xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_device.c (revision ed807f0cbfed8d7877bc5a1879330e579f095afa)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/bsearch.h>
25 #include <linux/pci.h>
26 #include <linux/slab.h>
27 #include "kfd_priv.h"
28 #include "kfd_device_queue_manager.h"
29 #include "kfd_pm4_headers_vi.h"
30 #include "kfd_pm4_headers_aldebaran.h"
31 #include "cwsr_trap_handler.h"
32 #include "amdgpu_amdkfd.h"
33 #include "kfd_smi_events.h"
34 #include "kfd_svm.h"
35 #include "kfd_migrate.h"
36 #include "amdgpu.h"
37 #include "amdgpu_xcp.h"
38 
39 #define MQD_SIZE_ALIGNED 768
40 
41 /*
42  * kfd_locked is used to lock the kfd driver during suspend or reset
43  * once locked, kfd driver will stop any further GPU execution.
44  * create process (open) will return -EAGAIN.
45  */
46 static int kfd_locked;
47 
48 #ifdef CONFIG_DRM_AMDGPU_CIK
49 extern const struct kfd2kgd_calls gfx_v7_kfd2kgd;
50 #endif
51 extern const struct kfd2kgd_calls gfx_v8_kfd2kgd;
52 extern const struct kfd2kgd_calls gfx_v9_kfd2kgd;
53 extern const struct kfd2kgd_calls arcturus_kfd2kgd;
54 extern const struct kfd2kgd_calls aldebaran_kfd2kgd;
55 extern const struct kfd2kgd_calls gc_9_4_3_kfd2kgd;
56 extern const struct kfd2kgd_calls gfx_v10_kfd2kgd;
57 extern const struct kfd2kgd_calls gfx_v10_3_kfd2kgd;
58 extern const struct kfd2kgd_calls gfx_v11_kfd2kgd;
59 
60 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
61 				unsigned int chunk_size);
62 static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
63 
64 static int kfd_resume(struct kfd_node *kfd);
65 
66 static void kfd_device_info_set_sdma_info(struct kfd_dev *kfd)
67 {
68 	uint32_t sdma_version = kfd->adev->ip_versions[SDMA0_HWIP][0];
69 
70 	switch (sdma_version) {
71 	case IP_VERSION(4, 0, 0):/* VEGA10 */
72 	case IP_VERSION(4, 0, 1):/* VEGA12 */
73 	case IP_VERSION(4, 1, 0):/* RAVEN */
74 	case IP_VERSION(4, 1, 1):/* RAVEN */
75 	case IP_VERSION(4, 1, 2):/* RENOIR */
76 	case IP_VERSION(5, 2, 1):/* VANGOGH */
77 	case IP_VERSION(5, 2, 3):/* YELLOW_CARP */
78 	case IP_VERSION(5, 2, 6):/* GC 10.3.6 */
79 	case IP_VERSION(5, 2, 7):/* GC 10.3.7 */
80 		kfd->device_info.num_sdma_queues_per_engine = 2;
81 		break;
82 	case IP_VERSION(4, 2, 0):/* VEGA20 */
83 	case IP_VERSION(4, 2, 2):/* ARCTURUS */
84 	case IP_VERSION(4, 4, 0):/* ALDEBARAN */
85 	case IP_VERSION(4, 4, 2):
86 	case IP_VERSION(5, 0, 0):/* NAVI10 */
87 	case IP_VERSION(5, 0, 1):/* CYAN_SKILLFISH */
88 	case IP_VERSION(5, 0, 2):/* NAVI14 */
89 	case IP_VERSION(5, 0, 5):/* NAVI12 */
90 	case IP_VERSION(5, 2, 0):/* SIENNA_CICHLID */
91 	case IP_VERSION(5, 2, 2):/* NAVY_FLOUNDER */
92 	case IP_VERSION(5, 2, 4):/* DIMGREY_CAVEFISH */
93 	case IP_VERSION(5, 2, 5):/* BEIGE_GOBY */
94 	case IP_VERSION(6, 0, 0):
95 	case IP_VERSION(6, 0, 1):
96 	case IP_VERSION(6, 0, 2):
97 	case IP_VERSION(6, 0, 3):
98 	case IP_VERSION(6, 1, 0):
99 		kfd->device_info.num_sdma_queues_per_engine = 8;
100 		break;
101 	default:
102 		dev_warn(kfd_device,
103 			"Default sdma queue per engine(8) is set due to mismatch of sdma ip block(SDMA_HWIP:0x%x).\n",
104 			sdma_version);
105 		kfd->device_info.num_sdma_queues_per_engine = 8;
106 	}
107 
108 	bitmap_zero(kfd->device_info.reserved_sdma_queues_bitmap, KFD_MAX_SDMA_QUEUES);
109 
110 	switch (sdma_version) {
111 	case IP_VERSION(6, 0, 0):
112 	case IP_VERSION(6, 0, 1):
113 	case IP_VERSION(6, 0, 2):
114 	case IP_VERSION(6, 0, 3):
115 	case IP_VERSION(6, 1, 0):
116 		/* Reserve 1 for paging and 1 for gfx */
117 		kfd->device_info.num_reserved_sdma_queues_per_engine = 2;
118 		/* BIT(0)=engine-0 queue-0; BIT(1)=engine-1 queue-0; BIT(2)=engine-0 queue-1; ... */
119 		bitmap_set(kfd->device_info.reserved_sdma_queues_bitmap, 0,
120 			   kfd->adev->sdma.num_instances *
121 			   kfd->device_info.num_reserved_sdma_queues_per_engine);
122 		break;
123 	default:
124 		break;
125 	}
126 }
127 
128 static void kfd_device_info_set_event_interrupt_class(struct kfd_dev *kfd)
129 {
130 	uint32_t gc_version = KFD_GC_VERSION(kfd);
131 
132 	switch (gc_version) {
133 	case IP_VERSION(9, 0, 1): /* VEGA10 */
134 	case IP_VERSION(9, 1, 0): /* RAVEN */
135 	case IP_VERSION(9, 2, 1): /* VEGA12 */
136 	case IP_VERSION(9, 2, 2): /* RAVEN */
137 	case IP_VERSION(9, 3, 0): /* RENOIR */
138 	case IP_VERSION(9, 4, 0): /* VEGA20 */
139 	case IP_VERSION(9, 4, 1): /* ARCTURUS */
140 	case IP_VERSION(9, 4, 2): /* ALDEBARAN */
141 		kfd->device_info.event_interrupt_class = &event_interrupt_class_v9;
142 		break;
143 	case IP_VERSION(9, 4, 3): /* GC 9.4.3 */
144 		kfd->device_info.event_interrupt_class =
145 						&event_interrupt_class_v9_4_3;
146 		break;
147 	case IP_VERSION(10, 3, 1): /* VANGOGH */
148 	case IP_VERSION(10, 3, 3): /* YELLOW_CARP */
149 	case IP_VERSION(10, 3, 6): /* GC 10.3.6 */
150 	case IP_VERSION(10, 3, 7): /* GC 10.3.7 */
151 	case IP_VERSION(10, 1, 3): /* CYAN_SKILLFISH */
152 	case IP_VERSION(10, 1, 4):
153 	case IP_VERSION(10, 1, 10): /* NAVI10 */
154 	case IP_VERSION(10, 1, 2): /* NAVI12 */
155 	case IP_VERSION(10, 1, 1): /* NAVI14 */
156 	case IP_VERSION(10, 3, 0): /* SIENNA_CICHLID */
157 	case IP_VERSION(10, 3, 2): /* NAVY_FLOUNDER */
158 	case IP_VERSION(10, 3, 4): /* DIMGREY_CAVEFISH */
159 	case IP_VERSION(10, 3, 5): /* BEIGE_GOBY */
160 		kfd->device_info.event_interrupt_class = &event_interrupt_class_v10;
161 		break;
162 	case IP_VERSION(11, 0, 0):
163 	case IP_VERSION(11, 0, 1):
