xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_device.c (revision d63a42257065a5f8b992c9a687015822a6ae3c2e)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/bsearch.h>
25 #include <linux/pci.h>
26 #include <linux/slab.h>
27 #include "kfd_priv.h"
28 #include "kfd_device_queue_manager.h"
29 #include "kfd_pm4_headers_vi.h"
30 #include "kfd_pm4_headers_aldebaran.h"
31 #include "cwsr_trap_handler.h"
32 #include "kfd_iommu.h"
33 #include "amdgpu_amdkfd.h"
34 #include "kfd_smi_events.h"
35 #include "kfd_svm.h"
36 #include "kfd_migrate.h"
37 #include "amdgpu.h"
38 #include "amdgpu_xcp.h"
39 
40 #define MQD_SIZE_ALIGNED 768
41 
42 /*
43  * kfd_locked is used to lock the kfd driver during suspend or reset
44  * once locked, kfd driver will stop any further GPU execution.
45  * create process (open) will return -EAGAIN.
46  */
47 static int kfd_locked;
48 
49 #ifdef CONFIG_DRM_AMDGPU_CIK
50 extern const struct kfd2kgd_calls gfx_v7_kfd2kgd;
51 #endif
52 extern const struct kfd2kgd_calls gfx_v8_kfd2kgd;
53 extern const struct kfd2kgd_calls gfx_v9_kfd2kgd;
54 extern const struct kfd2kgd_calls arcturus_kfd2kgd;
55 extern const struct kfd2kgd_calls aldebaran_kfd2kgd;
56 extern const struct kfd2kgd_calls gc_9_4_3_kfd2kgd;
57 extern const struct kfd2kgd_calls gfx_v10_kfd2kgd;
58 extern const struct kfd2kgd_calls gfx_v10_3_kfd2kgd;
59 extern const struct kfd2kgd_calls gfx_v11_kfd2kgd;
60 
61 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
62 				unsigned int chunk_size);
63 static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
64 
65 static int kfd_resume_iommu(struct kfd_dev *kfd);
66 static int kfd_resume(struct kfd_node *kfd);
67 
68 static void kfd_device_info_set_sdma_info(struct kfd_dev *kfd)
69 {
70 	uint32_t sdma_version = kfd->adev->ip_versions[SDMA0_HWIP][0];
71 
72 	switch (sdma_version) {
73 	case IP_VERSION(4, 0, 0):/* VEGA10 */
74 	case IP_VERSION(4, 0, 1):/* VEGA12 */
75 	case IP_VERSION(4, 1, 0):/* RAVEN */
76 	case IP_VERSION(4, 1, 1):/* RAVEN */
77 	case IP_VERSION(4, 1, 2):/* RENOIR */
78 	case IP_VERSION(5, 2, 1):/* VANGOGH */
79 	case IP_VERSION(5, 2, 3):/* YELLOW_CARP */
80 	case IP_VERSION(5, 2, 6):/* GC 10.3.6 */
81 	case IP_VERSION(5, 2, 7):/* GC 10.3.7 */
82 		kfd->device_info.num_sdma_queues_per_engine = 2;
83 		break;
84 	case IP_VERSION(4, 2, 0):/* VEGA20 */
85 	case IP_VERSION(4, 2, 2):/* ARCTURUS */
86 	case IP_VERSION(4, 4, 0):/* ALDEBARAN */
87 	case IP_VERSION(4, 4, 2):
88 	case IP_VERSION(5, 0, 0):/* NAVI10 */
89 	case IP_VERSION(5, 0, 1):/* CYAN_SKILLFISH */
90 	case IP_VERSION(5, 0, 2):/* NAVI14 */
91 	case IP_VERSION(5, 0, 5):/* NAVI12 */
92 	case IP_VERSION(5, 2, 0):/* SIENNA_CICHLID */
93 	case IP_VERSION(5, 2, 2):/* NAVY_FLOUNDER */
94 	case IP_VERSION(5, 2, 4):/* DIMGREY_CAVEFISH */
95 	case IP_VERSION(5, 2, 5):/* BEIGE_GOBY */
96 	case IP_VERSION(6, 0, 0):
97 	case IP_VERSION(6, 0, 1):
98 	case IP_VERSION(6, 0, 2):
99 	case IP_VERSION(6, 0, 3):
100 		kfd->device_info.num_sdma_queues_per_engine = 8;
101 		break;
102 	default:
103 		dev_warn(kfd_device,
104 			"Default sdma queue per engine(8) is set due to mismatch of sdma ip block(SDMA_HWIP:0x%x).\n",
105 			sdma_version);
106 		kfd->device_info.num_sdma_queues_per_engine = 8;
107 	}
108 
109 	bitmap_zero(kfd->device_info.reserved_sdma_queues_bitmap, KFD_MAX_SDMA_QUEUES);
110 
111 	switch (sdma_version) {
112 	case IP_VERSION(6, 0, 0):
113 	case IP_VERSION(6, 0, 1):
114 	case IP_VERSION(6, 0, 2):
115 	case IP_VERSION(6, 0, 3):
116 		/* Reserve 1 for paging and 1 for gfx */
117 		kfd->device_info.num_reserved_sdma_queues_per_engine = 2;
118 		/* BIT(0)=engine-0 queue-0; BIT(1)=engine-1 queue-0; BIT(2)=engine-0 queue-1; ... */
119 		bitmap_set(kfd->device_info.reserved_sdma_queues_bitmap, 0,
120 			   kfd->adev->sdma.num_instances *
121 			   kfd->device_info.num_reserved_sdma_queues_per_engine);
122 		break;
123 	default:
124 		break;
125 	}
126 }
127 
128 static void kfd_device_info_set_event_interrupt_class(struct kfd_dev *kfd)
129 {
130 	uint32_t gc_version = KFD_GC_VERSION(kfd);
131 
132 	switch (gc_version) {
133 	case IP_VERSION(9, 0, 1): /* VEGA10 */
134 	case IP_VERSION(9, 1, 0): /* RAVEN */
135 	case IP_VERSION(9, 2, 1): /* VEGA12 */
136 	case IP_VERSION(9, 2, 2): /* RAVEN */
137 	case IP_VERSION(9, 3, 0): /* RENOIR */
138 	case IP_VERSION(9, 4, 0): /* VEGA20 */
139 	case IP_VERSION(9, 4, 1): /* ARCTURUS */
140 	case IP_VERSION(9, 4, 2): /* ALDEBARAN */
141 		kfd->device_info.event_interrupt_class = &event_interrupt_class_v9;
142 		break;
143 	case IP_VERSION(9, 4, 3): /* GC 9.4.3 */
144 		kfd->device_info.event_interrupt_class =
145 						&event_interrupt_class_v9_4_3;
146 		break;
147 	case IP_VERSION(10, 3, 1): /* VANGOGH */
148 	case IP_VERSION(10, 3, 3): /* YELLOW_CARP */
149 	case IP_VERSION(10, 3, 6): /* GC 10.3.6 */
150 	case IP_VERSION(10, 3, 7): /* GC 10.3.7 */
151 	case IP_VERSION(10, 1, 3): /* CYAN_SKILLFISH */
152 	case IP_VERSION(10, 1, 4):
153 	case IP_VERSION(10, 1, 10): /* NAVI10 */
154 	case IP_VERSION(10, 1, 2): /* NAVI12 */
155 	case IP_VERSION(10, 1, 1): /* NAVI14 */
156 	case IP_VERSION(10, 3, 0): /* SIENNA_CICHLID */
157 	case IP_VERSION(10, 3, 2): /* NAVY_FLOUNDER */
158 	case IP_VERSION(10, 3, 4): /* DIMGREY_CAVEFISH */
159 	case IP_VERSION(10, 3, 5): /* BEIGE_GOBY */
160 		kfd->device_info.event_interrupt_class = &event_interrupt_class_v10;
