xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_device.c (revision ebf68996de0ab250c5d520eb2291ab65643e9a1e)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/bsearch.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include "kfd_priv.h"
27 #include "kfd_device_queue_manager.h"
28 #include "kfd_pm4_headers_vi.h"
29 #include "cwsr_trap_handler.h"
30 #include "kfd_iommu.h"
31 #include "amdgpu_amdkfd.h"
32 
33 #define MQD_SIZE_ALIGNED 768
34 
35 /*
36  * kfd_locked is used to lock the kfd driver during suspend or reset
37  * once locked, kfd driver will stop any further GPU execution.
38  * create process (open) will return -EAGAIN.
39  */
40 static atomic_t kfd_locked = ATOMIC_INIT(0);
41 
42 #ifdef KFD_SUPPORT_IOMMU_V2
43 static const struct kfd_device_info kaveri_device_info = {
44 	.asic_family = CHIP_KAVERI,
45 	.max_pasid_bits = 16,
46 	/* max num of queues for KV.TODO should be a dynamic value */
47 	.max_no_of_hqd	= 24,
48 	.doorbell_size  = 4,
49 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
50 	.event_interrupt_class = &event_interrupt_class_cik,
51 	.num_of_watch_points = 4,
52 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
53 	.supports_cwsr = false,
54 	.needs_iommu_device = true,
55 	.needs_pci_atomics = false,
56 	.num_sdma_engines = 2,
57 	.num_xgmi_sdma_engines = 0,
58 	.num_sdma_queues_per_engine = 2,
59 };
60 
61 static const struct kfd_device_info carrizo_device_info = {
62 	.asic_family = CHIP_CARRIZO,
63 	.max_pasid_bits = 16,
64 	/* max num of queues for CZ.TODO should be a dynamic value */
65 	.max_no_of_hqd	= 24,
66 	.doorbell_size  = 4,
67 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
68 	.event_interrupt_class = &event_interrupt_class_cik,
69 	.num_of_watch_points = 4,
70 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
71 	.supports_cwsr = true,
72 	.needs_iommu_device = true,
73 	.needs_pci_atomics = false,
74 	.num_sdma_engines = 2,
75 	.num_xgmi_sdma_engines = 0,
76 	.num_sdma_queues_per_engine = 2,
77 };
78 
79 static const struct kfd_device_info raven_device_info = {
80 	.asic_family = CHIP_RAVEN,
81 	.max_pasid_bits = 16,
82 	.max_no_of_hqd  = 24,
83 	.doorbell_size  = 8,
84 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
85 	.event_interrupt_class = &event_interrupt_class_v9,
86 	.num_of_watch_points = 4,
87 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
88 	.supports_cwsr = true,
89 	.needs_iommu_device = true,
90 	.needs_pci_atomics = true,
91 	.num_sdma_engines = 1,
92 	.num_xgmi_sdma_engines = 0,
93 	.num_sdma_queues_per_engine = 2,
94 };
95 #endif
96 
97 static const struct kfd_device_info hawaii_device_info = {
98 	.asic_family = CHIP_HAWAII,
99 	.max_pasid_bits = 16,
100 	/* max num of queues for KV.TODO should be a dynamic value */
101 	.max_no_of_hqd	= 24,
102 	.doorbell_size  = 4,
103 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
104 	.event_interrupt_class = &event_interrupt_class_cik,
105 	.num_of_watch_points = 4,
106 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
107 	.supports_cwsr = false,
108 	.needs_iommu_device = false,
109 	.needs_pci_atomics = false,
110 	.num_sdma_engines = 2,
111 	.num_xgmi_sdma_engines = 0,
112 	.num_sdma_queues_per_engine = 2,
113 };
114 
115 static const struct kfd_device_info tonga_device_info = {
116 	.asic_family = CHIP_TONGA,
117 	.max_pasid_bits = 16,
118 	.max_no_of_hqd  = 24,
119 	.doorbell_size  = 4,
120 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
121 	.event_interrupt_class = &event_interrupt_class_cik,
122 	.num_of_watch_points = 4,
123 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
124 	.supports_cwsr = false,
125 	.needs_iommu_device = false,
126 	.needs_pci_atomics = true,
127 	.num_sdma_engines = 2,
128 	.num_xgmi_sdma_engines = 0,
129 	.num_sdma_queues_per_engine = 2,
130 };
131 
132 static const struct kfd_device_info fiji_device_info = {
133 	.asic_family = CHIP_FIJI,
134 	.max_pasid_bits = 16,
135 	.max_no_of_hqd  = 24,
136 	.doorbell_size  = 4,
137 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
138 	.event_interrupt_class = &event_interrupt_class_cik,
139 	.num_of_watch_points = 4,
140 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
141 	.supports_cwsr = true,
142 	.needs_iommu_device = false,
143 	.needs_pci_atomics = true,
144 	.num_sdma_engines = 2,
145 	.num_xgmi_sdma_engines = 0,
146 	.num_sdma_queues_per_engine = 2,
147 };
