1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 */ 22 23 #include <linux/amd-iommu.h> 24 #include <linux/bsearch.h> 25 #include <linux/pci.h> 26 #include <linux/slab.h> 27 #include "kfd_priv.h" 28 #include "kfd_device_queue_manager.h" 29 #include "kfd_pm4_headers.h" 30 31 #define MQD_SIZE_ALIGNED 768 32 33 static const struct kfd_device_info kaveri_device_info = { 34 .asic_family = CHIP_KAVERI, 35 .max_pasid_bits = 16, 36 /* max num of queues for KV.TODO should be a dynamic value */ 37 .max_no_of_hqd = 24, 38 .ih_ring_entry_size = 4 * sizeof(uint32_t), 39 .event_interrupt_class = &event_interrupt_class_cik, 40 .num_of_watch_points = 4, 41 .mqd_size_aligned = MQD_SIZE_ALIGNED 42 }; 43 44 static const struct kfd_device_info carrizo_device_info = { 45 .asic_family = CHIP_CARRIZO, 46 .max_pasid_bits = 16, 47 /* max num of queues for CZ.TODO should be a dynamic value */ 48 .max_no_of_hqd = 24, 49 .ih_ring_entry_size = 4 * sizeof(uint32_t), 50 .event_interrupt_class = &event_interrupt_class_cik, 51 .num_of_watch_points = 4, 52 .mqd_size_aligned = MQD_SIZE_ALIGNED 53 }; 54 55 struct kfd_deviceid { 56 unsigned short did; 57 const struct kfd_device_info *device_info; 58 }; 59 60 /* Please keep this sorted by increasing device id. */ 61 static const struct kfd_deviceid supported_devices[] = { 62 { 0x1304, &kaveri_device_info }, /* Kaveri */ 63 { 0x1305, &kaveri_device_info }, /* Kaveri */ 64 { 0x1306, &kaveri_device_info }, /* Kaveri */ 65 { 0x1307, &kaveri_device_info }, /* Kaveri */ 66 { 0x1309, &kaveri_device_info }, /* Kaveri */ 67 { 0x130A, &kaveri_device_info }, /* Kaveri */ 68 { 0x130B, &kaveri_device_info }, /* Kaveri */ 69 { 0x130C, &kaveri_device_info }, /* Kaveri */ 70 { 0x130D, &kaveri_device_info }, /* Kaveri */ 71 { 0x130E, &kaveri_device_info }, /* Kaveri */ 72 { 0x130F, &kaveri_device_info }, /* Kaveri */ 73 { 0x1310, &kaveri_device_info }, /* Kaveri */ 74 { 0x1311, &kaveri_device_info }, /* Kaveri */ 75 { 0x1312, &kaveri_device_info }, /* Kaveri */ 76 { 0x1313, &kaveri_device_info }, /* Kaveri */ 77 { 0x1315, &kaveri_device_info }, /* Kaveri */ 78 { 0x1316, &kaveri_device_info }, /* Kaveri */ 79 { 0x1317, &kaveri_device_info }, /* Kaveri */ 80 { 0x1318, &kaveri_device_info }, /* Kaveri */ 81 { 0x131B, &kaveri_device_info }, /* Kaveri */ 82 { 0x131C, &kaveri_device_info }, /* Kaveri */ 83 { 0x131D, &kaveri_device_info }, /* Kaveri */ 84 { 0x9870, &carrizo_device_info }, /* Carrizo */ 85 { 0x9874, &carrizo_device_info }, /* Carrizo */ 86 { 0x9875, &carrizo_device_info }, /* Carrizo */ 87 { 0x9876, &carrizo_device_info }, /* Carrizo */ 88 { 0x9877, &carrizo_device_info } /* Carrizo */ 89 }; 90 91 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size, 92 unsigned int chunk_size); 93 static void kfd_gtt_sa_fini(struct kfd_dev *kfd); 94 95 static const struct kfd_device_info *lookup_device_info(unsigned short did) 96 { 97 size_t i; 98 99 for (i = 0; i < ARRAY_SIZE(supported_devices); i++) { 100 if (supported_devices[i].did == did) { 101 BUG_ON(supported_devices[i].device_info == NULL); 102 return supported_devices[i].device_info; 103 } 104 } 105 106 return NULL; 107 } 108 109 struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd, 110 struct pci_dev *pdev, const struct kfd2kgd_calls *f2g) 111 { 112 struct