164 	case IP_VERSION(11, 0, 2):
165 	case IP_VERSION(11, 0, 3):
166 	case IP_VERSION(11, 0, 4):
167 	case IP_VERSION(11, 5, 0):
168 		kfd->device_info.event_interrupt_class = &event_interrupt_class_v11;
169 		break;
170 	default:
171 		dev_warn(kfd_device, "v9 event interrupt handler is set due to "
172 			"mismatch of gc ip block(GC_HWIP:0x%x).\n", gc_version);
173 		kfd->device_info.event_interrupt_class = &event_interrupt_class_v9;
174 	}
175 }
176 
177 static void kfd_device_info_init(struct kfd_dev *kfd,
178 				 bool vf, uint32_t gfx_target_version)
179 {
180 	uint32_t gc_version = KFD_GC_VERSION(kfd);
181 	uint32_t asic_type = kfd->adev->asic_type;
182 
183 	kfd->device_info.max_pasid_bits = 16;
184 	kfd->device_info.max_no_of_hqd = 24;
185 	kfd->device_info.num_of_watch_points = 4;
186 	kfd->device_info.mqd_size_aligned = MQD_SIZE_ALIGNED;
187 	kfd->device_info.gfx_target_version = gfx_target_version;
188 
189 	if (KFD_IS_SOC15(kfd)) {
190 		kfd->device_info.doorbell_size = 8;
191 		kfd->device_info.ih_ring_entry_size = 8 * sizeof(uint32_t);
192 		kfd->device_info.supports_cwsr = true;
193 
194 		kfd_device_info_set_sdma_info(kfd);
195 
196 		kfd_device_info_set_event_interrupt_class(kfd);
197 
198 		if (gc_version < IP_VERSION(11, 0, 0)) {
199 			/* Navi2x+, Navi1x+ */
200 			if (gc_version == IP_VERSION(10, 3, 6))
201 				kfd->device_info.no_atomic_fw_version = 14;
202 			else if (gc_version == IP_VERSION(10, 3, 7))
203 				kfd->device_info.no_atomic_fw_version = 3;
204 			else if (gc_version >= IP_VERSION(10, 3, 0))
205 				kfd->device_info.no_atomic_fw_version = 92;
206 			else if (gc_version >= IP_VERSION(10, 1, 1))
207 				kfd->device_info.no_atomic_fw_version = 145;
208 
209 			/* Navi1x+ */
210 			if (gc_version >= IP_VERSION(10, 1, 1))
211 				kfd->device_info.needs_pci_atomics = true;
212 		} else if (gc_version < IP_VERSION(12, 0, 0)) {
213 			/*
214 			 * PCIe atomics support acknowledgment in GFX11 RS64 CPFW requires
215 			 * MEC version >= 509. Prior RS64 CPFW versions (and all F32) require
216 			 * PCIe atomics support.
217 			 */
218 			kfd->device_info.needs_pci_atomics = true;
219 			kfd->device_info.no_atomic_fw_version = kfd->adev->gfx.rs64_enable ? 509 : 0;
220 		}
221 	} else {
222 		kfd->device_info.doorbell_size = 4;
223 		kfd->device_info.ih_ring_entry_size = 4 * sizeof(uint32_t);
224 		kfd->device_info.event_interrupt_class = &event_interrupt_class_cik;
225 		kfd->device_info.num_sdma_queues_per_engine = 2;
226 
227 		if (asic_type != CHIP_KAVERI &&
228 		    asic_type != CHIP_HAWAII &&
229 		    asic_type != CHIP_TONGA)
230 			kfd->device_info.supports_cwsr = true;
231 
232 		if (asic_type != CHIP_HAWAII && !vf)
233 			kfd->device_info.needs_pci_atomics = true;
234 	}
235 }
236 
237 struct kfd_dev *kgd2kfd_probe(struct amdgpu_device *adev, bool vf)
238 {
239 	struct kfd_dev *kfd = NULL;
240 	const struct kfd2kgd_calls *f2g = NULL;
241 	uint32_t gfx_target_version = 0;
242 
243 	switch (adev->asic_type) {
244 #ifdef CONFIG_DRM_AMDGPU_CIK
245 	case CHIP_KAVERI:
246 		gfx_target_version = 70000;
247 		if (!vf)
248 			f2g = &gfx_v7_kfd2kgd;
249 		break;
250 #endif
251 	case CHIP_CARRIZO:
252 		gfx_target_version = 80001;
253 		if (!vf)
254 			f2g = &gfx_v8_kfd2kgd;
255 		break;
256 #ifdef CONFIG_DRM_AMDGPU_CIK
257 	case CHIP_HAWAII:
258 		gfx_target_version = 70001;
259 		if (!amdgpu_exp_hw_support)
260 			pr_info(
261 	"KFD support on Hawaii is experimental. See modparam exp_hw_support\n"
262 				);
263 		else if (!vf)
264 			f2g = &gfx_v7_kfd2kgd;
265 		break;
266 #endif
267 	case CHIP_TONGA:
268 		gfx_target_version = 80002;
269 		if (!vf)
270 			f2g = &gfx_v8_kfd2kgd;
271 		break;
272 	case CHIP_FIJI:
273 	case CHIP_POLARIS10:
274 		gfx_target_version = 80003;
275 		f2g = &gfx_v8_kfd2kgd;
276 		break;
277 	case CHIP_POLARIS11:
278 	case CHIP_POLARIS12:
279 	case CHIP_VEGAM:
280 		gfx_target_version = 80003;
281 		if (!vf)
282 			f2g = &gfx_v8_kfd2kgd;
283 		break;
284 	default:
285 		switch (adev->ip_versions[GC_HWIP][0]) {
286 		/* Vega 10 */
287 		case IP_VERSION(9, 0, 1):
288 			gfx_target_version = 90000;
289 			f2g = &gfx_v9_kfd2kgd;
290 			break;
291 		/* Raven */
292 		case IP_VERSION(9, 1, 0):
293 		case IP_VERSION(9, 2, 2):
294 			gfx_target_version = 90002;
295 			if (!vf)
296 				f2g = &gfx_v9_kfd2kgd;
297 			break;
298 		/* Vega12 */
299 		case IP_VERSION(9, 2, 1):
300 			gfx_target_version = 90004;
301 			if (!vf)
302 				f2g = &gfx_v9_kfd2kgd;
303 			break;
304 		/* Renoir */
305 		case IP_VERSION(9, 3, 0):
306 			gfx_target_version = 90012;
307 			if (!vf)
308 				f2g = &gfx_v9_kfd2kgd;
309 			break;
310 		/* Vega20 */
311 		case IP_VERSION(9, 4, 0):
312 			gfx_target_version = 90006;
313 			if (!vf)
314 				f2g = &gfx_v9_kfd2kgd;
315 			break;
316 		/* Arcturus */
317 		case IP_VERSION(9, 4, 1):
318 			gfx_target_version = 90008;
319 			f2g = &arcturus_kfd2kgd;
320 			break;
321 		/* Aldebaran */
322 		case IP_VERSION(9, 4, 2):
323 			gfx_target_version = 90010;
324 			f2g = &aldebaran_kfd2kgd;
325 			break;
326 		case IP_VERSION(9, 4, 3):
327 			gfx_target_version = adev->rev_id >= 1 ? 90402
328 					   : adev->flags & AMD_IS_APU ? 90400
329 					   : 90401;
330 			f2g = &gc_9_4_3_kfd2kgd;
331 			break;
332 		/* Navi10 */
333 		case IP_VERSION(10, 1, 10):
334 			gfx_target_version = 100100;
335 			if (!vf)
336 				f2g = &gfx_v10_kfd2kgd;
337 			break;
338 		/* Navi12 */