148 
149 static const struct kfd_device_info fiji_vf_device_info = {
150 	.asic_family = CHIP_FIJI,
151 	.max_pasid_bits = 16,
152 	.max_no_of_hqd  = 24,
153 	.doorbell_size  = 4,
154 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
155 	.event_interrupt_class = &event_interrupt_class_cik,
156 	.num_of_watch_points = 4,
157 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
158 	.supports_cwsr = true,
159 	.needs_iommu_device = false,
160 	.needs_pci_atomics = false,
161 	.num_sdma_engines = 2,
162 	.num_xgmi_sdma_engines = 0,
163 	.num_sdma_queues_per_engine = 2,
164 };
165 
166 
167 static const struct kfd_device_info polaris10_device_info = {
168 	.asic_family = CHIP_POLARIS10,
169 	.max_pasid_bits = 16,
170 	.max_no_of_hqd  = 24,
171 	.doorbell_size  = 4,
172 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
173 	.event_interrupt_class = &event_interrupt_class_cik,
174 	.num_of_watch_points = 4,
175 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
176 	.supports_cwsr = true,
177 	.needs_iommu_device = false,
178 	.needs_pci_atomics = true,
179 	.num_sdma_engines = 2,
180 	.num_xgmi_sdma_engines = 0,
181 	.num_sdma_queues_per_engine = 2,
182 };
183 
184 static const struct kfd_device_info polaris10_vf_device_info = {
185 	.asic_family = CHIP_POLARIS10,
186 	.max_pasid_bits = 16,
187 	.max_no_of_hqd  = 24,
188 	.doorbell_size  = 4,
189 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
190 	.event_interrupt_class = &event_interrupt_class_cik,
191 	.num_of_watch_points = 4,
192 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
193 	.supports_cwsr = true,
194 	.needs_iommu_device = false,
195 	.needs_pci_atomics = false,
196 	.num_sdma_engines = 2,
197 	.num_xgmi_sdma_engines = 0,
198 	.num_sdma_queues_per_engine = 2,
199 };
200 
201 static const struct kfd_device_info polaris11_device_info = {
202 	.asic_family = CHIP_POLARIS11,
203 	.max_pasid_bits = 16,
204 	.max_no_of_hqd  = 24,
205 	.doorbell_size  = 4,
206 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
207 	.event_interrupt_class = &event_interrupt_class_cik,
208 	.num_of_watch_points = 4,
209 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
210 	.supports_cwsr = true,
211 	.needs_iommu_device = false,
212 	.needs_pci_atomics = true,
213 	.num_sdma_engines = 2,
214 	.num_xgmi_sdma_engines = 0,
215 	.num_sdma_queues_per_engine = 2,
216 };
217 
218 static const struct kfd_device_info polaris12_device_info = {
219 	.asic_family = CHIP_POLARIS12,
220 	.max_pasid_bits = 16,
221 	.max_no_of_hqd  = 24,
222 	.doorbell_size  = 4,
223 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
224 	.event_interrupt_class = &event_interrupt_class_cik,
225 	.num_of_watch_points = 4,
226 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
227 	.supports_cwsr = true,
228 	.needs_iommu_device = false,
229 	.needs_pci_atomics = true,
230 	.num_sdma_engines = 2,
231 	.num_xgmi_sdma_engines = 0,
232 	.num_sdma_queues_per_engine = 2,
233 };
234 
235 static const struct kfd_device_info vegam_device_info = {
236 	.asic_family = CHIP_VEGAM,
237 	.max_pasid_bits = 16,
238 	.max_no_of_hqd  = 24,
239 	.doorbell_size  = 4,
240 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
241 	.event_interrupt_class = &event_interrupt_class_cik,
242 	.num_of_watch_points = 4,
243 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
244 	.supports_cwsr = true,
245 	.needs_iommu_device = false,
246 	.needs_pci_atomics = true,
247 	.num_sdma_engines = 2,
248 	.num_xgmi_sdma_engines = 0,
249 	.num_sdma_queues_per_engine = 2,
250 };
251 
252 static const struct kfd_device_info vega10_device_info = {
253 	.asic_family = CHIP_VEGA10,
254 	.max_pasid_bits = 16,
255 	.max_no_of_hqd  = 24,
256 	.doorbell_size  = 8,
257 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
258 	.event_interrupt_class = &event_interrupt_class_v9,
259 	.num_of_watch_points = 4,
260 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
261 	.supports_cwsr = true,
262 	.needs_iommu_device = false,
263 	.needs_pci_atomics = false,
264 	.num_sdma_engines = 2,
265 	.num_xgmi_sdma_engines = 0,
266 	.num_sdma_queues_per_engine = 2,
267 };
268 
269 static const struct kfd_device_info vega10_vf_device_info = {
270 	.asic_family = CHIP_VEGA10,
271 	.max_pasid_bits = 16,
272 	.max_no_of_hqd  = 24,
273 	.doorbell_size  = 8,
274 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