161 		break;
162 	case IP_VERSION(11, 0, 0):
163 	case IP_VERSION(11, 0, 1):
164 	case IP_VERSION(11, 0, 2):
165 	case IP_VERSION(11, 0, 3):
166 	case IP_VERSION(11, 0, 4):
167 		kfd->device_info.event_interrupt_class = &event_interrupt_class_v11;
168 		break;
169 	default:
170 		dev_warn(kfd_device, "v9 event interrupt handler is set due to "
171 			"mismatch of gc ip block(GC_HWIP:0x%x).\n", gc_version);
172 		kfd->device_info.event_interrupt_class = &event_interrupt_class_v9;
173 	}
174 }
175 
176 static void kfd_device_info_init(struct kfd_dev *kfd,
177 				 bool vf, uint32_t gfx_target_version)
178 {
179 	uint32_t gc_version = KFD_GC_VERSION(kfd);
180 	uint32_t asic_type = kfd->adev->asic_type;
181 
182 	kfd->device_info.max_pasid_bits = 16;
183 	kfd->device_info.max_no_of_hqd = 24;
184 	kfd->device_info.num_of_watch_points = 4;
185 	kfd->device_info.mqd_size_aligned = MQD_SIZE_ALIGNED;
186 	kfd->device_info.gfx_target_version = gfx_target_version;
187 
188 	if (KFD_IS_SOC15(kfd)) {
189 		kfd->device_info.doorbell_size = 8;
190 		kfd->device_info.ih_ring_entry_size = 8 * sizeof(uint32_t);
191 		kfd->device_info.supports_cwsr = true;
192 
193 		kfd_device_info_set_sdma_info(kfd);
194 
195 		kfd_device_info_set_event_interrupt_class(kfd);
196 
197 		if (gc_version < IP_VERSION(11, 0, 0)) {
198 			/* Navi2x+, Navi1x+ */
199 			if (gc_version == IP_VERSION(10, 3, 6))
200 				kfd->device_info.no_atomic_fw_version = 14;
201 			else if (gc_version == IP_VERSION(10, 3, 7))
202 				kfd->device_info.no_atomic_fw_version = 3;
203 			else if (gc_version >= IP_VERSION(10, 3, 0))
204 				kfd->device_info.no_atomic_fw_version = 92;
205 			else if (gc_version >= IP_VERSION(10, 1, 1))
206 				kfd->device_info.no_atomic_fw_version = 145;
207 
208 			/* Navi1x+ */
209 			if (gc_version >= IP_VERSION(10, 1, 1))
210 				kfd->device_info.needs_pci_atomics = true;
211 		} else if (gc_version < IP_VERSION(12, 0, 0)) {
212 			/*
213 			 * PCIe atomics support acknowledgment in GFX11 RS64 CPFW requires
214 			 * MEC version >= 509. Prior RS64 CPFW versions (and all F32) require
215 			 * PCIe atomics support.
216 			 */
217 			kfd->device_info.needs_pci_atomics = true;
218 			kfd->device_info.no_atomic_fw_version = kfd->adev->gfx.rs64_enable ? 509 : 0;
219 		}
220 	} else {
221 		kfd->device_info.doorbell_size = 4;
222 		kfd->device_info.ih_ring_entry_size = 4 * sizeof(uint32_t);
223 		kfd->device_info.event_interrupt_class = &event_interrupt_class_cik;
224 		kfd->device_info.num_sdma_queues_per_engine = 2;
225 
226 		if (asic_type != CHIP_KAVERI &&
227 		    asic_type != CHIP_HAWAII &&
228 		    asic_type != CHIP_TONGA)
229 			kfd->device_info.supports_cwsr = true;
230 
231 		if (asic_type != CHIP_HAWAII && !vf)
232 			kfd->device_info.needs_pci_atomics = true;
233 	}
234 }
235 
236 struct kfd_dev *kgd2kfd_probe(struct amdgpu_device *adev, bool vf)
237 {
238 	struct kfd_dev *kfd = NULL;
239 	const struct kfd2kgd_calls *f2g = NULL;
240 	uint32_t gfx_target_version = 0;
241 
242 	switch (adev->asic_type) {
243 #ifdef CONFIG_DRM_AMDGPU_CIK
244 	case CHIP_KAVERI:
245 		gfx_target_version = 70000;
246 		if (!vf)
247 			f2g = &gfx_v7_kfd2kgd;
248 		break;
249 #endif
250 	case CHIP_CARRIZO:
251 		gfx_target_version = 80001;
252 		if (!vf)
253 			f2g = &gfx_v8_kfd2kgd;
254 		break;
255 #ifdef CONFIG_DRM_AMDGPU_CIK
256 	case CHIP_HAWAII:
257 		gfx_target_version = 70001;
258 		if (!amdgpu_exp_hw_support)
259 			pr_info(
260 	"KFD support on Hawaii is experimental. See modparam exp_hw_support\n"
261 				);
262 		else if (!vf)
263 			f2g = &gfx_v7_kfd2kgd;
264 		break;
265 #endif
266 	case CHIP_TONGA:
267 		gfx_target_version = 80002;
268 		if (!vf)
269 			f2g = &gfx_v8_kfd2kgd;
270 		break;
271 	case CHIP_FIJI:
272 	case CHIP_POLARIS10:
273 		gfx_target_version = 80003;
274 		f2g = &gfx_v8_kfd2kgd;
275 		break;
276 	case CHIP_POLARIS11:
277 	case CHIP_POLARIS12:
278 	case CHIP_VEGAM:
279 		gfx_target_version = 80003;
280 		if (!vf)
281 			f2g = &gfx_v8_kfd2kgd;
282 		break;
283 	default:
284 		switch (adev->ip_versions[GC_HWIP][0]) {
285 		/* Vega 10 */
286 		case IP_VERSION(9, 0, 1):
287 			gfx_target_version = 90000;
288 			f2g = &gfx_v9_kfd2kgd;
289 			break;
290 		/* Raven */
291 		case IP_VERSION(9, 1, 0):
292 		case IP_VERSION(9, 2, 2):
293 			gfx_target_version = 90002;
294 			if (!vf)
295 				f2g = &gfx_v9_kfd2kgd;
296 			break;
297 		/* Vega12 */
298 		case IP_VERSION(9, 2, 1):
299 			gfx_target_version = 90004;
300 			if (!vf)
301 				f2g = &gfx_v9_kfd2kgd;
302 			break;
303 		/* Renoir */
304 		case IP_VERSION(9, 3, 0):
305 			gfx_target_version = 90012;
306 			if (!vf)
307 				f2g = &gfx_v9_kfd2kgd;
308 			break;
309 		/* Vega20 */
310 		case IP_VERSION(9, 4, 0):
311 			gfx_target_version = 90006;
312 			if (!vf)
313 				f2g = &gfx_v9_kfd2kgd;
314 			break;
315 		/* Arcturus */
316 		case IP_VERSION(9, 4, 1):
317 			gfx_target_version = 90008;
318 			f2g = &arcturus_kfd2kgd;
319 			break;
320 		/* Aldebaran */
321 		case IP_VERSION(9, 4, 2):
322 			gfx_target_version = 90010;
323 			f2g = &aldebaran_kfd2kgd;
324 			break;
325 		case IP_VERSION(9, 4, 3):
326 			gfx_target_version = adev->rev_id >= 1 ? 90402
327 					   : adev->flags & AMD_IS_APU ? 90400
328 					   : 90401;
329 			f2g = &gc_9_4_3_kfd2kgd;
330 			break;
331 		/* Navi10 */
332 		case IP_VERSION(10, 1, 10):