339 		case IP_VERSION(10, 1, 2):
340 			gfx_target_version = 100101;
341 			f2g = &gfx_v10_kfd2kgd;
342 			break;
343 		/* Navi14 */
344 		case IP_VERSION(10, 1, 1):
345 			gfx_target_version = 100102;
346 			if (!vf)
347 				f2g = &gfx_v10_kfd2kgd;
348 			break;
349 		/* Cyan Skillfish */
350 		case IP_VERSION(10, 1, 3):
351 		case IP_VERSION(10, 1, 4):
352 			gfx_target_version = 100103;
353 			if (!vf)
354 				f2g = &gfx_v10_kfd2kgd;
355 			break;
356 		/* Sienna Cichlid */
357 		case IP_VERSION(10, 3, 0):
358 			gfx_target_version = 100300;
359 			f2g = &gfx_v10_3_kfd2kgd;
360 			break;
361 		/* Navy Flounder */
362 		case IP_VERSION(10, 3, 2):
363 			gfx_target_version = 100301;
364 			f2g = &gfx_v10_3_kfd2kgd;
365 			break;
366 		/* Van Gogh */
367 		case IP_VERSION(10, 3, 1):
368 			gfx_target_version = 100303;
369 			if (!vf)
370 				f2g = &gfx_v10_3_kfd2kgd;
371 			break;
372 		/* Dimgrey Cavefish */
373 		case IP_VERSION(10, 3, 4):
374 			gfx_target_version = 100302;
375 			f2g = &gfx_v10_3_kfd2kgd;
376 			break;
377 		/* Beige Goby */
378 		case IP_VERSION(10, 3, 5):
379 			gfx_target_version = 100304;
380 			f2g = &gfx_v10_3_kfd2kgd;
381 			break;
382 		/* Yellow Carp */
383 		case IP_VERSION(10, 3, 3):
384 			gfx_target_version = 100305;
385 			if (!vf)
386 				f2g = &gfx_v10_3_kfd2kgd;
387 			break;
388 		case IP_VERSION(10, 3, 6):
389 		case IP_VERSION(10, 3, 7):
390 			gfx_target_version = 100306;
391 			if (!vf)
392 				f2g = &gfx_v10_3_kfd2kgd;
393 			break;
394 		case IP_VERSION(11, 0, 0):
395 			gfx_target_version = 110000;
396 			f2g = &gfx_v11_kfd2kgd;
397 			break;
398 		case IP_VERSION(11, 0, 1):
399 		case IP_VERSION(11, 0, 4):
400 			gfx_target_version = 110003;
401 			f2g = &gfx_v11_kfd2kgd;
402 			break;
403 		case IP_VERSION(11, 0, 2):
404 			gfx_target_version = 110002;
405 			f2g = &gfx_v11_kfd2kgd;
406 			break;
407 		case IP_VERSION(11, 0, 3):
408 			if ((adev->pdev->device == 0x7460 &&
409 			     adev->pdev->revision == 0x00) ||
410 			    (adev->pdev->device == 0x7461 &&
411 			     adev->pdev->revision == 0x00))
412 				/* Note: Compiler version is 11.0.5 while HW version is 11.0.3 */
413 				gfx_target_version = 110005;
414 			else
415 				/* Note: Compiler version is 11.0.1 while HW version is 11.0.3 */
416 				gfx_target_version = 110001;
417 			f2g = &gfx_v11_kfd2kgd;
418 			break;
419 		case IP_VERSION(11, 5, 0):
420 			gfx_target_version = 110500;
421 			f2g = &gfx_v11_kfd2kgd;
422 			break;
423 		default:
424 			break;
425 		}
426 		break;
427 	}
428 
429 	if (!f2g) {
430 		if (adev->ip_versions[GC_HWIP][0])
431 			dev_err(kfd_device, "GC IP %06x %s not supported in kfd\n",
432 				adev->ip_versions[GC_HWIP][0], vf ? "VF" : "");
433 		else
434 			dev_err(kfd_device, "%s %s not supported in kfd\n",
435 				amdgpu_asic_name[adev->asic_type], vf ? "VF" : "");
436 		return NULL;
437 	}
438 
439 	kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
440 	if (!kfd)
441 		return NULL;
442 
443 	kfd->adev = adev;
444 	kfd_device_info_init(kfd, vf, gfx_target_version);
445 	kfd->init_complete = false;
446 	kfd->kfd2kgd = f2g;
447 	atomic_set(&kfd->compute_profile, 0);
448 
449 	mutex_init(&kfd->doorbell_mutex);
450 
451 	ida_init(&kfd->doorbell_ida);
452 
453 	return kfd;
454 }
455 
456 static void kfd_cwsr_init(struct kfd_dev *kfd)
457 {
458 	if (cwsr_enable && kfd->device_info.supports_cwsr) {
459 		if (KFD_GC_VERSION(kfd) < IP_VERSION(9, 0, 1)) {
460 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex) > PAGE_SIZE);
461 			kfd->cwsr_isa = cwsr_trap_gfx8_hex;
462 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
463 		} else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 1)) {
464 			BUILD_BUG_ON(sizeof(cwsr_trap_arcturus_hex) > PAGE_SIZE);
465 			kfd->cwsr_isa = cwsr_trap_arcturus_hex;
466 			kfd->cwsr_isa_size = sizeof(cwsr_trap_arcturus_hex);
467 		} else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 2)) {
468 			BUILD_BUG_ON(sizeof(cwsr_trap_aldebaran_hex) > PAGE_SIZE);
469 			kfd->cwsr_isa = cwsr_trap_aldebaran_hex;
470 			kfd->cwsr_isa_size = sizeof(cwsr_trap_aldebaran_hex);
471 		} else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 3)) {
472 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_4_3_hex) > PAGE_SIZE);
473 			kfd->cwsr_isa = cwsr_trap_gfx9_4_3_hex;
474 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_4_3_hex);
475 		} else if (KFD_GC_VERSION(kfd) < IP_VERSION(10, 1, 1)) {
476 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex) > PAGE_SIZE);
477 			kfd->cwsr_isa = cwsr_trap_gfx9_hex;
478 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
479 		} else if (KFD_GC_VERSION(kfd) < IP_VERSION(10, 3, 0)) {
480 			BUILD_BUG_ON(sizeof(cwsr_trap_nv1x_hex) > PAGE_SIZE);
481 			kfd->cwsr_isa = cwsr_trap_nv1x_hex;
482 			kfd->cwsr_isa_size = sizeof(cwsr_trap_nv1x_hex);
483 		} else if (KFD_GC_VERSION(kfd) < IP_VERSION(11, 0, 0)) {
484 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx10_hex) > PAGE_SIZE);
485 			kfd->cwsr_isa = cwsr_trap_gfx10_hex;
486 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx10_hex);
487 		} else {
488 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx11_hex) > PAGE_SIZE);
489 			kfd->cwsr_isa = cwsr_trap_gfx11_hex;
490 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx11_hex);
491 		}
492 
493 		kfd->cwsr_enabled = true;
494 	}
495 }
496 
497 static int kfd_gws_init(struct kfd_node *node)
498 {
499 	int ret = 0;