275 	.event_interrupt_class = &event_interrupt_class_v9,
276 	.num_of_watch_points = 4,
277 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
278 	.supports_cwsr = true,
279 	.needs_iommu_device = false,
280 	.needs_pci_atomics = false,
281 	.num_sdma_engines = 2,
282 	.num_xgmi_sdma_engines = 0,
283 	.num_sdma_queues_per_engine = 2,
284 };
285 
286 static const struct kfd_device_info vega12_device_info = {
287 	.asic_family = CHIP_VEGA12,
288 	.max_pasid_bits = 16,
289 	.max_no_of_hqd  = 24,
290 	.doorbell_size  = 8,
291 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
292 	.event_interrupt_class = &event_interrupt_class_v9,
293 	.num_of_watch_points = 4,
294 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
295 	.supports_cwsr = true,
296 	.needs_iommu_device = false,
297 	.needs_pci_atomics = false,
298 	.num_sdma_engines = 2,
299 	.num_xgmi_sdma_engines = 0,
300 	.num_sdma_queues_per_engine = 2,
301 };
302 
303 static const struct kfd_device_info vega20_device_info = {
304 	.asic_family = CHIP_VEGA20,
305 	.max_pasid_bits = 16,
306 	.max_no_of_hqd	= 24,
307 	.doorbell_size	= 8,
308 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
309 	.event_interrupt_class = &event_interrupt_class_v9,
310 	.num_of_watch_points = 4,
311 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
312 	.supports_cwsr = true,
313 	.needs_iommu_device = false,
314 	.needs_pci_atomics = false,
315 	.num_sdma_engines = 2,
316 	.num_xgmi_sdma_engines = 0,
317 	.num_sdma_queues_per_engine = 8,
318 };
319 
320 struct kfd_deviceid {
321 	unsigned short did;
322 	const struct kfd_device_info *device_info;
323 };
324 
325 static const struct kfd_deviceid supported_devices[] = {
326 #ifdef KFD_SUPPORT_IOMMU_V2
327 	{ 0x1304, &kaveri_device_info },	/* Kaveri */
328 	{ 0x1305, &kaveri_device_info },	/* Kaveri */
329 	{ 0x1306, &kaveri_device_info },	/* Kaveri */
330 	{ 0x1307, &kaveri_device_info },	/* Kaveri */
331 	{ 0x1309, &kaveri_device_info },	/* Kaveri */
332 	{ 0x130A, &kaveri_device_info },	/* Kaveri */
333 	{ 0x130B, &kaveri_device_info },	/* Kaveri */
334 	{ 0x130C, &kaveri_device_info },	/* Kaveri */
335 	{ 0x130D, &kaveri_device_info },	/* Kaveri */
336 	{ 0x130E, &kaveri_device_info },	/* Kaveri */
337 	{ 0x130F, &kaveri_device_info },	/* Kaveri */
338 	{ 0x1310, &kaveri_device_info },	/* Kaveri */
339 	{ 0x1311, &kaveri_device_info },	/* Kaveri */
340 	{ 0x1312, &kaveri_device_info },	/* Kaveri */
341 	{ 0x1313, &kaveri_device_info },	/* Kaveri */
342 	{ 0x1315, &kaveri_device_info },	/* Kaveri */
343 	{ 0x1316, &kaveri_device_info },	/* Kaveri */
344 	{ 0x1317, &kaveri_device_info },	/* Kaveri */
345 	{ 0x1318, &kaveri_device_info },	/* Kaveri */
346 	{ 0x131B, &kaveri_device_info },	/* Kaveri */
347 	{ 0x131C, &kaveri_device_info },	/* Kaveri */
348 	{ 0x131D, &kaveri_device_info },	/* Kaveri */
349 	{ 0x9870, &carrizo_device_info },	/* Carrizo */
350 	{ 0x9874, &carrizo_device_info },	/* Carrizo */
351 	{ 0x9875, &carrizo_device_info },	/* Carrizo */
352 	{ 0x9876, &carrizo_device_info },	/* Carrizo */
353 	{ 0x9877, &carrizo_device_info },	/* Carrizo */
354 	{ 0x15DD, &raven_device_info },		/* Raven */
355 	{ 0x15D8, &raven_device_info },		/* Raven */
356 #endif
357 	{ 0x67A0, &hawaii_device_info },	/* Hawaii */
358 	{ 0x67A1, &hawaii_device_info },	/* Hawaii */
359 	{ 0x67A2, &hawaii_device_info },	/* Hawaii */
360 	{ 0x67A8, &hawaii_device_info },	/* Hawaii */
361 	{ 0x67A9, &hawaii_device_info },	/* Hawaii */
362 	{ 0x67AA, &hawaii_device_info },	/* Hawaii */
363 	{ 0x67B0, &hawaii_device_info },	/* Hawaii */
364 	{ 0x67B1, &hawaii_device_info },	/* Hawaii */
365 	{ 0x67B8, &hawaii_device_info },	/* Hawaii */
366 	{ 0x67B9, &hawaii_device_info },	/* Hawaii */
367 	{ 0x67BA, &hawaii_device_info },	/* Hawaii */
368 	{ 0x67BE, &hawaii_device_info },	/* Hawaii */
369 	{ 0x6920, &tonga_device_info },		/* Tonga */
370 	{ 0x6921, &tonga_device_info },		/* Tonga */
371 	{ 0x6928, &tonga_device_info },		/* Tonga */
372 	{ 0x6929, &tonga_device_info },		/* Tonga */
373 	{ 0x692B, &tonga_device_info },		/* Tonga */
374 	{ 0x6938, &tonga_device_info },		/* Tonga */
375 	{ 0x6939, &tonga_device_info },		/* Tonga */
376 	{ 0x7300, &fiji_device_info },		/* Fiji */
377 	{ 0x730F, &fiji_vf_device_info },	/* Fiji vf*/
378 	{ 0x67C0, &polaris10_device_info },	/* Polaris10 */
379 	{ 0x67C1, &polaris10_device_info },	/* Polaris10 */
