MQD.queue_doorbell_id fields. 2323 * To make sure the queue unmap was successful, driver need to 2324 * check those fields 2325 */ 2326 mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]; 2327 if (mqd_mgr->check_preemption_failed(mqd_mgr, dqm->packet_mgr.priv_queue->queue->mqd)) { 2328 if (reset_queues_on_hws_hang(dqm)) { 2329 while (halt_if_hws_hang) 2330 schedule(); 2331 dqm->is_hws_hang = true; 2332 kfd_hws_hang(dqm); 2333 retval = -ETIME; 2334 goto out; 2335 } 2336 } 2337 2338 /* We need to reset the grace period value for this device */ 2339 if (grace_period != USE_DEFAULT_GRACE_PERIOD) { 2340 if (pm_update_grace_period(&dqm->packet_mgr, 2341 USE_DEFAULT_GRACE_PERIOD)) 2342 dev_err(dev, "Failed to reset grace period\n"); 2343 } 2344 2345 pm_release_ib(&dqm->packet_mgr); 2346 dqm->active_runlist = false; 2347 2348 out: 2349 up_read(&dqm->dev->adev->reset_domain->sem); 2350 return retval; 2351 } 2352 2353 /* only for compute queue */ 2354 static int reset_queues_cpsch(struct device_queue_manager *dqm, uint16_t pasid) 2355 { 2356 int retval; 2357 2358 dqm_lock(dqm); 2359 2360 retval = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_BY_PASID, 2361 pasid, USE_DEFAULT_GRACE_PERIOD, true); 2362 2363 dqm_unlock(dqm); 2364 return retval; 2365 } 2366 2367 /* dqm->lock mutex has to be locked before calling this function */ 2368 static int execute_queues_cpsch(struct device_queue_manager *dqm, 2369 enum kfd_unmap_queues_filter filter, 2370 uint32_t filter_param, 2371 uint32_t grace_period) 2372 { 2373 int retval; 2374 2375 if (!down_read_trylock(&dqm->dev->adev->reset_domain->sem)) 2376 return -EIO; 2377 retval = unmap_queues_cpsch(dqm, filter, filter_param, grace_period, false); 2378 if (!retval) 2379 retval = map_queues_cpsch(dqm); 2380 up_read(&dqm->dev->adev->reset_domain->sem); 2381 return retval; 2382 } 2383 2384 static int wait_on_destroy_queue(struct device_queue_manager *dqm, 2385 struct queue *q) 2386 { 2387 struct kfd_process_device *pdd = kfd_get_process_device_data(q->device, 2388 q->process); 2389 int ret = 0; 2390 2391 if (pdd->qpd.is_debug) 2392 return ret; 2393 2394 q->properties.is_being_destroyed = true; 2395 2396 if (pdd->process->debug_trap_enabled && q->properties.is_suspended) { 2397 dqm_unlock(dqm); 2398 mutex_unlock(&q->process->mutex); 2399 ret = wait_event_interruptible(dqm->destroy_wait, 2400 !q->properties.is_suspended); 2401 2402 mutex_lock(&q->process->mutex); 2403 dqm_lock(dqm); 2404 } 2405 2406 return ret; 2407 } 2408 2409 static int destroy_queue_cpsch(struct device_queue_manager *dqm, 2410 struct qcm_process_device *qpd, 2411 struct queue *q) 2412 { 2413 int retval; 2414 struct mqd_manager *mqd_mgr; 2415 uint64_t sdma_val = 0; 2416 struct kfd_process_device *pdd = qpd_to_pdd(qpd); 2417 struct device *dev = dqm->dev->adev->dev; 2418 2419 /* Get the SDMA queue stats */ 2420 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) || 2421 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { 2422 retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr, 2423 &sdma_val); 2424 if (retval) 2425 dev_err(dev, "Failed to read SDMA queue counter for queue: %d\n", 2426 q->properties.queue_id); 2427 } 2428 2429 /* remove queue from list to prevent rescheduling after preemption */ 2430 dqm_lock(dqm); 2431 2432 retval = wait_on_destroy_queue(dqm, q); 2433 2434 if (retval) { 2435 dqm_unlock(dqm); 2436 return retval; 2437 } 2438 2439 if (qpd->is_debug) { 2440 /* 2441 * error, currently we do not allow to destroy a queue 2442 * of a currently debugged process 2443 */ 2444 retval = -EBUSY; 2445 goto failed_try_destroy_debugged_queue; 2446 2447 } 2448 2449 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 2450 q->properties.type)]; 2451 2452 deallocate_doorbell(qpd, q); 2453 2454 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) || 2455 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { 2456 deallocate_sdma_queue(dqm, q); 2457 pdd->sdma_past_activity_counter += sdma_val; 2458 } 2459 2460 if (q->properties.is_active) { 2461 decrement_queue_count(dqm, qpd, q); 2462 q->properties.is_active = false; 2463 if (!dqm->dev->kfd->shared_resources.enable_mes) { 2464 retval = execute_queues_cpsch(dqm, 2465 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, 2466 USE_DEFAULT_GRACE_PERIOD); 2467 if (retval == -ETIME) 2468 qpd->reset_wavefronts = true; 2469 } else { 2470 retval = remove_queue_mes(dqm, q, qpd); 2471 } 2472 } 2473 list_del(&q->list); 2474 qpd->queue_count--; 2475 2476 /* 2477 * Unconditionally decrement this counter, regardless of the queue's 2478 * type 2479 */ 2480 dqm->total_queue_count--; 2481 pr_debug("Total of %d queues are accountable so far\n", 2482 dqm->total_queue_count); 2483 2484 dqm_unlock(dqm); 2485 2486 /* 2487 * Do free_mqd and raise delete event after dqm_unlock(dqm) to avoid 2488 * circular locking 2489 */ 2490 kfd_dbg_ev_raise(KFD_EC_MASK(EC_DEVICE_QUEUE_DELETE), 2491 qpd->pqm->process, q->device, 2492 -1, false, NULL, 0); 2493 2494 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 