333 			gfx_target_version = 100100;
334 			if (!vf)
335 				f2g = &gfx_v10_kfd2kgd;
336 			break;
337 		/* Navi12 */
338 		case IP_VERSION(10, 1, 2):
339 			gfx_target_version = 100101;
340 			f2g = &gfx_v10_kfd2kgd;
341 			break;
342 		/* Navi14 */
343 		case IP_VERSION(10, 1, 1):
344 			gfx_target_version = 100102;
345 			if (!vf)
346 				f2g = &gfx_v10_kfd2kgd;
347 			break;
348 		/* Cyan Skillfish */
349 		case IP_VERSION(10, 1, 3):
350 		case IP_VERSION(10, 1, 4):
351 			gfx_target_version = 100103;
352 			if (!vf)
353 				f2g = &gfx_v10_kfd2kgd;
354 			break;
355 		/* Sienna Cichlid */
356 		case IP_VERSION(10, 3, 0):
357 			gfx_target_version = 100300;
358 			f2g = &gfx_v10_3_kfd2kgd;
359 			break;
360 		/* Navy Flounder */
361 		case IP_VERSION(10, 3, 2):
362 			gfx_target_version = 100301;
363 			f2g = &gfx_v10_3_kfd2kgd;
364 			break;
365 		/* Van Gogh */
366 		case IP_VERSION(10, 3, 1):
367 			gfx_target_version = 100303;
368 			if (!vf)
369 				f2g = &gfx_v10_3_kfd2kgd;
370 			break;
371 		/* Dimgrey Cavefish */
372 		case IP_VERSION(10, 3, 4):
373 			gfx_target_version = 100302;
374 			f2g = &gfx_v10_3_kfd2kgd;
375 			break;
376 		/* Beige Goby */
377 		case IP_VERSION(10, 3, 5):
378 			gfx_target_version = 100304;
379 			f2g = &gfx_v10_3_kfd2kgd;
380 			break;
381 		/* Yellow Carp */
382 		case IP_VERSION(10, 3, 3):
383 			gfx_target_version = 100305;
384 			if (!vf)
385 				f2g = &gfx_v10_3_kfd2kgd;
386 			break;
387 		case IP_VERSION(10, 3, 6):
388 		case IP_VERSION(10, 3, 7):
389 			gfx_target_version = 100306;
390 			if (!vf)
391 				f2g = &gfx_v10_3_kfd2kgd;
392 			break;
393 		case IP_VERSION(11, 0, 0):
394 			gfx_target_version = 110000;
395 			f2g = &gfx_v11_kfd2kgd;
396 			break;
397 		case IP_VERSION(11, 0, 1):
398 		case IP_VERSION(11, 0, 4):
399 			gfx_target_version = 110003;
400 			f2g = &gfx_v11_kfd2kgd;
401 			break;
402 		case IP_VERSION(11, 0, 2):
403 			gfx_target_version = 110002;
404 			f2g = &gfx_v11_kfd2kgd;
405 			break;
406 		case IP_VERSION(11, 0, 3):
407 			if ((adev->pdev->device == 0x7460 &&
408 			     adev->pdev->revision == 0x00) ||
409 			    (adev->pdev->device == 0x7461 &&
410 			     adev->pdev->revision == 0x00))
411 				/* Note: Compiler version is 11.0.5 while HW version is 11.0.3 */
412 				gfx_target_version = 110005;
413 			else
414 				/* Note: Compiler version is 11.0.1 while HW version is 11.0.3 */
415 				gfx_target_version = 110001;
416 			f2g = &gfx_v11_kfd2kgd;
417 			break;
418 		default:
419 			break;
420 		}
421 		break;
422 	}
423 
424 	if (!f2g) {
425 		if (adev->ip_versions[GC_HWIP][0])
426 			dev_err(kfd_device, "GC IP %06x %s not supported in kfd\n",
427 				adev->ip_versions[GC_HWIP][0], vf ? "VF" : "");
428 		else
429 			dev_err(kfd_device, "%s %s not supported in kfd\n",
430 				amdgpu_asic_name[adev->asic_type], vf ? "VF" : "");
431 		return NULL;
432 	}
433 
434 	kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
435 	if (!kfd)
436 		return NULL;
437 
438 	kfd->adev = adev;
439 	kfd_device_info_init(kfd, vf, gfx_target_version);
440 	kfd->init_complete = false;
441 	kfd->kfd2kgd = f2g;
442 	atomic_set(&kfd->compute_profile, 0);
443 
444 	mutex_init(&kfd->doorbell_mutex);
445 	memset(&kfd->doorbell_available_index, 0,
446 		sizeof(kfd->doorbell_available_index));
447 
448 	ida_init(&kfd->doorbell_ida);
449 
450 	return kfd;
451 }
452 
453 static void kfd_cwsr_init(struct kfd_dev *kfd)
454 {
455 	if (cwsr_enable && kfd->device_info.supports_cwsr) {
456 		if (KFD_GC_VERSION(kfd) < IP_VERSION(9, 0, 1)) {
457 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex) > PAGE_SIZE);
458 			kfd->cwsr_isa = cwsr_trap_gfx8_hex;
459 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
460 		} else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 1)) {
461 			BUILD_BUG_ON(sizeof(cwsr_trap_arcturus_hex) > PAGE_SIZE);
462 			kfd->cwsr_isa = cwsr_trap_arcturus_hex;
463 			kfd->cwsr_isa_size = sizeof(cwsr_trap_arcturus_hex);
464 		} else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 2)) {
465 			BUILD_BUG_ON(sizeof(cwsr_trap_aldebaran_hex) > PAGE_SIZE);
466 			kfd->cwsr_isa = cwsr_trap_aldebaran_hex;
467 			kfd->cwsr_isa_size = sizeof(cwsr_trap_aldebaran_hex);
468 		} else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 3)) {
469 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_4_3_hex) > PAGE_SIZE);
470 			kfd->cwsr_isa = cwsr_trap_gfx9_4_3_hex;
471 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_4_3_hex);
472 		} else if (KFD_GC_VERSION(kfd) < IP_VERSION(10, 1, 1)) {
473 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex) > PAGE_SIZE);
474 			kfd->cwsr_isa = cwsr_trap_gfx9_hex;
475 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
476 		} else if (KFD_GC_VERSION(kfd) < IP_VERSION(10, 3, 0)) {
477 			BUILD_BUG_ON(sizeof(cwsr_trap_nv1x_hex) > PAGE_SIZE);
478 			kfd->cwsr_isa = cwsr_trap_nv1x_hex;
479 			kfd->cwsr_isa_size = sizeof(cwsr_trap_nv1x_hex);
480 		} else if (KFD_GC_VERSION(kfd) < IP_VERSION(11, 0, 0)) {
481 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx10_hex) > PAGE_SIZE);
482 			kfd->cwsr_isa = cwsr_trap_gfx10_hex;
483 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx10_hex);
484 		} else {
485 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx11_hex) > PAGE_SIZE);
486 			kfd->cwsr_isa = cwsr_trap_gfx11_hex;
487 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx11_hex);