380 	{ 0x67C2, &polaris10_device_info },	/* Polaris10 */
381 	{ 0x67C4, &polaris10_device_info },	/* Polaris10 */
382 	{ 0x67C7, &polaris10_device_info },	/* Polaris10 */
383 	{ 0x67C8, &polaris10_device_info },	/* Polaris10 */
384 	{ 0x67C9, &polaris10_device_info },	/* Polaris10 */
385 	{ 0x67CA, &polaris10_device_info },	/* Polaris10 */
386 	{ 0x67CC, &polaris10_device_info },	/* Polaris10 */
387 	{ 0x67CF, &polaris10_device_info },	/* Polaris10 */
388 	{ 0x67D0, &polaris10_vf_device_info },	/* Polaris10 vf*/
389 	{ 0x67DF, &polaris10_device_info },	/* Polaris10 */
390 	{ 0x6FDF, &polaris10_device_info },	/* Polaris10 */
391 	{ 0x67E0, &polaris11_device_info },	/* Polaris11 */
392 	{ 0x67E1, &polaris11_device_info },	/* Polaris11 */
393 	{ 0x67E3, &polaris11_device_info },	/* Polaris11 */
394 	{ 0x67E7, &polaris11_device_info },	/* Polaris11 */
395 	{ 0x67E8, &polaris11_device_info },	/* Polaris11 */
396 	{ 0x67E9, &polaris11_device_info },	/* Polaris11 */
397 	{ 0x67EB, &polaris11_device_info },	/* Polaris11 */
398 	{ 0x67EF, &polaris11_device_info },	/* Polaris11 */
399 	{ 0x67FF, &polaris11_device_info },	/* Polaris11 */
400 	{ 0x6980, &polaris12_device_info },	/* Polaris12 */
401 	{ 0x6981, &polaris12_device_info },	/* Polaris12 */
402 	{ 0x6985, &polaris12_device_info },	/* Polaris12 */
403 	{ 0x6986, &polaris12_device_info },	/* Polaris12 */
404 	{ 0x6987, &polaris12_device_info },	/* Polaris12 */
405 	{ 0x6995, &polaris12_device_info },	/* Polaris12 */
406 	{ 0x6997, &polaris12_device_info },	/* Polaris12 */
407 	{ 0x699F, &polaris12_device_info },	/* Polaris12 */
408 	{ 0x694C, &vegam_device_info },		/* VegaM */
409 	{ 0x694E, &vegam_device_info },		/* VegaM */
410 	{ 0x694F, &vegam_device_info },		/* VegaM */
411 	{ 0x6860, &vega10_device_info },	/* Vega10 */
412 	{ 0x6861, &vega10_device_info },	/* Vega10 */
413 	{ 0x6862, &vega10_device_info },	/* Vega10 */
414 	{ 0x6863, &vega10_device_info },	/* Vega10 */
415 	{ 0x6864, &vega10_device_info },	/* Vega10 */
416 	{ 0x6867, &vega10_device_info },	/* Vega10 */
417 	{ 0x6868, &vega10_device_info },	/* Vega10 */
418 	{ 0x6869, &vega10_device_info },	/* Vega10 */
419 	{ 0x686A, &vega10_device_info },	/* Vega10 */
420 	{ 0x686B, &vega10_device_info },	/* Vega10 */
421 	{ 0x686C, &vega10_vf_device_info },	/* Vega10  vf*/
422 	{ 0x686D, &vega10_device_info },	/* Vega10 */
423 	{ 0x686E, &vega10_device_info },	/* Vega10 */
424 	{ 0x686F, &vega10_device_info },	/* Vega10 */
425 	{ 0x687F, &vega10_device_info },	/* Vega10 */
426 	{ 0x69A0, &vega12_device_info },	/* Vega12 */
427 	{ 0x69A1, &vega12_device_info },	/* Vega12 */
428 	{ 0x69A2, &vega12_device_info },	/* Vega12 */
429 	{ 0x69A3, &vega12_device_info },	/* Vega12 */
430 	{ 0x69AF, &vega12_device_info },	/* Vega12 */
431 	{ 0x66a0, &vega20_device_info },	/* Vega20 */
432 	{ 0x66a1, &vega20_device_info },	/* Vega20 */
433 	{ 0x66a2, &vega20_device_info },	/* Vega20 */
434 	{ 0x66a3, &vega20_device_info },	/* Vega20 */
435 	{ 0x66a4, &vega20_device_info },	/* Vega20 */
436 	{ 0x66a7, &vega20_device_info },	/* Vega20 */
437 	{ 0x66af, &vega20_device_info }		/* Vega20 */
438 };
439 
440 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
441 				unsigned int chunk_size);
442 static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
443 
444 static int kfd_resume(struct kfd_dev *kfd);
445 
446 static const struct kfd_device_info *lookup_device_info(unsigned short did)
447 {
448 	size_t i;
449 
450 	for (i = 0; i < ARRAY_SIZE(supported_devices); i++) {
451 		if (supported_devices[i].did == did) {
452 			WARN_ON(!supported_devices[i].device_info);
453 			return supported_devices[i].device_info;
454 		}
455 	}
456 
457 	dev_warn(kfd_device, "DID %04x is missing in supported_devices\n",
458 		 did);
459 
460 	return NULL;
461 }
462 
463 struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
464 	struct pci_dev *pdev, const struct kfd2kgd_calls *f2g)
465 {
466 	struct kfd_dev *kfd;
467 	int ret;
468 	const struct kfd_device_info *device_info =
469 					lookup_device_info(pdev->device);
470 
471 	if (!device_info) {
472 		dev_err(kfd_device, "kgd2kfd_probe failed\n");
473 		return NULL;
474 	}
475 
476 	kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
477 	if (!kfd)
478 		return NULL;
479 
480 	/* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
481 	 * 32 and 64-bit requests are possible and must be
482 	 * supported.