kfd_dev *kfd; 113 114 const struct kfd_device_info *device_info = 115 lookup_device_info(pdev->device); 116 117 if (!device_info) 118 return NULL; 119 120 kfd = kzalloc(sizeof(*kfd), GFP_KERNEL); 121 if (!kfd) 122 return NULL; 123 124 kfd->kgd = kgd; 125 kfd->device_info = device_info; 126 kfd->pdev = pdev; 127 kfd->init_complete = false; 128 kfd->kfd2kgd = f2g; 129 130 mutex_init(&kfd->doorbell_mutex); 131 memset(&kfd->doorbell_available_index, 0, 132 sizeof(kfd->doorbell_available_index)); 133 134 return kfd; 135 } 136 137 static bool device_iommu_pasid_init(struct kfd_dev *kfd) 138 { 139 const u32 required_iommu_flags = AMD_IOMMU_DEVICE_FLAG_ATS_SUP | 140 AMD_IOMMU_DEVICE_FLAG_PRI_SUP | 141 AMD_IOMMU_DEVICE_FLAG_PASID_SUP; 142 143 struct amd_iommu_device_info iommu_info; 144 unsigned int pasid_limit; 145 int err; 146 147 err = amd_iommu_device_info(kfd->pdev, &iommu_info); 148 if (err < 0) { 149 dev_err(kfd_device, 150 "error getting iommu info. is the iommu enabled?\n"); 151 return false; 152 } 153 154 if ((iommu_info.flags & required_iommu_flags) != required_iommu_flags) { 155 dev_err(kfd_device, "error required iommu flags ats(%i), pri(%i), pasid(%i)\n", 156 (iommu_info.flags & AMD_IOMMU_DEVICE_FLAG_ATS_SUP) != 0, 157 (iommu_info.flags & AMD_IOMMU_DEVICE_FLAG_PRI_SUP) != 0, 158 (iommu_info.flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP) != 0); 159 return false; 160 } 161 162 pasid_limit = min_t(unsigned int, 163 (unsigned int)1 << kfd->device_info->max_pasid_bits, 164 iommu_info.max_pasids); 165 /* 166 * last pasid is used for kernel queues doorbells 167 * in the future the last pasid might be used for a kernel thread. 168 */ 169 pasid_limit = min_t(unsigned int, 170 pasid_limit, 171 kfd->doorbell_process_limit - 1); 172 173 err = amd_iommu_init_device(kfd->pdev, pasid_limit); 174 if (err < 0) { 175 dev_err(kfd_device, "error initializing iommu device\n"); 176 return false; 177 } 178 179 if (!kfd_set_pasid_limit(pasid_limit)) { 180 dev_err(kfd_device, "error setting pasid limit\n"); 181 amd_iommu_free_device(kfd->pdev); 182 return false; 183 } 184 185 return true; 186 } 187 188 static void iommu_pasid_shutdown_callback(struct pci_dev *pdev, int pasid) 189 { 190 struct kfd_dev *dev = kfd_device_by_pci_dev(pdev); 191 192 if (dev) 193 kfd_unbind_process_from_device(dev, pasid); 194 } 195 196 /* 197 * This function called by IOMMU driver on PPR failure 198 */ 199 static int iommu_invalid_ppr_cb(struct pci_dev *pdev, int pasid, 200 unsigned long address, u16 flags) 201 { 202 struct kfd_dev *dev; 203 204 dev_warn(kfd_device, 205 "Invalid PPR device %x:%x.%x pasid %d address 0x%lX flags 0x%X", 206 PCI_BUS_NUM(pdev->devfn), 207 PCI_SLOT(pdev->devfn), 208 PCI_FUNC(pdev->devfn), 209 pasid, 210 address, 211 flags); 212 213 dev = kfd_device_by_pci_dev(pdev); 214 BUG_ON(dev == NULL); 215 216 kfd_signal_iommu_event(dev, pasid, address, 217 flags & PPR_FAULT_WRITE, flags & PPR_FAULT_EXEC); 218 219 return AMD_IOMMU_INV_PRI_RSP_INVALID; 220 } 221 222 bool kgd2kfd_device_init(struct kfd_dev *kfd, 223 const struct kgd2kfd_shared_resources *gpu_resources) 224 { 225 unsigned int size; 226 227 kfd->shared_resources = *gpu_resources; 228 229 /* calculate max size of mqds needed for queues */ 230 size = max_num_of_queues_per_device * 231 kfd->device_info->mqd_size_aligned; 232 233 /* 234 * calculate max size of runlist packet. 