488 		}
489 
490 		kfd->cwsr_enabled = true;
491 	}
492 }
493 
494 static int kfd_gws_init(struct kfd_node *node)
495 {
496 	int ret = 0;
497 	struct kfd_dev *kfd = node->kfd;
498 
499 	if (node->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS)
500 		return 0;
501 
502 	if (hws_gws_support || (KFD_IS_SOC15(node) &&
503 		((KFD_GC_VERSION(node) == IP_VERSION(9, 0, 1)
504 			&& kfd->mec2_fw_version >= 0x81b3) ||
505 		(KFD_GC_VERSION(node) <= IP_VERSION(9, 4, 0)
506 			&& kfd->mec2_fw_version >= 0x1b3)  ||
507 		(KFD_GC_VERSION(node) == IP_VERSION(9, 4, 1)
508 			&& kfd->mec2_fw_version >= 0x30)   ||
509 		(KFD_GC_VERSION(node) == IP_VERSION(9, 4, 2)
510 			&& kfd->mec2_fw_version >= 0x28) ||
511 		(KFD_GC_VERSION(node) == IP_VERSION(9, 4, 3)) ||
512 		(KFD_GC_VERSION(node) >= IP_VERSION(10, 3, 0)
513 			&& KFD_GC_VERSION(node) < IP_VERSION(11, 0, 0)
514 			&& kfd->mec2_fw_version >= 0x6b))))
515 		ret = amdgpu_amdkfd_alloc_gws(node->adev,
516 				node->adev->gds.gws_size, &node->gws);
517 
518 	return ret;
519 }
520 
521 static void kfd_smi_init(struct kfd_node *dev)
522 {
523 	INIT_LIST_HEAD(&dev->smi_clients);
524 	spin_lock_init(&dev->smi_lock);
525 }
526 
527 static int kfd_init_node(struct kfd_node *node)
528 {
529 	int err = -1;
530 
531 	if (kfd_interrupt_init(node)) {
532 		dev_err(kfd_device, "Error initializing interrupts\n");
533 		goto kfd_interrupt_error;
534 	}
535 
536 	node->dqm = device_queue_manager_init(node);
537 	if (!node->dqm) {
538 		dev_err(kfd_device, "Error initializing queue manager\n");
539 		goto device_queue_manager_error;
540 	}
541 
542 	if (kfd_gws_init(node)) {
543 		dev_err(kfd_device, "Could not allocate %d gws\n",
544 			node->adev->gds.gws_size);
545 		goto gws_error;
546 	}
547 
548 	if (kfd_resume(node))
549 		goto kfd_resume_error;
550 
551 	if (kfd_topology_add_device(node)) {
552 		dev_err(kfd_device, "Error adding device to topology\n");
553 		goto kfd_topology_add_device_error;
554 	}
555 
556 	kfd_smi_init(node);
557 
558 	return 0;
559 
560 kfd_topology_add_device_error:
561 kfd_resume_error:
562 gws_error:
563 	device_queue_manager_uninit(node->dqm);
564 device_queue_manager_error:
565 	kfd_interrupt_exit(node);
566 kfd_interrupt_error:
567 	if (node->gws)
568 		amdgpu_amdkfd_free_gws(node->adev, node->gws);
569 
570 	/* Cleanup the node memory here */
571 	kfree(node);
572 	return err;
573 }
574 
575 static void kfd_cleanup_nodes(struct kfd_dev *kfd, unsigned int num_nodes)
576 {
577 	struct kfd_node *knode;
578 	unsigned int i;
579 
580 	for (i = 0; i < num_nodes; i++) {
581 		knode = kfd->nodes[i];
582 		device_queue_manager_uninit(knode->dqm);
583 		kfd_interrupt_exit(knode);
584 		kfd_topology_remove_device(knode);
585 		if (knode->gws)
586 			amdgpu_amdkfd_free_gws(knode->adev, knode->gws);
587 		kfree(knode);
588 		kfd->nodes[i] = NULL;
589 	}
590 }
591 
592 static void kfd_setup_interrupt_bitmap(struct kfd_node *node,
593 				       unsigned int kfd_node_idx)
594 {
595 	struct amdgpu_device *adev = node->adev;
596 	uint32_t xcc_mask = node->xcc_mask;
597 	uint32_t xcc, mapped_xcc;
598 	/*
599 	 * Interrupt bitmap is setup for processing interrupts from
600 	 * different XCDs and AIDs.
601 	 * Interrupt bitmap is defined as follows:
602 	 * 1. Bits 0-15 - correspond to the NodeId field.
603 	 *    Each bit corresponds to NodeId number. For example, if
604 	 *    a KFD node has interrupt bitmap set to 0x7, then this
605 	 *    KFD node will process interrupts with NodeId = 0, 1 and 2
606 	 *    in the IH cookie.
607 	 * 2. Bits 16-31 - unused.
608 	 *
609 	 * Please note that the kfd_node_idx argument passed to this
610 	 * function is not related to NodeId field received in the
611 	 * IH cookie.
612 	 *
613 	 * In CPX mode, a KFD node will process an interrupt if:
614 	 * - the Node Id matches the corresponding bit set in
615 	 *   Bits 0-15.
616 	 * - AND VMID reported in the interrupt lies within the
617 	 *   VMID range of the node.
618 	 */
619 	for_each_inst(xcc, xcc_mask) {
620 		mapped_xcc = GET_INST(GC, xcc);
621 		node->interrupt_bitmap |= (mapped_xcc % 2 ? 5 : 3) << (4 * (mapped_xcc / 2));
622 	}
623 	dev_info(kfd_device, "Node: %d, interrupt_bitmap: %x\n", kfd_node_idx,
624 							node->interrupt_bitmap);
625 }
626 
627 bool kgd2kfd_device_init(struct kfd_dev *kfd,
628 			 const struct kgd2kfd_shared_resources *gpu_resources)
629 {
630 	unsigned int size, map_process_packet_size, i;
631 	struct kfd_node *node;
632 	uint32_t first_vmid_kfd, last_vmid_kfd, vmid_num_kfd;
633 	unsigned int max_proc_per_quantum;
634 	int partition_mode;
635 	int xcp_idx;
636 
637 	kfd->mec_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev,
638 			KGD_ENGINE_MEC1);
639 	kfd->mec2_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev,
640 			KGD_ENGINE_MEC2);
641 	kfd->sdma_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev,
642 			KGD_ENGINE_SDMA1);
643 	kfd->shared_resources = *gpu_resources;
644 
645 	kfd->num_nodes = amdgpu_xcp_get_num_xcp(kfd->adev->xcp_mgr);
646 
647 	if (kfd->num_nodes == 0) {
648 		dev_err(kfd_device,
649 			"KFD num nodes cannot be 0, num_xcc_in_node: %d\n",
650 			kfd->adev->gfx.num_xcc_per_xcp);
651 		goto out;
652 	}
653 
654 	/* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
655 	 * 32 and 64-bit requests are possible and must be
656 	 * supported.