483 	 */
484 	ret = pci_enable_atomic_ops_to_root(pdev,
485 			PCI_EXP_DEVCAP2_ATOMIC_COMP32 |
486 			PCI_EXP_DEVCAP2_ATOMIC_COMP64);
487 	if (device_info->needs_pci_atomics && ret < 0) {
488 		dev_info(kfd_device,
489 			 "skipped device %x:%x, PCI rejects atomics\n",
490 			 pdev->vendor, pdev->device);
491 		kfree(kfd);
492 		return NULL;
493 	} else if (!ret)
494 		kfd->pci_atomic_requested = true;
495 
496 	kfd->kgd = kgd;
497 	kfd->device_info = device_info;
498 	kfd->pdev = pdev;
499 	kfd->init_complete = false;
500 	kfd->kfd2kgd = f2g;
501 	atomic_set(&kfd->compute_profile, 0);
502 
503 	mutex_init(&kfd->doorbell_mutex);
504 	memset(&kfd->doorbell_available_index, 0,
505 		sizeof(kfd->doorbell_available_index));
506 
507 	atomic_set(&kfd->sram_ecc_flag, 0);
508 
509 	return kfd;
510 }
511 
512 static void kfd_cwsr_init(struct kfd_dev *kfd)
513 {
514 	if (cwsr_enable && kfd->device_info->supports_cwsr) {
515 		if (kfd->device_info->asic_family < CHIP_VEGA10) {
516 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex) > PAGE_SIZE);
517 			kfd->cwsr_isa = cwsr_trap_gfx8_hex;
518 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
519 		} else {
520 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex) > PAGE_SIZE);
521 			kfd->cwsr_isa = cwsr_trap_gfx9_hex;
522 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
523 		}
524 
525 		kfd->cwsr_enabled = true;
526 	}
527 }
528 
529 bool kgd2kfd_device_init(struct kfd_dev *kfd,
530 			 const struct kgd2kfd_shared_resources *gpu_resources)
531 {
532 	unsigned int size;
533 
534 	kfd->mec_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
535 			KGD_ENGINE_MEC1);
536 	kfd->sdma_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
537 			KGD_ENGINE_SDMA1);
538 	kfd->shared_resources = *gpu_resources;
539 
540 	kfd->vm_info.first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
541 	kfd->vm_info.last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
542 	kfd->vm_info.vmid_num_kfd = kfd->vm_info.last_vmid_kfd
543 			- kfd->vm_info.first_vmid_kfd + 1;
544 
545 	/* Verify module parameters regarding mapped process number*/
546 	if ((hws_max_conc_proc < 0)
547 			|| (hws_max_conc_proc > kfd->vm_info.vmid_num_kfd)) {
548 		dev_err(kfd_device,
549 			"hws_max_conc_proc %d must be between 0 and %d, use %d instead\n",
550 			hws_max_conc_proc, kfd->vm_info.vmid_num_kfd,
551 			kfd->vm_info.vmid_num_kfd);
552 		kfd->max_proc_per_quantum = kfd->vm_info.vmid_num_kfd;
553 	} else
554 		kfd->max_proc_per_quantum = hws_max_conc_proc;
555 
556 	/* Allocate global GWS that is shared by all KFD processes */
557 	if (hws_gws_support && amdgpu_amdkfd_alloc_gws(kfd->kgd,
558 			amdgpu_amdkfd_get_num_gws(kfd->kgd), &kfd->gws)) {
559 		dev_err(kfd_device, "Could not allocate %d gws\n",
560 			amdgpu_amdkfd_get_num_gws(kfd->kgd));
561 		goto out;
562 	}
563 	/* calculate max size of mqds needed for queues */
564 	size = max_num_of_queues_per_device *
565 			kfd->device_info->mqd_size_aligned;
566 
567 	/*
568 	 * calculate max size of runlist packet.
569 	 * There can be only 2 packets at once
570 	 */
571 	size += (KFD_MAX_NUM_OF_PROCESSES * sizeof(struct pm4_mes_map_process) +
572 		max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
573 		+ sizeof(struct pm4_mes_runlist)) * 2;
574 
575 	/* Add size of HIQ & DIQ */
576 	size += KFD_KERNEL_QUEUE_SIZE * 2;
577 
578 	/* add another 512KB for all other allocations on gart (HPD, fences) */
579 	size += 512 * 1024;
580 
581 	if (amdgpu_amdkfd_alloc_gtt_mem(
582 			kfd->kgd, size, &kfd->gtt_mem,
583 			&kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr,
584 			false)) {
585 		dev_err(kfd_device, "Could not allocate %d bytes\n", size);
586 		goto alloc_gtt_mem_failure;
587 	}
588 
589 	dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
590 
591 	/* Initialize GTT sa with 512 byte chunk size */
592 	if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
593 		dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
594 		goto kfd_gtt_sa_init_error;
595 	}
596 
597 	if (kfd_doorbell_init(kfd)) {
598 		dev_err(kfd_device,
599 			"Error initializing doorbell aperture\n");
600 		goto kfd_doorbell_error;
601 	}
602 
603 	if (kfd->kfd2kgd->get_hive_id)
604 		kfd->hive_id = kfd->kfd2kgd->get_hive_id(kfd->kgd);
605 
606 	if (kfd_topology_add_device(kfd)) {
607 		dev_err(kfd_device, "Error adding device to topology\n");
608 		goto kfd_topology_add_device_error;
609 	}
610 
611 	if (kfd_interrupt_init(kfd)) {
612 		dev_err(kfd_device, "Error initializing interrupts\n");
613 		goto kfd_interrupt_error;
614 	}
615 
616 	kfd->dqm = device_queue_manager_init(kfd);
617 	if (!kfd->dqm) {
618 		dev_err(kfd_device, "Error initializing queue manager\n");
619 		goto device_queue_manager_error;
620 	}
621 
622 	if (kfd_iommu_device_init(kfd)) {
623 		dev_err(kfd_device, "Error initializing iommuv2\n");
624 		goto device_iommu_error;
625 	}
626 
627 	kfd_cwsr_init(kfd);
628 
629 	if (kfd_resume(kfd))
