xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_device_queue_manager.c (revision 0e7f7b3a20a8531463592086579f1db31b4a3483)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/ratelimit.h>
26 #include <linux/printk.h>
27 #include <linux/slab.h>
28 #include <linux/list.h>
29 #include <linux/types.h>
30 #include <linux/bitops.h>
31 #include <linux/sched.h>
32 #include "kfd_priv.h"
33 #include "kfd_device_queue_manager.h"
34 #include "kfd_mqd_manager.h"
35 #include "cik_regs.h"
36 #include "kfd_kernel_queue.h"
37 #include "amdgpu_amdkfd.h"
38 #include "amdgpu_reset.h"
39 #include "amdgpu_sdma.h"
40 #include "mes_v11_api_def.h"
41 #include "kfd_debug.h"
42 
43 /* Size of the per-pipe EOP queue */
44 #define CIK_HPD_EOP_BYTES_LOG2 11
45 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
46 /* See unmap_queues_cpsch() */
47 #define USE_DEFAULT_GRACE_PERIOD 0xffffffff
48 
49 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
50 				  u32 pasid, unsigned int vmid);
51 
52 static int execute_queues_cpsch(struct device_queue_manager *dqm,
53 				enum kfd_unmap_queues_filter filter,
54 				uint32_t filter_param,
55 				uint32_t grace_period);
56 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
57 				enum kfd_unmap_queues_filter filter,
58 				uint32_t filter_param,
59 				uint32_t grace_period,
60 				bool reset);
61 
62 static int map_queues_cpsch(struct device_queue_manager *dqm);
63 
64 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
65 				struct queue *q);
66 
67 static inline void deallocate_hqd(struct device_queue_manager *dqm,
68 				struct queue *q);
69 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q);
70 static int allocate_sdma_queue(struct device_queue_manager *dqm,
71 				struct queue *q, const uint32_t *restore_sdma_id);
72 
73 static int reset_queues_on_hws_hang(struct device_queue_manager *dqm, bool is_sdma);
74 
75 static inline
76 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
77 {
78 	if (type == KFD_QUEUE_TYPE_SDMA || type == KFD_QUEUE_TYPE_SDMA_XGMI)
79 		return KFD_MQD_TYPE_SDMA;
80 	return KFD_MQD_TYPE_CP;
81 }
82 
83 static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe)
84 {
85 	int i;
86 	int pipe_offset = (mec * dqm->dev->kfd->shared_resources.num_pipe_per_mec
87 		+ pipe) * dqm->dev->kfd->shared_resources.num_queue_per_pipe;
88 
89 	/* queue is available for KFD usage if bit is 1 */
90 	for (i = 0; i <  dqm->dev->kfd->shared_resources.num_queue_per_pipe; ++i)
91 		if (test_bit(pipe_offset + i,
92 			      dqm->dev->kfd->shared_resources.cp_queue_bitmap))
93 			return true;
94 	return false;
95 }
96 
97 unsigned int get_cp_queues_num(struct device_queue_manager *dqm)
98 {
99 	return bitmap_weight(dqm->dev->kfd->shared_resources.cp_queue_bitmap,
100 				AMDGPU_MAX_QUEUES);
101 }
102 
103 unsigned int get_queues_per_pipe(struct device_queue_manager *dqm)
104 {
105 	return dqm->dev->kfd->shared_resources.num_queue_per_pipe;
106 }
107 
108 unsigned int get_pipes_per_mec(struct device_queue_manager *dqm)
109 {
110 	return dqm->dev->kfd->shared_resources.num_pipe_per_mec;
111 }
112 
113 static unsigned int get_num_all_sdma_engines(struct device_queue_manager *dqm)
114 {
115 	return kfd_get_num_sdma_engines(dqm->dev) +
116 		kfd_get_num_xgmi_sdma_engines(dqm->dev);
117 }
118 
119 unsigned int get_num_sdma_queues(struct device_queue_manager *dqm)
120 {
121 	return kfd_get_num_sdma_engines(dqm->dev) *
122 		dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
123 }
124 
125 unsigned int get_num_xgmi_sdma_queues(struct device_queue_manager *dqm)
126 {
127 	return kfd_get_num_xgmi_sdma_engines(dqm->dev) *
128 		dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
129 }
130 
131 static void init_sdma_bitmaps(struct device_queue_manager *dqm)
132 {
133 	bitmap_zero(dqm->sdma_bitmap, KFD_MAX_SDMA_QUEUES);
134 	bitmap_set(dqm->sdma_bitmap, 0, get_num_sdma_queues(dqm));
135 
136 	bitmap_zero(dqm->xgmi_sdma_bitmap, KFD_MAX_SDMA_QUEUES);
137 	bitmap_set(dqm->xgmi_sdma_bitmap, 0, get_num_xgmi_sdma_queues(dqm));
138 
139 	/* Mask out the reserved queues */
140 	bitmap_clear(dqm->sdma_bitmap, 0, kfd_get_num_sdma_engines(dqm->dev) *
141 			dqm->dev->kfd->device_info.num_reserved_sdma_queues_per_engine);
142 	bitmap_clear(dqm->xgmi_sdma_bitmap, 0, kfd_get_num_xgmi_sdma_engines(dqm->dev) *
143 			dqm->dev->kfd->device_info.num_reserved_sdma_queues_per_engine);
144 }
145 
146 void program_sh_mem_settings(struct device_queue_manager *dqm,
147 					struct qcm_process_device *qpd)
148 {
149 	uint32_t xcc_mask = dqm->dev->xcc_mask;
150 	int xcc_id;
151 
152 	for_each_inst(xcc_id, xcc_mask)
153 		dqm->dev->kfd2kgd->program_sh_mem_settings(
154 			dqm->dev->adev, qpd->vmid, qpd->sh_mem_config,
155 			qpd->sh_mem_ape1_base, qpd->sh_mem_ape1_limit,
156 			qpd->sh_mem_bases, xcc_id);
157 }
158 
159 static void kfd_hws_hang(struct device_queue_manager *dqm)
160 {
161 	struct device_process_node *cur;
162 	struct qcm_process_device *qpd;
163 	struct queue *q;
164 
165 	/* Mark all device queues as reset. */
166 	list_for_each_entry(cur, &dqm->queues, list) {
167 		qpd = cur->qpd;
168 		list_for_each_entry(q, &qpd->queues_list, list) {
169 			struct kfd_process_device *pdd = qpd_to_pdd(qpd);
170 
171 			pdd->has_reset_queue = true;
172 		}
173 	}
174 
175 	/*
176 	 * Issue a GPU reset if HWS is unresponsive
177 	 */
178 	amdgpu_amdkfd_gpu_reset(dqm->dev->adev);
179 }
180 
181 static int convert_to_mes_queue_type(int queue_type)
182 {
183 	int mes_queue_type;
184 
185 	switch (queue_type) {
186 	case KFD_QUEUE_TYPE_COMPUTE:
187 		mes_queue_type = MES_QUEUE_TYPE_COMPUTE;
188 		break;
189 	case KFD_QUEUE_TYPE_SDMA:
190 		mes_queue_type = MES_QUEUE_TYPE_SDMA;
191 		break;
192 	default:
193 		WARN(1, "Invalid queue type %d", queue_type);
194 		mes_queue_type = -EINVAL;
195 		break;
196 	}
197 
198 	return mes_queue_type;
199 }
200 
201 static int add_queue_mes(struct device_queue_manager *dqm, struct queue *q,
202 			 struct qcm_process_device *qpd)
203 {
204 	struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
205 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
206 	struct mes_add_queue_input queue_input;
207 	int r, queue_type;
208 	uint64_t wptr_addr_off;
209 
210 	if (!dqm->sched_running || dqm->sched_halt)
211 		return 0;
212 	if (!down_read_trylock(&adev->reset_domain->sem))
213 		return -EIO;
214 
215 	memset(&queue_input, 0x0, sizeof(struct mes_add_queue_input));
216 	queue_input.process_id = pdd->pasid;
217 	queue_input.page_table_base_addr =  qpd->page_table_base;
218 	queue_input.process_va_start = 0;
219 	queue_input.process_va_end = adev->vm_manager.max_pfn - 1;
220 	/* MES unit for quantum is 100ns */
221 	queue_input.process_quantum = KFD_MES_PROCESS_QUANTUM;  /* Equivalent to 10ms. */
222 	queue_input.process_context_addr = pdd->proc_ctx_gpu_addr;
223 	queue_input.gang_quantum = KFD_MES_GANG_QUANTUM; /* Equivalent to 1ms */
224 	queue_input.gang_context_addr = q->gang_ctx_gpu_addr;
225 	queue_input.inprocess_gang_priority = q->properties.priority;
226 	queue_input.gang_global_priority_level =
227 					AMDGPU_MES_PRIORITY_LEVEL_NORMAL;
228 	queue_input.doorbell_offset = q->properties.doorbell_off;
229 	queue_input.mqd_addr = q->gart_mqd_addr;
230 	queue_input.wptr_addr = (uint64_t)q->properties.write_ptr;
231 
232 	wptr_addr_off = (uint64_t)q->properties.write_ptr & (PAGE_SIZE - 1);
233 	queue_input.wptr_mc_addr = amdgpu_bo_gpu_offset(q->properties.wptr_bo) + wptr_addr_off;
234 
235 	queue_input.is_kfd_process = 1;
236 	queue_input.is_aql_queue = (q->properties.format == KFD_QUEUE_FORMAT_AQL);
237 	queue_input.queue_size = q->properties.queue_size >> 2;
238 
239 	queue_input.paging = false;
240 	queue_input.tba_addr = qpd->tba_addr;
241 	queue_input.tma_addr = qpd->tma_addr;
242 	queue_input.trap_en = !kfd_dbg_has_cwsr_workaround(q->device);
243 	queue_input.skip_process_ctx_clear =
244 		qpd->pqm->process->runtime_info.runtime_state == DEBUG_RUNTIME_STATE_ENABLED &&
245 						(qpd->pqm->process->debug_trap_enabled ||
246 						 kfd_dbg_has_ttmps_always_setup(q->device));
247 
248 	queue_type = convert_to_mes_queue_type(q->properties.type);
249 	if (queue_type < 0) {
250 		dev_err(adev->dev, "Queue type not supported with MES, queue:%d\n",
251 			q->properties.type);
252 		up_read(&adev->reset_domain->sem);
253 		return -EINVAL;
254 	}
255 	queue_input.queue_type = (uint32_t)queue_type;
256 
257 	queue_input.exclusively_scheduled = q->properties.is_gws;
258 
259 	amdgpu_mes_lock(&adev->mes);
260 	r = adev->mes.funcs->add_hw_queue(&adev->mes, &queue_input);
261 	amdgpu_mes_unlock(&adev->mes);
262 	up_read(&adev->reset_domain->sem);
263 	if (r) {
264 		dev_err(adev->dev, "failed to add hardware queue to MES, doorbell=0x%x\n",
265 			q->properties.doorbell_off);
266 		dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
267 		kfd_hws_hang(dqm);
268 	}
269 
270 	return r;
271 }
272 
273 static int remove_queue_mes(struct device_queue_manager *dqm, struct queue *q,
274 			struct qcm_process_device *qpd)
275 {
276 	struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
277 	int r;
278 	struct mes_remove_queue_input queue_input;
279 
280 	if (!dqm->sched_running || dqm->sched_halt)
281 		return 0;
282 	if (!down_read_trylock(&adev->reset_domain->sem))
283 		return -EIO;
284 
285 	memset(&queue_input, 0x0, sizeof(struct mes_remove_queue_input));
286 	queue_input.doorbell_offset = q->properties.doorbell_off;
287 	queue_input.gang_context_addr = q->gang_ctx_gpu_addr;
288 
289 	amdgpu_mes_lock(&adev->mes);
290 	r = adev->mes.funcs->remove_hw_queue(&adev->mes, &queue_input);
291 	amdgpu_mes_unlock(&adev->mes);
292 	up_read(&adev->reset_domain->sem);
293 
294 	if (r) {
295 		dev_err(adev->dev, "failed to remove hardware queue from MES, doorbell=0x%x\n",
296 			q->properties.doorbell_off);
297 		dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
298 		kfd_hws_hang(dqm);
299 	}
300 
301 	return r;
302 }
303 
304 static int remove_all_kfd_queues_mes(struct device_queue_manager *dqm)
305 {
306 	struct device_process_node *cur;
307 	struct device *dev = dqm->dev->adev->dev;
308 	struct qcm_process_device *qpd;
309 	struct queue *q;
310 	int retval = 0;
311 
312 	list_for_each_entry(cur, &dqm->queues, list) {
313 		qpd = cur->qpd;
314 		list_for_each_entry(q, &qpd->queues_list, list) {
315 			if (q->properties.is_active) {
316 				retval = remove_queue_mes(dqm, q, qpd);
317 				if (retval) {
318 					dev_err(dev, "%s: Failed to remove queue %d for dev %d",
319 						__func__,
320 						q->properties.queue_id,
321 						dqm->dev->id);
322 					return retval;
323 				}
324 			}
325 		}
326 	}
327 
328 	return retval;
329 }
330 
331 static int add_all_kfd_queues_mes(struct device_queue_manager *dqm)
332 {
333 	struct device_process_node *cur;
334 	struct device *dev = dqm->dev->adev->dev;
335 	struct qcm_process_device *qpd;
336 	struct queue *q;
337 	int retval = 0;
338 
339 	list_for_each_entry(cur, &dqm->queues, list) {
340 		qpd = cur->qpd;
341 		list_for_each_entry(q, &qpd->queues_list, list) {
342 			if (!q->properties.is_active)
343 				continue;
344 			retval = add_queue_mes(dqm, q, qpd);
345 			if (retval) {
346 				dev_err(dev, "%s: Failed to add queue %d for dev %d",
347 					__func__,
348 					q->properties.queue_id,
349 					dqm->dev->id);
350 				return retval;
351 			}
352 		}
353 	}
354 
355 	return retval;
356 }
357 
358 static int suspend_all_queues_mes(struct device_queue_manager *dqm)
359 {
360 	struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
361 	int r = 0;
362 
363 	if (!down_read_trylock(&adev->reset_domain->sem))
364 		return -EIO;
365 
366 	r = amdgpu_mes_suspend(adev);
367 	up_read(&adev->reset_domain->sem);
368 
369 	if (r) {
370 		dev_err(adev->dev, "failed to suspend gangs from MES\n");
371 		dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
372 		kfd_hws_hang(dqm);
373 	}
374 
375 	return r;
376 }
377 
378 static int resume_all_queues_mes(struct device_queue_manager *dqm)
379 {
380 	struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
381 	int r = 0;
382 
383 	if (!down_read_trylock(&adev->reset_domain->sem))
384 		return -EIO;
385 
386 	r = amdgpu_mes_resume(adev);
387 	up_read(&adev->reset_domain->sem);
388 
389 	if (r) {
390 		dev_err(adev->dev, "failed to resume gangs from MES\n");
391 		dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
392 		kfd_hws_hang(dqm);
393 	}
394 
395 	return r;
396 }
397 
398 static void increment_queue_count(struct device_queue_manager *dqm,
399 				  struct qcm_process_device *qpd,
400 				  struct queue *q)
401 {
402 	dqm->active_queue_count++;
403 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
404 	    q->properties.type == KFD_QUEUE_TYPE_DIQ)
405 		dqm->active_cp_queue_count++;
406 
407 	if (q->properties.is_gws) {
408 		dqm->gws_queue_count++;
409 		qpd->mapped_gws_queue = true;
410 	}
411 }
412 
413 static void decrement_queue_count(struct device_queue_manager *dqm,
414 				  struct qcm_process_device *qpd,
415 				  struct queue *q)
416 {
417 	dqm->active_queue_count--;
418 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
419 	    q->properties.type == KFD_QUEUE_TYPE_DIQ)
420 		dqm->active_cp_queue_count--;
421 
422 	if (q->properties.is_gws) {
423 		dqm->gws_queue_count--;
424 		qpd->mapped_gws_queue = false;
425 	}
426 }
427 
428 /*
429  * Allocate a doorbell ID to this queue.
430  * If doorbell_id is passed in, make sure requested ID is valid then allocate it.
431  */
432 static int allocate_doorbell(struct qcm_process_device *qpd,
433 			     struct queue *q,
434 			     uint32_t const *restore_id)
435 {
436 	struct kfd_node *dev = qpd->dqm->dev;
437 
438 	if (!KFD_IS_SOC15(dev)) {
439 		/* On pre-SOC15 chips we need to use the queue ID to
440 		 * preserve the user mode ABI.
441 		 */
442 
443 		if (restore_id && *restore_id != q->properties.queue_id)
444 			return -EINVAL;
445 
446 		q->doorbell_id = q->properties.queue_id;
447 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
448 			q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
449 		/* For SDMA queues on SOC15 with 8-byte doorbell, use static
450 		 * doorbell assignments based on the engine and queue id.
451 		 * The doobell index distance between RLC (2*i) and (2*i+1)
452 		 * for a SDMA engine is 512.
453 		 */
454 
455 		uint32_t *idx_offset = dev->kfd->shared_resources.sdma_doorbell_idx;
456 
457 		/*
458 		 * q->properties.sdma_engine_id corresponds to the virtual
459 		 * sdma engine number. However, for doorbell allocation,
460 		 * we need the physical sdma engine id in order to get the
461 		 * correct doorbell offset.
