xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_device.c (revision 1623bc27a85a93e82194c8d077eccc464efa67db)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/bsearch.h>
25 #include <linux/pci.h>
26 #include <linux/slab.h>
27 #include "kfd_priv.h"
28 #include "kfd_device_queue_manager.h"
29 #include "kfd_pm4_headers_vi.h"
30 #include "kfd_pm4_headers_aldebaran.h"
31 #include "cwsr_trap_handler.h"
32 #include "amdgpu_amdkfd.h"
33 #include "kfd_smi_events.h"
34 #include "kfd_svm.h"
35 #include "kfd_migrate.h"
36 #include "amdgpu.h"
37 #include "amdgpu_xcp.h"
38 
39 #define MQD_SIZE_ALIGNED 768
40 
41 /*
42  * kfd_locked is used to lock the kfd driver during suspend or reset
43  * once locked, kfd driver will stop any further GPU execution.
44  * create process (open) will return -EAGAIN.
45  */
46 static int kfd_locked;
47 
48 #ifdef CONFIG_DRM_AMDGPU_CIK
49 extern const struct kfd2kgd_calls gfx_v7_kfd2kgd;
50 #endif
51 extern const struct kfd2kgd_calls gfx_v8_kfd2kgd;
52 extern const struct kfd2kgd_calls gfx_v9_kfd2kgd;
53 extern const struct kfd2kgd_calls arcturus_kfd2kgd;
54 extern const struct kfd2kgd_calls aldebaran_kfd2kgd;
55 extern const struct kfd2kgd_calls gc_9_4_3_kfd2kgd;
56 extern const struct kfd2kgd_calls gfx_v10_kfd2kgd;
57 extern const struct kfd2kgd_calls gfx_v10_3_kfd2kgd;
58 extern const struct kfd2kgd_calls gfx_v11_kfd2kgd;
59 extern const struct kfd2kgd_calls gfx_v12_kfd2kgd;
60 
61 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
62 				unsigned int chunk_size);
63 static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
64 
65 static int kfd_resume(struct kfd_node *kfd);
66 
67 static void kfd_device_info_set_sdma_info(struct kfd_dev *kfd)
68 {
69 	uint32_t sdma_version = amdgpu_ip_version(kfd->adev, SDMA0_HWIP, 0);
70 
71 	switch (sdma_version) {
72 	case IP_VERSION(4, 0, 0):/* VEGA10 */
73 	case IP_VERSION(4, 0, 1):/* VEGA12 */
74 	case IP_VERSION(4, 1, 0):/* RAVEN */
75 	case IP_VERSION(4, 1, 1):/* RAVEN */
76 	case IP_VERSION(4, 1, 2):/* RENOIR */
77 	case IP_VERSION(5, 2, 1):/* VANGOGH */
78 	case IP_VERSION(5, 2, 3):/* YELLOW_CARP */
79 	case IP_VERSION(5, 2, 6):/* GC 10.3.6 */
80 	case IP_VERSION(5, 2, 7):/* GC 10.3.7 */
81 		kfd->device_info.num_sdma_queues_per_engine = 2;
82 		break;
83 	case IP_VERSION(4, 2, 0):/* VEGA20 */
84 	case IP_VERSION(4, 2, 2):/* ARCTURUS */
85 	case IP_VERSION(4, 4, 0):/* ALDEBARAN */
86 	case IP_VERSION(4, 4, 2):
87 	case IP_VERSION(4, 4, 5):
88 	case IP_VERSION(5, 0, 0):/* NAVI10 */
89 	case IP_VERSION(5, 0, 1):/* CYAN_SKILLFISH */
90 	case IP_VERSION(5, 0, 2):/* NAVI14 */
91 	case IP_VERSION(5, 0, 5):/* NAVI12 */
92 	case IP_VERSION(5, 2, 0):/* SIENNA_CICHLID */
93 	case IP_VERSION(5, 2, 2):/* NAVY_FLOUNDER */
94 	case IP_VERSION(5, 2, 4):/* DIMGREY_CAVEFISH */
95 	case IP_VERSION(5, 2, 5):/* BEIGE_GOBY */
96 	case IP_VERSION(6, 0, 0):
97 	case IP_VERSION(6, 0, 1):