630 		goto kfd_resume_error;
631 
632 	kfd->dbgmgr = NULL;
633 
634 	kfd->init_complete = true;
635 	dev_info(kfd_device, "added device %x:%x\n", kfd->pdev->vendor,
636 		 kfd->pdev->device);
637 
638 	pr_debug("Starting kfd with the following scheduling policy %d\n",
639 		kfd->dqm->sched_policy);
640 
641 	goto out;
642 
643 kfd_resume_error:
644 device_iommu_error:
645 	device_queue_manager_uninit(kfd->dqm);
646 device_queue_manager_error:
647 	kfd_interrupt_exit(kfd);
648 kfd_interrupt_error:
649 	kfd_topology_remove_device(kfd);
650 kfd_topology_add_device_error:
651 	kfd_doorbell_fini(kfd);
652 kfd_doorbell_error:
653 	kfd_gtt_sa_fini(kfd);
654 kfd_gtt_sa_init_error:
655 	amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
656 alloc_gtt_mem_failure:
657 	if (hws_gws_support)
658 		amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws);
659 	dev_err(kfd_device,
660 		"device %x:%x NOT added due to errors\n",
661 		kfd->pdev->vendor, kfd->pdev->device);
662 out:
663 	return kfd->init_complete;
664 }
665 
666 void kgd2kfd_device_exit(struct kfd_dev *kfd)
667 {
668 	if (kfd->init_complete) {
669 		kgd2kfd_suspend(kfd);
670 		device_queue_manager_uninit(kfd->dqm);
671 		kfd_interrupt_exit(kfd);
672 		kfd_topology_remove_device(kfd);
673 		kfd_doorbell_fini(kfd);
674 		kfd_gtt_sa_fini(kfd);
675 		amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
676 		if (hws_gws_support)
677 			amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws);
678 	}
679 
680 	kfree(kfd);
681 }
682 
683 int kgd2kfd_pre_reset(struct kfd_dev *kfd)
684 {
685 	if (!kfd->init_complete)
686 		return 0;
687 	kgd2kfd_suspend(kfd);
688 
689 	/* hold dqm->lock to prevent further execution*/
690 	dqm_lock(kfd->dqm);
691 
692 	kfd_signal_reset_event(kfd);
693 	return 0;
694 }
695 
696 /*
697  * Fix me. KFD won't be able to resume existing process for now.
698  * We will keep all existing process in a evicted state and
699  * wait the process to be terminated.
700  */
701 
702 int kgd2kfd_post_reset(struct kfd_dev *kfd)
703 {
704 	int ret, count;
705 
706 	if (!kfd->init_complete)
707 		return 0;
708 
709 	dqm_unlock(kfd->dqm);
710 
711 	ret = kfd_resume(kfd);
712 	if (ret)
713 		return ret;
714 	count = atomic_dec_return(&kfd_locked);
715 	WARN_ONCE(count != 0, "KFD reset ref. error");
716 
717 	atomic_set(&kfd->sram_ecc_flag, 0);
718 
719 	return 0;
720 }
721 
722 bool kfd_is_locked(void)
723 {
724 	return  (atomic_read(&kfd_locked) > 0);
725 }
726 
727 void kgd2kfd_suspend(struct kfd_dev *kfd)
728 {
729 	if (!kfd->init_complete)
730 		return;
731 
732 	/* For first KFD device suspend all the KFD processes */
733 	if (atomic_inc_return(&kfd_locked) == 1)
734 		kfd_suspend_all_processes();
735 
736 	kfd->dqm->ops.stop(kfd->dqm);
737 
738 	kfd_iommu_suspend(kfd);
739 }
740 
741 int kgd2kfd_resume(struct kfd_dev *kfd)
742 {
743 	int ret, count;
744 
745 	if (!kfd->init_complete)
746 		return 0;
747 
748 	ret = kfd_resume(kfd);
749 	if (ret)
750 		return ret;
751 
752 	count = atomic_dec_return(&kfd_locked);
753 	WARN_ONCE(count < 0, "KFD suspend / resume ref. error");
754 	if (count == 0)
755 		ret = kfd_resume_all_processes();
756 
757 	return ret;
758 }
759 
760 static int kfd_resume(struct kfd_dev *kfd)
761 {
762 	int err = 0;
763 
764 	err = kfd_iommu_resume(kfd);
765 	if (err) {
766 		dev_err(kfd_device,
767 			"Failed to resume IOMMU for device %x:%x\n",
768 			kfd->pdev->vendor, kfd->pdev->device);
769 		return err;
770 	}
771 
772 	err = kfd->dqm->ops.start(kfd->dqm);
773 	if (err) {
774 		dev_err(kfd_device,
775 			"Error starting queue manager for device %x:%x\n",
776 			kfd->pdev->vendor, kfd->pdev->device);
777 		goto dqm_start_error;
778 	}
779 
780 	return err;
781 
782 dqm_start_error:
783 	kfd_iommu_suspend(kfd);
784 	return err;
785 }
786 
787 /* This is called directly from KGD at ISR. */
788 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
789 {
790 	uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE];
791 	bool is_patched = false;
792 	unsigned long flags;
793 
794 	if (!kfd->init_complete)
795 		return;
796 
797 	if (kfd->device_info->ih_ring_entry_size > sizeof(patched_ihre)) {
798 		dev_err_once(kfd_device, "Ring entry too small\n");
799 		return;
800 	}
801 
802 	spin_lock_irqsave(&kfd->interrupt_lock, flags);
803 
804 	if (kfd->interrupts_active
805 	    && interrupt_is_wanted(kfd, ih_ring_entry,
806 				   patched_ihre, &is_patched)
807 	    && enqueue_ih_ring_entry(kfd,
808 				     is_patched ? patched_ihre : ih_ring_entry))
809 		queue_work(kfd->ih_wq, &kfd->interrupt_work);
810 
811 	spin_unlock_irqrestore(&kfd->interrupt_lock, flags);
812 }
813 
814 int kgd2kfd_quiesce_mm(struct mm_struct *mm)
815 {
816 	struct kfd_process *p;
817 	int r;
818 
819 	/* Because we are called from arbitrary context (workqueue) as opposed
820 	 * to process context, kfd_process could attempt to exit while we are
821 	 * running so the lookup function increments the process ref count.