2495 2496 return retval; 2497 2498 failed_try_destroy_debugged_queue: 2499 2500 dqm_unlock(dqm); 2501 return retval; 2502 } 2503 2504 /* 2505 * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to 2506 * stay in user mode. 2507 */ 2508 #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL 2509 /* APE1 limit is inclusive and 64K aligned. */ 2510 #define APE1_LIMIT_ALIGNMENT 0xFFFF 2511 2512 static bool set_cache_memory_policy(struct device_queue_manager *dqm, 2513 struct qcm_process_device *qpd, 2514 enum cache_policy default_policy, 2515 enum cache_policy alternate_policy, 2516 void __user *alternate_aperture_base, 2517 uint64_t alternate_aperture_size) 2518 { 2519 bool retval = true; 2520 2521 if (!dqm->asic_ops.set_cache_memory_policy) 2522 return retval; 2523 2524 dqm_lock(dqm); 2525 2526 if (alternate_aperture_size == 0) { 2527 /* base > limit disables APE1 */ 2528 qpd->sh_mem_ape1_base = 1; 2529 qpd->sh_mem_ape1_limit = 0; 2530 } else { 2531 /* 2532 * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]}, 2533 * SH_MEM_APE1_BASE[31:0], 0x0000 } 2534 * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]}, 2535 * SH_MEM_APE1_LIMIT[31:0], 0xFFFF } 2536 * Verify that the base and size parameters can be 2537 * represented in this format and convert them. 2538 * Additionally restrict APE1 to user-mode addresses. 2539 */ 2540 2541 uint64_t base = (uintptr_t)alternate_aperture_base; 2542 uint64_t limit = base + alternate_aperture_size - 1; 2543 2544 if (limit <= base || (base & APE1_FIXED_BITS_MASK) != 0 || 2545 (limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT) { 2546 retval = false; 2547 goto out; 2548 } 2549 2550 qpd->sh_mem_ape1_base = base >> 16; 2551 qpd->sh_mem_ape1_limit = limit >> 16; 2552 } 2553 2554 retval = dqm->asic_ops.set_cache_memory_policy( 2555 dqm, 2556 qpd, 2557 default_policy, 2558 alternate_policy, 2559 alternate_aperture_base, 2560 alternate_aperture_size); 2561 2562 if ((dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0)) 2563 program_sh_mem_settings(dqm, qpd); 2564 2565 pr_debug("sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n", 2566 qpd->sh_mem_config, qpd->sh_mem_ape1_base, 2567 qpd->sh_mem_ape1_limit); 2568 2569 out: 2570 dqm_unlock(dqm); 2571 return retval; 2572 } 2573 2574 static int process_termination_nocpsch(struct device_queue_manager *dqm, 2575 struct qcm_process_device *qpd) 2576 { 2577 struct queue *q; 2578 struct device_process_node *cur, *next_dpn; 2579 int retval = 0; 2580 bool found = false; 2581 2582 dqm_lock(dqm); 2583 2584 /* Clear all user mode queues */ 2585 while (!list_empty(&qpd->queues_list)) { 2586 struct mqd_manager *mqd_mgr; 2587 int ret; 2588 2589 q = list_first_entry(&qpd->queues_list, struct queue, list); 2590 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 2591 q->properties.type)]; 2592 ret = destroy_queue_nocpsch_locked(dqm, qpd, q); 2593 if (ret) 2594 retval = ret; 2595 dqm_unlock(dqm); 2596 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 2597 dqm_lock(dqm); 2598 } 2599 2600 /* Unregister process */ 2601 list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) { 2602 if (qpd == cur->qpd) { 2603 list_del(&cur->list); 2604 kfree(cur); 2605 dqm->processes_count--; 2606 found = true; 2607 break; 2608 } 2609 } 2610 2611 dqm_unlock(dqm); 2612 2613 /* Outside the DQM lock because under the DQM lock we can't do 2614 * reclaim or take other locks that others hold while reclaiming. 2615 */ 2616 if (found) 2617 kfd_dec_compute_active(dqm->dev); 2618 2619 return retval; 2620 } 2621 2622 static int get_wave_state(struct device_queue_manager *dqm, 2623 struct queue *q, 2624 void __user *ctl_stack, 2625 u32 *ctl_stack_used_size, 2626 u32 *save_area_used_size) 2627 { 2628 struct mqd_manager *mqd_mgr; 2629 2630 dqm_lock(dqm); 2631 2632 mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP]; 2633 2634 if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE || 2635 q->properties.is_active || !q->device->kfd->cwsr_enabled || 2636 !mqd_mgr->get_wave_state) { 2637 dqm_unlock(dqm); 2638 return -EINVAL; 2639 } 2640 2641 dqm_unlock(dqm); 2642 2643 /* 2644 * get_wave_state is outside the dqm lock to prevent circular locking 2645 * and the queue should be protected against destruction by the process 2646 * lock. 2647 */ 2648 return mqd_mgr->get_wave_state(mqd_mgr, q->mqd, &q->properties, 2649 ctl_stack, ctl_stack_used_size, save_area_used_size); 2650 } 2651 2652 static void get_queue_checkpoint_info(struct device_queue_manager *dqm, 2653 const struct queue *q, 2654 u32 *mqd_size, 2655 u32 *ctl_stack_size) 2656 { 2657 struct mqd_manager *mqd_mgr; 2658 enum KFD_MQD_TYPE mqd_type = 2659 get_mqd_type_from_queue_type(q->properties.type); 2660 2661 dqm_lock(dqm); 2662 mqd_mgr = dqm->mqd_mgrs[mqd_type]; 2663 *mqd_size = mqd_mgr->mqd_size; 2664 *ctl_stack_size = 0; 2665 2666 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE && mqd_mgr->get_checkpoint_info) 2667 mqd_mgr->get_checkpoint_info(mqd_mgr, q->mqd, ctl_stack_size); 