462 		 */
463 		uint32_t valid_id = idx_offset[qpd->dqm->dev->node_id *
464 					       get_num_all_sdma_engines(qpd->dqm) +
465 					       q->properties.sdma_engine_id]
466 						+ (q->properties.sdma_queue_id & 1)
467 						* KFD_QUEUE_DOORBELL_MIRROR_OFFSET
468 						+ (q->properties.sdma_queue_id >> 1);
469 
470 		if (restore_id && *restore_id != valid_id)
471 			return -EINVAL;
472 		q->doorbell_id = valid_id;
473 	} else {
474 		/* For CP queues on SOC15 */
475 		if (restore_id) {
476 			/* make sure that ID is free  */
477 			if (__test_and_set_bit(*restore_id, qpd->doorbell_bitmap))
478 				return -EINVAL;
479 
480 			q->doorbell_id = *restore_id;
481 		} else {
482 			/* or reserve a free doorbell ID */
483 			unsigned int found;
484 
485 			found = find_first_zero_bit(qpd->doorbell_bitmap,
486 						    KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
487 			if (found >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) {
488 				pr_debug("No doorbells available");
489 				return -EBUSY;
490 			}
491 			set_bit(found, qpd->doorbell_bitmap);
492 			q->doorbell_id = found;
493 		}
494 	}
495 
496 	q->properties.doorbell_off = amdgpu_doorbell_index_on_bar(dev->adev,
497 								  qpd->proc_doorbells,
498 								  q->doorbell_id,
499 								  dev->kfd->device_info.doorbell_size);
500 	return 0;
501 }
502 
503 static void deallocate_doorbell(struct qcm_process_device *qpd,
504 				struct queue *q)
505 {
506 	unsigned int old;
507 	struct kfd_node *dev = qpd->dqm->dev;
508 
509 	if (!KFD_IS_SOC15(dev) ||
510 	    q->properties.type == KFD_QUEUE_TYPE_SDMA ||
511 	    q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
512 		return;
513 
514 	old = test_and_clear_bit(q->doorbell_id, qpd->doorbell_bitmap);
515 	WARN_ON(!old);
516 }
517 
518 static void program_trap_handler_settings(struct device_queue_manager *dqm,
519 				struct qcm_process_device *qpd)
520 {
521 	uint32_t xcc_mask = dqm->dev->xcc_mask;
522 	int xcc_id;
523 
524 	if (dqm->dev->kfd2kgd->program_trap_handler_settings)
525 		for_each_inst(xcc_id, xcc_mask)
526 			dqm->dev->kfd2kgd->program_trap_handler_settings(
527 				dqm->dev->adev, qpd->vmid, qpd->tba_addr,
528 				qpd->tma_addr, xcc_id);
529 }
530 
531 static int allocate_vmid(struct device_queue_manager *dqm,
532 			struct qcm_process_device *qpd,
533 			struct queue *q)
534 {
535 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
536 	struct device *dev = dqm->dev->adev->dev;
537 	int allocated_vmid = -1, i;
538 
539 	for (i = dqm->dev->vm_info.first_vmid_kfd;
540 			i <= dqm->dev->vm_info.last_vmid_kfd; i++) {
541 		if (!dqm->vmid_pasid[i]) {
542 			allocated_vmid = i;
543 			break;
544 		}
545 	}
546 
547 	if (allocated_vmid < 0) {
548 		dev_err(dev, "no more vmid to allocate\n");
549 		return -ENOSPC;
550 	}
551 
552 	pr_debug("vmid allocated: %d\n", allocated_vmid);
553 
554 	dqm->vmid_pasid[allocated_vmid] = pdd->pasid;
555 
556 	set_pasid_vmid_mapping(dqm, pdd->pasid, allocated_vmid);
557 
558 	qpd->vmid = allocated_vmid;
559 	q->properties.vmid = allocated_vmid;
560 
561 	program_sh_mem_settings(dqm, qpd);
562 
563 	if (KFD_IS_SOC15(dqm->dev) && dqm->dev->kfd->cwsr_enabled)
564 		program_trap_handler_settings(dqm, qpd);
565 
566 	/* qpd->page_table_base is set earlier when register_process()
567 	 * is called, i.e. when the first queue is created.
568 	 */
569 	dqm->dev->kfd2kgd->set_vm_context_page_table_base(dqm->dev->adev,
570 			qpd->vmid,
571 			qpd->page_table_base);
572 	/* invalidate the VM context after pasid and vmid mapping is set up */
573 	kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY);
574 
575 	if (dqm->dev->kfd2kgd->set_scratch_backing_va)
576 		dqm->dev->kfd2kgd->set_scratch_backing_va(dqm->dev->adev,
577 				qpd->sh_hidden_private_base, qpd->vmid);
578 
579 	return 0;
580 }
581 
582 static int flush_texture_cache_nocpsch(struct kfd_node *kdev,
583 				struct qcm_process_device *qpd)
584 {
585 	const struct packet_manager_funcs *pmf = qpd->dqm->packet_mgr.pmf;
586 	int ret;
587 
588 	if (!qpd->ib_kaddr)
589 		return -ENOMEM;
590 
591 	ret = pmf->release_mem(qpd->ib_base, (uint32_t *)qpd->ib_kaddr);
592 	if (ret)
593 		return ret;
594 
595 	return amdgpu_amdkfd_submit_ib(kdev->adev, KGD_ENGINE_MEC1, qpd->vmid,
596 				qpd->ib_base, (uint32_t *)qpd->ib_kaddr,
597 				pmf->release_mem_size / sizeof(uint32_t));
598 }
599 
600 static void deallocate_vmid(struct device_queue_manager *dqm,
601 				struct qcm_process_device *qpd,
602 				struct queue *q)
603 {
604 	struct device *dev = dqm->dev->adev->dev;
605 
606 	/* On GFX v7, CP doesn't flush TC at dequeue */
607 	if (q->device->adev->asic_type == CHIP_HAWAII)
608 		if (flush_texture_cache_nocpsch(q->device, qpd))
609 			dev_err(dev, "Failed to flush TC\n");
610 
611 	kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY);
612 
613 	/* Release the vmid mapping */
614 	set_pasid_vmid_mapping(dqm, 0, qpd->vmid);
615 	dqm->vmid_pasid[qpd->vmid] = 0;
616 
617 	qpd->vmid = 0;
618 	q->properties.vmid = 0;
619 }
620 
621 static int create_queue_nocpsch(struct device_queue_manager *dqm,
622 				struct queue *q,
623 				struct qcm_process_device *qpd,
624 				const struct kfd_criu_queue_priv_data *qd,
625 				const void *restore_mqd, const void *restore_ctl_stack)
626 {
627 	struct mqd_manager *mqd_mgr;
628 	int retval;
629 
630 	dqm_lock(dqm);
631 
632 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
633 		pr_warn("Can't create new usermode queue because %d queues were already created\n",
634 				dqm->total_queue_count);
635 		retval = -EPERM;
636 		goto out_unlock;
637 	}
638 
639 	if (list_empty(&qpd->queues_list)) {
640 		retval = allocate_vmid(dqm, qpd, q);
641 		if (retval)
642 			goto out_unlock;
643 	}
644 	q->properties.vmid = qpd->vmid;
645 	/*
646 	 * Eviction state logic: mark all queues as evicted, even ones
647 	 * not currently active. Restoring inactive queues later only
648 	 * updates the is_evicted flag but is a no-op otherwise.
649 	 */
650 	q->properties.is_evicted = !!qpd->evicted;
651 
652 	q->properties.tba_addr = qpd->tba_addr;
653 	q->properties.tma_addr = qpd->tma_addr;
654 
655 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
656 			q->properties.type)];
657 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
658 		retval = allocate_hqd(dqm, q);
659 		if (retval)
660 			goto deallocate_vmid;
661 		pr_debug("Loading mqd to hqd on pipe %d, queue %d\n",
662 			q->pipe, q->queue);
663 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
664 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
665 		retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL);
666 		if (retval)
667 			goto deallocate_vmid;
668 		dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
669 	}
670 
671 	retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL);
672 	if (retval)
673 		goto out_deallocate_hqd;
674 
675 	/* Temporarily release dqm lock to avoid a circular lock dependency */
676 	dqm_unlock(dqm);
677 	q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
678 	dqm_lock(dqm);
679 
680 	if (!q->mqd_mem_obj) {
681 		retval = -ENOMEM;
682 		goto out_deallocate_doorbell;
683 	}
684 
685 	if (qd)
686 		mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr,
687 				     &q->properties, restore_mqd, restore_ctl_stack,
688 				     qd->ctl_stack_size);
689 	else
690 		mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
691 					&q->gart_mqd_addr, &q->properties);
692 
693 	if (q->properties.is_active) {
694 		if (!dqm->sched_running) {
695 			WARN_ONCE(1, "Load non-HWS mqd while stopped\n");
696 			goto add_queue_to_list;
697 		}
698 
699 		if (WARN(q->process->mm != current->mm,
700 					"should only run in user thread"))
701 			retval = -EFAULT;
702 		else
703 			retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
704 					q->queue, &q->properties, current->mm);
705 		if (retval)
706 			goto out_free_mqd;
707 	}
708 
709 add_queue_to_list:
710 	list_add(&q->list, &qpd->queues_list);
711 	qpd->queue_count++;
712 	if (q->properties.is_active)
713 		increment_queue_count(dqm, qpd, q);
714 
715 	/*
716 	 * Unconditionally increment this counter, regardless of the queue's
717 	 * type or whether the queue is active.
718 	 */
719 	dqm->total_queue_count++;
720 	pr_debug("Total of %d queues are accountable so far\n",
721 			dqm->total_queue_count);
722 	goto out_unlock;
723 
724 out_free_mqd:
725 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
726 out_deallocate_doorbell:
727 	deallocate_doorbell(qpd, q);
728 out_deallocate_hqd:
729 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
730 		deallocate_hqd(dqm, q);
731 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
732 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
733 		deallocate_sdma_queue(dqm, q);
734 deallocate_vmid:
735 	if (list_empty(&qpd->queues_list))
736 		deallocate_vmid(dqm, qpd, q);
737 out_unlock:
738 	dqm_unlock(dqm);
739 	return retval;
740 }
741 
742 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
743 {
744 	bool set;
745 	int pipe, bit, i;
746 
747 	set = false;
748 
749 	for (pipe = dqm->next_pipe_to_allocate, i = 0;
750 			i < get_pipes_per_mec(dqm);
751 			pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) {
752 
753 		if (!is_pipe_enabled(dqm, 0, pipe))
754 			continue;
755 
756 		if (dqm->allocated_queues[pipe] != 0) {
757 			bit = ffs(dqm->allocated_queues[pipe]) - 1;
758 			dqm->allocated_queues[pipe] &= ~(1 << bit);
759 			q->pipe = pipe;
760 			q->queue = bit;
761 			set = true;
762 			break;
763 		}
764 	}
765 
766 	if (!set)
767 		return -EBUSY;
768 
769 	pr_debug("hqd slot - pipe %d, queue %d\n", q->pipe, q->queue);
770 	/* horizontal hqd allocation */
771 	dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm);
772 
773 	return 0;
774 }
775 
776 static inline void deallocate_hqd(struct device_queue_manager *dqm,
777 				struct queue *q)
778 {
779 	dqm->allocated_queues[q->pipe] |= (1 << q->queue);
780 }
781 
782 #define SQ_IND_CMD_CMD_KILL		0x00000003
783 #define SQ_IND_CMD_MODE_BROADCAST	0x00000001
784 
785 static int dbgdev_wave_reset_wavefronts(struct kfd_node *dev, struct kfd_process *p)
786 {
787 	int status = 0;
788 	unsigned int vmid;
789 	uint16_t queried_pasid;
790 	union SQ_CMD_BITS reg_sq_cmd;
791 	union GRBM_GFX_INDEX_BITS reg_gfx_index;
792 	struct kfd_process_device *pdd;
793 	int first_vmid_to_scan = dev->vm_info.first_vmid_kfd;
794 	int last_vmid_to_scan = dev->vm_info.last_vmid_kfd;
795 	uint32_t xcc_mask = dev->xcc_mask;
796 	int xcc_id;
797 
798 	reg_sq_cmd.u32All = 0;
799 	reg_gfx_index.u32All = 0;
800 
801 	pr_debug("Killing all process wavefronts\n");
802 
803 	if (!dev->kfd2kgd->get_atc_vmid_pasid_mapping_info) {
804 		dev_err(dev->adev->dev, "no vmid pasid mapping supported\n");
805 		return -EOPNOTSUPP;
806 	}
807 
808 	/* taking the VMID for that process on the safe way using PDD */
809 	pdd = kfd_get_process_device_data(dev, p);
810 	if (!pdd)
811 		return -EFAULT;
812 
813 	/* Scan all registers in the range ATC_VMID8_PASID_MAPPING ..
814 	 * ATC_VMID15_PASID_MAPPING
815 	 * to check which VMID the current process is mapped to.
816 	 */
817 
818 	for (vmid = first_vmid_to_scan; vmid <= last_vmid_to_scan; vmid++) {
819 		status = dev->kfd2kgd->get_atc_vmid_pasid_mapping_info
820 				(dev->adev, vmid, &queried_pasid);
821 
822 		if (status && queried_pasid == pdd->pasid) {
823 			pr_debug("Killing wave fronts of vmid %d and process pid %d\n",
824 					vmid, p->lead_thread->pid);
825 			break;
826 		}
827 	}
828 
829 	if (vmid > last_vmid_to_scan) {
830 		dev_err(dev->adev->dev, "Didn't find vmid for process pid %d\n",
831 				p->lead_thread->pid);
832 		return -EFAULT;
833 	}
834 
835 	reg_gfx_index.bits.sh_broadcast_writes = 1;
836 	reg_gfx_index.bits.se_broadcast_writes = 1;
837 	reg_gfx_index.bits.instance_broadcast_writes = 1;
838 	reg_sq_cmd.bits.mode = SQ_IND_CMD_MODE_BROADCAST;
839 	reg_sq_cmd.bits.cmd = SQ_IND_CMD_CMD_KILL;
840 	reg_sq_cmd.bits.vm_id = vmid;
841 
842 	for_each_inst(xcc_id, xcc_mask)
843 		dev->kfd2kgd->wave_control_execute(
844 			dev->adev, reg_gfx_index.u32All,
845 			reg_sq_cmd.u32All, xcc_id);
846 
847 	return 0;
848 }
849 
850 /* Access to DQM has to be locked before calling destroy_queue_nocpsch_locked
851  * to avoid asynchronized access
852  */
853 static int destroy_queue_nocpsch_locked(struct device_queue_manager *dqm,
854 				struct qcm_process_device *qpd,
855 				struct queue *q)
856 {
857 	int retval;
858 	struct mqd_manager *mqd_mgr;
859 
860 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(q->properties.type)];
861 
862 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
863 		deallocate_hqd(dqm, q);
864 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
865 		deallocate_sdma_queue(dqm, q);
866 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
867 		deallocate_sdma_queue(dqm, q);
868 	else {
869 		pr_debug("q->properties.type %d is invalid\n",
870 				q->properties.type);
871 		return -EINVAL;
872 	}
873 	dqm->total_queue_count--;
874 
875 	deallocate_doorbell(qpd, q);
876 
877 	if (!dqm->sched_running) {
878 		WARN_ONCE(1, "Destroy non-HWS queue while stopped\n");
879 		return 0;
880 	}
881 
882 	retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
883 				KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
884 				KFD_UNMAP_LATENCY_MS,
885 				q->pipe, q->queue);
886 	if (retval == -ETIME)
887 		qpd->reset_wavefronts = true;
888 
889 	list_del(&q->list);
890 	if (list_empty(&qpd->queues_list)) {
891 		if (qpd->reset_wavefronts) {
892 			pr_warn("Resetting wave fronts (nocpsch) on dev %p\n",
893 					dqm->dev);
894 			/* dbgdev_wave_reset_wavefronts has to be called before
895 			 * deallocate_vmid(), i.e. when vmid is still in use.
896 			 */
897 			dbgdev_wave_reset_wavefronts(dqm->dev,
898 					qpd->pqm->process);
899 			qpd->reset_wavefronts = false;
900 		}
901 
902 		deallocate_vmid(dqm, qpd, q);
903 	}
904 	qpd->queue_count--;
905 	if (q->properties.is_active)
906 		decrement_queue_count(dqm, qpd, q);
907 
908 	return retval;
909 }
910 
911 static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
912 				struct qcm_process_device *qpd,
913 				struct queue *q)
914 {
915 	int retval;
916 	uint64_t sdma_val = 0;
917 	struct device *dev = dqm->dev->adev->dev;
918 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
919 	struct mqd_manager *mqd_mgr =
920 		dqm->mqd_mgrs[get_mqd_type_from_queue_type(q->properties.type)];
921 
922 	/* Get the SDMA queue stats */
923 	if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
924 	    (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
925 		retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr,
926 							&sdma_val);
927 		if (retval)
928 			dev_err(dev, "Failed to read SDMA queue counter for queue: %d\n",
929 				q->properties.queue_id);
930 	}
931 
932 	dqm_lock(dqm);
933 	retval = destroy_queue_nocpsch_locked(dqm, qpd, q);
934 	if (!retval)
935 		pdd->sdma_past_activity_counter += sdma_val;
936 	dqm_unlock(dqm);
937 
938 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
939 
940 	return retval;
941 }
942 
943 static int update_queue(struct device_queue_manager *dqm, struct queue *q,
944 			struct mqd_update_info *minfo)
945 {
946 	int retval = 0;
947 	struct device *dev = dqm->dev->adev->dev;
948 	struct mqd_manager *mqd_mgr;
949 	struct kfd_process_device *pdd;
950 	bool prev_active = false;
951 
952 	dqm_lock(dqm);
953 	pdd = kfd_get_process_device_data(q->device, q->process);
954 	if (!pdd) {
955 		retval = -ENODEV;
956 		goto out_unlock;
957 	}
958 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
959 			q->properties.type)];
960 
961 	/* Save previous activity state for counters */
962 	prev_active = q->properties.is_active;
963 
964 	/* Make sure the queue is unmapped before updating the MQD */
965 	if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
966 		if (!dqm->dev->kfd->shared_resources.enable_mes)
967 			retval = unmap_queues_cpsch(dqm,
968 						    KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD, false);
969 		else if (prev_active)
970 			retval = remove_queue_mes(dqm, q, &pdd->qpd);
971 
972 		/* queue is reset so inaccessable  */
973 		if (pdd->has_reset_queue) {
974 			retval = -EACCES;
975 			goto out_unlock;
976 		}
977 
978 		if (retval) {
979 			dev_err(dev, "unmap queue failed\n");
980 			goto out_unlock;
981 		}
982 	} else if (prev_active &&
983 		   (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
984 		    q->properties.type == KFD_QUEUE_TYPE_SDMA ||
985 		    q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
986 
987 		if (!dqm->sched_running) {
988 			WARN_ONCE(1, "Update non-HWS queue while stopped\n");
989 			goto out_unlock;
990 		}
991 
992 		retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
993 				(dqm->dev->kfd->cwsr_enabled ?