235 * There can be only 2 packets at once 236 */ 237 size += (KFD_MAX_NUM_OF_PROCESSES * sizeof(struct pm4_map_process) + 238 max_num_of_queues_per_device * 239 sizeof(struct pm4_map_queues) + sizeof(struct pm4_runlist)) * 2; 240 241 /* Add size of HIQ & DIQ */ 242 size += KFD_KERNEL_QUEUE_SIZE * 2; 243 244 /* add another 512KB for all other allocations on gart (HPD, fences) */ 245 size += 512 * 1024; 246 247 if (kfd->kfd2kgd->init_gtt_mem_allocation( 248 kfd->kgd, size, &kfd->gtt_mem, 249 &kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr)){ 250 dev_err(kfd_device, 251 "Could not allocate %d bytes for device (%x:%x)\n", 252 size, kfd->pdev->vendor, kfd->pdev->device); 253 goto out; 254 } 255 256 dev_info(kfd_device, 257 "Allocated %d bytes on gart for device(%x:%x)\n", 258 size, kfd->pdev->vendor, kfd->pdev->device); 259 260 /* Initialize GTT sa with 512 byte chunk size */ 261 if (kfd_gtt_sa_init(kfd, size, 512) != 0) { 262 dev_err(kfd_device, 263 "Error initializing gtt sub-allocator\n"); 264 goto kfd_gtt_sa_init_error; 265 } 266 267 kfd_doorbell_init(kfd); 268 269 if (kfd_topology_add_device(kfd) != 0) { 270 dev_err(kfd_device, 271 "Error adding device (%x:%x) to topology\n", 272 kfd->pdev->vendor, kfd->pdev->device); 273 goto kfd_topology_add_device_error; 274 } 275 276 if (kfd_interrupt_init(kfd)) { 277 dev_err(kfd_device, 278 "Error initializing interrupts for device (%x:%x)\n", 279 kfd->pdev->vendor, kfd->pdev->device); 280 goto kfd_interrupt_error; 281 } 282 283 if (!device_iommu_pasid_init(kfd)) { 284 dev_err(kfd_device, 285 "Error initializing iommuv2 for device (%x:%x)\n", 286 kfd->pdev->vendor, kfd->pdev->device); 287 goto device_iommu_pasid_error; 288 } 289 amd_iommu_set_invalidate_ctx_cb(kfd->pdev, 290 iommu_pasid_shutdown_callback); 291 amd_iommu_set_invalid_ppr_cb(kfd->pdev, iommu_invalid_ppr_cb); 292 293 kfd->dqm = device_queue_manager_init(kfd); 294 if (!kfd->dqm) { 295 dev_err(kfd_device, 296 "Error initializing queue manager for device (%x:%x)\n", 297 kfd->pdev->vendor, kfd->pdev->device); 298 goto device_queue_manager_error; 299 } 300 301 if (kfd->dqm->ops.start(kfd->dqm) != 0) { 302 dev_err(kfd_device, 303 "Error starting queuen manager for device (%x:%x)\n", 304 kfd->pdev->vendor, kfd->pdev->device); 305 goto dqm_start_error; 306 } 307 308 kfd->dbgmgr = NULL; 309 310 kfd->init_complete = true; 311 dev_info(kfd_device, "added device (%x:%x)\n", kfd->pdev->vendor, 312 kfd->pdev->device); 313 314 pr_debug("kfd: Starting kfd with the following scheduling policy %d\n", 315 sched_policy); 316 317 goto out; 318 319 dqm_start_error: 320 device_queue_manager_uninit(kfd->dqm); 321 device_queue_manager_error: 322 amd_iommu_free_device(kfd->pdev); 323 device_iommu_pasid_error: 324 kfd_interrupt_exit(kfd); 325 kfd_interrupt_error: 326 kfd_topology_remove_device(kfd); 327 kfd_topology_add_device_error: 328 kfd_gtt_sa_fini(kfd); 329 kfd_gtt_sa_init_error: 330 kfd->kfd2kgd->free_gtt_mem(kfd->kgd, kfd->gtt_mem); 331 dev_err(kfd_device, 332 "device (%x:%x) NOT added due to errors\n", 333 kfd->pdev->vendor, kfd->pdev->device); 334 out: 335 return kfd->init_complete; 336 } 337 338 void kgd2kfd_device_exit(struct