2668 2669 dqm_unlock(dqm); 2670 } 2671 2672 static int checkpoint_mqd(struct device_queue_manager *dqm, 2673 const struct queue *q, 2674 void *mqd, 2675 void *ctl_stack) 2676 { 2677 struct mqd_manager *mqd_mgr; 2678 int r = 0; 2679 enum KFD_MQD_TYPE mqd_type = 2680 get_mqd_type_from_queue_type(q->properties.type); 2681 2682 dqm_lock(dqm); 2683 2684 if (q->properties.is_active || !q->device->kfd->cwsr_enabled) { 2685 r = -EINVAL; 2686 goto dqm_unlock; 2687 } 2688 2689 mqd_mgr = dqm->mqd_mgrs[mqd_type]; 2690 if (!mqd_mgr->checkpoint_mqd) { 2691 r = -EOPNOTSUPP; 2692 goto dqm_unlock; 2693 } 2694 2695 mqd_mgr->checkpoint_mqd(mqd_mgr, q->mqd, mqd, ctl_stack); 2696 2697 dqm_unlock: 2698 dqm_unlock(dqm); 2699 return r; 2700 } 2701 2702 static int process_termination_cpsch(struct device_queue_manager *dqm, 2703 struct qcm_process_device *qpd) 2704 { 2705 int retval; 2706 struct queue *q; 2707 struct device *dev = dqm->dev->adev->dev; 2708 struct kernel_queue *kq, *kq_next; 2709 struct mqd_manager *mqd_mgr; 2710 struct device_process_node *cur, *next_dpn; 2711 enum kfd_unmap_queues_filter filter = 2712 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES; 2713 bool found = false; 2714 2715 retval = 0; 2716 2717 dqm_lock(dqm); 2718 2719 /* Clean all kernel queues */ 2720 list_for_each_entry_safe(kq, kq_next, &qpd->priv_queue_list, list) { 2721 list_del(&kq->list); 2722 decrement_queue_count(dqm, qpd, kq->queue); 2723 qpd->is_debug = false; 2724 dqm->total_queue_count--; 2725 filter = KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES; 2726 } 2727 2728 /* Clear all user mode queues */ 2729 list_for_each_entry(q, &qpd->queues_list, list) { 2730 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) 2731 deallocate_sdma_queue(dqm, q); 2732 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 2733 deallocate_sdma_queue(dqm, q); 2734 2735 if (q->properties.is_active) { 2736 decrement_queue_count(dqm, qpd, q); 2737 2738 if (dqm->dev->kfd->shared_resources.enable_mes) { 2739 retval = remove_queue_mes(dqm, q, qpd); 2740 if (retval) 2741 dev_err(dev, "Failed to remove queue %d\n", 2742 q->properties.queue_id); 2743 } 2744 } 2745 2746 dqm->total_queue_count--; 2747 } 2748 2749 /* Unregister process */ 2750 list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) { 2751 if (qpd == cur->qpd) { 2752 list_del(&cur->list); 2753 kfree(cur); 2754 dqm->processes_count--; 2755 found = true; 2756 break; 2757 } 2758 } 2759 2760 if (!dqm->dev->kfd->shared_resources.enable_mes) 2761 retval = execute_queues_cpsch(dqm, filter, 0, USE_DEFAULT_GRACE_PERIOD); 2762 2763 if ((retval || qpd->reset_wavefronts) && 2764 down_read_trylock(&dqm->dev->adev->reset_domain->sem)) { 2765 pr_warn("Resetting wave fronts (cpsch) on dev %p\n", dqm->dev); 2766 dbgdev_wave_reset_wavefronts(dqm->dev, qpd->pqm->process); 2767 qpd->reset_wavefronts = false; 2768 up_read(&dqm->dev->adev->reset_domain->sem); 2769 } 2770 2771 /* Lastly, free mqd resources. 2772 * Do free_mqd() after dqm_unlock to avoid circular locking. 2773 */ 2774 while (!list_empty(&qpd->queues_list)) { 2775 q = list_first_entry(&qpd->queues_list, struct queue, list); 2776 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 2777 q->properties.type)]; 2778 list_del(&q->list); 2779 qpd->queue_count--; 2780 dqm_unlock(dqm); 2781 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 2782 dqm_lock(dqm); 2783 } 2784 dqm_unlock(dqm); 2785 2786 /* Outside the DQM lock because under the DQM lock we can't do 2787 * reclaim or take other locks that others hold while reclaiming. 2788 */ 2789 if (found) 2790 kfd_dec_compute_active(dqm->dev); 2791 2792 return retval; 2793 } 2794 2795 static int init_mqd_managers(struct device_queue_manager *dqm) 2796 { 2797 int i, j; 2798 struct device *dev = dqm->dev->adev->dev; 2799 struct mqd_manager *mqd_mgr; 2800 2801 for (i = 0; i < KFD_MQD_TYPE_MAX; i++) { 2802 mqd_mgr = dqm->asic_ops.mqd_manager_init(i, dqm->dev); 2803 if (!mqd_mgr) { 2804 dev_err(dev, "mqd manager [%d] initialization failed\n", i); 2805 goto out_free; 2806 } 2807 dqm->mqd_mgrs[i] = mqd_mgr; 2808 } 2809 2810 return 0; 2811 2812 out_free: 2813 for (j = 0; j < i; j++) { 2814 kfree(dqm->mqd_mgrs[j]); 2815 dqm->mqd_mgrs[j] = NULL; 2816 } 2817 2818 return -ENOMEM; 2819 } 2820 2821 /* Allocate one hiq mqd (HWS) and all SDMA mqd in a continuous trunk*/ 2822 static int allocate_hiq_sdma_mqd(struct device_queue_manager *dqm) 2823 { 2824 int retval; 2825 struct kfd_node *dev = dqm->dev; 2826 struct kfd_mem_obj *mem_obj = &dqm->hiq_sdma_mqd; 2827 uint32_t size = dqm->mqd_mgrs[KFD_MQD_TYPE_SDMA]->mqd_size * 2828 get_num_all_sdma_engines(dqm) * 2829 dev->kfd->device_info.num_sdma_queues_per_engine + 2830 (dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]->mqd_size * 2831 NUM_XCC(dqm->dev->xcc_mask)); 2832 2833 retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev, size, 2834 &(mem_obj->gtt_mem), &(mem_obj->gpu_addr), 2835 (void *)&(mem_obj->cpu_ptr), false); 2836 2837 return retval; 2838 } 2839 2840 struct device_queue_manager *device_queue_manager_init(struct kfd_node *dev) 2841 { 2842 struct device_queue_manager *dqm; 2843 2844 pr_debug("Loading device queue manager\n"); 2845 2846 dqm = kzalloc(sizeof(*dqm), GFP_KERNEL); 2847 if (!dqm) 2848 return NULL; 2849 2850 switch (dev->adev->asic_type) { 2851 /* HWS is not available on Hawaii. */ 2852 case CHIP_HAWAII: 2853 /* HWS depends on CWSR for timely dequeue. CWSR is not 2854 * available on Tonga. 