994 				 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE :
995 				 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN),
996 				KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
997 		if (retval) {
998 			dev_err(dev, "destroy mqd failed\n");
999 			goto out_unlock;
1000 		}
1001 	}
1002 
1003 	mqd_mgr->update_mqd(mqd_mgr, q->mqd, &q->properties, minfo);
1004 
1005 	/*
1006 	 * check active state vs. the previous state and modify
1007 	 * counter accordingly. map_queues_cpsch uses the
1008 	 * dqm->active_queue_count to determine whether a new runlist must be
1009 	 * uploaded.
1010 	 */
1011 	if (q->properties.is_active && !prev_active) {
1012 		increment_queue_count(dqm, &pdd->qpd, q);
1013 	} else if (!q->properties.is_active && prev_active) {
1014 		decrement_queue_count(dqm, &pdd->qpd, q);
1015 	} else if (q->gws && !q->properties.is_gws) {
1016 		if (q->properties.is_active) {
1017 			dqm->gws_queue_count++;
1018 			pdd->qpd.mapped_gws_queue = true;
1019 		}
1020 		q->properties.is_gws = true;
1021 	} else if (!q->gws && q->properties.is_gws) {
1022 		if (q->properties.is_active) {
1023 			dqm->gws_queue_count--;
1024 			pdd->qpd.mapped_gws_queue = false;
1025 		}
1026 		q->properties.is_gws = false;
1027 	}
1028 
1029 	if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
1030 		if (!dqm->dev->kfd->shared_resources.enable_mes)
1031 			retval = map_queues_cpsch(dqm);
1032 		else if (q->properties.is_active)
1033 			retval = add_queue_mes(dqm, q, &pdd->qpd);
1034 	} else if (q->properties.is_active &&
1035 		 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
1036 		  q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1037 		  q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
1038 		if (WARN(q->process->mm != current->mm,
1039 			 "should only run in user thread"))
1040 			retval = -EFAULT;
1041 		else
1042 			retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd,
1043 						   q->pipe, q->queue,
1044 						   &q->properties, current->mm);
1045 	}
1046 
1047 out_unlock:
1048 	dqm_unlock(dqm);
1049 	return retval;
1050 }
1051 
1052 /* suspend_single_queue does not lock the dqm like the
1053  * evict_process_queues_cpsch or evict_process_queues_nocpsch. You should
1054  * lock the dqm before calling, and unlock after calling.
1055  *
1056  * The reason we don't lock the dqm is because this function may be
1057  * called on multiple queues in a loop, so rather than locking/unlocking
1058  * multiple times, we will just keep the dqm locked for all of the calls.
1059  */
1060 static int suspend_single_queue(struct device_queue_manager *dqm,
1061 				      struct kfd_process_device *pdd,
1062 				      struct queue *q)
1063 {
1064 	bool is_new;
1065 
1066 	if (q->properties.is_suspended)
1067 		return 0;
1068 
1069 	pr_debug("Suspending process pid %d queue [%i]\n",
1070 			pdd->process->lead_thread->pid,
1071 			q->properties.queue_id);
1072 
1073 	is_new = q->properties.exception_status & KFD_EC_MASK(EC_QUEUE_NEW);
1074 
1075 	if (is_new || q->properties.is_being_destroyed) {
1076 		pr_debug("Suspend: skip %s queue id %i\n",
1077 				is_new ? "new" : "destroyed",
1078 				q->properties.queue_id);
1079 		return -EBUSY;
1080 	}
1081 
1082 	q->properties.is_suspended = true;
1083 	if (q->properties.is_active) {
1084 		if (dqm->dev->kfd->shared_resources.enable_mes) {
1085 			int r = remove_queue_mes(dqm, q, &pdd->qpd);
1086 
1087 			if (r)
1088 				return r;
1089 		}
1090 
1091 		decrement_queue_count(dqm, &pdd->qpd, q);
1092 		q->properties.is_active = false;
1093 	}
1094 
1095 	return 0;
1096 }
1097 
1098 /* resume_single_queue does not lock the dqm like the functions
1099  * restore_process_queues_cpsch or restore_process_queues_nocpsch. You should
1100  * lock the dqm before calling, and unlock after calling.
1101  *
1102  * The reason we don't lock the dqm is because this function may be
1103  * called on multiple queues in a loop, so rather than locking/unlocking
1104  * multiple times, we will just keep the dqm locked for all of the calls.
1105  */
1106 static int resume_single_queue(struct device_queue_manager *dqm,
1107 				      struct qcm_process_device *qpd,
1108 				      struct queue *q)
1109 {
1110 	struct kfd_process_device *pdd;
1111 
1112 	if (!q->properties.is_suspended)
1113 		return 0;
1114 
1115 	pdd = qpd_to_pdd(qpd);
1116 
1117 	pr_debug("Restoring from suspend process pid %d queue [%i]\n",
1118 			    pdd->process->lead_thread->pid,
1119 			    q->properties.queue_id);
1120 
1121 	q->properties.is_suspended = false;
1122 
1123 	if (QUEUE_IS_ACTIVE(q->properties)) {
1124 		if (dqm->dev->kfd->shared_resources.enable_mes) {
1125 			int r = add_queue_mes(dqm, q, &pdd->qpd);
1126 
1127 			if (r)
1128 				return r;
1129 		}
1130 
1131 		q->properties.is_active = true;
1132 		increment_queue_count(dqm, qpd, q);
1133 	}
1134 
1135 	return 0;
1136 }
1137 
1138 static int evict_process_queues_nocpsch(struct device_queue_manager *dqm,
1139 					struct qcm_process_device *qpd)
1140 {
1141 	struct queue *q;
1142 	struct mqd_manager *mqd_mgr;
1143 	struct kfd_process_device *pdd;
1144 	int retval, ret = 0;
1145 
1146 	dqm_lock(dqm);
1147 	if (qpd->evicted++ > 0) /* already evicted, do nothing */
1148 		goto out;
1149 
1150 	pdd = qpd_to_pdd(qpd);
1151 	pr_debug_ratelimited("Evicting process pid %d queues\n",
1152 			    pdd->process->lead_thread->pid);
1153 
1154 	pdd->last_evict_timestamp = get_jiffies_64();
1155 	/* Mark all queues as evicted. Deactivate all active queues on
1156 	 * the qpd.
1157 	 */
1158 	list_for_each_entry(q, &qpd->queues_list, list) {
1159 		q->properties.is_evicted = true;
1160 		if (!q->properties.is_active)
1161 			continue;
1162 
1163 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1164 				q->properties.type)];
1165 		q->properties.is_active = false;
1166 		decrement_queue_count(dqm, qpd, q);
1167 
1168 		if (WARN_ONCE(!dqm->sched_running, "Evict when stopped\n"))
1169 			continue;
1170 
1171 		retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
1172 				(dqm->dev->kfd->cwsr_enabled ?
1173 				 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE :
1174 				 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN),
1175 				KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
1176 		if (retval && !ret)
1177 			/* Return the first error, but keep going to
1178 			 * maintain a consistent eviction state
1179 			 */
1180 			ret = retval;
1181 	}
1182 
1183 out:
1184 	dqm_unlock(dqm);
1185 	return ret;
1186 }
1187 
1188 static int evict_process_queues_cpsch(struct device_queue_manager *dqm,
1189 				      struct qcm_process_device *qpd)
1190 {
1191 	struct queue *q;
1192 	struct device *dev = dqm->dev->adev->dev;
1193 	struct kfd_process_device *pdd;
1194 	int retval = 0;
1195 
1196 	dqm_lock(dqm);
1197 	if (qpd->evicted++ > 0) /* already evicted, do nothing */
1198 		goto out;
1199 
1200 	pdd = qpd_to_pdd(qpd);
1201 
1202 	/* The debugger creates processes that temporarily have not acquired
1203 	 * all VMs for all devices and has no VMs itself.
1204 	 * Skip queue eviction on process eviction.
1205 	 */
1206 	if (!pdd->drm_priv)
1207 		goto out;
1208 
1209 	pr_debug_ratelimited("Evicting process pid %d queues\n",
1210 			    pdd->process->lead_thread->pid);
1211 
1212 	if (dqm->dev->kfd->shared_resources.enable_mes) {
1213 		pdd->last_evict_timestamp = get_jiffies_64();
1214 		retval = suspend_all_queues_mes(dqm);
1215 		if (retval) {
1216 			dev_err(dev, "Suspending all queues failed");
1217 			goto out;
1218 		}
1219 	}
1220 
1221 	/* Mark all queues as evicted. Deactivate all active queues on
1222 	 * the qpd.
1223 	 */
1224 	list_for_each_entry(q, &qpd->queues_list, list) {
1225 		q->properties.is_evicted = true;
1226 		if (!q->properties.is_active)
1227 			continue;
1228 
1229 		q->properties.is_active = false;
1230 		decrement_queue_count(dqm, qpd, q);
1231 
1232 		if (dqm->dev->kfd->shared_resources.enable_mes) {
1233 			retval = remove_queue_mes(dqm, q, qpd);
1234 			if (retval) {
1235 				dev_err(dev, "Failed to evict queue %d\n",
1236 					q->properties.queue_id);
1237 				goto out;
1238 			}
1239 		}
1240 	}
1241 
1242 	if (!dqm->dev->kfd->shared_resources.enable_mes) {
1243 		pdd->last_evict_timestamp = get_jiffies_64();
1244 		retval = execute_queues_cpsch(dqm,
1245 					      qpd->is_debug ?
1246 					      KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES :
1247 					      KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
1248 					      USE_DEFAULT_GRACE_PERIOD);
1249 	} else {
1250 		retval = resume_all_queues_mes(dqm);
1251 		if (retval)
1252 			dev_err(dev, "Resuming all queues failed");
1253 	}
1254 
1255 out:
1256 	dqm_unlock(dqm);
1257 	return retval;
1258 }
1259 
1260 static int restore_process_queues_nocpsch(struct device_queue_manager *dqm,
1261 					  struct qcm_process_device *qpd)
1262 {
1263 	struct mm_struct *mm = NULL;
1264 	struct queue *q;
1265 	struct mqd_manager *mqd_mgr;
1266 	struct kfd_process_device *pdd;
1267 	uint64_t pd_base;
1268 	uint64_t eviction_duration;
1269 	int retval, ret = 0;
1270 
1271 	pdd = qpd_to_pdd(qpd);
1272 	/* Retrieve PD base */
1273 	pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1274 
1275 	dqm_lock(dqm);
1276 	if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
1277 		goto out;
1278 	if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
1279 		qpd->evicted--;
1280 		goto out;
1281 	}
1282 
1283 	pr_debug_ratelimited("Restoring process pid %d queues\n",
1284 			    pdd->process->lead_thread->pid);
1285 
1286 	/* Update PD Base in QPD */
1287 	qpd->page_table_base = pd_base;
1288 	pr_debug("Updated PD address to 0x%llx\n", pd_base);
1289 
1290 	if (!list_empty(&qpd->queues_list)) {
1291 		dqm->dev->kfd2kgd->set_vm_context_page_table_base(
1292 				dqm->dev->adev,
1293 				qpd->vmid,
1294 				qpd->page_table_base);
1295 		kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
1296 	}
1297 
1298 	/* Take a safe reference to the mm_struct, which may otherwise
1299 	 * disappear even while the kfd_process is still referenced.
1300 	 */
1301 	mm = get_task_mm(pdd->process->lead_thread);
1302 	if (!mm) {
1303 		ret = -EFAULT;
1304 		goto out;
1305 	}
1306 
1307 	/* Remove the eviction flags. Activate queues that are not
1308 	 * inactive for other reasons.
1309 	 */
1310 	list_for_each_entry(q, &qpd->queues_list, list) {
1311 		q->properties.is_evicted = false;
1312 		if (!QUEUE_IS_ACTIVE(q->properties))
1313 			continue;
1314 
1315 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1316 				q->properties.type)];
1317 		q->properties.is_active = true;
1318 		increment_queue_count(dqm, qpd, q);
1319 
1320 		if (WARN_ONCE(!dqm->sched_running, "Restore when stopped\n"))
1321 			continue;
1322 
1323 		retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
1324 				       q->queue, &q->properties, mm);
1325 		if (retval && !ret)
1326 			/* Return the first error, but keep going to
1327 			 * maintain a consistent eviction state
1328 			 */
1329 			ret = retval;
1330 	}
1331 	qpd->evicted = 0;
1332 	eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp;
1333 	atomic64_add(eviction_duration, &pdd->evict_duration_counter);
1334 out:
1335 	if (mm)
1336 		mmput(mm);
1337 	dqm_unlock(dqm);
1338 	return ret;
1339 }
1340 
1341 static int restore_process_queues_cpsch(struct device_queue_manager *dqm,
1342 					struct qcm_process_device *qpd)
1343 {
1344 	struct queue *q;
1345 	struct device *dev = dqm->dev->adev->dev;
1346 	struct kfd_process_device *pdd;
1347 	uint64_t eviction_duration;
1348 	int retval = 0;
1349 
1350 	pdd = qpd_to_pdd(qpd);
1351 
1352 	dqm_lock(dqm);
1353 	if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
1354 		goto out;
1355 	if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
1356 		qpd->evicted--;
1357 		goto out;
1358 	}
1359 
1360 	/* The debugger creates processes that temporarily have not acquired
1361 	 * all VMs for all devices and has no VMs itself.
1362 	 * Skip queue restore on process restore.
1363 	 */
1364 	if (!pdd->drm_priv)
1365 		goto vm_not_acquired;
1366 
1367 	pr_debug_ratelimited("Restoring process pid %d queues\n",
1368 			    pdd->process->lead_thread->pid);
1369 
1370 	/* Update PD Base in QPD */
1371 	qpd->page_table_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1372 	pr_debug("Updated PD address to 0x%llx\n", qpd->page_table_base);
1373 
1374 	/* activate all active queues on the qpd */
1375 	list_for_each_entry(q, &qpd->queues_list, list) {
1376 		q->properties.is_evicted = false;
1377 		if (!QUEUE_IS_ACTIVE(q->properties))
1378 			continue;
1379 
1380 		q->properties.is_active = true;
1381 		increment_queue_count(dqm, &pdd->qpd, q);
1382 
1383 		if (dqm->dev->kfd->shared_resources.enable_mes) {
1384 			retval = add_queue_mes(dqm, q, qpd);
1385 			if (retval) {
1386 				dev_err(dev, "Failed to restore queue %d\n",
1387 					q->properties.queue_id);
1388 				goto out;
1389 			}
1390 		}
1391 	}
1392 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1393 		retval = execute_queues_cpsch(dqm,
1394 					      KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
1395 	eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp;
1396 	atomic64_add(eviction_duration, &pdd->evict_duration_counter);
1397 vm_not_acquired:
1398 	qpd->evicted = 0;
1399 out:
1400 	dqm_unlock(dqm);
1401 	return retval;
1402 }
1403 
1404 static int register_process(struct device_queue_manager *dqm,
1405 					struct qcm_process_device *qpd)
1406 {
1407 	struct device_process_node *n;
1408 	struct kfd_process_device *pdd;
1409 	uint64_t pd_base;
1410 	int retval;
1411 
1412 	n = kzalloc(sizeof(*n), GFP_KERNEL);
1413 	if (!n)
1414 		return -ENOMEM;
1415 
1416 	n->qpd = qpd;
1417 
1418 	pdd = qpd_to_pdd(qpd);
1419 	/* Retrieve PD base */
1420 	pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1421 
1422 	dqm_lock(dqm);
1423 	list_add(&n->list, &dqm->queues);
1424 
1425 	/* Update PD Base in QPD */
1426 	qpd->page_table_base = pd_base;
1427 	pr_debug("Updated PD address to 0x%llx\n", pd_base);
1428 
1429 	retval = dqm->asic_ops.update_qpd(dqm, qpd);
1430 
1431 	dqm->processes_count++;
1432 
1433 	dqm_unlock(dqm);
1434 
1435 	/* Outside the DQM lock because under the DQM lock we can't do
1436 	 * reclaim or take other locks that others hold while reclaiming.