500 	struct kfd_dev *kfd = node->kfd;
501 	uint32_t mes_rev = node->adev->mes.sched_version & AMDGPU_MES_VERSION_MASK;
502 
503 	if (node->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS)
504 		return 0;
505 
506 	if (hws_gws_support || (KFD_IS_SOC15(node) &&
507 		((KFD_GC_VERSION(node) == IP_VERSION(9, 0, 1)
508 			&& kfd->mec2_fw_version >= 0x81b3) ||
509 		(KFD_GC_VERSION(node) <= IP_VERSION(9, 4, 0)
510 			&& kfd->mec2_fw_version >= 0x1b3)  ||
511 		(KFD_GC_VERSION(node) == IP_VERSION(9, 4, 1)
512 			&& kfd->mec2_fw_version >= 0x30)   ||
513 		(KFD_GC_VERSION(node) == IP_VERSION(9, 4, 2)
514 			&& kfd->mec2_fw_version >= 0x28) ||
515 		(KFD_GC_VERSION(node) == IP_VERSION(9, 4, 3)) ||
516 		(KFD_GC_VERSION(node) >= IP_VERSION(10, 3, 0)
517 			&& KFD_GC_VERSION(node) < IP_VERSION(11, 0, 0)
518 			&& kfd->mec2_fw_version >= 0x6b) ||
519 		(KFD_GC_VERSION(node) >= IP_VERSION(11, 0, 0)
520 			&& KFD_GC_VERSION(node) < IP_VERSION(12, 0, 0)
521 			&& mes_rev >= 68))))
522 		ret = amdgpu_amdkfd_alloc_gws(node->adev,
523 				node->adev->gds.gws_size, &node->gws);
524 
525 	return ret;
526 }
527 
528 static void kfd_smi_init(struct kfd_node *dev)
529 {
530 	INIT_LIST_HEAD(&dev->smi_clients);
531 	spin_lock_init(&dev->smi_lock);
532 }
533 
534 static int kfd_init_node(struct kfd_node *node)
535 {
536 	int err = -1;
537 
538 	if (kfd_interrupt_init(node)) {
539 		dev_err(kfd_device, "Error initializing interrupts\n");
540 		goto kfd_interrupt_error;
541 	}
542 
543 	node->dqm = device_queue_manager_init(node);
544 	if (!node->dqm) {
545 		dev_err(kfd_device, "Error initializing queue manager\n");
546 		goto device_queue_manager_error;
547 	}
548 
549 	if (kfd_gws_init(node)) {
550 		dev_err(kfd_device, "Could not allocate %d gws\n",
551 			node->adev->gds.gws_size);
552 		goto gws_error;
553 	}
554 
555 	if (kfd_resume(node))
556 		goto kfd_resume_error;
557 
558 	if (kfd_topology_add_device(node)) {
559 		dev_err(kfd_device, "Error adding device to topology\n");
560 		goto kfd_topology_add_device_error;
561 	}
562 
563 	kfd_smi_init(node);
564 
565 	return 0;
566 
567 kfd_topology_add_device_error:
568 kfd_resume_error:
569 gws_error:
570 	device_queue_manager_uninit(node->dqm);
571 device_queue_manager_error:
572 	kfd_interrupt_exit(node);
573 kfd_interrupt_error:
574 	if (node->gws)
575 		amdgpu_amdkfd_free_gws(node->adev, node->gws);
576 
577 	/* Cleanup the node memory here */
578 	kfree(node);
579 	return err;
580 }
581 
582 static void kfd_cleanup_nodes(struct kfd_dev *kfd, unsigned int num_nodes)
583 {
584 	struct kfd_node *knode;
585 	unsigned int i;
586 
587 	for (i = 0; i < num_nodes; i++) {
588 		knode = kfd->nodes[i];
589 		device_queue_manager_uninit(knode->dqm);
590 		kfd_interrupt_exit(knode);
591 		kfd_topology_remove_device(knode);
592 		if (knode->gws)
593 			amdgpu_amdkfd_free_gws(knode->adev, knode->gws);
594 		kfree(knode);
595 		kfd->nodes[i] = NULL;
596 	}
597 }
598 
599 static void kfd_setup_interrupt_bitmap(struct kfd_node *node,
600 				       unsigned int kfd_node_idx)
601 {
602 	struct amdgpu_device *adev = node->adev;
603 	uint32_t xcc_mask = node->xcc_mask;
604 	uint32_t xcc, mapped_xcc;
605 	/*
606 	 * Interrupt bitmap is setup for processing interrupts from
607 	 * different XCDs and AIDs.
608 	 * Interrupt bitmap is defined as follows:
609 	 * 1. Bits 0-15 - correspond to the NodeId field.
610 	 *    Each bit corresponds to NodeId number. For example, if
611 	 *    a KFD node has interrupt bitmap set to 0x7, then this
612 	 *    KFD node will process interrupts with NodeId = 0, 1 and 2
613 	 *    in the IH cookie.
614 	 * 2. Bits 16-31 - unused.
615 	 *
616 	 * Please note that the kfd_node_idx argument passed to this
617 	 * function is not related to NodeId field received in the
618 	 * IH cookie.
619 	 *
620 	 * In CPX mode, a KFD node will process an interrupt if:
621 	 * - the Node Id matches the corresponding bit set in
622 	 *   Bits 0-15.
623 	 * - AND VMID reported in the interrupt lies within the
624 	 *   VMID range of the node.
625 	 */
626 	for_each_inst(xcc, xcc_mask) {
627 		mapped_xcc = GET_INST(GC, xcc);
628 		node->interrupt_bitmap |= (mapped_xcc % 2 ? 5 : 3) << (4 * (mapped_xcc / 2));
629 	}
630 	dev_info(kfd_device, "Node: %d, interrupt_bitmap: %x\n", kfd_node_idx,
631 							node->interrupt_bitmap);
632 }
633 
634 bool kgd2kfd_device_init(struct kfd_dev *kfd,
635 			 const struct kgd2kfd_shared_resources *gpu_resources)
636 {
637 	unsigned int size, map_process_packet_size, i;
638 	struct kfd_node *node;
639 	uint32_t first_vmid_kfd, last_vmid_kfd, vmid_num_kfd;
640 	unsigned int max_proc_per_quantum;
641 	int partition_mode;
642 	int xcp_idx;
643 
644 	kfd->mec_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev,
645 			KGD_ENGINE_MEC1);
646 	kfd->mec2_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev,
647 			KGD_ENGINE_MEC2);
648 	kfd->sdma_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev,
649 			KGD_ENGINE_SDMA1);
650 	kfd->shared_resources = *gpu_resources;
651 
652 	kfd->num_nodes = amdgpu_xcp_get_num_xcp(kfd->adev->xcp_mgr);
653 
654 	if (kfd->num_nodes == 0) {
655 		dev_err(kfd_device,
656 			"KFD num nodes cannot be 0, num_xcc_in_node: %d\n",
657 			kfd->adev->gfx.num_xcc_per_xcp);
658 		goto out;
659 	}
660 
661 	/* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
662 	 * 32 and 64-bit requests are possible and must be
663 	 * supported.