2855 * 2856 * FIXME: This argument also applies to Kaveri. 2857 */ 2858 case CHIP_TONGA: 2859 dqm->sched_policy = KFD_SCHED_POLICY_NO_HWS; 2860 break; 2861 default: 2862 dqm->sched_policy = sched_policy; 2863 break; 2864 } 2865 2866 dqm->dev = dev; 2867 switch (dqm->sched_policy) { 2868 case KFD_SCHED_POLICY_HWS: 2869 case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION: 2870 /* initialize dqm for cp scheduling */ 2871 dqm->ops.create_queue = create_queue_cpsch; 2872 dqm->ops.initialize = initialize_cpsch; 2873 dqm->ops.start = start_cpsch; 2874 dqm->ops.stop = stop_cpsch; 2875 dqm->ops.halt = halt_cpsch; 2876 dqm->ops.unhalt = unhalt_cpsch; 2877 dqm->ops.destroy_queue = destroy_queue_cpsch; 2878 dqm->ops.update_queue = update_queue; 2879 dqm->ops.register_process = register_process; 2880 dqm->ops.unregister_process = unregister_process; 2881 dqm->ops.uninitialize = uninitialize; 2882 dqm->ops.create_kernel_queue = create_kernel_queue_cpsch; 2883 dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch; 2884 dqm->ops.set_cache_memory_policy = set_cache_memory_policy; 2885 dqm->ops.process_termination = process_termination_cpsch; 2886 dqm->ops.evict_process_queues = evict_process_queues_cpsch; 2887 dqm->ops.restore_process_queues = restore_process_queues_cpsch; 2888 dqm->ops.get_wave_state = get_wave_state; 2889 dqm->ops.reset_queues = reset_queues_cpsch; 2890 dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info; 2891 dqm->ops.checkpoint_mqd = checkpoint_mqd; 2892 break; 2893 case KFD_SCHED_POLICY_NO_HWS: 2894 /* initialize dqm for no cp scheduling */ 2895 dqm->ops.start = start_nocpsch; 2896 dqm->ops.stop = stop_nocpsch; 2897 dqm->ops.create_queue = create_queue_nocpsch; 2898 dqm->ops.destroy_queue = destroy_queue_nocpsch; 2899 dqm->ops.update_queue = update_queue; 2900 dqm->ops.register_process = register_process; 2901 dqm->ops.unregister_process = unregister_process; 2902 dqm->ops.initialize = initialize_nocpsch; 2903 dqm->ops.uninitialize = uninitialize; 2904 dqm->ops.set_cache_memory_policy = set_cache_memory_policy; 2905 dqm->ops.process_termination = process_termination_nocpsch; 2906 dqm->ops.evict_process_queues = evict_process_queues_nocpsch; 2907 dqm->ops.restore_process_queues = 2908 restore_process_queues_nocpsch; 2909 dqm->ops.get_wave_state = get_wave_state; 2910 dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info; 2911 dqm->ops.checkpoint_mqd = checkpoint_mqd; 2912 break; 2913 default: 2914 dev_err(dev->adev->dev, "Invalid scheduling policy %d\n", dqm->sched_policy); 2915 goto out_free; 2916 } 2917 2918 switch (dev->adev->asic_type) { 2919 case CHIP_KAVERI: 2920 case CHIP_HAWAII: 2921 device_queue_manager_init_cik(&dqm->asic_ops); 2922 break; 2923 2924 case CHIP_CARRIZO: 2925 case CHIP_TONGA: 2926 case CHIP_FIJI: 2927 case CHIP_POLARIS10: 2928 case CHIP_POLARIS11: 2929 case CHIP_POLARIS12: 2930 case CHIP_VEGAM: 2931 device_queue_manager_init_vi(&dqm->asic_ops); 2932 break; 2933 2934 default: 2935 if (KFD_GC_VERSION(dev) >= IP_VERSION(12, 0, 0)) 2936 device_queue_manager_init_v12(&dqm->asic_ops); 2937 else if (KFD_GC_VERSION(dev) >= IP_VERSION(11, 0, 0)) 2938 device_queue_manager_init_v11(&dqm->asic_ops); 2939 else if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1)) 2940 device_queue_manager_init_v10(&dqm->asic_ops); 2941 else if (KFD_GC_VERSION(dev) >= IP_VERSION(9, 0, 1)) 2942 device_queue_manager_init_v9(&dqm->asic_ops); 2943 else { 2944 WARN(1, "Unexpected ASIC family %u", 2945 dev->adev->asic_type); 2946 goto out_free; 2947 } 2948 } 2949 2950 if (init_mqd_managers(dqm)) 2951 goto out_free; 2952 2953 if (!dev->kfd->shared_resources.enable_mes && allocate_hiq_sdma_mqd(dqm)) { 2954 dev_err(dev->adev->dev, "Failed to allocate hiq sdma mqd trunk buffer\n"); 2955 goto out_free; 2956 } 2957 2958 if (!dqm->ops.initialize(dqm)) { 2959 init_waitqueue_head(&dqm->destroy_wait); 2960 return dqm; 2961 } 2962 2963 out_free: 2964 kfree(dqm); 2965 return NULL; 2966 } 2967 2968 static void deallocate_hiq_sdma_mqd(struct kfd_node *dev, 2969 struct kfd_mem_obj *mqd) 2970 { 2971 WARN(!mqd, "No hiq sdma mqd trunk to free"); 2972 2973 amdgpu_amdkfd_free_gtt_mem(dev->adev, &mqd->gtt_mem); 2974 } 2975 2976 void device_queue_manager_uninit(struct device_queue_manager *dqm) 2977 { 2978 dqm->ops.stop(dqm); 2979 dqm->ops.uninitialize(dqm); 2980 if (!dqm->dev->kfd->shared_resources.enable_mes) 2981 deallocate_hiq_sdma_mqd(dqm->dev, &dqm->hiq_sdma_mqd); 2982 kfree(dqm); 2983 } 2984 2985 int kfd_dqm_suspend_bad_queue_mes(struct kfd_node *knode, u32 pasid, u32 