kfd_dev *kfd) 339 { 340 if (kfd->init_complete) { 341 device_queue_manager_uninit(kfd->dqm); 342 amd_iommu_free_device(kfd->pdev); 343 kfd_interrupt_exit(kfd); 344 kfd_topology_remove_device(kfd); 345 kfd_gtt_sa_fini(kfd); 346 kfd->kfd2kgd->free_gtt_mem(kfd->kgd, kfd->gtt_mem); 347 } 348 349 kfree(kfd); 350 } 351 352 void kgd2kfd_suspend(struct kfd_dev *kfd) 353 { 354 BUG_ON(kfd == NULL); 355 356 if (kfd->init_complete) { 357 kfd->dqm->ops.stop(kfd->dqm); 358 amd_iommu_set_invalidate_ctx_cb(kfd->pdev, NULL); 359 amd_iommu_set_invalid_ppr_cb(kfd->pdev, NULL); 360 amd_iommu_free_device(kfd->pdev); 361 } 362 } 363 364 int kgd2kfd_resume(struct kfd_dev *kfd) 365 { 366 unsigned int pasid_limit; 367 int err; 368 369 BUG_ON(kfd == NULL); 370 371 pasid_limit = kfd_get_pasid_limit(); 372 373 if (kfd->init_complete) { 374 err = amd_iommu_init_device(kfd->pdev, pasid_limit); 375 if (err < 0) 376 return -ENXIO; 377 amd_iommu_set_invalidate_ctx_cb(kfd->pdev, 378 iommu_pasid_shutdown_callback); 379 amd_iommu_set_invalid_ppr_cb(kfd->pdev, iommu_invalid_ppr_cb); 380 kfd->dqm->ops.start(kfd->dqm); 381 } 382 383 return 0; 384 } 385 386 /* This is called directly from KGD at ISR. */ 387 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry) 388 { 389 if (!kfd->init_complete) 390 return; 391 392 spin_lock(&kfd->interrupt_lock); 393 394 if (kfd->interrupts_active 395 && interrupt_is_wanted(kfd, ih_ring_entry) 396 && enqueue_ih_ring_entry(kfd, ih_ring_entry)) 397 schedule_work(&kfd->interrupt_work); 398 399 spin_unlock(&kfd->interrupt_lock); 400 } 401 402 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size, 403 unsigned int chunk_size) 404 { 405 unsigned int num_of_bits; 406 407 BUG_ON(!kfd); 408 BUG_ON(!kfd->gtt_mem); 409 BUG_ON(buf_size < chunk_size); 410 BUG_ON(buf_size == 0); 411 BUG_ON(chunk_size == 0); 412 413 kfd->gtt_sa_chunk_size = chunk_size; 414 kfd->gtt_sa_num_of_chunks = buf_size / chunk_size; 415 416 num_of_bits = kfd->gtt_sa_num_of_chunks / BITS_PER_BYTE; 417 BUG_ON(num_of_bits == 0); 418 419 kfd->gtt_sa_bitmap = kzalloc(num_of_bits, GFP_KERNEL); 420 421 if (!kfd->gtt_sa_bitmap) 422 return -ENOMEM; 423 424 pr_debug("kfd: gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n", 425 kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap); 426 427 mutex_init(&kfd->gtt_sa_lock); 428 429 return 0; 430 431 } 432 433 static void kfd_gtt_sa_fini(struct kfd_dev *kfd) 434 { 435 mutex_destroy(&kfd->gtt_sa_lock); 436 kfree(kfd->gtt_sa_bitmap); 437 } 438 439 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr, 440 unsigned int bit_num, 441 unsigned int chunk_size) 442 { 443 return start_addr + bit_num * chunk_size; 444 } 445 446 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr, 447 unsigned int bit_num, 448 unsigned int chunk_size) 449 { 450 return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size); 451 } 452 453 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size, 454 struct kfd_mem_obj **mem_obj) 455 { 456 unsigned int found, start_search, cur_size; 457 458 BUG_ON(!kfd); 459 460 if (size == 0) 461 return -EINVAL; 462 463 if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size) 464 return -ENOMEM; 465 466 *mem_obj = kmalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL); 467 if ((*mem_obj) == NULL) 