1437 	 */
1438 	kfd_inc_compute_active(dqm->dev);
1439 
1440 	return retval;
1441 }
1442 
1443 static int unregister_process(struct device_queue_manager *dqm,
1444 					struct qcm_process_device *qpd)
1445 {
1446 	int retval = 0;
1447 	struct device_process_node *cur, *next;
1448 
1449 	pr_debug("qpd->queues_list is %s\n",
1450 			list_empty(&qpd->queues_list) ? "empty" : "not empty");
1451 
1452 	dqm_lock(dqm);
1453 
1454 	list_for_each_entry_safe(cur, next, &dqm->queues, list) {
1455 		if (qpd == cur->qpd) {
1456 			list_del(&cur->list);
1457 			kfree(cur);
1458 			dqm->processes_count--;
1459 			goto out;
1460 		}
1461 	}
1462 	/* qpd not found in dqm list */
1463 	retval = 1;
1464 out:
1465 	dqm_unlock(dqm);
1466 
1467 	/* Outside the DQM lock because under the DQM lock we can't do
1468 	 * reclaim or take other locks that others hold while reclaiming.
1469 	 */
1470 	if (!retval)
1471 		kfd_dec_compute_active(dqm->dev);
1472 
1473 	return retval;
1474 }
1475 
1476 static int
1477 set_pasid_vmid_mapping(struct device_queue_manager *dqm, u32 pasid,
1478 			unsigned int vmid)
1479 {
1480 	uint32_t xcc_mask = dqm->dev->xcc_mask;
1481 	int xcc_id, ret = 0;
1482 
1483 	for_each_inst(xcc_id, xcc_mask) {
1484 		ret = dqm->dev->kfd2kgd->set_pasid_vmid_mapping(
1485 			dqm->dev->adev, pasid, vmid, xcc_id);
1486 		if (ret)
1487 			break;
1488 	}
1489 
1490 	return ret;
1491 }
1492 
1493 static void init_interrupts(struct device_queue_manager *dqm)
1494 {
1495 	uint32_t xcc_mask = dqm->dev->xcc_mask;
1496 	unsigned int i, xcc_id;
1497 
1498 	for_each_inst(xcc_id, xcc_mask) {
1499 		for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++) {
1500 			if (is_pipe_enabled(dqm, 0, i)) {
1501 				dqm->dev->kfd2kgd->init_interrupts(
1502 					dqm->dev->adev, i, xcc_id);
1503 			}
1504 		}
1505 	}
1506 }
1507 
1508 static int initialize_nocpsch(struct device_queue_manager *dqm)
1509 {
1510 	int pipe, queue;
1511 
1512 	pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1513 
1514 	dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm),
1515 					sizeof(unsigned int), GFP_KERNEL);
1516 	if (!dqm->allocated_queues)
1517 		return -ENOMEM;
1518 
1519 	mutex_init(&dqm->lock_hidden);
1520 	INIT_LIST_HEAD(&dqm->queues);
1521 	dqm->active_queue_count = dqm->next_pipe_to_allocate = 0;
1522 	dqm->active_cp_queue_count = 0;
1523 	dqm->gws_queue_count = 0;
1524 
1525 	for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
1526 		int pipe_offset = pipe * get_queues_per_pipe(dqm);
1527 
1528 		for (queue = 0; queue < get_queues_per_pipe(dqm); queue++)
1529 			if (test_bit(pipe_offset + queue,
1530 				     dqm->dev->kfd->shared_resources.cp_queue_bitmap))
1531 				dqm->allocated_queues[pipe] |= 1 << queue;
1532 	}
1533 
1534 	memset(dqm->vmid_pasid, 0, sizeof(dqm->vmid_pasid));
1535 
1536 	init_sdma_bitmaps(dqm);
1537 
1538 	return 0;
1539 }
1540 
1541 static void uninitialize(struct device_queue_manager *dqm)
1542 {
1543 	int i;
1544 
1545 	WARN_ON(dqm->active_queue_count > 0 || dqm->processes_count > 0);
1546 
1547 	kfree(dqm->allocated_queues);
1548 	for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
1549 		kfree(dqm->mqd_mgrs[i]);
1550 	mutex_destroy(&dqm->lock_hidden);
1551 }
1552 
1553 static int start_nocpsch(struct device_queue_manager *dqm)
1554 {
1555 	int r = 0;
1556 
1557 	pr_info("SW scheduler is used");
1558 	init_interrupts(dqm);
1559 
1560 	if (dqm->dev->adev->asic_type == CHIP_HAWAII)
1561 		r = pm_init(&dqm->packet_mgr, dqm);
1562 	if (!r)
1563 		dqm->sched_running = true;
1564 
1565 	return r;
1566 }
1567 
1568 static int stop_nocpsch(struct device_queue_manager *dqm)
1569 {
1570 	dqm_lock(dqm);
1571 	if (!dqm->sched_running) {
1572 		dqm_unlock(dqm);
1573 		return 0;
1574 	}
1575 
1576 	if (dqm->dev->adev->asic_type == CHIP_HAWAII)
1577 		pm_uninit(&dqm->packet_mgr);
1578 	dqm->sched_running = false;
1579 	dqm_unlock(dqm);
1580 
1581 	return 0;
1582 }
1583 
1584 static int allocate_sdma_queue(struct device_queue_manager *dqm,
1585 				struct queue *q, const uint32_t *restore_sdma_id)
1586 {
1587 	struct device *dev = dqm->dev->adev->dev;
1588 	int bit;
1589 
1590 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1591 		if (bitmap_empty(dqm->sdma_bitmap, get_num_sdma_queues(dqm))) {
1592 			dev_warn(dev, "No more SDMA queue to allocate (%d total queues)\n",
1593 				 get_num_sdma_queues(dqm));
1594 			return -ENOMEM;
1595 		}
1596 
1597 		if (restore_sdma_id) {
1598 			/* Re-use existing sdma_id */
1599 			if (!test_bit(*restore_sdma_id, dqm->sdma_bitmap)) {
1600 				dev_err(dev, "SDMA queue already in use\n");
1601 				return -EBUSY;
1602 			}
1603 			clear_bit(*restore_sdma_id, dqm->sdma_bitmap);
1604 			q->sdma_id = *restore_sdma_id;
1605 		} else {
1606 			/* Find first available sdma_id */
1607 			bit = find_first_bit(dqm->sdma_bitmap,
1608 					     get_num_sdma_queues(dqm));
1609 			clear_bit(bit, dqm->sdma_bitmap);
1610 			q->sdma_id = bit;
1611 		}
1612 
1613 		q->properties.sdma_engine_id =
1614 			q->sdma_id % kfd_get_num_sdma_engines(dqm->dev);
1615 		q->properties.sdma_queue_id = q->sdma_id /
1616 				kfd_get_num_sdma_engines(dqm->dev);
1617 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1618 		if (bitmap_empty(dqm->xgmi_sdma_bitmap, get_num_xgmi_sdma_queues(dqm))) {
1619 			dev_warn(dev, "No more XGMI SDMA queue to allocate (%d total queues)\n",
1620 				 get_num_xgmi_sdma_queues(dqm));
1621 			return -ENOMEM;
1622 		}
1623 		if (restore_sdma_id) {
1624 			/* Re-use existing sdma_id */
1625 			if (!test_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap)) {
1626 				dev_err(dev, "SDMA queue already in use\n");
1627 				return -EBUSY;
1628 			}
1629 			clear_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap);
1630 			q->sdma_id = *restore_sdma_id;
1631 		} else {
1632 			bit = find_first_bit(dqm->xgmi_sdma_bitmap,
1633 					     get_num_xgmi_sdma_queues(dqm));
1634 			clear_bit(bit, dqm->xgmi_sdma_bitmap);
1635 			q->sdma_id = bit;
1636 		}
1637 		/* sdma_engine_id is sdma id including
1638 		 * both PCIe-optimized SDMAs and XGMI-
1639 		 * optimized SDMAs. The calculation below
1640 		 * assumes the first N engines are always
1641 		 * PCIe-optimized ones
1642 		 */
1643 		q->properties.sdma_engine_id =
1644 			kfd_get_num_sdma_engines(dqm->dev) +
1645 			q->sdma_id % kfd_get_num_xgmi_sdma_engines(dqm->dev);
1646 		q->properties.sdma_queue_id = q->sdma_id /
1647 			kfd_get_num_xgmi_sdma_engines(dqm->dev);
1648 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_BY_ENG_ID) {
1649 		int i, num_queues, num_engines, eng_offset = 0, start_engine;
1650 		bool free_bit_found = false, is_xgmi = false;
1651 
1652 		if (q->properties.sdma_engine_id < kfd_get_num_sdma_engines(dqm->dev)) {
1653 			num_queues = get_num_sdma_queues(dqm);
1654 			num_engines = kfd_get_num_sdma_engines(dqm->dev);
1655 			q->properties.type = KFD_QUEUE_TYPE_SDMA;
1656 		} else {
1657 			num_queues = get_num_xgmi_sdma_queues(dqm);
1658 			num_engines = kfd_get_num_xgmi_sdma_engines(dqm->dev);
1659 			eng_offset = kfd_get_num_sdma_engines(dqm->dev);
1660 			q->properties.type = KFD_QUEUE_TYPE_SDMA_XGMI;
1661 			is_xgmi = true;
1662 		}
1663 
1664 		/* Scan available bit based on target engine ID. */
1665 		start_engine = q->properties.sdma_engine_id - eng_offset;
1666 		for (i = start_engine; i < num_queues; i += num_engines) {
1667 
1668 			if (!test_bit(i, is_xgmi ? dqm->xgmi_sdma_bitmap : dqm->sdma_bitmap))
1669 				continue;
1670 
1671 			clear_bit(i, is_xgmi ? dqm->xgmi_sdma_bitmap : dqm->sdma_bitmap);
1672 			q->sdma_id = i;
1673 			q->properties.sdma_queue_id = q->sdma_id / num_engines;
1674 			free_bit_found = true;
1675 			break;
1676 		}
1677 
1678 		if (!free_bit_found) {
1679 			dev_warn(dev, "No more SDMA queue to allocate for target ID %i (%d total queues)\n",
1680 				 q->properties.sdma_engine_id, num_queues);
1681 			return -ENOMEM;
1682 		}
1683 	}
1684 
1685 	pr_debug("SDMA engine id: %d\n", q->properties.sdma_engine_id);
1686 	pr_debug("SDMA queue id: %d\n", q->properties.sdma_queue_id);
1687 
1688 	return 0;
1689 }
1690 
1691 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
1692 				struct queue *q)
1693 {
1694 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1695 		if (q->sdma_id >= get_num_sdma_queues(dqm))
1696 			return;
1697 		set_bit(q->sdma_id, dqm->sdma_bitmap);
1698 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1699 		if (q->sdma_id >= get_num_xgmi_sdma_queues(dqm))
1700 			return;
1701 		set_bit(q->sdma_id, dqm->xgmi_sdma_bitmap);
1702 	}
1703 }
1704 
1705 /*
1706  * Device Queue Manager implementation for cp scheduler
1707  */
1708 
1709 static int set_sched_resources(struct device_queue_manager *dqm)
1710 {
1711 	int i, mec;
1712 	struct scheduling_resources res;
1713 	struct device *dev = dqm->dev->adev->dev;
1714 
1715 	res.vmid_mask = dqm->dev->compute_vmid_bitmap;
1716 
1717 	res.queue_mask = 0;
1718 	for (i = 0; i < AMDGPU_MAX_QUEUES; ++i) {
1719 		mec = (i / dqm->dev->kfd->shared_resources.num_queue_per_pipe)
1720 			/ dqm->dev->kfd->shared_resources.num_pipe_per_mec;
1721 
1722 		if (!test_bit(i, dqm->dev->kfd->shared_resources.cp_queue_bitmap))
1723 			continue;
1724 
1725 		/* only acquire queues from the first MEC */
1726 		if (mec > 0)
1727 			continue;
1728 
1729 		/* This situation may be hit in the future if a new HW
1730 		 * generation exposes more than 64 queues. If so, the
1731 		 * definition of res.queue_mask needs updating
1732 		 */
1733 		if (WARN_ON(i >= (sizeof(res.queue_mask)*8))) {
1734 			dev_err(dev, "Invalid queue enabled by amdgpu: %d\n", i);
1735 			break;
1736 		}
1737 
1738 		res.queue_mask |= 1ull
1739 			<< amdgpu_queue_mask_bit_to_set_resource_bit(
1740 				dqm->dev->adev, i);
1741 	}
1742 	res.gws_mask = ~0ull;
1743 	res.oac_mask = res.gds_heap_base = res.gds_heap_size = 0;
1744 
1745 	pr_debug("Scheduling resources:\n"
1746 			"vmid mask: 0x%8X\n"
1747 			"queue mask: 0x%8llX\n",
1748 			res.vmid_mask, res.queue_mask);
1749 
1750 	return pm_send_set_resources(&dqm->packet_mgr, &res);
1751 }
1752 
1753 static int initialize_cpsch(struct device_queue_manager *dqm)
1754 {
1755 	pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1756 
1757 	mutex_init(&dqm->lock_hidden);
1758 	INIT_LIST_HEAD(&dqm->queues);
1759 	dqm->active_queue_count = dqm->processes_count = 0;
1760 	dqm->active_cp_queue_count = 0;
1761 	dqm->gws_queue_count = 0;
1762 	dqm->active_runlist = false;
1763 	dqm->trap_debug_vmid = 0;
1764 
1765 	init_sdma_bitmaps(dqm);
1766 
1767 	update_dqm_wait_times(dqm);
1768 	return 0;
1769 }
1770 
1771 /* halt_cpsch:
1772  * Unmap queues so the schedule doesn't continue remaining jobs in the queue.
1773  * Then set dqm->sched_halt so queues don't map to runlist until unhalt_cpsch
1774  * is called.
1775  */
1776 static int halt_cpsch(struct device_queue_manager *dqm)
1777 {
1778 	int ret = 0;
1779 
1780 	dqm_lock(dqm);
1781 	if (!dqm->sched_running) {
1782 		dqm_unlock(dqm);
1783 		return 0;
1784 	}
1785 
1786 	WARN_ONCE(dqm->sched_halt, "Scheduling is already on halt\n");
1787 
1788 	if (!dqm->is_hws_hang) {
1789 		if (!dqm->dev->kfd->shared_resources.enable_mes)
1790 			ret = unmap_queues_cpsch(dqm,
1791 						 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
1792 				USE_DEFAULT_GRACE_PERIOD, false);
1793 		else
1794 			ret = remove_all_kfd_queues_mes(dqm);
1795 	}
1796 	dqm->sched_halt = true;
1797 	dqm_unlock(dqm);
1798 
1799 	return ret;
1800 }
1801 
1802 /* unhalt_cpsch
1803  * Unset dqm->sched_halt and map queues back to runlist
1804  */
1805 static int unhalt_cpsch(struct device_queue_manager *dqm)
1806 {
1807 	int ret = 0;
1808 
1809 	dqm_lock(dqm);
1810 	if (!dqm->sched_running || !dqm->sched_halt) {
1811 		WARN_ONCE(!dqm->sched_halt, "Scheduling is not on halt.\n");
1812 		dqm_unlock(dqm);
1813 		return 0;
1814 	}
1815 	dqm->sched_halt = false;
1816 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1817 		ret = execute_queues_cpsch(dqm,
1818 					   KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
1819 			0, USE_DEFAULT_GRACE_PERIOD);
1820 	else
1821 		ret = add_all_kfd_queues_mes(dqm);
1822 
1823 	dqm_unlock(dqm);
1824 
1825 	return ret;
1826 }
1827 
1828 static int start_cpsch(struct device_queue_manager *dqm)
1829 {
1830 	struct device *dev = dqm->dev->adev->dev;
1831 	int retval, num_hw_queue_slots;
1832 
1833 	dqm_lock(dqm);
1834 
1835 	if (!dqm->dev->kfd->shared_resources.enable_mes) {
1836 		retval = pm_init(&dqm->packet_mgr, dqm);
1837 		if (retval)
1838 			goto fail_packet_manager_init;
1839 
1840 		retval = set_sched_resources(dqm);
1841 		if (retval)
1842 			goto fail_set_sched_resources;
1843 	}
1844 	pr_debug("Allocating fence memory\n");
1845 
1846 	/* allocate fence memory on the gart */
1847 	retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
1848 					&dqm->fence_mem);
1849 
1850 	if (retval)
1851 		goto fail_allocate_vidmem;
1852 
1853 	dqm->fence_addr = (uint64_t *)dqm->fence_mem->cpu_ptr;
1854 	dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
1855 
1856 	init_interrupts(dqm);
1857 
1858 	/* clear hang status when driver try to start the hw scheduler */
1859 	dqm->sched_running = true;
1860 
1861 	if (!dqm->dev->kfd->shared_resources.enable_mes) {
1862 		if (pm_config_dequeue_wait_counts(&dqm->packet_mgr,
1863 				KFD_DEQUEUE_WAIT_INIT, 0 /* unused */))
1864 			dev_err(dev, "Setting optimized dequeue wait failed. Using default values\n");
1865 		execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
1866 	}
1867 
1868 	/* setup per-queue reset detection buffer  */
1869 	num_hw_queue_slots =  dqm->dev->kfd->shared_resources.num_queue_per_pipe *
1870 			      dqm->dev->kfd->shared_resources.num_pipe_per_mec *
1871 			      NUM_XCC(dqm->dev->xcc_mask);
1872 
1873 	dqm->detect_hang_info_size = num_hw_queue_slots * sizeof(struct dqm_detect_hang_info);
1874 	dqm->detect_hang_info = kzalloc(dqm->detect_hang_info_size, GFP_KERNEL);
1875 
1876 	if (!dqm->detect_hang_info) {
1877 		retval = -ENOMEM;
1878 		goto fail_detect_hang_buffer;
1879 	}
1880 
1881 	dqm_unlock(dqm);
1882 
1883 	return 0;
1884 fail_detect_hang_buffer:
1885 	kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
1886 fail_allocate_vidmem:
1887 fail_set_sched_resources:
1888 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1889 		pm_uninit(&dqm->packet_mgr);
1890 fail_packet_manager_init:
1891 	dqm_unlock(dqm);
1892 	return retval;
1893 }
1894 
1895 static int stop_cpsch(struct device_queue_manager *dqm)
1896 {
1897 	int ret = 0;
1898 
1899 	dqm_lock(dqm);
1900 	if (!dqm->sched_running) {
1901 		dqm_unlock(dqm);
1902 		return 0;
1903 	}
1904 
1905 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1906 		ret = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES,
1907 								0, USE_DEFAULT_GRACE_PERIOD, false);
1908 	else
1909 		ret = remove_all_kfd_queues_mes(dqm);
1910 
1911 	dqm->sched_running = false;
1912 
1913 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1914 		pm_release_ib(&dqm->packet_mgr);
1915 
1916 	kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
1917 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1918 		pm_uninit(&dqm->packet_mgr);
1919 	kfree(dqm->detect_hang_info);
1920 	dqm->detect_hang_info = NULL;
1921 	dqm_unlock(dqm);
1922 
1923 	return ret;
1924 }
1925 
1926 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
1927 					struct kernel_queue *kq,
1928 					struct qcm_process_device *qpd)
1929 {
1930 	dqm_lock(dqm);
1931 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1932 		pr_warn("Can't create new kernel queue because %d queues were already created\n",
1933 				dqm->total_queue_count);
1934 		dqm_unlock(dqm);
1935 		return -EPERM;
1936 	}
1937 
1938 	/*
1939 	 * Unconditionally increment this counter, regardless of the queue's
1940 	 * type or whether the queue is active.