822 	 */
823 	p = kfd_lookup_process_by_mm(mm);
824 	if (!p)
825 		return -ESRCH;
826 
827 	r = kfd_process_evict_queues(p);
828 
829 	kfd_unref_process(p);
830 	return r;
831 }
832 
833 int kgd2kfd_resume_mm(struct mm_struct *mm)
834 {
835 	struct kfd_process *p;
836 	int r;
837 
838 	/* Because we are called from arbitrary context (workqueue) as opposed
839 	 * to process context, kfd_process could attempt to exit while we are
840 	 * running so the lookup function increments the process ref count.
841 	 */
842 	p = kfd_lookup_process_by_mm(mm);
843 	if (!p)
844 		return -ESRCH;
845 
846 	r = kfd_process_restore_queues(p);
847 
848 	kfd_unref_process(p);
849 	return r;
850 }
851 
852 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
853  *   prepare for safe eviction of KFD BOs that belong to the specified
854  *   process.
855  *
856  * @mm: mm_struct that identifies the specified KFD process
857  * @fence: eviction fence attached to KFD process BOs
858  *
859  */
860 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
861 					       struct dma_fence *fence)
862 {
863 	struct kfd_process *p;
864 	unsigned long active_time;
865 	unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
866 
867 	if (!fence)
868 		return -EINVAL;
869 
870 	if (dma_fence_is_signaled(fence))
871 		return 0;
872 
873 	p = kfd_lookup_process_by_mm(mm);
874 	if (!p)
875 		return -ENODEV;
876 
877 	if (fence->seqno == p->last_eviction_seqno)
878 		goto out;
879 
880 	p->last_eviction_seqno = fence->seqno;
881 
882 	/* Avoid KFD process starvation. Wait for at least
883 	 * PROCESS_ACTIVE_TIME_MS before evicting the process again
884 	 */
885 	active_time = get_jiffies_64() - p->last_restore_timestamp;
886 	if (delay_jiffies > active_time)
887 		delay_jiffies -= active_time;
888 	else
889 		delay_jiffies = 0;
890 
891 	/* During process initialization eviction_work.dwork is initialized
892 	 * to kfd_evict_bo_worker
893 	 */
894 	schedule_delayed_work(&p->eviction_work, delay_jiffies);
895 out:
896 	kfd_unref_process(p);
897 	return 0;
898 }
899 
900 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
901 				unsigned int chunk_size)
902 {
903 	unsigned int num_of_longs;
904 
905 	if (WARN_ON(buf_size < chunk_size))
906 		return -EINVAL;
907 	if (WARN_ON(buf_size == 0))
908 		return -EINVAL;
909 	if (WARN_ON(chunk_size == 0))
910 		return -EINVAL;
911 
912 	kfd->gtt_sa_chunk_size = chunk_size;
913 	kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
914 
915 	num_of_longs = (kfd->gtt_sa_num_of_chunks + BITS_PER_LONG - 1) /
916 		BITS_PER_LONG;
917 
918 	kfd->gtt_sa_bitmap = kcalloc(num_of_longs, sizeof(long), GFP_KERNEL);
919 
920 	if (!kfd->gtt_sa_bitmap)
921 		return -ENOMEM;
922 
923 	pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
924 			kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
925 
926 	mutex_init(&kfd->gtt_sa_lock);
927 
928 	return 0;
929 
930 }
931 
932 static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
933 {
934 	mutex_destroy(&kfd->gtt_sa_lock);
935 	kfree(kfd->gtt_sa_bitmap);
936 }
937 
938 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
939 						unsigned int bit_num,
940 						unsigned int chunk_size)
941 {
942 	return start_addr + bit_num * chunk_size;
943 }
944 
945 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
946 						unsigned int bit_num,
947 						unsigned int chunk_size)
948 {
949 	return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
950 }
951 
952 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
953 			struct kfd_mem_obj **mem_obj)
954 {
955 	unsigned int found, start_search, cur_size;
956 
957 	if (size == 0)
958 		return -EINVAL;
959 
960 	if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
961 		return -ENOMEM;
962 
963 	*mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
964 	if (!(*mem_obj))
965 		return -ENOMEM;
966 
967 	pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
968 
969 	start_search = 0;
970 
971 	mutex_lock(&kfd->gtt_sa_lock);
972 
973 kfd_gtt_restart_search:
974 	/* Find the first chunk that is free */
975 	found = find_next_zero_bit(kfd->gtt_sa_bitmap,
976 					kfd->gtt_sa_num_of_chunks,
977 					start_search);
978 
979 	pr_debug("Found = %d\n", found);
980 