468 return -ENOMEM; 469 470 pr_debug("kfd: allocated mem_obj = %p for size = %d\n", *mem_obj, size); 471 472 start_search = 0; 473 474 mutex_lock(&kfd->gtt_sa_lock); 475 476 kfd_gtt_restart_search: 477 /* Find the first chunk that is free */ 478 found = find_next_zero_bit(kfd->gtt_sa_bitmap, 479 kfd->gtt_sa_num_of_chunks, 480 start_search); 481 482 pr_debug("kfd: found = %d\n", found); 483 484 /* If there wasn't any free chunk, bail out */ 485 if (found == kfd->gtt_sa_num_of_chunks) 486 goto kfd_gtt_no_free_chunk; 487 488 /* Update fields of mem_obj */ 489 (*mem_obj)->range_start = found; 490 (*mem_obj)->range_end = found; 491 (*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr( 492 kfd->gtt_start_gpu_addr, 493 found, 494 kfd->gtt_sa_chunk_size); 495 (*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr( 496 kfd->gtt_start_cpu_ptr, 497 found, 498 kfd->gtt_sa_chunk_size); 499 500 pr_debug("kfd: gpu_addr = %p, cpu_addr = %p\n", 501 (uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr); 502 503 /* If we need only one chunk, mark it as allocated and get out */ 504 if (size <= kfd->gtt_sa_chunk_size) { 505 pr_debug("kfd: single bit\n"); 506 set_bit(found, kfd->gtt_sa_bitmap); 507 goto kfd_gtt_out; 508 } 509 510 /* Otherwise, try to see if we have enough contiguous chunks */ 511 cur_size = size - kfd->gtt_sa_chunk_size; 512 do { 513 (*mem_obj)->range_end = 514 find_next_zero_bit(kfd->gtt_sa_bitmap, 515 kfd->gtt_sa_num_of_chunks, ++found); 516 /* 517 * If next free chunk is not contiguous than we need to 518 * restart our search from the last free chunk we found (which 519 * wasn't contiguous to the previous ones 520 */ 521 if ((*mem_obj)->range_end != found) { 522 start_search = found; 523 goto kfd_gtt_restart_search; 524 } 525 526 /* 527 * If we reached end of buffer, bail out with error 528 */ 529 if (found == kfd->gtt_sa_num_of_chunks) 530 goto kfd_gtt_no_free_chunk; 531 532 /* Check if we don't need another chunk */ 533 if (cur_size <= kfd->gtt_sa_chunk_size) 534 cur_size = 0; 535 else 536 cur_size -= kfd->gtt_sa_chunk_size; 537 538 } while (cur_size > 0); 539 540 pr_debug("kfd: range_start = %d, range_end = %d\n", 541 (*mem_obj)->range_start, (*mem_obj)->range_end); 542 543 /* Mark the chunks as allocated */ 544 for (found = (*mem_obj)->range_start; 545 found <= (*mem_obj)->range_end; 546 found++) 547 set_bit(found, kfd->gtt_sa_bitmap); 548 549 kfd_gtt_out: 550 mutex_unlock(&kfd->gtt_sa_lock); 551 return 0; 552 553 kfd_gtt_no_free_chunk: 554 pr_debug("kfd: allocation failed with mem_obj = %p\n", mem_obj); 555 mutex_unlock(&kfd->gtt_sa_lock); 556 kfree(mem_obj); 557 return -ENOMEM; 558 } 559 560 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj) 561 { 562 unsigned int bit; 563 564 BUG_ON(!kfd); 565 566 /* Act like kfree when trying to free a NULL object */ 567 if (!mem_obj) 568 return 0; 569 570 pr_debug("kfd: free mem_obj = %p, range_start = %d, range_end = %d\n", 571 mem_obj, mem_obj->range_start, mem_obj->range_end); 572 573 mutex_lock(&kfd->gtt_sa_lock); 574 575 /* Mark the chunks as free */ 576 for (bit = mem_obj->range_start; 577 bit <= mem_obj->range_end; 578 bit++) 579 clear_bit(bit, kfd->gtt_sa_bitmap); 580 581 mutex_unlock(&kfd->gtt_sa_lock); 582 583 kfree(mem_obj); 584 return 0; 585 } 586