1941 	 */
1942 	dqm->total_queue_count++;
1943 	pr_debug("Total of %d queues are accountable so far\n",
1944 			dqm->total_queue_count);
1945 
1946 	list_add(&kq->list, &qpd->priv_queue_list);
1947 	increment_queue_count(dqm, qpd, kq->queue);
1948 	qpd->is_debug = true;
1949 	execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
1950 			USE_DEFAULT_GRACE_PERIOD);
1951 	dqm_unlock(dqm);
1952 
1953 	return 0;
1954 }
1955 
1956 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
1957 					struct kernel_queue *kq,
1958 					struct qcm_process_device *qpd)
1959 {
1960 	dqm_lock(dqm);
1961 	list_del(&kq->list);
1962 	decrement_queue_count(dqm, qpd, kq->queue);
1963 	qpd->is_debug = false;
1964 	execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
1965 			USE_DEFAULT_GRACE_PERIOD);
1966 	/*
1967 	 * Unconditionally decrement this counter, regardless of the queue's
1968 	 * type.
1969 	 */
1970 	dqm->total_queue_count--;
1971 	pr_debug("Total of %d queues are accountable so far\n",
1972 			dqm->total_queue_count);
1973 	dqm_unlock(dqm);
1974 }
1975 
1976 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
1977 			struct qcm_process_device *qpd,
1978 			const struct kfd_criu_queue_priv_data *qd,
1979 			const void *restore_mqd, const void *restore_ctl_stack)
1980 {
1981 	int retval;
1982 	struct mqd_manager *mqd_mgr;
1983 
1984 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1985 		pr_warn("Can't create new usermode queue because %d queues were already created\n",
1986 				dqm->total_queue_count);
1987 		retval = -EPERM;
1988 		goto out;
1989 	}
1990 
1991 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1992 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI ||
1993 		q->properties.type == KFD_QUEUE_TYPE_SDMA_BY_ENG_ID) {
1994 		dqm_lock(dqm);
1995 		retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL);
1996 		dqm_unlock(dqm);
1997 		if (retval)
1998 			goto out;
1999 	}
2000 
2001 	retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL);
2002 	if (retval)
2003 		goto out_deallocate_sdma_queue;
2004 
2005 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2006 			q->properties.type)];
2007 
2008 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
2009 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
2010 		dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
2011 	q->properties.tba_addr = qpd->tba_addr;
2012 	q->properties.tma_addr = qpd->tma_addr;
2013 	q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
2014 	if (!q->mqd_mem_obj) {
2015 		retval = -ENOMEM;
2016 		goto out_deallocate_doorbell;
2017 	}
2018 
2019 	dqm_lock(dqm);
2020 	/*
2021 	 * Eviction state logic: mark all queues as evicted, even ones
2022 	 * not currently active. Restoring inactive queues later only
2023 	 * updates the is_evicted flag but is a no-op otherwise.
2024 	 */
2025 	q->properties.is_evicted = !!qpd->evicted;
2026 	q->properties.is_dbg_wa = qpd->pqm->process->debug_trap_enabled &&
2027 				  kfd_dbg_has_cwsr_workaround(q->device);
2028 
2029 	if (qd)
2030 		mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr,
2031 				     &q->properties, restore_mqd, restore_ctl_stack,
2032 				     qd->ctl_stack_size);
2033 	else
2034 		mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
2035 					&q->gart_mqd_addr, &q->properties);
2036 
2037 	list_add(&q->list, &qpd->queues_list);
2038 	qpd->queue_count++;
2039 
2040 	if (q->properties.is_active) {
2041 		increment_queue_count(dqm, qpd, q);
2042 
2043 		if (!dqm->dev->kfd->shared_resources.enable_mes)
2044 			retval = execute_queues_cpsch(dqm,
2045 					KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
2046 		else
2047 			retval = add_queue_mes(dqm, q, qpd);
2048 		if (retval)
2049 			goto cleanup_queue;
2050 	}
2051 
2052 	/*
2053 	 * Unconditionally increment this counter, regardless of the queue's
2054 	 * type or whether the queue is active.
2055 	 */
2056 	dqm->total_queue_count++;
2057 
2058 	pr_debug("Total of %d queues are accountable so far\n",
2059 			dqm->total_queue_count);
2060 
2061 	dqm_unlock(dqm);
2062 	return retval;
2063 
2064 cleanup_queue:
2065 	qpd->queue_count--;
2066 	list_del(&q->list);
2067 	if (q->properties.is_active)
2068 		decrement_queue_count(dqm, qpd, q);
2069 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2070 	dqm_unlock(dqm);
2071 out_deallocate_doorbell:
2072 	deallocate_doorbell(qpd, q);
2073 out_deallocate_sdma_queue:
2074 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
2075 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
2076 		dqm_lock(dqm);
2077 		deallocate_sdma_queue(dqm, q);
2078 		dqm_unlock(dqm);
2079 	}
2080 out:
2081 	return retval;
2082 }
2083 
2084 int amdkfd_fence_wait_timeout(struct device_queue_manager *dqm,
2085 			      uint64_t fence_value,
2086 			      unsigned int timeout_ms)
2087 {
2088 	unsigned long end_jiffies = msecs_to_jiffies(timeout_ms) + jiffies;
2089 	struct device *dev = dqm->dev->adev->dev;
2090 	uint64_t *fence_addr = dqm->fence_addr;
2091 
2092 	while (*fence_addr != fence_value) {
2093 		/* Fatal err detected, this response won't come */
2094 		if (amdgpu_amdkfd_is_fed(dqm->dev->adev) ||
2095 		    amdgpu_in_reset(dqm->dev->adev))
2096 			return -EIO;
2097 
2098 		if (time_after(jiffies, end_jiffies)) {
2099 			dev_err(dev, "qcm fence wait loop timeout expired\n");
2100 			/* In HWS case, this is used to halt the driver thread
2101 			 * in order not to mess up CP states before doing
2102 			 * scandumps for FW debugging.
2103 			 */
2104 			while (halt_if_hws_hang)
2105 				schedule();
2106 
2107 			return -ETIME;
2108 		}
2109 		schedule();
2110 	}
2111 
2112 	return 0;
2113 }
2114 
2115 /* dqm->lock mutex has to be locked before calling this function */
2116 static int map_queues_cpsch(struct device_queue_manager *dqm)
2117 {
2118 	struct device *dev = dqm->dev->adev->dev;
2119 	int retval;
2120 
2121 	if (!dqm->sched_running || dqm->sched_halt)
2122 		return 0;
2123 	if (dqm->active_queue_count <= 0 || dqm->processes_count <= 0)
2124 		return 0;
2125 	if (dqm->active_runlist)
2126 		return 0;
2127 
2128 	retval = pm_send_runlist(&dqm->packet_mgr, &dqm->queues);
2129 	pr_debug("%s sent runlist\n", __func__);
2130 	if (retval) {
2131 		dev_err(dev, "failed to execute runlist\n");
2132 		return retval;
2133 	}
2134 	dqm->active_runlist = true;
2135 
2136 	return retval;
2137 }
2138 
2139 static void set_queue_as_reset(struct device_queue_manager *dqm, struct queue *q,
2140 			       struct qcm_process_device *qpd)
2141 {
2142 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
2143 
2144 	dev_err(dqm->dev->adev->dev, "queue id 0x%0x at pasid %d is reset\n",
2145 		q->properties.queue_id, pdd->process->lead_thread->pid);
2146 
2147 	pdd->has_reset_queue = true;
2148 	if (q->properties.is_active) {
2149 		q->properties.is_active = false;
2150 		decrement_queue_count(dqm, qpd, q);
2151 	}
2152 }
2153 
2154 static int detect_queue_hang(struct device_queue_manager *dqm)
2155 {
2156 	int i;
2157 
2158 	/* detect should be used only in dqm locked queue reset */
2159 	if (WARN_ON(dqm->detect_hang_count > 0))
2160 		return 0;
2161 
2162 	memset(dqm->detect_hang_info, 0, dqm->detect_hang_info_size);
2163 
2164 	for (i = 0; i < AMDGPU_MAX_QUEUES; ++i) {
2165 		uint32_t mec, pipe, queue;
2166 		int xcc_id;
2167 
2168 		mec = (i / dqm->dev->kfd->shared_resources.num_queue_per_pipe)
2169 			/ dqm->dev->kfd->shared_resources.num_pipe_per_mec;
2170 
2171 		if (mec || !test_bit(i, dqm->dev->kfd->shared_resources.cp_queue_bitmap))
2172 			continue;
2173 
2174 		amdgpu_queue_mask_bit_to_mec_queue(dqm->dev->adev, i, &mec, &pipe, &queue);
2175 
2176 		for_each_inst(xcc_id, dqm->dev->xcc_mask) {
2177 			uint64_t queue_addr = dqm->dev->kfd2kgd->hqd_get_pq_addr(
2178 						dqm->dev->adev, pipe, queue, xcc_id);
2179 			struct dqm_detect_hang_info hang_info;
2180 
2181 			if (!queue_addr)
2182 				continue;
2183 
2184 			hang_info.pipe_id = pipe;
2185 			hang_info.queue_id = queue;
2186 			hang_info.xcc_id = xcc_id;
2187 			hang_info.queue_address = queue_addr;
2188 
2189 			dqm->detect_hang_info[dqm->detect_hang_count] = hang_info;
2190 			dqm->detect_hang_count++;
2191 		}
2192 	}
2193 
2194 	return dqm->detect_hang_count;
2195 }
2196 
2197 static struct queue *find_queue_by_address(struct device_queue_manager *dqm, uint64_t queue_address)
2198 {
2199 	struct device_process_node *cur;
2200 	struct qcm_process_device *qpd;
2201 	struct queue *q;
2202 
2203 	list_for_each_entry(cur, &dqm->queues, list) {
2204 		qpd = cur->qpd;
2205 		list_for_each_entry(q, &qpd->queues_list, list) {
2206 			if (queue_address == q->properties.queue_address)
2207 				return q;
2208 		}
2209 	}
2210 
2211 	return NULL;
2212 }
2213 
2214 static int reset_hung_queues(struct device_queue_manager *dqm)
2215 {
2216 	int r = 0, reset_count = 0, i;
2217 
2218 	if (!dqm->detect_hang_info || dqm->is_hws_hang)
2219 		return -EIO;
2220 
2221 	/* assume dqm locked. */
2222 	if (!detect_queue_hang(dqm))
2223 		return -ENOTRECOVERABLE;
2224 
2225 	for (i = 0; i < dqm->detect_hang_count; i++) {
2226 		struct dqm_detect_hang_info hang_info = dqm->detect_hang_info[i];
2227 		struct queue *q = find_queue_by_address(dqm, hang_info.queue_address);
2228 		struct kfd_process_device *pdd;
2229 		uint64_t queue_addr = 0;
2230 
2231 		if (!q) {
2232 			r = -ENOTRECOVERABLE;
2233 			goto reset_fail;
2234 		}
2235 
2236 		pdd = kfd_get_process_device_data(dqm->dev, q->process);
2237 		if (!pdd) {
2238 			r = -ENOTRECOVERABLE;
2239 			goto reset_fail;
2240 		}
2241 
2242 		queue_addr = dqm->dev->kfd2kgd->hqd_reset(dqm->dev->adev,
2243 				hang_info.pipe_id, hang_info.queue_id, hang_info.xcc_id,
2244 				KFD_UNMAP_LATENCY_MS);
2245 
2246 		/* either reset failed or we reset an unexpected queue. */
2247 		if (queue_addr != q->properties.queue_address) {
2248 			r = -ENOTRECOVERABLE;
2249 			goto reset_fail;
2250 		}
2251 
2252 		set_queue_as_reset(dqm, q, &pdd->qpd);
2253 		reset_count++;
2254 	}
2255 
2256 	if (reset_count == dqm->detect_hang_count)
2257 		kfd_signal_reset_event(dqm->dev);
2258 	else
2259 		r = -ENOTRECOVERABLE;
2260 
2261 reset_fail:
2262 	dqm->detect_hang_count = 0;
2263 
2264 	return r;
2265 }
2266 
2267 static bool sdma_has_hang(struct device_queue_manager *dqm)
2268 {
2269 	int engine_start = dqm->dev->node_id * get_num_all_sdma_engines(dqm);
2270 	int engine_end = engine_start + get_num_all_sdma_engines(dqm);
2271 	int num_queues_per_eng =  dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
2272 	int i, j;
2273 
2274 	for (i = engine_start; i < engine_end; i++) {
2275 		for (j = 0; j < num_queues_per_eng; j++) {
2276 			if (!dqm->dev->kfd2kgd->hqd_sdma_get_doorbell(dqm->dev->adev, i, j))
2277 				continue;
2278 
2279 			return true;
2280 		}
2281 	}
2282 
2283 	return false;
2284 }
2285 
2286 static bool set_sdma_queue_as_reset(struct device_queue_manager *dqm,
2287 				    uint32_t doorbell_off)
2288 {
2289 	struct device_process_node *cur;
2290 	struct qcm_process_device *qpd;
2291 	struct queue *q;
2292 
2293 	list_for_each_entry(cur, &dqm->queues, list) {
2294 		qpd = cur->qpd;
2295 		list_for_each_entry(q, &qpd->queues_list, list) {
2296 			if ((q->properties.type == KFD_QUEUE_TYPE_SDMA ||
2297 			     q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) &&
2298 			     q->properties.doorbell_off == doorbell_off) {
2299 				set_queue_as_reset(dqm, q, qpd);
2300 				return true;
2301 			}
2302 		}
2303 	}
2304 
2305 	return false;
2306 }
2307 
2308 static int reset_hung_queues_sdma(struct device_queue_manager *dqm)
2309 {
2310 	int engine_start = dqm->dev->node_id * get_num_all_sdma_engines(dqm);
2311 	int engine_end = engine_start + get_num_all_sdma_engines(dqm);
2312 	int num_queues_per_eng =  dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
2313 	int r = 0, i, j;
2314 
2315 	if (dqm->is_hws_hang)
2316 		return -EIO;
2317 
2318 	/* Scan for hung HW queues and reset engine. */
2319 	dqm->detect_hang_count = 0;
2320 	for (i = engine_start; i < engine_end; i++) {
2321 		for (j = 0; j < num_queues_per_eng; j++) {
2322 			uint32_t doorbell_off =
2323 				dqm->dev->kfd2kgd->hqd_sdma_get_doorbell(dqm->dev->adev, i, j);
2324 
2325 			if (!doorbell_off)
2326 				continue;
2327 
2328 			/* Reset engine and check. */
2329 			if (amdgpu_sdma_reset_engine(dqm->dev->adev, i, false) ||
2330 			    dqm->dev->kfd2kgd->hqd_sdma_get_doorbell(dqm->dev->adev, i, j) ||
2331 			    !set_sdma_queue_as_reset(dqm, doorbell_off)) {
2332 				r = -ENOTRECOVERABLE;
2333 				goto reset_fail;
2334 			}
2335 
2336 			/* Should only expect one queue active per engine */
2337 			dqm->detect_hang_count++;
2338 			break;
2339 		}
2340 	}
2341 
2342 	/* Signal process reset */
2343 	if (dqm->detect_hang_count)
2344 		kfd_signal_reset_event(dqm->dev);
2345 	else
2346 		r = -ENOTRECOVERABLE;
2347 
2348 reset_fail:
2349 	dqm->detect_hang_count = 0;
2350 
2351 	return r;
2352 }
2353 
2354 static int reset_queues_on_hws_hang(struct device_queue_manager *dqm, bool is_sdma)
2355 {
2356 	struct amdgpu_device *adev = dqm->dev->adev;
2357 
2358 	while (halt_if_hws_hang)
2359 		schedule();
2360 
2361 	if (adev->debug_disable_gpu_ring_reset) {
2362 		dev_info_once(adev->dev,
2363 			      "%s queue hung, but ring reset disabled",
2364 			      is_sdma ? "sdma" : "compute");
2365 
2366 		return -EPERM;
2367 	}
2368 	if (!amdgpu_gpu_recovery)
2369 		return -ENOTRECOVERABLE;
2370 
2371 	return is_sdma ? reset_hung_queues_sdma(dqm) : reset_hung_queues(dqm);
2372 }
2373 
2374 /* dqm->lock mutex has to be locked before calling this function
2375  *
2376  * @grace_period: If USE_DEFAULT_GRACE_PERIOD then default wait time
2377  *   for context switch latency. Lower values are used by debugger
2378  *   since context switching are triggered at high frequency.