657 	 */
658 	kfd->pci_atomic_requested = amdgpu_amdkfd_have_atomics_support(kfd->adev);
659 	if (!kfd->pci_atomic_requested &&
660 	    kfd->device_info.needs_pci_atomics &&
661 	    (!kfd->device_info.no_atomic_fw_version ||
662 	     kfd->mec_fw_version < kfd->device_info.no_atomic_fw_version)) {
663 		dev_info(kfd_device,
664 			 "skipped device %x:%x, PCI rejects atomics %d<%d\n",
665 			 kfd->adev->pdev->vendor, kfd->adev->pdev->device,
666 			 kfd->mec_fw_version,
667 			 kfd->device_info.no_atomic_fw_version);
668 		return false;
669 	}
670 
671 	first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
672 	last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
673 	vmid_num_kfd = last_vmid_kfd - first_vmid_kfd + 1;
674 
675 	/* For GFX9.4.3, we need special handling for VMIDs depending on
676 	 * partition mode.
677 	 * In CPX mode, the VMID range needs to be shared between XCDs.
678 	 * Additionally, there are 13 VMIDs (3-15) available for KFD. To
679 	 * divide them equally, we change starting VMID to 4 and not use
680 	 * VMID 3.
681 	 * If the VMID range changes for GFX9.4.3, then this code MUST be
682 	 * revisited.
683 	 */
684 	if (kfd->adev->xcp_mgr) {
685 		partition_mode = amdgpu_xcp_query_partition_mode(kfd->adev->xcp_mgr,
686 								 AMDGPU_XCP_FL_LOCKED);
687 		if (partition_mode == AMDGPU_CPX_PARTITION_MODE &&
688 		    kfd->num_nodes != 1) {
689 			vmid_num_kfd /= 2;
690 			first_vmid_kfd = last_vmid_kfd + 1 - vmid_num_kfd*2;
691 		}
692 	}
693 
694 	/* Verify module parameters regarding mapped process number*/
695 	if (hws_max_conc_proc >= 0)
696 		max_proc_per_quantum = min((u32)hws_max_conc_proc, vmid_num_kfd);
697 	else
698 		max_proc_per_quantum = vmid_num_kfd;
699 
700 	/* calculate max size of mqds needed for queues */
701 	size = max_num_of_queues_per_device *
702 			kfd->device_info.mqd_size_aligned;
703 
704 	/*
705 	 * calculate max size of runlist packet.
706 	 * There can be only 2 packets at once
707 	 */
708 	map_process_packet_size = KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 2) ?
709 				sizeof(struct pm4_mes_map_process_aldebaran) :
710 				sizeof(struct pm4_mes_map_process);
711 	size += (KFD_MAX_NUM_OF_PROCESSES * map_process_packet_size +
712 		max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
713 		+ sizeof(struct pm4_mes_runlist)) * 2;
714 
715 	/* Add size of HIQ & DIQ */
716 	size += KFD_KERNEL_QUEUE_SIZE * 2;
717 
718 	/* add another 512KB for all other allocations on gart (HPD, fences) */
719 	size += 512 * 1024;
720 
721 	if (amdgpu_amdkfd_alloc_gtt_mem(
722 			kfd->adev, size, &kfd->gtt_mem,
723 			&kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr,
724 			false)) {
725 		dev_err(kfd_device, "Could not allocate %d bytes\n", size);
726 		goto alloc_gtt_mem_failure;
727 	}
728 
729 	dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
730 
731 	/* Initialize GTT sa with 512 byte chunk size */
732 	if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
733 		dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
734 		goto kfd_gtt_sa_init_error;
735 	}
736 
737 	if (kfd_doorbell_init(kfd)) {
738 		dev_err(kfd_device,
739 			"Error initializing doorbell aperture\n");
740 		goto kfd_doorbell_error;
741 	}
742 
743 	if (amdgpu_use_xgmi_p2p)
744 		kfd->hive_id = kfd->adev->gmc.xgmi.hive_id;
745 
746 	/*
747 	 * For GFX9.4.3, the KFD abstracts all partitions within a socket as
748 	 * xGMI connected in the topology so assign a unique hive id per
749 	 * device based on the pci device location if device is in PCIe mode.
750 	 */
751 	if (!kfd->hive_id && (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 3)) && kfd->num_nodes > 1)
752 		kfd->hive_id = pci_dev_id(kfd->adev->pdev);
753 
754 	kfd->noretry = kfd->adev->gmc.noretry;
755 
756 	/* If CRAT is broken, won't set iommu enabled */
757 	kfd_double_confirm_iommu_support(kfd);
758 
759 	if (kfd_iommu_device_init(kfd)) {
760 		kfd->use_iommu_v2 = false;
761 		dev_err(kfd_device, "Error initializing iommuv2\n");
762 		goto device_iommu_error;
763 	}
764 
765 	kfd_cwsr_init(kfd);
766 
767 	dev_info(kfd_device, "Total number of KFD nodes to be created: %d\n",
768 				kfd->num_nodes);
769 
770 	/* Allocate the KFD nodes */
771 	for (i = 0, xcp_idx = 0; i < kfd->num_nodes; i++) {
772 		node = kzalloc(sizeof(struct kfd_node), GFP_KERNEL);
773 		if (!node)
774 			goto node_alloc_error;
775 
776 		node->node_id = i;
777 		node->adev = kfd->adev;
778 		node->kfd = kfd;
779 		node->kfd2kgd = kfd->kfd2kgd;
780 		node->vm_info.vmid_num_kfd = vmid_num_kfd;
781 		node->xcp = amdgpu_get_next_xcp(kfd->adev->xcp_mgr, &xcp_idx);
782 		/* TODO : Check if error handling is needed */
783 		if (node->xcp) {
784 			amdgpu_xcp_get_inst_details(node->xcp, AMDGPU_XCP_GFX,
785 						    &node->xcc_mask);
786 			++xcp_idx;
787 		} else {
788 			node->xcc_mask =
789 				(1U << NUM_XCC(kfd->adev->gfx.xcc_mask)) - 1;
790 		}
791 
792 		if (node->xcp) {
793 			dev_info(kfd_device, "KFD node %d partition %d size %lldM\n",
794 				node->node_id, node->xcp->mem_id,
795 				KFD_XCP_MEMORY_SIZE(node->adev, node->node_id) >> 20);
796 		}
797 
798 		if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 3) &&
799 		    partition_mode == AMDGPU_CPX_PARTITION_MODE &&
800 		    kfd->num_nodes != 1) {
801 			/* For GFX9.4.3 and CPX mode, first XCD gets VMID range
802 			 * 4-9 and second XCD gets VMID range 10-15.
803 			 */
804 
805 			node->vm_info.first_vmid_kfd = (i%2 == 0) ?
806 						first_vmid_kfd :
807 						first_vmid_kfd+vmid_num_kfd;
808 			node->vm_info.last_vmid_kfd = (i%2 == 0) ?