664 	 */
665 	kfd->pci_atomic_requested = amdgpu_amdkfd_have_atomics_support(kfd->adev);
666 	if (!kfd->pci_atomic_requested &&
667 	    kfd->device_info.needs_pci_atomics &&
668 	    (!kfd->device_info.no_atomic_fw_version ||
669 	     kfd->mec_fw_version < kfd->device_info.no_atomic_fw_version)) {
670 		dev_info(kfd_device,
671 			 "skipped device %x:%x, PCI rejects atomics %d<%d\n",
672 			 kfd->adev->pdev->vendor, kfd->adev->pdev->device,
673 			 kfd->mec_fw_version,
674 			 kfd->device_info.no_atomic_fw_version);
675 		return false;
676 	}
677 
678 	first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
679 	last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
680 	vmid_num_kfd = last_vmid_kfd - first_vmid_kfd + 1;
681 
682 	/* For GFX9.4.3, we need special handling for VMIDs depending on
683 	 * partition mode.
684 	 * In CPX mode, the VMID range needs to be shared between XCDs.
685 	 * Additionally, there are 13 VMIDs (3-15) available for KFD. To
686 	 * divide them equally, we change starting VMID to 4 and not use
687 	 * VMID 3.
688 	 * If the VMID range changes for GFX9.4.3, then this code MUST be
689 	 * revisited.
690 	 */
691 	if (kfd->adev->xcp_mgr) {
692 		partition_mode = amdgpu_xcp_query_partition_mode(kfd->adev->xcp_mgr,
693 								 AMDGPU_XCP_FL_LOCKED);
694 		if (partition_mode == AMDGPU_CPX_PARTITION_MODE &&
695 		    kfd->num_nodes != 1) {
696 			vmid_num_kfd /= 2;
697 			first_vmid_kfd = last_vmid_kfd + 1 - vmid_num_kfd*2;
698 		}
699 	}
700 
701 	/* Verify module parameters regarding mapped process number*/
702 	if (hws_max_conc_proc >= 0)
703 		max_proc_per_quantum = min((u32)hws_max_conc_proc, vmid_num_kfd);
704 	else
705 		max_proc_per_quantum = vmid_num_kfd;
706 
707 	/* calculate max size of mqds needed for queues */
708 	size = max_num_of_queues_per_device *
709 			kfd->device_info.mqd_size_aligned;
710 
711 	/*
712 	 * calculate max size of runlist packet.
713 	 * There can be only 2 packets at once
714 	 */
715 	map_process_packet_size = KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 2) ?
716 				sizeof(struct pm4_mes_map_process_aldebaran) :
717 				sizeof(struct pm4_mes_map_process);
718 	size += (KFD_MAX_NUM_OF_PROCESSES * map_process_packet_size +
719 		max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
720 		+ sizeof(struct pm4_mes_runlist)) * 2;
721 
722 	/* Add size of HIQ & DIQ */
723 	size += KFD_KERNEL_QUEUE_SIZE * 2;
724 
725 	/* add another 512KB for all other allocations on gart (HPD, fences) */
726 	size += 512 * 1024;
727 
728 	if (amdgpu_amdkfd_alloc_gtt_mem(
729 			kfd->adev, size, &kfd->gtt_mem,
730 			&kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr,
731 			false)) {
732 		dev_err(kfd_device, "Could not allocate %d bytes\n", size);
733 		goto alloc_gtt_mem_failure;
734 	}
735 
736 	dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
737 
738 	/* Initialize GTT sa with 512 byte chunk size */
739 	if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
740 		dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
741 		goto kfd_gtt_sa_init_error;
742 	}
743 
744 	if (kfd_doorbell_init(kfd)) {
745 		dev_err(kfd_device,
746 			"Error initializing doorbell aperture\n");
747 		goto kfd_doorbell_error;
748 	}
749 
750 	if (amdgpu_use_xgmi_p2p)
751 		kfd->hive_id = kfd->adev->gmc.xgmi.hive_id;
752 
753 	/*
754 	 * For GFX9.4.3, the KFD abstracts all partitions within a socket as
755 	 * xGMI connected in the topology so assign a unique hive id per
756 	 * device based on the pci device location if device is in PCIe mode.
757 	 */
758 	if (!kfd->hive_id && (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 3)) && kfd->num_nodes > 1)
759 		kfd->hive_id = pci_dev_id(kfd->adev->pdev);
760 
761 	kfd->noretry = kfd->adev->gmc.noretry;
762 
763 	kfd_cwsr_init(kfd);
764 
765 	dev_info(kfd_device, "Total number of KFD nodes to be created: %d\n",
766 				kfd->num_nodes);
767 
768 	/* Allocate the KFD nodes */
769 	for (i = 0, xcp_idx = 0; i < kfd->num_nodes; i++) {
770 		node = kzalloc(sizeof(struct kfd_node), GFP_KERNEL);
771 		if (!node)
772 			goto node_alloc_error;
773 
774 		node->node_id = i;
775 		node->adev = kfd->adev;
776 		node->kfd = kfd;
777 		node->kfd2kgd = kfd->kfd2kgd;
778 		node->vm_info.vmid_num_kfd = vmid_num_kfd;
779 		node->xcp = amdgpu_get_next_xcp(kfd->adev->xcp_mgr, &xcp_idx);
780 		/* TODO : Check if error handling is needed */
781 		if (node->xcp) {
782 			amdgpu_xcp_get_inst_details(node->xcp, AMDGPU_XCP_GFX,
783 						    &node->xcc_mask);
784 			++xcp_idx;
785 		} else {
786 			node->xcc_mask =
787 				(1U << NUM_XCC(kfd->adev->gfx.xcc_mask)) - 1;
788 		}
789 
790 		if (node->xcp) {
791 			dev_info(kfd_device, "KFD node %d partition %d size %lldM\n",
792 				node->node_id, node->xcp->mem_id,
793 				KFD_XCP_MEMORY_SIZE(node->adev, node->node_id) >> 20);
794 		}
795 
796 		if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 3) &&
797 		    partition_mode == AMDGPU_CPX_PARTITION_MODE &&
798 		    kfd->num_nodes != 1) {
799 			/* For GFX9.4.3 and CPX mode, first XCD gets VMID range
800 			 * 4-9 and second XCD gets VMID range 10-15.
801 			 */
802 
803 			node->vm_info.first_vmid_kfd = (i%2 == 0) ?
804 						first_vmid_kfd :
805 						first_vmid_kfd+vmid_num_kfd;
806 			node->vm_info.last_vmid_kfd = (i%2 == 0) ?