2379  *   This is configured by setting CP_IQ_WAIT_TIME2.SCH_WAVE
2380  *
2381  */
2382 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
2383 				enum kfd_unmap_queues_filter filter,
2384 				uint32_t filter_param,
2385 				uint32_t grace_period,
2386 				bool reset)
2387 {
2388 	struct device *dev = dqm->dev->adev->dev;
2389 	struct mqd_manager *mqd_mgr;
2390 	int retval;
2391 
2392 	if (!dqm->sched_running)
2393 		return 0;
2394 	if (!dqm->active_runlist)
2395 		return 0;
2396 	if (!down_read_trylock(&dqm->dev->adev->reset_domain->sem))
2397 		return -EIO;
2398 
2399 	if (grace_period != USE_DEFAULT_GRACE_PERIOD) {
2400 		retval = pm_config_dequeue_wait_counts(&dqm->packet_mgr,
2401 				KFD_DEQUEUE_WAIT_SET_SCH_WAVE, grace_period);
2402 		if (retval)
2403 			goto out;
2404 	}
2405 
2406 	retval = pm_send_unmap_queue(&dqm->packet_mgr, filter, filter_param, reset);
2407 	if (retval)
2408 		goto out;
2409 
2410 	*dqm->fence_addr = KFD_FENCE_INIT;
2411 	mb();
2412 	pm_send_query_status(&dqm->packet_mgr, dqm->fence_gpu_addr,
2413 				KFD_FENCE_COMPLETED);
2414 	/* should be timed out */
2415 	retval = amdkfd_fence_wait_timeout(dqm, KFD_FENCE_COMPLETED,
2416 					   queue_preemption_timeout_ms);
2417 	if (retval) {
2418 		dev_err(dev, "The cp might be in an unrecoverable state due to an unsuccessful queues preemption\n");
2419 		kfd_hws_hang(dqm);
2420 		goto out;
2421 	}
2422 
2423 	/* In the current MEC firmware implementation, if compute queue
2424 	 * doesn't response to the preemption request in time, HIQ will
2425 	 * abandon the unmap request without returning any timeout error
2426 	 * to driver. Instead, MEC firmware will log the doorbell of the
2427 	 * unresponding compute queue to HIQ.MQD.queue_doorbell_id fields.
2428 	 * To make sure the queue unmap was successful, driver need to
2429 	 * check those fields
2430 	 */
2431 	mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ];
2432 	if (mqd_mgr->check_preemption_failed(mqd_mgr, dqm->packet_mgr.priv_queue->queue->mqd) &&
2433 	    reset_queues_on_hws_hang(dqm, false))
2434 		goto reset_fail;
2435 
2436 	/* Check for SDMA hang and attempt SDMA reset */
2437 	if (sdma_has_hang(dqm) && reset_queues_on_hws_hang(dqm, true))
2438 		goto reset_fail;
2439 
2440 	/* We need to reset the grace period value for this device */
2441 	if (grace_period != USE_DEFAULT_GRACE_PERIOD) {
2442 		if (pm_config_dequeue_wait_counts(&dqm->packet_mgr,
2443 				KFD_DEQUEUE_WAIT_RESET, 0 /* unused */))
2444 			dev_err(dev, "Failed to reset grace period\n");
2445 	}
2446 
2447 	pm_release_ib(&dqm->packet_mgr);
2448 	dqm->active_runlist = false;
2449 out:
2450 	up_read(&dqm->dev->adev->reset_domain->sem);
2451 	return retval;
2452 
2453 reset_fail:
2454 	dqm->is_hws_hang = true;
2455 	kfd_hws_hang(dqm);
2456 	up_read(&dqm->dev->adev->reset_domain->sem);
2457 	return -ETIME;
2458 }
2459 
2460 /* only for compute queue */
2461 static int reset_queues_cpsch(struct device_queue_manager *dqm, uint16_t pasid)
2462 {
2463 	int retval;
2464 
2465 	dqm_lock(dqm);
2466 
2467 	retval = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_BY_PASID,
2468 			pasid, USE_DEFAULT_GRACE_PERIOD, true);
2469 
2470 	dqm_unlock(dqm);
2471 	return retval;
2472 }
2473 
2474 /* dqm->lock mutex has to be locked before calling this function */
2475 static int execute_queues_cpsch(struct device_queue_manager *dqm,
2476 				enum kfd_unmap_queues_filter filter,
2477 				uint32_t filter_param,
2478 				uint32_t grace_period)
2479 {
2480 	int retval;
2481 
2482 	if (!down_read_trylock(&dqm->dev->adev->reset_domain->sem))
2483 		return -EIO;
2484 	retval = unmap_queues_cpsch(dqm, filter, filter_param, grace_period, false);
2485 	if (!retval)
2486 		retval = map_queues_cpsch(dqm);
2487 	up_read(&dqm->dev->adev->reset_domain->sem);
2488 	return retval;
2489 }
2490 
2491 static int wait_on_destroy_queue(struct device_queue_manager *dqm,
2492 				 struct queue *q)
2493 {
2494 	struct kfd_process_device *pdd = kfd_get_process_device_data(q->device,
2495 								q->process);
2496 	int ret = 0;
2497 
2498 	if (WARN_ON(!pdd))
2499 		return ret;
2500 
2501 	if (pdd->qpd.is_debug)
2502 		return ret;
2503 
2504 	q->properties.is_being_destroyed = true;
2505 
2506 	if (pdd->process->debug_trap_enabled && q->properties.is_suspended) {
2507 		dqm_unlock(dqm);
2508 		mutex_unlock(&q->process->mutex);
2509 		ret = wait_event_interruptible(dqm->destroy_wait,
2510 						!q->properties.is_suspended);
2511 
2512 		mutex_lock(&q->process->mutex);
2513 		dqm_lock(dqm);
2514 	}
2515 
2516 	return ret;
2517 }
2518 
2519 static int destroy_queue_cpsch(struct device_queue_manager *dqm,
2520 				struct qcm_process_device *qpd,
2521 				struct queue *q)
2522 {
2523 	int retval;
2524 	struct mqd_manager *mqd_mgr;
2525 	uint64_t sdma_val = 0;
2526 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
2527 	struct device *dev = dqm->dev->adev->dev;
2528 
2529 	/* Get the SDMA queue stats */
2530 	if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
2531 	    (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
2532 		retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr,
2533 							&sdma_val);
2534 		if (retval)
2535 			dev_err(dev, "Failed to read SDMA queue counter for queue: %d\n",
2536 				q->properties.queue_id);
2537 	}
2538 
2539 	/* remove queue from list to prevent rescheduling after preemption */
2540 	dqm_lock(dqm);
2541 
2542 	retval = wait_on_destroy_queue(dqm, q);
2543 
2544 	if (retval) {
2545 		dqm_unlock(dqm);
2546 		return retval;
2547 	}
2548 
2549 	if (qpd->is_debug) {
2550 		/*
2551 		 * error, currently we do not allow to destroy a queue
2552 		 * of a currently debugged process
2553 		 */
2554 		retval = -EBUSY;
2555 		goto failed_try_destroy_debugged_queue;
2556 
2557 	}
2558 
2559 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2560 			q->properties.type)];
2561 
2562 	deallocate_doorbell(qpd, q);
2563 
2564 	if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
2565 	    (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
2566 		deallocate_sdma_queue(dqm, q);
2567 		pdd->sdma_past_activity_counter += sdma_val;
2568 	}
2569 
2570 	if (q->properties.is_active) {
2571 		decrement_queue_count(dqm, qpd, q);
2572 		q->properties.is_active = false;
2573 		if (!dqm->dev->kfd->shared_resources.enable_mes) {
2574 			retval = execute_queues_cpsch(dqm,
2575 						      KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
2576 						      USE_DEFAULT_GRACE_PERIOD);
2577 			if (retval == -ETIME)
2578 				qpd->reset_wavefronts = true;
2579 		} else {
2580 			retval = remove_queue_mes(dqm, q, qpd);
2581 		}
2582 	}
2583 	list_del(&q->list);
2584 	qpd->queue_count--;
2585 
2586 	/*
2587 	 * Unconditionally decrement this counter, regardless of the queue's
2588 	 * type
2589 	 */
2590 	dqm->total_queue_count--;
2591 	pr_debug("Total of %d queues are accountable so far\n",
2592 			dqm->total_queue_count);
2593 
2594 	dqm_unlock(dqm);
2595 
2596 	/*
2597 	 * Do free_mqd and raise delete event after dqm_unlock(dqm) to avoid
2598 	 * circular locking
2599 	 */
2600 	kfd_dbg_ev_raise(KFD_EC_MASK(EC_DEVICE_QUEUE_DELETE),
2601 				qpd->pqm->process, q->device,
2602 				-1, false, NULL, 0);
2603 
2604 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2605 
2606 	return retval;
2607 
2608 failed_try_destroy_debugged_queue:
2609 
2610 	dqm_unlock(dqm);
2611 	return retval;
2612 }
2613 
2614 static bool set_cache_memory_policy(struct device_queue_manager *dqm,
2615 				   struct qcm_process_device *qpd,
2616 				   enum cache_policy default_policy,
2617 				   enum cache_policy alternate_policy,
2618 				   void __user *alternate_aperture_base,
2619 				   uint64_t alternate_aperture_size,
2620 				   u32 misc_process_properties)
2621 {
2622 	bool retval = true;
2623 
2624 	if (!dqm->asic_ops.set_cache_memory_policy)
2625 		return retval;
2626 
2627 	dqm_lock(dqm);
2628 
2629 	retval = dqm->asic_ops.set_cache_memory_policy(
2630 			dqm,
2631 			qpd,
2632 			default_policy,
2633 			alternate_policy,
2634 			alternate_aperture_base,
2635 			alternate_aperture_size,
2636 			misc_process_properties);
2637 
2638 	if (retval)
2639 		goto out;
2640 
2641 	if ((dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
2642 		program_sh_mem_settings(dqm, qpd);
2643 
2644 	pr_debug("sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
2645 		qpd->sh_mem_config, qpd->sh_mem_ape1_base,
2646 		qpd->sh_mem_ape1_limit);
2647 
2648 out:
2649 	dqm_unlock(dqm);
2650 	return retval;
2651 }
2652 
2653 static int process_termination_nocpsch(struct device_queue_manager *dqm,
2654 		struct qcm_process_device *qpd)
2655 {
2656 	struct queue *q;
2657 	struct device_process_node *cur, *next_dpn;
2658 	int retval = 0;
2659 	bool found = false;
2660 
2661 	dqm_lock(dqm);
2662 
2663 	/* Clear all user mode queues */
2664 	while (!list_empty(&qpd->queues_list)) {
2665 		struct mqd_manager *mqd_mgr;
2666 		int ret;
2667 
2668 		q = list_first_entry(&qpd->queues_list, struct queue, list);
2669 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2670 				q->properties.type)];
2671 		ret = destroy_queue_nocpsch_locked(dqm, qpd, q);
2672 		if (ret)
2673 			retval = ret;
2674 		dqm_unlock(dqm);
2675 		mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2676 		dqm_lock(dqm);
2677 	}
2678 
2679 	/* Unregister process */
2680 	list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
2681 		if (qpd == cur->qpd) {
2682 			list_del(&cur->list);
2683 			kfree(cur);
2684 			dqm->processes_count--;
2685 			found = true;
2686 			break;
2687 		}
2688 	}
2689 
2690 	dqm_unlock(dqm);
2691 
2692 	/* Outside the DQM lock because under the DQM lock we can't do
2693 	 * reclaim or take other locks that others hold while reclaiming.
2694 	 */
2695 	if (found)
2696 		kfd_dec_compute_active(dqm->dev);
2697 
2698 	return retval;
2699 }
2700 
2701 static int get_wave_state(struct device_queue_manager *dqm,
2702 			  struct queue *q,
2703 			  void __user *ctl_stack,
2704 			  u32 *ctl_stack_used_size,
2705 			  u32 *save_area_used_size)
2706 {
2707 	struct mqd_manager *mqd_mgr;
2708 
2709 	dqm_lock(dqm);
2710 
2711 	mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP];
2712 
2713 	if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE ||
2714 	    q->properties.is_active || !q->device->kfd->cwsr_enabled ||
2715 	    !mqd_mgr->get_wave_state) {
2716 		dqm_unlock(dqm);
2717 		return -EINVAL;
2718 	}
2719 
2720 	dqm_unlock(dqm);
2721 
2722 	/*
2723 	 * get_wave_state is outside the dqm lock to prevent circular locking
2724 	 * and the queue should be protected against destruction by the process
2725 	 * lock.
2726 	 */
2727 	return mqd_mgr->get_wave_state(mqd_mgr, q->mqd, &q->properties,
2728 			ctl_stack, ctl_stack_used_size, save_area_used_size);
2729 }
2730 
2731 static void get_queue_checkpoint_info(struct device_queue_manager *dqm,
2732 			const struct queue *q,
2733 			u32 *mqd_size,
2734 			u32 *ctl_stack_size)
2735 {
2736 	struct mqd_manager *mqd_mgr;
2737 	enum KFD_MQD_TYPE mqd_type =
2738 			get_mqd_type_from_queue_type(q->properties.type);
2739 
2740 	dqm_lock(dqm);
2741 	mqd_mgr = dqm->mqd_mgrs[mqd_type];
2742 	*mqd_size = mqd_mgr->mqd_size * NUM_XCC(mqd_mgr->dev->xcc_mask);
2743 	*ctl_stack_size = 0;
2744 
2745 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE && mqd_mgr->get_checkpoint_info)
2746 		mqd_mgr->get_checkpoint_info(mqd_mgr, q->mqd, ctl_stack_size);
2747 
2748 	dqm_unlock(dqm);
2749 }
2750 
2751 static int checkpoint_mqd(struct device_queue_manager *dqm,
2752 			  const struct queue *q,
2753 			  void *mqd,
2754 			  void *ctl_stack)
2755 {
2756 	struct mqd_manager *mqd_mgr;
2757 	int r = 0;
2758 	enum KFD_MQD_TYPE mqd_type =
2759 			get_mqd_type_from_queue_type(q->properties.type);
2760 
2761 	dqm_lock(dqm);
2762 
2763 	if (q->properties.is_active || !q->device->kfd->cwsr_enabled) {
2764 		r = -EINVAL;
2765 		goto dqm_unlock;
2766 	}
2767 
2768 	mqd_mgr = dqm->mqd_mgrs[mqd_type];
2769 	if (!mqd_mgr->checkpoint_mqd) {
2770 		r = -EOPNOTSUPP;
2771 		goto dqm_unlock;
2772 	}
2773 
2774 	mqd_mgr->checkpoint_mqd(mqd_mgr, q->mqd, mqd, ctl_stack);
2775 
2776 dqm_unlock:
2777 	dqm_unlock(dqm);
2778 	return r;
2779 }
2780 
2781 static int process_termination_cpsch(struct device_queue_manager *dqm,
2782 		struct qcm_process_device *qpd)
2783 {
2784 	int retval = 0;
2785 	struct queue *q;
2786 	struct device *dev = dqm->dev->adev->dev;
2787 	struct kernel_queue *kq, *kq_next;
2788 	struct mqd_manager *mqd_mgr;
2789 	struct device_process_node *cur, *next_dpn;
2790 	enum kfd_unmap_queues_filter filter =
2791 		KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES;
2792 	bool found = false;
2793 
2794 	dqm_lock(dqm);
2795 
2796 	/* Clean all kernel queues */
2797 	list_for_each_entry_safe(kq, kq_next, &qpd->priv_queue_list, list) {
2798 		list_del(&kq->list);
2799 		decrement_queue_count(dqm, qpd, kq->queue);
2800 		qpd->is_debug = false;
2801 		dqm->total_queue_count--;
2802 		filter = KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES;
2803 	}
2804 
2805 	/* Clear all user mode queues */
2806 	list_for_each_entry(q, &qpd->queues_list, list) {
2807 		if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
2808 			deallocate_sdma_queue(dqm, q);
2809 		else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
2810 			deallocate_sdma_queue(dqm, q);
2811 
2812 		if (q->properties.is_active) {
2813 			decrement_queue_count(dqm, qpd, q);
2814 
2815 			if (dqm->dev->kfd->shared_resources.enable_mes) {
2816 				retval = remove_queue_mes(dqm, q, qpd);
2817 				if (retval)
2818 					dev_err(dev, "Failed to remove queue %d\n",
2819 						q->properties.queue_id);
2820 			}
2821 		}
2822 
2823 		dqm->total_queue_count--;
2824 	}
2825 
2826 	/* Unregister process */
2827 	list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
2828 		if (qpd == cur->qpd) {
2829 			list_del(&cur->list);
2830 			kfree(cur);
2831 			dqm->processes_count--;
2832 			found = true;
2833 			break;
2834 		}
2835 	}
2836 
2837 	if (!dqm->dev->kfd->shared_resources.enable_mes)
2838 		retval = execute_queues_cpsch(dqm, filter, 0, USE_DEFAULT_GRACE_PERIOD);
2839 
2840 	if ((retval || qpd->reset_wavefronts) &&
2841 	    down_read_trylock(&dqm->dev->adev->reset_domain->sem)) {
2842 		pr_warn("Resetting wave fronts (cpsch) on dev %p\n", dqm->dev);
2843 		dbgdev_wave_reset_wavefronts(dqm->dev, qpd->pqm->process);
2844 		qpd->reset_wavefronts = false;
2845 		up_read(&dqm->dev->adev->reset_domain->sem);
2846 	}
2847 
2848 	/* Lastly, free mqd resources.