809 						last_vmid_kfd-vmid_num_kfd :
810 						last_vmid_kfd;
811 			node->compute_vmid_bitmap =
812 				((0x1 << (node->vm_info.last_vmid_kfd + 1)) - 1) -
813 				((0x1 << (node->vm_info.first_vmid_kfd)) - 1);
814 		} else {
815 			node->vm_info.first_vmid_kfd = first_vmid_kfd;
816 			node->vm_info.last_vmid_kfd = last_vmid_kfd;
817 			node->compute_vmid_bitmap =
818 				gpu_resources->compute_vmid_bitmap;
819 		}
820 		node->max_proc_per_quantum = max_proc_per_quantum;
821 		atomic_set(&node->sram_ecc_flag, 0);
822 
823 		amdgpu_amdkfd_get_local_mem_info(kfd->adev,
824 					&node->local_mem_info, node->xcp);
825 
826 		if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 3))
827 			kfd_setup_interrupt_bitmap(node, i);
828 
829 		/* Initialize the KFD node */
830 		if (kfd_init_node(node)) {
831 			dev_err(kfd_device, "Error initializing KFD node\n");
832 			goto node_init_error;
833 		}
834 		kfd->nodes[i] = node;
835 	}
836 
837 	svm_range_set_max_pages(kfd->adev);
838 
839 	if (kfd_resume_iommu(kfd))
840 		goto kfd_resume_iommu_error;
841 
842 	spin_lock_init(&kfd->watch_points_lock);
843 
844 	kfd->init_complete = true;
845 	dev_info(kfd_device, "added device %x:%x\n", kfd->adev->pdev->vendor,
846 		 kfd->adev->pdev->device);
847 
848 	pr_debug("Starting kfd with the following scheduling policy %d\n",
849 		node->dqm->sched_policy);
850 
851 	goto out;
852 
853 kfd_resume_iommu_error:
854 node_init_error:
855 node_alloc_error:
856 	kfd_cleanup_nodes(kfd, i);
857 device_iommu_error:
858 	kfd_doorbell_fini(kfd);
859 kfd_doorbell_error:
860 	kfd_gtt_sa_fini(kfd);
861 kfd_gtt_sa_init_error:
862 	amdgpu_amdkfd_free_gtt_mem(kfd->adev, kfd->gtt_mem);
863 alloc_gtt_mem_failure:
864 	dev_err(kfd_device,
865 		"device %x:%x NOT added due to errors\n",
866 		kfd->adev->pdev->vendor, kfd->adev->pdev->device);
867 out:
868 	return kfd->init_complete;
869 }
870 
871 void kgd2kfd_device_exit(struct kfd_dev *kfd)
872 {
873 	if (kfd->init_complete) {
874 		/* Cleanup KFD nodes */
875 		kfd_cleanup_nodes(kfd, kfd->num_nodes);
876 		/* Cleanup common/shared resources */
877 		kfd_doorbell_fini(kfd);
878 		ida_destroy(&kfd->doorbell_ida);
879 		kfd_gtt_sa_fini(kfd);
880 		amdgpu_amdkfd_free_gtt_mem(kfd->adev, kfd->gtt_mem);
881 	}
882 
883 	kfree(kfd);
884 }
885 
886 int kgd2kfd_pre_reset(struct kfd_dev *kfd)
887 {
888 	struct kfd_node *node;
889 	int i;
890 
891 	if (!kfd->init_complete)
892 		return 0;
893 
894 	for (i = 0; i < kfd->num_nodes; i++) {
895 		node = kfd->nodes[i];
896 		kfd_smi_event_update_gpu_reset(node, false);
897 		node->dqm->ops.pre_reset(node->dqm);
898 	}
899 
900 	kgd2kfd_suspend(kfd, false);
901 
902 	for (i = 0; i < kfd->num_nodes; i++)
903 		kfd_signal_reset_event(kfd->nodes[i]);
904 
905 	return 0;
906 }
907 
908 /*
909  * Fix me. KFD won't be able to resume existing process for now.
910  * We will keep all existing process in a evicted state and
911  * wait the process to be terminated.
912  */
913 
914 int kgd2kfd_post_reset(struct kfd_dev *kfd)
915 {
916 	int ret;
917 	struct kfd_node *node;
918 	int i;
919 
920 	if (!kfd->init_complete)
921 		return 0;
922 
923 	for (i = 0; i < kfd->num_nodes; i++) {
924 		ret = kfd_resume(kfd->nodes[i]);
925 		if (ret)
926 			return ret;
927 	}
928 
929 	mutex_lock(&kfd_processes_mutex);
930 	--kfd_locked;
931 	mutex_unlock(&kfd_processes_mutex);
932 
933 	for (i = 0; i < kfd->num_nodes; i++) {
934 		node = kfd->nodes[i];
935 		atomic_set(&node->sram_ecc_flag, 0);
936 		kfd_smi_event_update_gpu_reset(node, true);
937 	}
938 
939 	return 0;
940 }
941 
942 bool kfd_is_locked(void)
943 {
944 	lockdep_assert_held(&kfd_processes_mutex);
945 	return  (kfd_locked > 0);
946 }
947 
948 void kgd2kfd_suspend(struct kfd_dev *kfd, bool run_pm)
949 {
950 	struct kfd_node *node;
951 	int i;
952 	int count;
953 
954 	if (!kfd->init_complete)
955 		return;
956 
957 	/* for runtime suspend, skip locking kfd */
958 	if (!run_pm) {
959 		mutex_lock(&kfd_processes_mutex);
960 		count = ++kfd_locked;
961 		mutex_unlock(&kfd_processes_mutex);
962 
963 		/* For first KFD device suspend all the KFD processes */
964 		if (count == 1)
965 			kfd_suspend_all_processes();
966 	}
967 
968 	for (i = 0; i < kfd->num_nodes; i++) {
969 		node = kfd->nodes[i];
970 		node->dqm->ops.stop(node->dqm);
971 	}
972 	kfd_iommu_suspend(kfd);
973 }
974 
975 int kgd2kfd_resume(struct kfd_dev *kfd, bool run_pm)
976 {
977 	int ret, count, i;
978 
979 	if (!kfd->init_complete)
980 		return 0;
981 
982 	for (i = 0; i < kfd->num_nodes; i++) {
983 		ret = kfd_resume(kfd->nodes[i]);
984 		if (ret)
985 			return ret;
986 	}
987 
988 	/* for runtime resume, skip unlocking kfd */
989 	if (!run_pm) {
990 		mutex_lock(&kfd_processes_mutex);
991 		count = --kfd_locked;
992 		mutex_unlock(&kfd_processes_mutex);
993 
994 		WARN_ONCE(count < 0, "KFD suspend / resume ref. error");
995 		if (count == 0)
996 			ret = kfd_resume_all_processes();
997 	}
998 
999 	return ret;
1000 }
1001 
1002 int kgd2kfd_resume_iommu(struct kfd_dev *kfd)
1003 {
1004 	if (!kfd->init_complete)
1005 		return 0;
1006 
1007 	return kfd_resume_iommu(kfd);
1008 }
1009 
1010 static int kfd_resume_iommu(struct kfd_dev *kfd)
1011 {
1012 	int err = 0;
1013 
1014 	err = kfd_iommu_resume(kfd);
1015 	if (err)
1016 		dev_err(kfd_device,
1017 			"Failed to resume IOMMU for device %x:%x\n",
1018 			kfd->adev->pdev->vendor, kfd->adev->pdev->device);
1019 	return err;
1020 }
1021 
1022 static int kfd_resume(struct kfd_node *node)
1023 {
1024 	int err = 0;
1025 
1026 	err = node->dqm->ops.start(node->dqm);
1027 	if (err)
1028 		dev_err(kfd_device,
1029 			"Error starting queue manager for device %x:%x\n",
1030 			node->adev->pdev->vendor, node->adev->pdev->device);
1031 
1032 	return err;
1033 }
1034 
1035 static inline void kfd_queue_work(struct workqueue_struct *wq,
1036 				  struct work_struct *work)
1037 {
1038 	int cpu, new_cpu;
1039 
1040 	cpu = new_cpu = smp_processor_id();
1041 	do {
1042 		new_cpu = cpumask_next(new_cpu, cpu_online_mask) % nr_cpu_ids;
1043 		if (cpu_to_node(new_cpu) == numa_node_id())
1044 			break;
1045 	} while (cpu != new_cpu);
1046 
1047 	queue_work_on(new_cpu, wq, work);
1048 }
1049 
1050 /* This is called directly from KGD at ISR. */
1051 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
1052 {
1053 	uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE], i;
1054 	bool is_patched = false;
1055 	unsigned long flags;
1056 	struct kfd_node *node;
1057 
1058 	if (!kfd->init_complete)
1059 		return;
1060 
1061 	if (kfd->device_info.ih_ring_entry_size > sizeof(patched_ihre)) {
1062 		dev_err_once(kfd_device, "Ring entry too small\n");
1063 		return;
1064 	}
1065 
1066 	for (i = 0; i < kfd->num_nodes; i++) {
1067 		node = kfd->nodes[i];
1068 		spin_lock_irqsave(&node->interrupt_lock, flags);
1069 
1070 		if (node->interrupts_active
1071 		    && interrupt_is_wanted(node, ih_ring_entry,
1072 			    	patched_ihre, &is_patched)
1073 		    && enqueue_ih_ring_entry(node,
1074 			    	is_patched ? patched_ihre : ih_ring_entry)) {
1075 			kfd_queue_work(node->ih_wq, &node->interrupt_work);
1076 			spin_unlock_irqrestore(&node->interrupt_lock, flags);
1077 			return;
1078 		}
1079 		spin_unlock_irqrestore(&node->interrupt_lock, flags);
1080 	}
1081 
1082 }
1083 
1084 int kgd2kfd_quiesce_mm(struct mm_struct *mm, uint32_t trigger)
1085 {
1086 	struct kfd_process *p;
1087 	int r;
1088 
1089 	/* Because we are called from arbitrary context (workqueue) as opposed
1090 	 * to process context, kfd_process could attempt to exit while we are
1091 	 * running so the lookup function increments the process ref count.