807 						last_vmid_kfd-vmid_num_kfd :
808 						last_vmid_kfd;
809 			node->compute_vmid_bitmap =
810 				((0x1 << (node->vm_info.last_vmid_kfd + 1)) - 1) -
811 				((0x1 << (node->vm_info.first_vmid_kfd)) - 1);
812 		} else {
813 			node->vm_info.first_vmid_kfd = first_vmid_kfd;
814 			node->vm_info.last_vmid_kfd = last_vmid_kfd;
815 			node->compute_vmid_bitmap =
816 				gpu_resources->compute_vmid_bitmap;
817 		}
818 		node->max_proc_per_quantum = max_proc_per_quantum;
819 		atomic_set(&node->sram_ecc_flag, 0);
820 
821 		amdgpu_amdkfd_get_local_mem_info(kfd->adev,
822 					&node->local_mem_info, node->xcp);
823 
824 		if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 3))
825 			kfd_setup_interrupt_bitmap(node, i);
826 
827 		/* Initialize the KFD node */
828 		if (kfd_init_node(node)) {
829 			dev_err(kfd_device, "Error initializing KFD node\n");
830 			goto node_init_error;
831 		}
832 		kfd->nodes[i] = node;
833 	}
834 
835 	svm_range_set_max_pages(kfd->adev);
836 
837 	spin_lock_init(&kfd->watch_points_lock);
838 
839 	kfd->init_complete = true;
840 	dev_info(kfd_device, "added device %x:%x\n", kfd->adev->pdev->vendor,
841 		 kfd->adev->pdev->device);
842 
843 	pr_debug("Starting kfd with the following scheduling policy %d\n",
844 		node->dqm->sched_policy);
845 
846 	goto out;
847 
848 node_init_error:
849 node_alloc_error:
850 	kfd_cleanup_nodes(kfd, i);
851 	kfd_doorbell_fini(kfd);
852 kfd_doorbell_error:
853 	kfd_gtt_sa_fini(kfd);
854 kfd_gtt_sa_init_error:
855 	amdgpu_amdkfd_free_gtt_mem(kfd->adev, kfd->gtt_mem);
856 alloc_gtt_mem_failure:
857 	dev_err(kfd_device,
858 		"device %x:%x NOT added due to errors\n",
859 		kfd->adev->pdev->vendor, kfd->adev->pdev->device);
860 out:
861 	return kfd->init_complete;
862 }
863 
864 void kgd2kfd_device_exit(struct kfd_dev *kfd)
865 {
866 	if (kfd->init_complete) {
867 		/* Cleanup KFD nodes */
868 		kfd_cleanup_nodes(kfd, kfd->num_nodes);
869 		/* Cleanup common/shared resources */
870 		kfd_doorbell_fini(kfd);
871 		ida_destroy(&kfd->doorbell_ida);
872 		kfd_gtt_sa_fini(kfd);
873 		amdgpu_amdkfd_free_gtt_mem(kfd->adev, kfd->gtt_mem);
874 	}
875 
876 	kfree(kfd);
877 }
878 
879 int kgd2kfd_pre_reset(struct kfd_dev *kfd)
880 {
881 	struct kfd_node *node;
882 	int i;
883 
884 	if (!kfd->init_complete)
885 		return 0;
886 
887 	for (i = 0; i < kfd->num_nodes; i++) {
888 		node = kfd->nodes[i];
889 		kfd_smi_event_update_gpu_reset(node, false);
890 		node->dqm->ops.pre_reset(node->dqm);
891 	}
892 
893 	kgd2kfd_suspend(kfd, false);
894 
895 	for (i = 0; i < kfd->num_nodes; i++)
896 		kfd_signal_reset_event(kfd->nodes[i]);
897 
898 	return 0;
899 }
900 
901 /*
902  * Fix me. KFD won't be able to resume existing process for now.
903  * We will keep all existing process in a evicted state and
904  * wait the process to be terminated.
905  */
906 
907 int kgd2kfd_post_reset(struct kfd_dev *kfd)
908 {
909 	int ret;
910 	struct kfd_node *node;
911 	int i;
912 
913 	if (!kfd->init_complete)
914 		return 0;
915 
916 	for (i = 0; i < kfd->num_nodes; i++) {
917 		ret = kfd_resume(kfd->nodes[i]);
918 		if (ret)
919 			return ret;
920 	}
921 
922 	mutex_lock(&kfd_processes_mutex);
923 	--kfd_locked;
924 	mutex_unlock(&kfd_processes_mutex);
925 
926 	for (i = 0; i < kfd->num_nodes; i++) {
927 		node = kfd->nodes[i];
928 		atomic_set(&node->sram_ecc_flag, 0);
929 		kfd_smi_event_update_gpu_reset(node, true);
930 	}
931 
932 	return 0;
933 }
934 
935 bool kfd_is_locked(void)
936 {
937 	lockdep_assert_held(&kfd_processes_mutex);
938 	return  (kfd_locked > 0);
939 }
940 
941 void kgd2kfd_suspend(struct kfd_dev *kfd, bool run_pm)
942 {
943 	struct kfd_node *node;
944 	int i;
945 	int count;
946 
947 	if (!kfd->init_complete)
948 		return;
949 
950 	/* for runtime suspend, skip locking kfd */
951 	if (!run_pm) {
952 		mutex_lock(&kfd_processes_mutex);
953 		count = ++kfd_locked;
954 		mutex_unlock(&kfd_processes_mutex);
955 
956 		/* For first KFD device suspend all the KFD processes */
957 		if (count == 1)
958 			kfd_suspend_all_processes();
959 	}
960 
961 	for (i = 0; i < kfd->num_nodes; i++) {
962 		node = kfd->nodes[i];
963 		node->dqm->ops.stop(node->dqm);
964 	}
965 }
966 
967 int kgd2kfd_resume(struct kfd_dev *kfd, bool run_pm)
968 {
969 	int ret, count, i;
970 
971 	if (!kfd->init_complete)
972 		return 0;
973 
974 	for (i = 0; i < kfd->num_nodes; i++) {
975 		ret = kfd_resume(kfd->nodes[i]);
976 		if (ret)
977 			return ret;
978 	}
979 
980 	/* for runtime resume, skip unlocking kfd */
981 	if (!run_pm) {
982 		mutex_lock(&kfd_processes_mutex);
983 		count = --kfd_locked;
984 		mutex_unlock(&kfd_processes_mutex);
985 
986 		WARN_ONCE(count < 0, "KFD suspend / resume ref. error");
987 		if (count == 0)
988 			ret = kfd_resume_all_processes();
989 	}
990 
991 	return ret;
992 }
993 
994 static int kfd_resume(struct kfd_node *node)
995 {
996 	int err = 0;
997 
998 	err = node->dqm->ops.start(node->dqm);
999 	if (err)
1000 		dev_err(kfd_device,
1001 			"Error starting queue manager for device %x:%x\n",
1002 			node->adev->pdev->vendor, node->adev->pdev->device);
1003 
1004 	return err;
1005 }
1006 
1007 static inline void kfd_queue_work(struct workqueue_struct *wq,
1008 				  struct work_struct *work)
1009 {
1010 	int cpu, new_cpu;
1011 
1012 	cpu = new_cpu = smp_processor_id();
1013 	do {
1014 		new_cpu = cpumask_next(new_cpu, cpu_online_mask) % nr_cpu_ids;
1015 		if (cpu_to_node(new_cpu) == numa_node_id())
1016 			break;
1017 	} while (cpu != new_cpu);
1018 
1019 	queue_work_on(new_cpu, wq, work);
1020 }
1021 
1022 /* This is called directly from KGD at ISR. */
1023 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
1024 {
1025 	uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE], i;
1026 	bool is_patched = false;
1027 	unsigned long flags;
1028 	struct kfd_node *node;
1029 
1030 	if (!kfd->init_complete)
1031 		return;
1032 
1033 	if (kfd->device_info.ih_ring_entry_size > sizeof(patched_ihre)) {
1034 		dev_err_once(kfd_device, "Ring entry too small\n");
1035 		return;
1036 	}
1037 
1038 	for (i = 0; i < kfd->num_nodes; i++) {
1039 		node = kfd->nodes[i];
1040 		spin_lock_irqsave(&node->interrupt_lock, flags);
1041 
1042 		if (node->interrupts_active
1043 		    && interrupt_is_wanted(node, ih_ring_entry,
1044 			    	patched_ihre, &is_patched)
1045 		    && enqueue_ih_ring_entry(node,
1046 			    	is_patched ? patched_ihre : ih_ring_entry)) {
1047 			kfd_queue_work(node->ih_wq, &node->interrupt_work);
1048 			spin_unlock_irqrestore(&node->interrupt_lock, flags);
1049 			return;
1050 		}
1051 		spin_unlock_irqrestore(&node->interrupt_lock, flags);
1052 	}
1053 
1054 }
1055 
1056 int kgd2kfd_quiesce_mm(struct mm_struct *mm, uint32_t trigger)
1057 {
1058 	struct kfd_process *p;
1059 	int r;
1060 
1061 	/* Because we are called from arbitrary context (workqueue) as opposed
1062 	 * to process context, kfd_process could attempt to exit while we are
1063 	 * running so the lookup function increments the process ref count.