2849 	 * Do free_mqd() after dqm_unlock to avoid circular locking.
2850 	 */
2851 	while (!list_empty(&qpd->queues_list)) {
2852 		q = list_first_entry(&qpd->queues_list, struct queue, list);
2853 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2854 				q->properties.type)];
2855 		list_del(&q->list);
2856 		qpd->queue_count--;
2857 		dqm_unlock(dqm);
2858 		mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2859 		dqm_lock(dqm);
2860 	}
2861 	dqm_unlock(dqm);
2862 
2863 	/* Outside the DQM lock because under the DQM lock we can't do
2864 	 * reclaim or take other locks that others hold while reclaiming.
2865 	 */
2866 	if (found)
2867 		kfd_dec_compute_active(dqm->dev);
2868 
2869 	return retval;
2870 }
2871 
2872 static int init_mqd_managers(struct device_queue_manager *dqm)
2873 {
2874 	int i, j;
2875 	struct device *dev = dqm->dev->adev->dev;
2876 	struct mqd_manager *mqd_mgr;
2877 
2878 	for (i = 0; i < KFD_MQD_TYPE_MAX; i++) {
2879 		mqd_mgr = dqm->asic_ops.mqd_manager_init(i, dqm->dev);
2880 		if (!mqd_mgr) {
2881 			dev_err(dev, "mqd manager [%d] initialization failed\n", i);
2882 			goto out_free;
2883 		}
2884 		dqm->mqd_mgrs[i] = mqd_mgr;
2885 	}
2886 
2887 	return 0;
2888 
2889 out_free:
2890 	for (j = 0; j < i; j++) {
2891 		kfree(dqm->mqd_mgrs[j]);
2892 		dqm->mqd_mgrs[j] = NULL;
2893 	}
2894 
2895 	return -ENOMEM;
2896 }
2897 
2898 /* Allocate one hiq mqd (HWS) and all SDMA mqd in a continuous trunk*/
2899 static int allocate_hiq_sdma_mqd(struct device_queue_manager *dqm)
2900 {
2901 	int retval;
2902 	struct kfd_node *dev = dqm->dev;
2903 	struct kfd_mem_obj *mem_obj = &dqm->hiq_sdma_mqd;
2904 	uint32_t size = dqm->mqd_mgrs[KFD_MQD_TYPE_SDMA]->mqd_size *
2905 		get_num_all_sdma_engines(dqm) *
2906 		dev->kfd->device_info.num_sdma_queues_per_engine +
2907 		(dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]->mqd_size *
2908 		NUM_XCC(dqm->dev->xcc_mask));
2909 
2910 	retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev, size,
2911 		&(mem_obj->gtt_mem), &(mem_obj->gpu_addr),
2912 		(void *)&(mem_obj->cpu_ptr), false);
2913 
2914 	return retval;
2915 }
2916 
2917 struct device_queue_manager *device_queue_manager_init(struct kfd_node *dev)
2918 {
2919 	struct device_queue_manager *dqm;
2920 
2921 	pr_debug("Loading device queue manager\n");
2922 
2923 	dqm = kzalloc(sizeof(*dqm), GFP_KERNEL);
2924 	if (!dqm)
2925 		return NULL;
2926 
2927 	switch (dev->adev->asic_type) {
2928 	/* HWS is not available on Hawaii. */
2929 	case CHIP_HAWAII:
2930 	/* HWS depends on CWSR for timely dequeue. CWSR is not
2931 	 * available on Tonga.
2932 	 *
2933 	 * FIXME: This argument also applies to Kaveri.
2934 	 */
2935 	case CHIP_TONGA:
2936 		dqm->sched_policy = KFD_SCHED_POLICY_NO_HWS;
2937 		break;
2938 	default:
2939 		dqm->sched_policy = sched_policy;
2940 		break;
2941 	}
2942 
2943 	dqm->dev = dev;
2944 	switch (dqm->sched_policy) {
2945 	case KFD_SCHED_POLICY_HWS:
2946 	case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
2947 		/* initialize dqm for cp scheduling */
2948 		dqm->ops.create_queue = create_queue_cpsch;
2949 		dqm->ops.initialize = initialize_cpsch;
2950 		dqm->ops.start = start_cpsch;
2951 		dqm->ops.stop = stop_cpsch;
2952 		dqm->ops.halt = halt_cpsch;
2953 		dqm->ops.unhalt = unhalt_cpsch;
2954 		dqm->ops.destroy_queue = destroy_queue_cpsch;
2955 		dqm->ops.update_queue = update_queue;
2956 		dqm->ops.register_process = register_process;
2957 		dqm->ops.unregister_process = unregister_process;
2958 		dqm->ops.uninitialize = uninitialize;
2959 		dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
2960 		dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
2961 		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
2962 		dqm->ops.process_termination = process_termination_cpsch;
2963 		dqm->ops.evict_process_queues = evict_process_queues_cpsch;
2964 		dqm->ops.restore_process_queues = restore_process_queues_cpsch;
2965 		dqm->ops.get_wave_state = get_wave_state;
2966 		dqm->ops.reset_queues = reset_queues_cpsch;
2967 		dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info;
2968 		dqm->ops.checkpoint_mqd = checkpoint_mqd;
2969 		break;
2970 	case KFD_SCHED_POLICY_NO_HWS:
2971 		/* initialize dqm for no cp scheduling */
2972 		dqm->ops.start = start_nocpsch;
2973 		dqm->ops.stop = stop_nocpsch;
2974 		dqm->ops.create_queue = create_queue_nocpsch;
2975 		dqm->ops.destroy_queue = destroy_queue_nocpsch;
2976 		dqm->ops.update_queue = update_queue;
2977 		dqm->ops.register_process = register_process;
2978 		dqm->ops.unregister_process = unregister_process;
2979 		dqm->ops.initialize = initialize_nocpsch;
2980 		dqm->ops.uninitialize = uninitialize;
2981 		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
2982 		dqm->ops.process_termination = process_termination_nocpsch;
2983 		dqm->ops.evict_process_queues = evict_process_queues_nocpsch;
2984 		dqm->ops.restore_process_queues =
2985 			restore_process_queues_nocpsch;
2986 		dqm->ops.get_wave_state = get_wave_state;
2987 		dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info;
2988 		dqm->ops.checkpoint_mqd = checkpoint_mqd;
2989 		break;
2990 	default:
2991 		dev_err(dev->adev->dev, "Invalid scheduling policy %d\n", dqm->sched_policy);
2992 		goto out_free;
2993 	}
2994 
2995 	switch (dev->adev->asic_type) {
2996 	case CHIP_KAVERI:
2997 	case CHIP_HAWAII:
2998 		device_queue_manager_init_cik(&dqm->asic_ops);
2999 		break;
3000 
3001 	case CHIP_CARRIZO:
3002 	case CHIP_TONGA:
3003 	case CHIP_FIJI:
3004 	case CHIP_POLARIS10:
3005 	case CHIP_POLARIS11:
3006 	case CHIP_POLARIS12:
3007 	case CHIP_VEGAM:
3008 		device_queue_manager_init_vi(&dqm->asic_ops);
3009 		break;
3010 
3011 	default:
3012 		if (KFD_GC_VERSION(dev) >= IP_VERSION(12, 0, 0))
3013 			device_queue_manager_init_v12(&dqm->asic_ops);
3014 		else if (KFD_GC_VERSION(dev) >= IP_VERSION(11, 0, 0))
3015 			device_queue_manager_init_v11(&dqm->asic_ops);
3016 		else if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
3017 			device_queue_manager_init_v10(&dqm->asic_ops);
3018 		else if (KFD_GC_VERSION(dev) >= IP_VERSION(9, 0, 1))
3019 			device_queue_manager_init_v9(&dqm->asic_ops);
3020 		else {
3021 			WARN(1, "Unexpected ASIC family %u",
3022 			     dev->adev->asic_type);
3023 			goto out_free;
3024 		}
3025 	}
3026 
3027 	if (init_mqd_managers(dqm))
3028 		goto out_free;
3029 
3030 	if (!dev->kfd->shared_resources.enable_mes && allocate_hiq_sdma_mqd(dqm)) {
3031 		dev_err(dev->adev->dev, "Failed to allocate hiq sdma mqd trunk buffer\n");
3032 		goto out_free;
3033 	}
3034 
3035 	if (!dqm->ops.initialize(dqm)) {
3036 		init_waitqueue_head(&dqm->destroy_wait);
3037 		return dqm;
3038 	}
3039 
3040 out_free:
3041 	kfree(dqm);
3042 	return NULL;
3043 }
3044 
3045 static void deallocate_hiq_sdma_mqd(struct kfd_node *dev,
3046 				    struct kfd_mem_obj *mqd)
3047 {
3048 	WARN(!mqd, "No hiq sdma mqd trunk to free");
3049 
3050 	amdgpu_amdkfd_free_gtt_mem(dev->adev, &mqd->gtt_mem);
3051 }
3052 
3053 void device_queue_manager_uninit(struct device_queue_manager *dqm)
3054 {
3055 	dqm->ops.stop(dqm);
3056 	dqm->ops.uninitialize(dqm);
3057 	if (!dqm->dev->kfd->shared_resources.enable_mes)
3058 		deallocate_hiq_sdma_mqd(dqm->dev, &dqm->hiq_sdma_mqd);
3059 	kfree(dqm);
3060 }
3061 
3062 int kfd_dqm_suspend_bad_queue_mes(struct kfd_node *knode, u32 pasid, u32 doorbell_id)
3063 {
3064 	struct kfd_process_device *pdd = NULL;
3065 	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid, &pdd);
3066 	struct device_queue_manager *dqm = knode->dqm;
3067 	struct device *dev = dqm->dev->adev->dev;
3068 	struct qcm_process_device *qpd;
3069 	struct queue *q = NULL;
3070 	int ret = 0;
3071 
3072 	if (!pdd)
3073 		return -EINVAL;
3074 
3075 	dqm_lock(dqm);
3076 
3077 	if (pdd) {
3078 		qpd = &pdd->qpd;
3079 
3080 		list_for_each_entry(q, &qpd->queues_list, list) {
3081 			if (q->doorbell_id == doorbell_id && q->properties.is_active) {
3082 				ret = suspend_all_queues_mes(dqm);
3083 				if (ret) {
3084 					dev_err(dev, "Suspending all queues failed");
3085 					goto out;
3086 				}
3087 
3088 				q->properties.is_evicted = true;
3089 				q->properties.is_active = false;
3090 				decrement_queue_count(dqm, qpd, q);
3091 
3092 				ret = remove_queue_mes(dqm, q, qpd);
3093 				if (ret) {
3094 					dev_err(dev, "Removing bad queue failed");
3095 					goto out;
3096 				}
3097 
3098 				ret = resume_all_queues_mes(dqm);
3099 				if (ret)
3100 					dev_err(dev, "Resuming all queues failed");
3101 
3102 				break;
3103 			}
3104 		}
3105 	}
3106 
3107 out:
3108 	dqm_unlock(dqm);
3109 	kfd_unref_process(p);
3110 	return ret;
3111 }
3112 
3113 int kfd_evict_process_device(struct kfd_process_device *pdd)
3114 {
3115 	struct device_queue_manager *dqm;
3116 	struct kfd_process *p;
3117 
3118 	p = pdd->process;
3119 	dqm = pdd->dev->dqm;
3120 
3121 	WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
3122 
3123 	return dqm->ops.evict_process_queues(dqm, &pdd->qpd);
3124 }
3125 
3126 int reserve_debug_trap_vmid(struct device_queue_manager *dqm,
3127 				struct qcm_process_device *qpd)
3128 {
3129 	int r;
3130 	struct device *dev = dqm->dev->adev->dev;
3131 	int updated_vmid_mask;
3132 
3133 	if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3134 		dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3135 		return -EINVAL;
3136 	}
3137 
3138 	dqm_lock(dqm);
3139 
3140 	if (dqm->trap_debug_vmid != 0) {
3141 		dev_err(dev, "Trap debug id already reserved\n");
3142 		r = -EBUSY;
3143 		goto out_unlock;
3144 	}
3145 
3146 	r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
3147 			USE_DEFAULT_GRACE_PERIOD, false);
3148 	if (r)
3149 		goto out_unlock;
3150 
3151 	updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap;
3152 	updated_vmid_mask &= ~(1 << dqm->dev->vm_info.last_vmid_kfd);
3153 
3154 	dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask;
3155 	dqm->trap_debug_vmid = dqm->dev->vm_info.last_vmid_kfd;
3156 	r = set_sched_resources(dqm);
3157 	if (r)
3158 		goto out_unlock;
3159 
3160 	r = map_queues_cpsch(dqm);
3161 	if (r)
3162 		goto out_unlock;
3163 
3164 	pr_debug("Reserved VMID for trap debug: %i\n", dqm->trap_debug_vmid);
3165 
3166 out_unlock:
3167 	dqm_unlock(dqm);
3168 	return r;
3169 }
3170 
3171 /*
3172  * Releases vmid for the trap debugger
3173  */
3174 int release_debug_trap_vmid(struct device_queue_manager *dqm,
3175 			struct qcm_process_device *qpd)
3176 {
3177 	struct device *dev = dqm->dev->adev->dev;
3178 	int r;
3179 	int updated_vmid_mask;
3180 	uint32_t trap_debug_vmid;
3181 
3182 	if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3183 		dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3184 		return -EINVAL;
3185 	}
3186 
3187 	dqm_lock(dqm);
3188 	trap_debug_vmid = dqm->trap_debug_vmid;
3189 	if (dqm->trap_debug_vmid == 0) {
3190 		dev_err(dev, "Trap debug id is not reserved\n");
3191 		r = -EINVAL;
3192 		goto out_unlock;
3193 	}
3194 
3195 	r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
3196 			USE_DEFAULT_GRACE_PERIOD, false);
3197 	if (r)
3198 		goto out_unlock;
3199 
3200 	updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap;
3201 	updated_vmid_mask |= (1 << dqm->dev->vm_info.last_vmid_kfd);
3202 
3203 	dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask;
3204 	dqm->trap_debug_vmid = 0;
3205 	r = set_sched_resources(dqm);
3206 	if (r)
3207 		goto out_unlock;
3208 
3209 	r = map_queues_cpsch(dqm);
3210 	if (r)
3211 		goto out_unlock;
3212 
3213 	pr_debug("Released VMID for trap debug: %i\n", trap_debug_vmid);
3214 
3215 out_unlock:
3216 	dqm_unlock(dqm);
3217 	return r;
3218 }
3219 
3220 #define QUEUE_NOT_FOUND		-1
3221 /* invalidate queue operation in array */
3222 static void q_array_invalidate(uint32_t num_queues, uint32_t *queue_ids)
3223 {
3224 	int i;
3225 
3226 	for (i = 0; i < num_queues; i++)
3227 		queue_ids[i] |= KFD_DBG_QUEUE_INVALID_MASK;
3228 }
3229 
3230 /* find queue index in array */
3231 static int q_array_get_index(unsigned int queue_id,
3232 		uint32_t num_queues,
3233 		uint32_t *queue_ids)
3234 {
3235 	int i;
3236 
3237 	for (i = 0; i < num_queues; i++)
3238 		if (queue_id == (queue_ids[i] & ~KFD_DBG_QUEUE_INVALID_MASK))
3239 			return i;
3240 
3241 	return QUEUE_NOT_FOUND;
3242 }
3243 
3244 struct copy_context_work_handler_workarea {
3245 	struct work_struct copy_context_work;
3246 	struct kfd_process *p;
3247 };
3248 
3249 static void copy_context_work_handler(struct work_struct *work)
3250 {
3251 	struct copy_context_work_handler_workarea *workarea;
3252 	struct mqd_manager *mqd_mgr;
3253 	struct queue *q;
3254 	struct mm_struct *mm;
3255 	struct kfd_process *p;
3256 	uint32_t tmp_ctl_stack_used_size, tmp_save_area_used_size;
3257 	int i;
3258 
3259 	workarea = container_of(work,
3260 			struct copy_context_work_handler_workarea,
3261 			copy_context_work);
3262 
3263 	p = workarea->p;
3264 	mm = get_task_mm(p->lead_thread);
3265 
3266 	if (!mm)
3267 		return;
3268 
3269 	kthread_use_mm(mm);
3270 	for (i = 0; i < p->n_pdds; i++) {
3271 		struct kfd_process_device *pdd = p->pdds[i];
3272 		struct device_queue_manager *dqm = pdd->dev->dqm;
3273 		struct qcm_process_device *qpd = &pdd->qpd;
3274 
3275 		list_for_each_entry(q, &qpd->queues_list, list) {
3276 			if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE)
3277 				continue;
3278 
3279 			mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP];
3280 
3281 			/* We ignore the return value from get_wave_state
3282 			 * because
3283 			 * i) right now, it always returns 0, and
3284 			 * ii) if we hit an error, we would continue to the
3285 			 *      next queue anyway.