1092 	 */
1093 	p = kfd_lookup_process_by_mm(mm);
1094 	if (!p)
1095 		return -ESRCH;
1096 
1097 	WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
1098 	r = kfd_process_evict_queues(p, trigger);
1099 
1100 	kfd_unref_process(p);
1101 	return r;
1102 }
1103 
1104 int kgd2kfd_resume_mm(struct mm_struct *mm)
1105 {
1106 	struct kfd_process *p;
1107 	int r;
1108 
1109 	/* Because we are called from arbitrary context (workqueue) as opposed
1110 	 * to process context, kfd_process could attempt to exit while we are
1111 	 * running so the lookup function increments the process ref count.
1112 	 */
1113 	p = kfd_lookup_process_by_mm(mm);
1114 	if (!p)
1115 		return -ESRCH;
1116 
1117 	r = kfd_process_restore_queues(p);
1118 
1119 	kfd_unref_process(p);
1120 	return r;
1121 }
1122 
1123 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
1124  *   prepare for safe eviction of KFD BOs that belong to the specified
1125  *   process.
1126  *
1127  * @mm: mm_struct that identifies the specified KFD process
1128  * @fence: eviction fence attached to KFD process BOs
1129  *
1130  */
1131 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
1132 					       struct dma_fence *fence)
1133 {
1134 	struct kfd_process *p;
1135 	unsigned long active_time;
1136 	unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
1137 
1138 	if (!fence)
1139 		return -EINVAL;
1140 
1141 	if (dma_fence_is_signaled(fence))
1142 		return 0;
1143 
1144 	p = kfd_lookup_process_by_mm(mm);
1145 	if (!p)
1146 		return -ENODEV;
1147 
1148 	if (fence->seqno == p->last_eviction_seqno)
1149 		goto out;
1150 
1151 	p->last_eviction_seqno = fence->seqno;
1152 
1153 	/* Avoid KFD process starvation. Wait for at least
1154 	 * PROCESS_ACTIVE_TIME_MS before evicting the process again
1155 	 */
1156 	active_time = get_jiffies_64() - p->last_restore_timestamp;
1157 	if (delay_jiffies > active_time)
1158 		delay_jiffies -= active_time;
1159 	else
1160 		delay_jiffies = 0;
1161 
1162 	/* During process initialization eviction_work.dwork is initialized
1163 	 * to kfd_evict_bo_worker
1164 	 */
1165 	WARN(debug_evictions, "Scheduling eviction of pid %d in %ld jiffies",
1166 	     p->lead_thread->pid, delay_jiffies);
1167 	schedule_delayed_work(&p->eviction_work, delay_jiffies);
1168 out:
1169 	kfd_unref_process(p);
1170 	return 0;
1171 }
1172 
1173 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
1174 				unsigned int chunk_size)
1175 {
1176 	if (WARN_ON(buf_size < chunk_size))
1177 		return -EINVAL;
1178 	if (WARN_ON(buf_size == 0))
1179 		return -EINVAL;
1180 	if (WARN_ON(chunk_size == 0))
1181 		return -EINVAL;
1182 
1183 	kfd->gtt_sa_chunk_size = chunk_size;
1184 	kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
1185 
1186 	kfd->gtt_sa_bitmap = bitmap_zalloc(kfd->gtt_sa_num_of_chunks,
1187 					   GFP_KERNEL);
1188 	if (!kfd->gtt_sa_bitmap)
1189 		return -ENOMEM;
1190 
1191 	pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
1192 			kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
1193 
1194 	mutex_init(&kfd->gtt_sa_lock);
1195 
1196 	return 0;
1197 }
1198 
1199 static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
1200 {
1201 	mutex_destroy(&kfd->gtt_sa_lock);
1202 	bitmap_free(kfd->gtt_sa_bitmap);
1203 }
1204 
1205 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
1206 						unsigned int bit_num,
1207 						unsigned int chunk_size)
1208 {
1209 	return start_addr + bit_num * chunk_size;
1210 }
1211 
1212 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
1213 						unsigned int bit_num,
1214 						unsigned int chunk_size)
1215 {
1216 	return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
1217 }
1218 
1219 int kfd_gtt_sa_allocate(struct kfd_node *node, unsigned int size,
1220 			struct kfd_mem_obj **mem_obj)
1221 {
1222 	unsigned int found, start_search, cur_size;
1223 	struct kfd_dev *kfd = node->kfd;
1224 
1225 	if (size == 0)
1226 		return -EINVAL;
1227 
1228 	if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
1229 		return -ENOMEM;
1230 
1231 	*mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
1232 	if (!(*mem_obj))
1233 		return -ENOMEM;
1234 
1235 	pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
1236 
1237 	start_search = 0;
1238 
1239 	mutex_lock(&kfd->gtt_sa_lock);
1240 
1241 kfd_gtt_restart_search:
1242 	/* Find the first chunk that is free */
1243 	found = find_next_zero_bit(kfd->gtt_sa_bitmap,
1244 					kfd->gtt_sa_num_of_chunks,
1245 					start_search);
1246 
1247 	pr_debug("Found = %d\n", found);
1248 
1249 	/* If there wasn't any free chunk, bail out */
1250 	if (found == kfd->gtt_sa_num_of_chunks)
1251 		goto kfd_gtt_no_free_chunk;
1252 
1253 	/* Update fields of mem_obj */
1254 	(*mem_obj)->range_start = found;
1255 	(*mem_obj)->range_end = found;
1256 	(*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
1257 					kfd->gtt_start_gpu_addr,
1258 					found,
1259 					kfd->gtt_sa_chunk_size);
1260 	(*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
1261 					kfd->gtt_start_cpu_ptr,
1262 					found,
1263 					kfd->gtt_sa_chunk_size);
1264 
1265 	pr_debug("gpu_addr = %p, cpu_addr = %p\n",
1266 			(uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
1267 
1268 	/* If we need only one chunk, mark it as allocated and get out */
1269 	if (size <= kfd->gtt_sa_chunk_size) {
1270 		pr_debug("Single bit\n");
1271 		__set_bit(found, kfd->gtt_sa_bitmap);