doorbell_id) 2986 { 2987 struct kfd_process_device *pdd; 2988 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); 2989 struct device_queue_manager *dqm = knode->dqm; 2990 struct device *dev = dqm->dev->adev->dev; 2991 struct qcm_process_device *qpd; 2992 struct queue *q = NULL; 2993 int ret = 0; 2994 2995 if (!p) 2996 return -EINVAL; 2997 2998 dqm_lock(dqm); 2999 3000 pdd = kfd_get_process_device_data(dqm->dev, p); 3001 if (pdd) { 3002 qpd = &pdd->qpd; 3003 3004 list_for_each_entry(q, &qpd->queues_list, list) { 3005 if (q->doorbell_id == doorbell_id && q->properties.is_active) { 3006 ret = suspend_all_queues_mes(dqm); 3007 if (ret) { 3008 dev_err(dev, "Suspending all queues failed"); 3009 goto out; 3010 } 3011 3012 q->properties.is_evicted = true; 3013 q->properties.is_active = false; 3014 decrement_queue_count(dqm, qpd, q); 3015 3016 ret = remove_queue_mes(dqm, q, qpd); 3017 if (ret) { 3018 dev_err(dev, "Removing bad queue failed"); 3019 goto out; 3020 } 3021 3022 ret = resume_all_queues_mes(dqm); 3023 if (ret) 3024 dev_err(dev, "Resuming all queues failed"); 3025 3026 break; 3027 } 3028 } 3029 } 3030 3031 out: 3032 dqm_unlock(dqm); 3033 return ret; 3034 } 3035 3036 static int kfd_dqm_evict_pasid_mes(struct device_queue_manager *dqm, 3037 struct qcm_process_device *qpd) 3038 { 3039 struct device *dev = dqm->dev->adev->dev; 3040 int ret = 0; 3041 3042 /* Check if process is already evicted */ 3043 dqm_lock(dqm); 3044 if (qpd->evicted) { 3045 /* Increment the evicted count to make sure the 3046 * process stays evicted before its terminated. 3047 */ 3048 qpd->evicted++; 3049 dqm_unlock(dqm); 3050 goto out; 3051 } 3052 dqm_unlock(dqm); 3053 3054 ret = suspend_all_queues_mes(dqm); 3055 if (ret) { 3056 dev_err(dev, "Suspending all queues failed"); 3057 goto out; 3058 } 3059 3060 ret = dqm->ops.evict_process_queues(dqm, qpd); 3061 if (ret) { 3062 dev_err(dev, "Evicting process queues failed"); 3063 goto out; 3064 } 3065 3066 ret = resume_all_queues_mes(dqm); 3067 if (ret) 3068 dev_err(dev, "Resuming all queues failed"); 3069 3070 out: 3071 return ret; 3072 } 3073 3074 int kfd_dqm_evict_pasid(struct device_queue_manager *dqm, u32 pasid) 3075 { 3076 struct kfd_process_device *pdd; 3077 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); 3078 int ret = 0; 3079 3080 if (!p) 3081 return -EINVAL; 3082 WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid); 3083 pdd = kfd_get_process_device_data(dqm->dev, p); 3084 if (pdd) { 3085 if (dqm->dev->kfd->shared_resources.enable_mes) 3086 ret = kfd_dqm_evict_pasid_mes(dqm, &pdd->qpd); 3087 else 3088 ret = dqm->ops.evict_process_queues(dqm, &pdd->qpd); 3089 } 3090 3091 kfd_unref_process(p); 3092 3093 return ret; 3094 } 3095 3096 static void kfd_process_hw_exception(struct work_struct *work) 3097 { 3098 struct device_queue_manager *dqm = container_of(work, 3099 struct device_queue_manager, hw_exception_work); 3100 amdgpu_amdkfd_gpu_reset(dqm->dev->adev); 3101 } 3102 3103 int reserve_debug_trap_vmid(struct device_queue_manager *dqm, 3104 struct qcm_process_device *qpd) 3105 { 3106 int r; 3107 struct device *dev = dqm->dev->adev->dev; 3108 int updated_vmid_mask; 3109 3110 if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) { 3111 dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy); 3112 return -EINVAL; 3113 } 3114 3115 dqm_lock(dqm); 3116 3117 if (dqm->trap_debug_vmid != 0) { 3118 dev_err(dev, "Trap debug id already reserved\n"); 3119 r = -EBUSY; 3120 goto out_unlock; 3121 } 3122 3123 r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, 3124 USE_DEFAULT_GRACE_PERIOD, false); 3125 if (r) 3126 goto out_unlock; 3127 3128 updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap; 3129 updated_vmid_mask &= ~(1 << dqm->dev->vm_info.last_vmid_kfd); 3130 3131 dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask; 3132 dqm->trap_debug_vmid = dqm->dev->vm_info.last_vmid_kfd; 3133 r = set_sched_resources(dqm); 3134 if (r) 3135 goto out_unlock; 3136 3137 r = map_queues_cpsch(dqm); 3138 if (r) 3139 goto out_unlock; 3140 3141 pr_debug("Reserved VMID for trap debug: %i\n", dqm->trap_debug_vmid); 3142 3143 out_unlock: 3144 dqm_unlock(dqm); 3145 return r; 3146 } 3147 3148 /* 3149 * Releases vmid for the trap debugger 3150 */ 3151 int release_debug_trap_vmid(struct device_queue_manager *dqm, 3152 struct qcm_process_device *qpd) 3153 { 3154 struct device *dev = dqm->dev->adev->dev; 3155 int r; 3156 int updated_vmid_mask; 3157 uint32_t trap_debug_vmid; 3158 3159 if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) { 3160 dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy); 3161 return -EINVAL; 3162 } 3163 3164 dqm_lock(dqm); 3165 trap_debug_vmid = dqm->trap_debug_vmid; 3166 if (dqm->trap_debug_vmid == 0) { 3167 dev_err(dev, "Trap debug id is not reserved\n"); 3168 r = -EINVAL; 3169 goto out_unlock; 3170 } 3171 3172 r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, 3173 USE_DEFAULT_GRACE_PERIOD, false); 3174 if (r) 3175 goto out_unlock; 3176 3177 updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap; 3178 updated_vmid_mask |= (1 << dqm->dev->vm_info.last_vmid_kfd); 3179 3180 dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask; 3181 dqm->trap_debug_vmid = 0; 3182 r = set_sched_resources(dqm); 3183 if (r) 3184 goto out_unlock; 3185 3186 r = map_queues_cpsch(dqm); 3187 if (r) 3188 goto out_unlock; 3189 3190 pr_debug("Released VMID for trap debug: %i\n", trap_debug_vmid); 3191 3192 out_unlock: 3193 dqm_unlock(dqm); 3194 return r; 3195 } 3196 3197 #define QUEUE_NOT_FOUND -1 3198 /* invalidate queue operation in array */ 3199 static void q_array_invalidate(uint32_t num_queues, uint32_t *queue_ids) 3200 { 3201 int i; 3202 3203 for (i = 0; i < num_queues; i++) 3204 queue_ids[i] |= KFD_DBG_QUEUE_INVALID_MASK; 3205 } 3206 3207 /* find queue index in array */ 3208 static int q_array_get_index(unsigned int queue_id, 3209 uint32_t num_queues, 3210 uint32_t *queue_ids) 3211 { 3212 int i; 3213 3214 for (i = 0; i < num_queues; i++) 3215 if (queue_id == (queue_ids[i] & ~KFD_DBG_QUEUE_INVALID_MASK)) 3216 return i; 3217 3218 return QUEUE_NOT_FOUND; 3219 } 3220 3221 struct copy_context_work_handler_workarea { 3222 struct work_struct copy_context_work; 3223 struct kfd_process *p; 3224 }; 3225 3226 static void copy_context_work_handler(struct work_struct *work) 3227 { 3228 struct copy_context_work_handler_workarea *workarea; 3229 struct mqd_manager *mqd_mgr; 3230 struct queue *q; 3231 struct mm_struct *mm; 3232 struct kfd_process *p; 3233 uint32_t tmp_ctl_stack_used_size, tmp_save_area_used_size; 3234 int i; 3235 3236 workarea = container_of(work, 3237 struct copy_context_work_handler_workarea, 3238 copy_context_work); 3239 3240 p = workarea->p; 3241 mm = get_task_mm(p->lead_thread); 3242 3243 if (!mm) 3244 return; 3245 3246 kthread_use_mm(mm); 3247 for (i = 0; i < p->n_pdds; i++) { 3248 struct kfd_process_device *pdd = p->pdds[i]; 3249 struct device_queue_manager *dqm = pdd->dev->dqm; 3250 struct qcm_process_device *qpd = &pdd->qpd; 3251 3252 list_for_each_entry(q, &qpd->queues_list, list) { 3253 if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE) 3254 continue; 3255 3256 mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP]; 3257 3258 /* We ignore the return value from get_wave_state 3259 * because 3260 * i) right now, it always returns 0, and 3261 * ii) if we hit an error, we would continue to the 3262 * next queue anyway. 3263 */ 3264 mqd_mgr->get_wave_state(mqd_mgr, 3265 q->mqd, 3266 &q->properties, 3267 (void __user *) q->properties.ctx_save_restore_area_address, 3268 &tmp_ctl_stack_used_size, 3269 &tmp_save_area_used_size); 3270 } 3271 } 3272 kthread_unuse_mm(mm); 3273 mmput(mm); 3274 } 3275 3276 static uint32_t *get_queue_ids(uint32_t num_queues, uint32_t *usr_queue_id_array) 3277 { 3278 size_t array_size = num_queues * sizeof(uint32_t); 3279 3280 if (!usr_queue_id_array) 3281 return NULL; 3282 3283 return memdup_user(usr_queue_id_array, array_size); 3284 } 3285 3286 int resume_queues(struct kfd_process *p, 3287 uint32_t num_queues, 3288 uint32_t *usr_queue_id_array) 3289 { 3290 uint32_t *queue_ids = NULL; 3291 int total_resumed = 0; 3292 int i; 3293 3294 if (usr_queue_id_array) { 3295 queue_ids = get_queue_ids(num_queues, usr_queue_id_array); 3296 3297 if (IS_ERR(queue_ids)) 3298 return PTR_ERR(queue_ids); 3299 3300 /* mask all queues as invalid. unmask per successful request */ 3301 q_array_invalidate(num_queues, queue_ids); 3302 } 3303 3304 for (i = 0; i < p->n_pdds; i++) { 3305 struct kfd_process_device *pdd = p->pdds[i]; 3306 struct device_queue_manager *dqm = pdd->dev->dqm; 3307 struct device *dev = dqm->dev->adev->dev; 3308 struct qcm_process_device *qpd = &pdd->qpd; 3309 struct queue *q; 3310 int r, per_device_resumed = 0; 3311 3312 dqm_lock(dqm); 3313 3314 /* unmask queues that resume or already resumed as valid */ 3315 list_for_each_entry(q, &qpd->queues_list, list) { 3316 int q_idx = QUEUE_NOT_FOUND; 3317 3318 if (queue_ids) 3319 q_idx = q_array_get_index( 3320 q->properties.queue_id, 3321 num_queues, 3322 queue_ids); 3323 3324 if (!queue_ids || q_idx != QUEUE_NOT_FOUND) { 3325 int err = resume_single_queue(dqm, &pdd->qpd, q); 3326 3327 if (queue_ids) { 3328 if (!err) { 3329 queue_ids[q_idx] &= 3330 ~KFD_DBG_QUEUE_INVALID_MASK; 3331 } else { 3332 queue_ids[q_idx] |= 3333 KFD_DBG_QUEUE_ERROR_MASK; 3334 break; 3335 } 3336 } 3337 3338 if (dqm->dev->kfd->shared_resources.enable_mes) { 3339 wake_up_all(&dqm->destroy_wait); 3340 if (!err) 3341 total_resumed++; 3342 } else { 3343 per_device_resumed++; 3344 } 3345 } 3346 } 3347 3348 if (!per_device_resumed) { 3349 dqm_unlock(dqm); 3350 continue; 3351 } 3352 3353 r = execute_queues_cpsch(dqm, 3354 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 3355 0, 3356 USE_DEFAULT_GRACE_PERIOD); 3357 if (r) { 3358 dev_err(dev, "Failed to resume process queues\n"); 3359 if (queue_ids) { 3360 list_for_each_entry(q, &qpd->queues_list, list) { 3361 int q_idx = q_array_get_index( 3362 q->properties.queue_id, 3363 num_queues, 3364 queue_ids); 