3286 			 */
3287 			mqd_mgr->get_wave_state(mqd_mgr,
3288 					q->mqd,
3289 					&q->properties,
3290 					(void __user *)	q->properties.ctx_save_restore_area_address,
3291 					&tmp_ctl_stack_used_size,
3292 					&tmp_save_area_used_size);
3293 		}
3294 	}
3295 	kthread_unuse_mm(mm);
3296 	mmput(mm);
3297 }
3298 
3299 static uint32_t *get_queue_ids(uint32_t num_queues, uint32_t *usr_queue_id_array)
3300 {
3301 	size_t array_size = num_queues * sizeof(uint32_t);
3302 
3303 	if (!usr_queue_id_array)
3304 		return NULL;
3305 
3306 	return memdup_user(usr_queue_id_array, array_size);
3307 }
3308 
3309 int resume_queues(struct kfd_process *p,
3310 		uint32_t num_queues,
3311 		uint32_t *usr_queue_id_array)
3312 {
3313 	uint32_t *queue_ids = NULL;
3314 	int total_resumed = 0;
3315 	int i;
3316 
3317 	if (usr_queue_id_array) {
3318 		queue_ids = get_queue_ids(num_queues, usr_queue_id_array);
3319 
3320 		if (IS_ERR(queue_ids))
3321 			return PTR_ERR(queue_ids);
3322 
3323 		/* mask all queues as invalid.  unmask per successful request */
3324 		q_array_invalidate(num_queues, queue_ids);
3325 	}
3326 
3327 	for (i = 0; i < p->n_pdds; i++) {
3328 		struct kfd_process_device *pdd = p->pdds[i];
3329 		struct device_queue_manager *dqm = pdd->dev->dqm;
3330 		struct device *dev = dqm->dev->adev->dev;
3331 		struct qcm_process_device *qpd = &pdd->qpd;
3332 		struct queue *q;
3333 		int r, per_device_resumed = 0;
3334 
3335 		dqm_lock(dqm);
3336 
3337 		/* unmask queues that resume or already resumed as valid */
3338 		list_for_each_entry(q, &qpd->queues_list, list) {
3339 			int q_idx = QUEUE_NOT_FOUND;
3340 
3341 			if (queue_ids)
3342 				q_idx = q_array_get_index(
3343 						q->properties.queue_id,
3344 						num_queues,
3345 						queue_ids);
3346 
3347 			if (!queue_ids || q_idx != QUEUE_NOT_FOUND) {
3348 				int err = resume_single_queue(dqm, &pdd->qpd, q);
3349 
3350 				if (queue_ids) {
3351 					if (!err) {
3352 						queue_ids[q_idx] &=
3353 							~KFD_DBG_QUEUE_INVALID_MASK;
3354 					} else {
3355 						queue_ids[q_idx] |=
3356 							KFD_DBG_QUEUE_ERROR_MASK;
3357 						break;
3358 					}
3359 				}
3360 
3361 				if (dqm->dev->kfd->shared_resources.enable_mes) {
3362 					wake_up_all(&dqm->destroy_wait);
3363 					if (!err)
3364 						total_resumed++;
3365 				} else {
3366 					per_device_resumed++;
3367 				}
3368 			}
3369 		}
3370 
3371 		if (!per_device_resumed) {
3372 			dqm_unlock(dqm);
3373 			continue;
3374 		}
3375 
3376 		r = execute_queues_cpsch(dqm,
3377 					KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
3378 					0,
3379 					USE_DEFAULT_GRACE_PERIOD);
3380 		if (r) {
3381 			dev_err(dev, "Failed to resume process queues\n");
3382 			if (queue_ids) {
3383 				list_for_each_entry(q, &qpd->queues_list, list) {
3384 					int q_idx = q_array_get_index(
3385 							q->properties.queue_id,
3386 							num_queues,
3387 							queue_ids);
3388 
3389 					/* mask queue as error on resume fail */
3390 					if (q_idx != QUEUE_NOT_FOUND)
3391 						queue_ids[q_idx] |=
3392 							KFD_DBG_QUEUE_ERROR_MASK;
3393 				}
3394 			}
3395 		} else {
3396 			wake_up_all(&dqm->destroy_wait);
3397 			total_resumed += per_device_resumed;
3398 		}
3399 
3400 		dqm_unlock(dqm);
3401 	}
3402 
3403 	if (queue_ids) {
3404 		if (copy_to_user((void __user *)usr_queue_id_array, queue_ids,
3405 				num_queues * sizeof(uint32_t)))
3406 			pr_err("copy_to_user failed on queue resume\n");
3407 
3408 		kfree(queue_ids);
3409 	}
3410 
3411 	return total_resumed;
3412 }
3413 
3414 int suspend_queues(struct kfd_process *p,
3415 			uint32_t num_queues,
3416 			uint32_t grace_period,
3417 			uint64_t exception_clear_mask,
3418 			uint32_t *usr_queue_id_array)
3419 {
3420 	uint32_t *queue_ids = get_queue_ids(num_queues, usr_queue_id_array);
3421 	int total_suspended = 0;
3422 	int i;
3423 
3424 	if (IS_ERR(queue_ids))
3425 		return PTR_ERR(queue_ids);
3426 
3427 	/* mask all queues as invalid.  umask on successful request */
3428 	q_array_invalidate(num_queues, queue_ids);
3429 
3430 	for (i = 0; i < p->n_pdds; i++) {
3431 		struct kfd_process_device *pdd = p->pdds[i];
3432 		struct device_queue_manager *dqm = pdd->dev->dqm;
3433 		struct device *dev = dqm->dev->adev->dev;
3434 		struct qcm_process_device *qpd = &pdd->qpd;
3435 		struct queue *q;
3436 		int r, per_device_suspended = 0;
3437 
3438 		mutex_lock(&p->event_mutex);
3439 		dqm_lock(dqm);
3440 
3441 		/* unmask queues that suspend or already suspended */
3442 		list_for_each_entry(q, &qpd->queues_list, list) {
3443 			int q_idx = q_array_get_index(q->properties.queue_id,
3444 							num_queues,
3445 							queue_ids);
3446 
3447 			if (q_idx != QUEUE_NOT_FOUND) {
3448 				int err = suspend_single_queue(dqm, pdd, q);
3449 				bool is_mes = dqm->dev->kfd->shared_resources.enable_mes;
3450 
3451 				if (!err) {
3452 					queue_ids[q_idx] &= ~KFD_DBG_QUEUE_INVALID_MASK;
3453 					if (exception_clear_mask && is_mes)
3454 						q->properties.exception_status &=
3455 							~exception_clear_mask;
3456 
3457 					if (is_mes)
3458 						total_suspended++;
3459 					else
3460 						per_device_suspended++;
3461 				} else if (err != -EBUSY) {
3462 					queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK;
3463 					break;
3464 				}
3465 			}
3466 		}
3467 
3468 		if (!per_device_suspended) {
3469 			dqm_unlock(dqm);
3470 			mutex_unlock(&p->event_mutex);
3471 			if (total_suspended)
3472 				amdgpu_amdkfd_debug_mem_fence(dqm->dev->adev);
3473 			continue;
3474 		}
3475 
3476 		r = execute_queues_cpsch(dqm,
3477 			KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
3478 			grace_period);
3479 
3480 		if (r)
3481 			dev_err(dev, "Failed to suspend process queues.\n");
3482 		else
3483 			total_suspended += per_device_suspended;
3484 
3485 		list_for_each_entry(q, &qpd->queues_list, list) {
3486 			int q_idx = q_array_get_index(q->properties.queue_id,
3487 						num_queues, queue_ids);
3488 
3489 			if (q_idx == QUEUE_NOT_FOUND)
3490 				continue;
3491 
3492 			/* mask queue as error on suspend fail */
3493 			if (r)
3494 				queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK;
3495 			else if (exception_clear_mask)
3496 				q->properties.exception_status &=
3497 							~exception_clear_mask;
3498 		}
3499 
3500 		dqm_unlock(dqm);
3501 		mutex_unlock(&p->event_mutex);
3502 		amdgpu_device_flush_hdp(dqm->dev->adev, NULL);
3503 	}
3504 
3505 	if (total_suspended) {
3506 		struct copy_context_work_handler_workarea copy_context_worker;
3507 
3508 		INIT_WORK_ONSTACK(
3509 				&copy_context_worker.copy_context_work,
3510 				copy_context_work_handler);
3511 
3512 		copy_context_worker.p = p;
3513 
3514 		schedule_work(&copy_context_worker.copy_context_work);
3515 
3516 
3517 		flush_work(&copy_context_worker.copy_context_work);
3518 		destroy_work_on_stack(&copy_context_worker.copy_context_work);
3519 	}
3520 
3521 	if (copy_to_user((void __user *)usr_queue_id_array, queue_ids,
3522 			num_queues * sizeof(uint32_t)))
3523 		pr_err("copy_to_user failed on queue suspend\n");
3524 
3525 	kfree(queue_ids);
3526 
3527 	return total_suspended;
3528 }
3529 
3530 static uint32_t set_queue_type_for_user(struct queue_properties *q_props)
3531 {
3532 	switch (q_props->type) {
3533 	case KFD_QUEUE_TYPE_COMPUTE:
3534 		return q_props->format == KFD_QUEUE_FORMAT_PM4
3535 					? KFD_IOC_QUEUE_TYPE_COMPUTE
3536 					: KFD_IOC_QUEUE_TYPE_COMPUTE_AQL;
3537 	case KFD_QUEUE_TYPE_SDMA:
3538 		return KFD_IOC_QUEUE_TYPE_SDMA;
3539 	case KFD_QUEUE_TYPE_SDMA_XGMI:
3540 		return KFD_IOC_QUEUE_TYPE_SDMA_XGMI;
3541 	default:
3542 		WARN_ONCE(true, "queue type not recognized!");
3543 		return 0xffffffff;
3544 	};
3545 }
3546 
3547 void set_queue_snapshot_entry(struct queue *q,
3548 			      uint64_t exception_clear_mask,
3549 			      struct kfd_queue_snapshot_entry *qss_entry)
3550 {
3551 	qss_entry->ring_base_address = q->properties.queue_address;
3552 	qss_entry->write_pointer_address = (uint64_t)q->properties.write_ptr;
3553 	qss_entry->read_pointer_address = (uint64_t)q->properties.read_ptr;
3554 	qss_entry->ctx_save_restore_address =
3555 				q->properties.ctx_save_restore_area_address;
3556 	qss_entry->ctx_save_restore_area_size =
3557 				q->properties.ctx_save_restore_area_size;
3558 	qss_entry->exception_status = q->properties.exception_status;
3559 	qss_entry->queue_id = q->properties.queue_id;
3560 	qss_entry->gpu_id = q->device->id;
3561 	qss_entry->ring_size = (uint32_t)q->properties.queue_size;
3562 	qss_entry->queue_type = set_queue_type_for_user(&q->properties);
3563 	q->properties.exception_status &= ~exception_clear_mask;
3564 }
3565 
3566 int debug_lock_and_unmap(struct device_queue_manager *dqm)
3567 {
3568 	struct device *dev = dqm->dev->adev->dev;
3569 	int r;
3570 
3571 	if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3572 		dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3573 		return -EINVAL;
3574 	}
3575 
3576 	if (!kfd_dbg_is_per_vmid_supported(dqm->dev))
3577 		return 0;
3578 
3579 	dqm_lock(dqm);
3580 
3581 	r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, 0, false);
3582 	if (r)
3583 		dqm_unlock(dqm);
3584 
3585 	return r;
3586 }
3587 
3588 int debug_map_and_unlock(struct device_queue_manager *dqm)
3589 {
3590 	struct device *dev = dqm->dev->adev->dev;
3591 	int r;
3592 
3593 	if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3594 		dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3595 		return -EINVAL;
3596 	}
3597 
3598 	if (!kfd_dbg_is_per_vmid_supported(dqm->dev))
3599 		return 0;
3600 
3601 	r = map_queues_cpsch(dqm);
3602 
3603 	dqm_unlock(dqm);
3604 
3605 	return r;
3606 }
3607 
3608 int debug_refresh_runlist(struct device_queue_manager *dqm)
3609 {
3610 	int r = debug_lock_and_unmap(dqm);
3611 
3612 	if (r)
3613 		return r;
3614 
3615 	return debug_map_and_unlock(dqm);
3616 }
3617 
3618 bool kfd_dqm_is_queue_in_process(struct device_queue_manager *dqm,
3619 				 struct qcm_process_device *qpd,
3620 				 int doorbell_off, u32 *queue_format)
3621 {
3622 	struct queue *q;
3623 	bool r = false;
3624 
3625 	if (!queue_format)
3626 		return r;
3627 
3628 	dqm_lock(dqm);
3629 
3630 	list_for_each_entry(q, &qpd->queues_list, list) {
3631 		if (q->properties.doorbell_off == doorbell_off) {
3632 			*queue_format = q->properties.format;
3633 			r = true;
3634 			goto out;
3635 		}
3636 	}
3637 
3638 out:
3639 	dqm_unlock(dqm);
3640 	return r;
3641 }
3642 #if defined(CONFIG_DEBUG_FS)
3643 
3644 static void seq_reg_dump(struct seq_file *m,
3645 			 uint32_t (*dump)[2], uint32_t n_regs)
3646 {
3647 	uint32_t i, count;
3648 
3649 	for (i = 0, count = 0; i < n_regs; i++) {
3650 		if (count == 0 ||
3651 		    dump[i-1][0] + sizeof(uint32_t) != dump[i][0]) {
3652 			seq_printf(m, "%s    %08x: %08x",
3653 				   i ? "\n" : "",
3654 				   dump[i][0], dump[i][1]);
3655 			count = 7;
3656 		} else {
3657 			seq_printf(m, " %08x", dump[i][1]);
3658 			count--;
3659 		}
3660 	}
3661 
3662 	seq_puts(m, "\n");
3663 }
3664 
3665 int dqm_debugfs_hqds(struct seq_file *m, void *data)
3666 {
3667 	struct device_queue_manager *dqm = data;
3668 	uint32_t xcc_mask = dqm->dev->xcc_mask;
3669 	uint32_t (*dump)[2], n_regs;
3670 	int pipe, queue;
3671 	int r = 0, xcc_id;
3672 	uint32_t sdma_engine_start;
3673 
3674 	if (!dqm->sched_running) {
3675 		seq_puts(m, " Device is stopped\n");
3676 		return 0;
3677 	}
3678 
3679 	for_each_inst(xcc_id, xcc_mask) {
3680 		r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev,
3681 						KFD_CIK_HIQ_PIPE,
3682 						KFD_CIK_HIQ_QUEUE, &dump,
3683 						&n_regs, xcc_id);
3684 		if (!r) {
3685 			seq_printf(
3686 				m,
3687 				"   Inst %d, HIQ on MEC %d Pipe %d Queue %d\n",
3688 				xcc_id,
3689 				KFD_CIK_HIQ_PIPE / get_pipes_per_mec(dqm) + 1,
3690 				KFD_CIK_HIQ_PIPE % get_pipes_per_mec(dqm),
3691 				KFD_CIK_HIQ_QUEUE);
3692 			seq_reg_dump(m, dump, n_regs);
3693 
3694 			kfree(dump);
3695 		}
3696 
3697 		for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
3698 			int pipe_offset = pipe * get_queues_per_pipe(dqm);
3699 
3700 			for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) {
3701 				if (!test_bit(pipe_offset + queue,
3702 				      dqm->dev->kfd->shared_resources.cp_queue_bitmap))
3703 					continue;
3704 
3705 				r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev,
3706 								pipe, queue,
3707 								&dump, &n_regs,
3708 								xcc_id);
3709 				if (r)
3710 					break;
3711 
3712 				seq_printf(m,
3713 					   " Inst %d,  CP Pipe %d, Queue %d\n",
3714 					   xcc_id, pipe, queue);
3715 				seq_reg_dump(m, dump, n_regs);
3716 
3717 				kfree(dump);
3718 			}
3719 		}
3720 	}
3721 
3722 	sdma_engine_start = dqm->dev->node_id * get_num_all_sdma_engines(dqm);
3723 	for (pipe = sdma_engine_start;
3724 	     pipe < (sdma_engine_start + get_num_all_sdma_engines(dqm));
3725 	     pipe++) {
3726 		for (queue = 0;
3727 		     queue < dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
3728 		     queue++) {
3729 			r = dqm->dev->kfd2kgd->hqd_sdma_dump(
3730 				dqm->dev->adev, pipe, queue, &dump, &n_regs);
3731 			if (r)
3732 				break;
3733 
3734 			seq_printf(m, "  SDMA Engine %d, RLC %d\n",
3735 				  pipe, queue);
3736 			seq_reg_dump(m, dump, n_regs);
3737 
3738 			kfree(dump);
3739 		}
3740 	}
3741 
3742 	return r;
3743 }
3744 
3745 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm)
3746 {
3747 	int r = 0;
3748 
3749 	dqm_lock(dqm);
3750 	r = pm_debugfs_hang_hws(&dqm->packet_mgr);
3751 	if (r) {
3752 		dqm_unlock(dqm);
3753 		return r;
3754 	}
3755 	dqm->active_runlist = true;
3756 	r = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES,
3757 				0, USE_DEFAULT_GRACE_PERIOD);
3758 	dqm_unlock(dqm);
3759 
3760 	return r;
3761 }
3762 
3763 #endif
3764