981 	/* If there wasn't any free chunk, bail out */
982 	if (found == kfd->gtt_sa_num_of_chunks)
983 		goto kfd_gtt_no_free_chunk;
984 
985 	/* Update fields of mem_obj */
986 	(*mem_obj)->range_start = found;
987 	(*mem_obj)->range_end = found;
988 	(*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
989 					kfd->gtt_start_gpu_addr,
990 					found,
991 					kfd->gtt_sa_chunk_size);
992 	(*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
993 					kfd->gtt_start_cpu_ptr,
994 					found,
995 					kfd->gtt_sa_chunk_size);
996 
997 	pr_debug("gpu_addr = %p, cpu_addr = %p\n",
998 			(uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
999 
1000 	/* If we need only one chunk, mark it as allocated and get out */
1001 	if (size <= kfd->gtt_sa_chunk_size) {
1002 		pr_debug("Single bit\n");
1003 		set_bit(found, kfd->gtt_sa_bitmap);
1004 		goto kfd_gtt_out;
1005 	}
1006 
1007 	/* Otherwise, try to see if we have enough contiguous chunks */
1008 	cur_size = size - kfd->gtt_sa_chunk_size;
1009 	do {
1010 		(*mem_obj)->range_end =
1011 			find_next_zero_bit(kfd->gtt_sa_bitmap,
1012 					kfd->gtt_sa_num_of_chunks, ++found);
1013 		/*
1014 		 * If next free chunk is not contiguous than we need to
1015 		 * restart our search from the last free chunk we found (which
1016 		 * wasn't contiguous to the previous ones
1017 		 */
1018 		if ((*mem_obj)->range_end != found) {
1019 			start_search = found;
1020 			goto kfd_gtt_restart_search;
1021 		}
1022 
1023 		/*
1024 		 * If we reached end of buffer, bail out with error
1025 		 */
1026 		if (found == kfd->gtt_sa_num_of_chunks)
1027 			goto kfd_gtt_no_free_chunk;
1028 
1029 		/* Check if we don't need another chunk */
1030 		if (cur_size <= kfd->gtt_sa_chunk_size)
1031 			cur_size = 0;
1032 		else
1033 			cur_size -= kfd->gtt_sa_chunk_size;
1034 
1035 	} while (cur_size > 0);
1036 
1037 	pr_debug("range_start = %d, range_end = %d\n",
1038 		(*mem_obj)->range_start, (*mem_obj)->range_end);
1039 
1040 	/* Mark the chunks as allocated */
1041 	for (found = (*mem_obj)->range_start;
1042 		found <= (*mem_obj)->range_end;
1043 		found++)
1044 		set_bit(found, kfd->gtt_sa_bitmap);
1045 
1046 kfd_gtt_out:
1047 	mutex_unlock(&kfd->gtt_sa_lock);
1048 	return 0;
1049 
1050 kfd_gtt_no_free_chunk:
1051 	pr_debug("Allocation failed with mem_obj = %p\n", mem_obj);
1052 	mutex_unlock(&kfd->gtt_sa_lock);
1053 	kfree(mem_obj);
1054 	return -ENOMEM;
1055 }
1056 
1057 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj)
1058 {
1059 	unsigned int bit;
1060 
1061 	/* Act like kfree when trying to free a NULL object */
1062 	if (!mem_obj)
1063 		return 0;
1064 
1065 	pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
1066 			mem_obj, mem_obj->range_start, mem_obj->range_end);
1067 
1068 	mutex_lock(&kfd->gtt_sa_lock);
1069 
1070 	/* Mark the chunks as free */
1071 	for (bit = mem_obj->range_start;
1072 		bit <= mem_obj->range_end;
1073 		bit++)
1074 		clear_bit(bit, kfd->gtt_sa_bitmap);
1075 
1076 	mutex_unlock(&kfd->gtt_sa_lock);
1077 
1078 	kfree(mem_obj);
1079 	return 0;
1080 }
1081 
1082 void kgd2kfd_set_sram_ecc_flag(struct kfd_dev *kfd)
1083 {
1084 	if (kfd)
1085 		atomic_inc(&kfd->sram_ecc_flag);
1086 }
1087 
1088 void kfd_inc_compute_active(struct kfd_dev *kfd)
1089 {
1090 	if (atomic_inc_return(&kfd->compute_profile) == 1)
1091 		amdgpu_amdkfd_set_compute_idle(kfd->kgd, false);
1092 }
1093 
1094 void kfd_dec_compute_active(struct kfd_dev *kfd)
1095 {
1096 	int count = atomic_dec_return(&kfd->compute_profile);
1097 
1098 	if (count == 0)
1099 		amdgpu_amdkfd_set_compute_idle(kfd->kgd, true);
1100 	WARN_ONCE(count < 0, "Compute profile ref. count error");
1101 }
1102 
1103 #if defined(CONFIG_DEBUG_FS)
1104 
1105 /* This function will send a package to HIQ to hang the HWS
1106  * which will trigger a GPU reset and bring the HWS back to normal state
1107  */
1108 int kfd_debugfs_hang_hws(struct kfd_dev *dev)
1109 {
1110 	int r = 0;
1111 
1112 	if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) {
1113 		pr_err("HWS is not enabled");
1114 		return -EINVAL;
1115 	}
1116 
1117 	r = pm_debugfs_hang_hws(&dev->dqm->packets);
1118 	if (!r)
1119 		r = dqm_debugfs_execute_queues(dev->dqm);
1120 
1121 	return r;
1122 }
1123 
1124 #endif
1125