3365 3366 /* mask queue as error on resume fail */ 3367 if (q_idx != QUEUE_NOT_FOUND) 3368 queue_ids[q_idx] |= 3369 KFD_DBG_QUEUE_ERROR_MASK; 3370 } 3371 } 3372 } else { 3373 wake_up_all(&dqm->destroy_wait); 3374 total_resumed += per_device_resumed; 3375 } 3376 3377 dqm_unlock(dqm); 3378 } 3379 3380 if (queue_ids) { 3381 if (copy_to_user((void __user *)usr_queue_id_array, queue_ids, 3382 num_queues * sizeof(uint32_t))) 3383 pr_err("copy_to_user failed on queue resume\n"); 3384 3385 kfree(queue_ids); 3386 } 3387 3388 return total_resumed; 3389 } 3390 3391 int suspend_queues(struct kfd_process *p, 3392 uint32_t num_queues, 3393 uint32_t grace_period, 3394 uint64_t exception_clear_mask, 3395 uint32_t *usr_queue_id_array) 3396 { 3397 uint32_t *queue_ids = get_queue_ids(num_queues, usr_queue_id_array); 3398 int total_suspended = 0; 3399 int i; 3400 3401 if (IS_ERR(queue_ids)) 3402 return PTR_ERR(queue_ids); 3403 3404 /* mask all queues as invalid. umask on successful request */ 3405 q_array_invalidate(num_queues, queue_ids); 3406 3407 for (i = 0; i < p->n_pdds; i++) { 3408 struct kfd_process_device *pdd = p->pdds[i]; 3409 struct device_queue_manager *dqm = pdd->dev->dqm; 3410 struct device *dev = dqm->dev->adev->dev; 3411 struct qcm_process_device *qpd = &pdd->qpd; 3412 struct queue *q; 3413 int r, per_device_suspended = 0; 3414 3415 mutex_lock(&p->event_mutex); 3416 dqm_lock(dqm); 3417 3418 /* unmask queues that suspend or already suspended */ 3419 list_for_each_entry(q, &qpd->queues_list, list) { 3420 int q_idx = q_array_get_index(q->properties.queue_id, 3421 num_queues, 3422 queue_ids); 3423 3424 if (q_idx != QUEUE_NOT_FOUND) { 3425 int err = suspend_single_queue(dqm, pdd, q); 3426 bool is_mes = dqm->dev->kfd->shared_resources.enable_mes; 3427 3428 if (!err) { 3429 queue_ids[q_idx] &= ~KFD_DBG_QUEUE_INVALID_MASK; 3430 if (exception_clear_mask && is_mes) 3431 q->properties.exception_status &= 3432 ~exception_clear_mask; 3433 3434 if (is_mes) 3435 total_suspended++; 3436 else 3437 per_device_suspended++; 3438 } else if (err != -EBUSY) { 3439 r = err; 3440 queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK; 3441 break; 3442 } 3443 } 3444 } 3445 3446 if (!per_device_suspended) { 3447 dqm_unlock(dqm); 3448 mutex_unlock(&p->event_mutex); 3449 if (total_suspended) 3450 amdgpu_amdkfd_debug_mem_fence(dqm->dev->adev); 3451 continue; 3452 } 3453 3454 r = execute_queues_cpsch(dqm, 3455 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, 3456 grace_period); 3457 3458 if (r) 3459 dev_err(dev, "Failed to suspend process queues.\n"); 3460 else 3461 total_suspended += per_device_suspended; 3462 3463 list_for_each_entry(q, &qpd->queues_list, list) { 3464 int q_idx = q_array_get_index(q->properties.queue_id, 3465 num_queues, queue_ids); 3466 3467 if (q_idx == QUEUE_NOT_FOUND) 3468 continue; 3469 3470 /* mask queue as error on suspend fail */ 3471 if (r) 3472 queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK; 3473 else if (exception_clear_mask) 3474 q->properties.exception_status &= 3475 ~exception_clear_mask; 3476 } 3477 3478 dqm_unlock(dqm); 3479 mutex_unlock(&p->event_mutex); 3480 amdgpu_device_flush_hdp(dqm->dev->adev, NULL); 3481 } 3482 3483 if (total_suspended) { 3484 struct copy_context_work_handler_workarea copy_context_worker; 3485 3486 INIT_WORK_ONSTACK( 3487 ©_context_worker.copy_context_work, 3488 copy_context_work_handler); 3489 3490 copy_context_worker.p = p; 3491 3492 schedule_work(©_context_worker.copy_context_work); 3493 3494 3495 flush_work(©_context_worker.copy_context_work); 3496 destroy_work_on_stack(©_context_worker.copy_context_work); 3497 } 3498 3499 if (copy_to_user((void __user *)usr_queue_id_array, queue_ids, 3500 num_queues * sizeof(uint32_t))) 3501 pr_err("copy_to_user failed on queue suspend\n"); 3502 3503 kfree(queue_ids); 3504 3505 return total_suspended; 3506 } 3507 3508 static uint32_t set_queue_type_for_user(struct queue_properties *q_props) 3509 { 3510 switch (q_props->type) { 3511 case KFD_QUEUE_TYPE_COMPUTE: 3512 return q_props->format == KFD_QUEUE_FORMAT_PM4 3513 ? KFD_IOC_QUEUE_TYPE_COMPUTE 3514 : KFD_IOC_QUEUE_TYPE_COMPUTE_AQL; 3515 case KFD_QUEUE_TYPE_SDMA: 3516 return KFD_IOC_QUEUE_TYPE_SDMA; 3517 case KFD_QUEUE_TYPE_SDMA_XGMI: 3518 return KFD_IOC_QUEUE_TYPE_SDMA_XGMI; 3519 default: 3520 WARN_ONCE(true, "queue type not recognized!"); 3521 return 0xffffffff; 3522 }; 3523 } 3524 3525 void set_queue_snapshot_entry(struct queue *q, 3526 uint64_t exception_clear_mask, 3527 struct kfd_queue_snapshot_entry *qss_entry) 3528 { 3529 qss_entry->ring_base_address = q->properties.queue_address; 3530 qss_entry->write_pointer_address = (uint64_t)q->properties.write_ptr; 3531 qss_entry->read_pointer_address = (uint64_t)q->properties.read_ptr; 3532 qss_entry->ctx_save_restore_address = 3533 q->properties.ctx_save_restore_area_address; 3534 qss_entry->ctx_save_restore_area_size = 3535 q->properties.ctx_save_restore_area_size; 3536 qss_entry->exception_status = q->properties.exception_status; 3537 