1064 	 */
1065 	p = kfd_lookup_process_by_mm(mm);
1066 	if (!p)
1067 		return -ESRCH;
1068 
1069 	WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
1070 	r = kfd_process_evict_queues(p, trigger);
1071 
1072 	kfd_unref_process(p);
1073 	return r;
1074 }
1075 
1076 int kgd2kfd_resume_mm(struct mm_struct *mm)
1077 {
1078 	struct kfd_process *p;
1079 	int r;
1080 
1081 	/* Because we are called from arbitrary context (workqueue) as opposed
1082 	 * to process context, kfd_process could attempt to exit while we are
1083 	 * running so the lookup function increments the process ref count.
1084 	 */
1085 	p = kfd_lookup_process_by_mm(mm);
1086 	if (!p)
1087 		return -ESRCH;
1088 
1089 	r = kfd_process_restore_queues(p);
1090 
1091 	kfd_unref_process(p);
1092 	return r;
1093 }
1094 
1095 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
1096  *   prepare for safe eviction of KFD BOs that belong to the specified
1097  *   process.
1098  *
1099  * @mm: mm_struct that identifies the specified KFD process
1100  * @fence: eviction fence attached to KFD process BOs
1101  *
1102  */
1103 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
1104 					       struct dma_fence *fence)
1105 {
1106 	struct kfd_process *p;
1107 	unsigned long active_time;
1108 	unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
1109 
1110 	if (!fence)
1111 		return -EINVAL;
1112 
1113 	if (dma_fence_is_signaled(fence))
1114 		return 0;
1115 
1116 	p = kfd_lookup_process_by_mm(mm);
1117 	if (!p)
1118 		return -ENODEV;
1119 
1120 	if (fence->seqno == p->last_eviction_seqno)
1121 		goto out;
1122 
1123 	p->last_eviction_seqno = fence->seqno;
1124 
1125 	/* Avoid KFD process starvation. Wait for at least
1126 	 * PROCESS_ACTIVE_TIME_MS before evicting the process again
1127 	 */
1128 	active_time = get_jiffies_64() - p->last_restore_timestamp;
1129 	if (delay_jiffies > active_time)
1130 		delay_jiffies -= active_time;
1131 	else
1132 		delay_jiffies = 0;
1133 
1134 	/* During process initialization eviction_work.dwork is initialized
1135 	 * to kfd_evict_bo_worker
1136 	 */
1137 	WARN(debug_evictions, "Scheduling eviction of pid %d in %ld jiffies",
1138 	     p->lead_thread->pid, delay_jiffies);
1139 	schedule_delayed_work(&p->eviction_work, delay_jiffies);
1140 out:
1141 	kfd_unref_process(p);
1142 	return 0;
1143 }
1144 
1145 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
1146 				unsigned int chunk_size)
1147 {
1148 	if (WARN_ON(buf_size < chunk_size))
1149 		return -EINVAL;
1150 	if (WARN_ON(buf_size == 0))
1151 		return -EINVAL;
1152 	if (WARN_ON(chunk_size == 0))
1153 		return -EINVAL;
1154 
1155 	kfd->gtt_sa_chunk_size = chunk_size;
1156 	kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
1157 
1158 	kfd->gtt_sa_bitmap = bitmap_zalloc(kfd->gtt_sa_num_of_chunks,
1159 					   GFP_KERNEL);
1160 	if (!kfd->gtt_sa_bitmap)
1161 		return -ENOMEM;
1162 
1163 	pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
1164 			kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
1165 
1166 	mutex_init(&kfd->gtt_sa_lock);
1167 
1168 	return 0;
1169 }
1170 
1171 static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
1172 {
1173 	mutex_destroy(&kfd->gtt_sa_lock);
1174 	bitmap_free(kfd->gtt_sa_bitmap);
1175 }
1176 
1177 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
1178 						unsigned int bit_num,
1179 						unsigned int chunk_size)
1180 {
1181 	return start_addr + bit_num * chunk_size;
1182 }
1183 
1184 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
1185 						unsigned int bit_num,
1186 						unsigned int chunk_size)
1187 {
1188 	return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
1189 }
1190 
1191 int kfd_gtt_sa_allocate(struct kfd_node *node, unsigned int size,
1192 			struct kfd_mem_obj **mem_obj)
1193 {
1194 	unsigned int found, start_search, cur_size;
1195 	struct kfd_dev *kfd = node->kfd;
1196 
1197 	if (size == 0)
1198 		return -EINVAL;
1199 
1200 	if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
1201 		return -ENOMEM;
1202 
1203 	*mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
1204 	if (!(*mem_obj))
1205 		return -ENOMEM;
1206 
1207 	pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
1208 
1209 	start_search = 0;
1210 
1211 	mutex_lock(&kfd->gtt_sa_lock);
1212 
1213 kfd_gtt_restart_search:
1214 	/* Find the first chunk that is free */
1215 	found = find_next_zero_bit(kfd->gtt_sa_bitmap,
1216 					kfd->gtt_sa_num_of_chunks,
1217 					start_search);
1218 
1219 	pr_debug("Found = %d\n", found);
1220 
1221 	/* If there wasn't any free chunk, bail out */
1222 	if (found == kfd->gtt_sa_num_of_chunks)
1223 		goto kfd_gtt_no_free_chunk;
1224 
1225 	/* Update fields of mem_obj */
1226 	(*mem_obj)->range_start = found;
1227 	(*mem_obj)->range_end = found;
1228 	(*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
1229 					kfd->gtt_start_gpu_addr,
1230 					found,
1231 					kfd->gtt_sa_chunk_size);
1232 	(*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
1233 					kfd->gtt_start_cpu_ptr,
1234 					found,
1235 					kfd->gtt_sa_chunk_size);
1236 
1237 	pr_debug("gpu_addr = %p, cpu_addr = %p\n",
1238 			(uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
1239 
1240 	/* If we need only one chunk, mark it as allocated and get out */
1241 	if (size <= kfd->gtt_sa_chunk_size) {
1242 		pr_debug("Single bit\n");
1243 		__set_bit(found, kfd->gtt_sa_bitmap);