1272 		goto kfd_gtt_out;
1273 	}
1274 
1275 	/* Otherwise, try to see if we have enough contiguous chunks */
1276 	cur_size = size - kfd->gtt_sa_chunk_size;
1277 	do {
1278 		(*mem_obj)->range_end =
1279 			find_next_zero_bit(kfd->gtt_sa_bitmap,
1280 					kfd->gtt_sa_num_of_chunks, ++found);
1281 		/*
1282 		 * If next free chunk is not contiguous than we need to
1283 		 * restart our search from the last free chunk we found (which
1284 		 * wasn't contiguous to the previous ones
1285 		 */
1286 		if ((*mem_obj)->range_end != found) {
1287 			start_search = found;
1288 			goto kfd_gtt_restart_search;
1289 		}
1290 
1291 		/*
1292 		 * If we reached end of buffer, bail out with error
1293 		 */
1294 		if (found == kfd->gtt_sa_num_of_chunks)
1295 			goto kfd_gtt_no_free_chunk;
1296 
1297 		/* Check if we don't need another chunk */
1298 		if (cur_size <= kfd->gtt_sa_chunk_size)
1299 			cur_size = 0;
1300 		else
1301 			cur_size -= kfd->gtt_sa_chunk_size;
1302 
1303 	} while (cur_size > 0);
1304 
1305 	pr_debug("range_start = %d, range_end = %d\n",
1306 		(*mem_obj)->range_start, (*mem_obj)->range_end);
1307 
1308 	/* Mark the chunks as allocated */
1309 	bitmap_set(kfd->gtt_sa_bitmap, (*mem_obj)->range_start,
1310 		   (*mem_obj)->range_end - (*mem_obj)->range_start + 1);
1311 
1312 kfd_gtt_out:
1313 	mutex_unlock(&kfd->gtt_sa_lock);
1314 	return 0;
1315 
1316 kfd_gtt_no_free_chunk:
1317 	pr_debug("Allocation failed with mem_obj = %p\n", *mem_obj);
1318 	mutex_unlock(&kfd->gtt_sa_lock);
1319 	kfree(*mem_obj);
1320 	return -ENOMEM;
1321 }
1322 
1323 int kfd_gtt_sa_free(struct kfd_node *node, struct kfd_mem_obj *mem_obj)
1324 {
1325 	struct kfd_dev *kfd = node->kfd;
1326 
1327 	/* Act like kfree when trying to free a NULL object */
1328 	if (!mem_obj)
1329 		return 0;
1330 
1331 	pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
1332 			mem_obj, mem_obj->range_start, mem_obj->range_end);
1333 
1334 	mutex_lock(&kfd->gtt_sa_lock);
1335 
1336 	/* Mark the chunks as free */
1337 	bitmap_clear(kfd->gtt_sa_bitmap, mem_obj->range_start,
1338 		     mem_obj->range_end - mem_obj->range_start + 1);
1339 
1340 	mutex_unlock(&kfd->gtt_sa_lock);
1341 
1342 	kfree(mem_obj);
1343 	return 0;
1344 }
1345 
1346 void kgd2kfd_set_sram_ecc_flag(struct kfd_dev *kfd)
1347 {
1348 	/*
1349 	 * TODO: Currently update SRAM ECC flag for first node.
1350 	 * This needs to be updated later when we can
1351 	 * identify SRAM ECC error on other nodes also.
1352 	 */
1353 	if (kfd)
1354 		atomic_inc(&kfd->nodes[0]->sram_ecc_flag);
1355 }
1356 
1357 void kfd_inc_compute_active(struct kfd_node *node)
1358 {
1359 	if (atomic_inc_return(&node->kfd->compute_profile) == 1)
1360 		amdgpu_amdkfd_set_compute_idle(node->adev, false);
1361 }
1362 
1363 void kfd_dec_compute_active(struct kfd_node *node)
1364 {
1365 	int count = atomic_dec_return(&node->kfd->compute_profile);
1366 
1367 	if (count == 0)
1368 		amdgpu_amdkfd_set_compute_idle(node->adev, true);
1369 	WARN_ONCE(count < 0, "Compute profile ref. count error");
1370 }
1371 
1372 void kgd2kfd_smi_event_throttle(struct kfd_dev *kfd, uint64_t throttle_bitmask)
1373 {
1374 	/*
1375 	 * TODO: For now, raise the throttling event only on first node.
1376 	 * This will need to change after we are able to determine
1377 	 * which node raised the throttling event.
1378 	 */
1379 	if (kfd && kfd->init_complete)
1380 		kfd_smi_event_update_thermal_throttling(kfd->nodes[0],
1381 							throttle_bitmask);
1382 }
1383 
1384 /* kfd_get_num_sdma_engines returns the number of PCIe optimized SDMA and
1385  * kfd_get_num_xgmi_sdma_engines returns the number of XGMI SDMA.
1386  * When the device has more than two engines, we reserve two for PCIe to enable
1387  * full-duplex and the rest are used as XGMI.
1388  */
1389 unsigned int kfd_get_num_sdma_engines(struct kfd_node *node)
1390 {
1391 	/* If XGMI is not supported, all SDMA engines are PCIe */
1392 	if (!node->adev->gmc.xgmi.supported)
1393 		return node->adev->sdma.num_instances/(int)node->kfd->num_nodes;
1394 
1395 	return min(node->adev->sdma.num_instances/(int)node->kfd->num_nodes, 2);
1396 }
1397 
1398 unsigned int kfd_get_num_xgmi_sdma_engines(struct kfd_node *node)
1399 {
1400 	/* After reserved for PCIe, the rest of engines are XGMI */
1401 	return node->adev->sdma.num_instances/(int)node->kfd->num_nodes -
1402 		kfd_get_num_sdma_engines(node);
1403 }
1404 
1405 int kgd2kfd_check_and_lock_kfd(void)
1406 {
1407 	mutex_lock(&kfd_processes_mutex);
1408 	if (!hash_empty(kfd_processes_table) || kfd_is_locked()) {
1409 		mutex_unlock(&kfd_processes_mutex);
1410 		return -EBUSY;
1411 	}
1412 
1413 	++kfd_locked;
1414 	mutex_unlock(&kfd_processes_mutex);
1415 
1416 	return 0;
1417 }
1418 
1419 void kgd2kfd_unlock_kfd(void)
1420 {
1421 	mutex_lock(&kfd_processes_mutex);
1422 	--kfd_locked;
1423 	mutex_unlock(&kfd_processes_mutex);
1424 }
1425 
1426 #if defined(CONFIG_DEBUG_FS)
1427 
1428 /* This function will send a package to HIQ to hang the HWS
1429  * which will trigger a GPU reset and bring the HWS back to normal state
1430  */
1431 int kfd_debugfs_hang_hws(struct kfd_node *dev)
1432 {
1433 	if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) {
1434 		pr_err("HWS is not enabled");
1435 		return -EINVAL;
1436 	}
1437 
1438 	return dqm_debugfs_hang_hws(dev->dqm);
1439 }
1440 
1441 #endif
1442