qss_entry->queue_id = q->properties.queue_id; 3538 qss_entry->gpu_id = q->device->id; 3539 qss_entry->ring_size = (uint32_t)q->properties.queue_size; 3540 qss_entry->queue_type = set_queue_type_for_user(&q->properties); 3541 q->properties.exception_status &= ~exception_clear_mask; 3542 } 3543 3544 int debug_lock_and_unmap(struct device_queue_manager *dqm) 3545 { 3546 struct device *dev = dqm->dev->adev->dev; 3547 int r; 3548 3549 if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) { 3550 dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy); 3551 return -EINVAL; 3552 } 3553 3554 if (!kfd_dbg_is_per_vmid_supported(dqm->dev)) 3555 return 0; 3556 3557 dqm_lock(dqm); 3558 3559 r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, 0, false); 3560 if (r) 3561 dqm_unlock(dqm); 3562 3563 return r; 3564 } 3565 3566 int debug_map_and_unlock(struct device_queue_manager *dqm) 3567 { 3568 struct device *dev = dqm->dev->adev->dev; 3569 int r; 3570 3571 if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) { 3572 dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy); 3573 return -EINVAL; 3574 } 3575 3576 if (!kfd_dbg_is_per_vmid_supported(dqm->dev)) 3577 return 0; 3578 3579 r = map_queues_cpsch(dqm); 3580 3581 dqm_unlock(dqm); 3582 3583 return r; 3584 } 3585 3586 int debug_refresh_runlist(struct device_queue_manager *dqm) 3587 { 3588 int r = debug_lock_and_unmap(dqm); 3589 3590 if (r) 3591 return r; 3592 3593 return debug_map_and_unlock(dqm); 3594 } 3595 3596 bool kfd_dqm_is_queue_in_process(struct device_queue_manager *dqm, 3597 struct qcm_process_device *qpd, 3598 int doorbell_off, u32 *queue_format) 3599 { 3600 struct queue *q; 3601 bool r = false; 3602 3603 if (!queue_format) 3604 return r; 3605 3606 dqm_lock(dqm); 3607 3608 list_for_each_entry(q, &qpd->queues_list, list) { 3609 if (q->properties.doorbell_off == doorbell_off) { 3610 *queue_format = q->properties.format; 3611 r = true; 3612 goto out; 3613 } 3614 } 3615 3616 out: 3617 dqm_unlock(dqm); 3618 return r; 3619 } 3620 #if defined(CONFIG_DEBUG_FS) 3621 3622 static void seq_reg_dump(struct seq_file *m, 3623 uint32_t (*dump)[2], uint32_t n_regs) 3624 { 3625 uint32_t i, count; 3626 3627 for (i = 0, count = 0; i < n_regs; i++) { 3628 if (count == 0 || 3629 dump[i-1][0] + sizeof(uint32_t) != dump[i][0]) { 3630 seq_printf(m, "%s %08x: %08x", 3631 i ? "\n" : "", 3632 dump[i][0], dump[i][1]); 3633 count = 7; 3634 } else { 3635 seq_printf(m, " %08x", dump[i][1]); 3636 count--; 3637 } 3638 } 3639 3640 seq_puts(m, "\n"); 3641 } 3642 3643 int dqm_debugfs_hqds(struct seq_file *m, void *data) 3644 { 3645 struct device_queue_manager *dqm = data; 3646 uint32_t xcc_mask = dqm->dev->xcc_mask; 3647 uint32_t (*dump)[2], n_regs; 3648 int pipe, queue; 3649 int r = 0, xcc_id; 3650 uint32_t sdma_engine_start; 3651 3652 if (!dqm->sched_running) { 3653 seq_puts(m, " Device is stopped\n"); 3654 return 0; 3655 } 3656 3657 for_each_inst(xcc_id, xcc_mask) { 3658 r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev, 3659 KFD_CIK_HIQ_PIPE, 3660 KFD_CIK_HIQ_QUEUE, &dump, 3661 &n_regs, xcc_id); 3662 if (!r) { 3663 seq_printf( 3664 m, 3665 " Inst %d, HIQ on MEC %d Pipe %d Queue %d\n", 3666 xcc_id, 3667 KFD_CIK_HIQ_PIPE / get_pipes_per_mec(dqm) + 1, 3668 KFD_CIK_HIQ_PIPE % get_pipes_per_mec(dqm), 3669 KFD_CIK_HIQ_QUEUE); 3670 seq_reg_dump(m, dump, n_regs); 3671 3672 kfree(dump); 3673 } 3674 3675 for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) { 3676 int pipe_offset = pipe * get_queues_per_pipe(dqm); 3677 3678 for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) { 3679 if (!test_bit(pipe_offset + queue, 3680 dqm->dev->kfd->shared_resources.cp_queue_bitmap)) 3681 continue; 3682 3683 r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev, 3684 pipe, queue, 3685 &dump, &n_regs, 3686 xcc_id); 3687 if (r) 3688 break; 3689 3690 seq_printf(m, 3691 " Inst %d, CP Pipe %d, Queue %d\n", 3692 xcc_id, pipe, queue); 3693 seq_reg_dump(m, dump, n_regs); 3694 3695 kfree(dump); 3696 } 3697 } 3698 } 3699 3700 sdma_engine_start = dqm->dev->node_id * get_num_all_sdma_engines(dqm); 3701 for (pipe = sdma_engine_start; 3702 pipe < (sdma_engine_start + get_num_all_sdma_engines(dqm)); 3703 pipe++) { 3704 for (queue = 0; 3705 queue < dqm->dev->kfd->device_info.num_sdma_queues_per_engine; 3706 queue++) { 3707 r = dqm->dev->kfd2kgd->hqd_sdma_dump( 3708 dqm->dev->adev, pipe, queue, &dump, &n_regs); 3709 if (r) 3710 break; 3711 3712 seq_printf(m, " SDMA Engine %d, RLC %d\n", 3713 pipe, queue); 3714 seq_reg_dump(m, dump, n_regs); 3715 3716 kfree(dump); 3717 } 3718 } 3719 3720 return r; 3721 } 3722 3723 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm) 3724 { 3725 int r = 0; 3726 3727 dqm_lock(dqm); 3728 r = pm_debugfs_hang_hws(&dqm->packet_mgr); 3729 if (r) { 3730 dqm_unlock(dqm); 3731 return r; 3732 } 3733 dqm->active_runlist = true; 3734 r = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 3735 0, USE_DEFAULT_GRACE_PERIOD); 3736 dqm_unlock(dqm); 3737 3738 return r; 3739 } 3740 3741 #endif 3742