1244 		goto kfd_gtt_out;
1245 	}
1246 
1247 	/* Otherwise, try to see if we have enough contiguous chunks */
1248 	cur_size = size - kfd->gtt_sa_chunk_size;
1249 	do {
1250 		(*mem_obj)->range_end =
1251 			find_next_zero_bit(kfd->gtt_sa_bitmap,
1252 					kfd->gtt_sa_num_of_chunks, ++found);
1253 		/*
1254 		 * If next free chunk is not contiguous than we need to
1255 		 * restart our search from the last free chunk we found (which
1256 		 * wasn't contiguous to the previous ones
1257 		 */
1258 		if ((*mem_obj)->range_end != found) {
1259 			start_search = found;
1260 			goto kfd_gtt_restart_search;
1261 		}
1262 
1263 		/*
1264 		 * If we reached end of buffer, bail out with error
1265 		 */
1266 		if (found == kfd->gtt_sa_num_of_chunks)
1267 			goto kfd_gtt_no_free_chunk;
1268 
1269 		/* Check if we don't need another chunk */
1270 		if (cur_size <= kfd->gtt_sa_chunk_size)
1271 			cur_size = 0;
1272 		else
1273 			cur_size -= kfd->gtt_sa_chunk_size;
1274 
1275 	} while (cur_size > 0);
1276 
1277 	pr_debug("range_start = %d, range_end = %d\n",
1278 		(*mem_obj)->range_start, (*mem_obj)->range_end);
1279 
1280 	/* Mark the chunks as allocated */
1281 	bitmap_set(kfd->gtt_sa_bitmap, (*mem_obj)->range_start,
1282 		   (*mem_obj)->range_end - (*mem_obj)->range_start + 1);
1283 
1284 kfd_gtt_out:
1285 	mutex_unlock(&kfd->gtt_sa_lock);
1286 	return 0;
1287 
1288 kfd_gtt_no_free_chunk:
1289 	pr_debug("Allocation failed with mem_obj = %p\n", *mem_obj);
1290 	mutex_unlock(&kfd->gtt_sa_lock);
1291 	kfree(*mem_obj);
1292 	return -ENOMEM;
1293 }
1294 
1295 int kfd_gtt_sa_free(struct kfd_node *node, struct kfd_mem_obj *mem_obj)
1296 {
1297 	struct kfd_dev *kfd = node->kfd;
1298 
1299 	/* Act like kfree when trying to free a NULL object */
1300 	if (!mem_obj)
1301 		return 0;
1302 
1303 	pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
1304 			mem_obj, mem_obj->range_start, mem_obj->range_end);
1305 
1306 	mutex_lock(&kfd->gtt_sa_lock);
1307 
1308 	/* Mark the chunks as free */
1309 	bitmap_clear(kfd->gtt_sa_bitmap, mem_obj->range_start,
1310 		     mem_obj->range_end - mem_obj->range_start + 1);
1311 
1312 	mutex_unlock(&kfd->gtt_sa_lock);
1313 
1314 	kfree(mem_obj);
1315 	return 0;
1316 }
1317 
1318 void kgd2kfd_set_sram_ecc_flag(struct kfd_dev *kfd)
1319 {
1320 	/*
1321 	 * TODO: Currently update SRAM ECC flag for first node.
1322 	 * This needs to be updated later when we can
1323 	 * identify SRAM ECC error on other nodes also.
1324 	 */
1325 	if (kfd)
1326 		atomic_inc(&kfd->nodes[0]->sram_ecc_flag);
1327 }
1328 
1329 void kfd_inc_compute_active(struct kfd_node *node)
1330 {
1331 	if (atomic_inc_return(&node->kfd->compute_profile) == 1)
1332 		amdgpu_amdkfd_set_compute_idle(node->adev, false);
1333 }
1334 
1335 void kfd_dec_compute_active(struct kfd_node *node)
1336 {
1337 	int count = atomic_dec_return(&node->kfd->compute_profile);
1338 
1339 	if (count == 0)
1340 		amdgpu_amdkfd_set_compute_idle(node->adev, true);
1341 	WARN_ONCE(count < 0, "Compute profile ref. count error");
1342 }
1343 
1344 void kgd2kfd_smi_event_throttle(struct kfd_dev *kfd, uint64_t throttle_bitmask)
1345 {
1346 	/*
1347 	 * TODO: For now, raise the throttling event only on first node.
1348 	 * This will need to change after we are able to determine
1349 	 * which node raised the throttling event.
1350 	 */
1351 	if (kfd && kfd->init_complete)
1352 		kfd_smi_event_update_thermal_throttling(kfd->nodes[0],
1353 							throttle_bitmask);
1354 }
1355 
1356 /* kfd_get_num_sdma_engines returns the number of PCIe optimized SDMA and
1357  * kfd_get_num_xgmi_sdma_engines returns the number of XGMI SDMA.
1358  * When the device has more than two engines, we reserve two for PCIe to enable
1359  * full-duplex and the rest are used as XGMI.
1360  */
1361 unsigned int kfd_get_num_sdma_engines(struct kfd_node *node)
1362 {
1363 	/* If XGMI is not supported, all SDMA engines are PCIe */
1364 	if (!node->adev->gmc.xgmi.supported)
1365 		return node->adev->sdma.num_instances/(int)node->kfd->num_nodes;
1366 
1367 	return min(node->adev->sdma.num_instances/(int)node->kfd->num_nodes, 2);
1368 }
1369 
1370 unsigned int kfd_get_num_xgmi_sdma_engines(struct kfd_node *node)
1371 {
1372 	/* After reserved for PCIe, the rest of engines are XGMI */
1373 	return node->adev->sdma.num_instances/(int)node->kfd->num_nodes -
1374 		kfd_get_num_sdma_engines(node);
1375 }
1376 
1377 int kgd2kfd_check_and_lock_kfd(void)
1378 {
1379 	mutex_lock(&kfd_processes_mutex);
1380 	if (!hash_empty(kfd_processes_table) || kfd_is_locked()) {
1381 		mutex_unlock(&kfd_processes_mutex);
1382 		return -EBUSY;
1383 	}
1384 
1385 	++kfd_locked;
1386 	mutex_unlock(&kfd_processes_mutex);
1387 
1388 	return 0;
1389 }
1390 
1391 void kgd2kfd_unlock_kfd(void)
1392 {
1393 	mutex_lock(&kfd_processes_mutex);
1394 	--kfd_locked;
1395 	mutex_unlock(&kfd_processes_mutex);
1396 }
1397 
1398 #if defined(CONFIG_DEBUG_FS)
1399 
1400 /* This function will send a package to HIQ to hang the HWS
1401  * which will trigger a GPU reset and bring the HWS back to normal state
1402  */
1403 int kfd_debugfs_hang_hws(struct kfd_node *dev)
1404 {
1405 	if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) {
1406 		pr_err("HWS is not enabled");
1407 		return -EINVAL;
1408 	}
1409 
1410 	return dqm_debugfs_hang_hws(dev->dqm);
1411 }
1412 
1413 #endif
1414