98 	case IP_VERSION(6, 0, 2):
99 	case IP_VERSION(6, 0, 3):
100 	case IP_VERSION(6, 1, 0):
101 	case IP_VERSION(6, 1, 1):
102 	case IP_VERSION(6, 1, 2):
103 	case IP_VERSION(7, 0, 0):
104 	case IP_VERSION(7, 0, 1):
105 		kfd->device_info.num_sdma_queues_per_engine = 8;
106 		break;
107 	default:
108 		dev_warn(kfd_device,
109 			"Default sdma queue per engine(8) is set due to mismatch of sdma ip block(SDMA_HWIP:0x%x).\n",
110 			sdma_version);
111 		kfd->device_info.num_sdma_queues_per_engine = 8;
112 	}
113 
114 	bitmap_zero(kfd->device_info.reserved_sdma_queues_bitmap, KFD_MAX_SDMA_QUEUES);
115 
116 	switch (sdma_version) {
117 	case IP_VERSION(6, 0, 0):
118 	case IP_VERSION(6, 0, 1):
119 	case IP_VERSION(6, 0, 2):
120 	case IP_VERSION(6, 0, 3):
121 	case IP_VERSION(6, 1, 0):
122 	case IP_VERSION(6, 1, 1):
123 	case IP_VERSION(6, 1, 2):
124 	case IP_VERSION(7, 0, 0):
125 	case IP_VERSION(7, 0, 1):
126 		/* Reserve 1 for paging and 1 for gfx */
127 		kfd->device_info.num_reserved_sdma_queues_per_engine = 2;
128 		/* BIT(0)=engine-0 queue-0; BIT(1)=engine-1 queue-0; BIT(2)=engine-0 queue-1; ... */
129 		bitmap_set(kfd->device_info.reserved_sdma_queues_bitmap, 0,
130 			   kfd->adev->sdma.num_instances *
131 			   kfd->device_info.num_reserved_sdma_queues_per_engine);
132 		break;
133 	default:
134 		break;
135 	}
136 }
137 
138 static void kfd_device_info_set_event_interrupt_class(struct kfd_dev *kfd)
139 {
140 	uint32_t gc_version = KFD_GC_VERSION(kfd);
141 
142 	switch (gc_version) {
143 	case IP_VERSION(9, 0, 1): /* VEGA10 */
144 	case IP_VERSION(9, 1, 0): /* RAVEN */
145 	case IP_VERSION(9, 2, 1): /* VEGA12 */
146 	case IP_VERSION(9, 2, 2): /* RAVEN */
147 	case IP_VERSION(9, 3, 0): /* RENOIR */
148 	case IP_VERSION(9, 4, 0): /* VEGA20 */
149 	case IP_VERSION(9, 4, 1): /* ARCTURUS */
150 	case IP_VERSION(9, 4, 2): /* ALDEBARAN */
151 		kfd->device_info.event_interrupt_class = &event_interrupt_class_v9;
152 		break;
153 	case IP_VERSION(9, 4, 3): /* GC 9.4.3 */
154 	case IP_VERSION(9, 4, 4): /* GC 9.4.4 */
155 		kfd->device_info.event_interrupt_class =
156 						&event_interrupt_class_v9_4_3;
157 		break;
158 	case IP_VERSION(10, 3, 1): /* VANGOGH */
159 	case IP_VERSION(10, 3, 3): /* YELLOW_CARP */
160 	case IP_VERSION(10, 3, 6): /* GC 10.3.6 */
161 	case IP_VERSION(10, 3, 7): /* GC 10.3.7 */
162 	case IP_VERSION(10, 1, 3): /* CYAN_SKILLFISH */
163 	case IP_VERSION(10, 1, 4):
164 	case IP_VERSION(10, 1, 10): /* NAVI10 */
165 	case IP_VERSION(10, 1, 2): /* NAVI12 */
166 	case IP_VERSION(10, 1, 1): /* NAVI14 */
167 	case IP_VERSION(10, 3, 0): /* SIENNA_CICHLID */
168 	case IP_VERSION(10, 3, 2): /* NAVY_FLOUNDER */
169 	case IP_VERSION(10, 3, 4): /* DIMGREY_CAVEFISH */
170 	case IP_VERSION(10, 3, 5): /* BEIGE_GOBY */
171 		kfd->device_info.event_interrupt_class = &event_interrupt_class_v10;
172 		break;
173 	case IP_VERSION(11, 0, 0):
174 	case IP_VERSION(11, 0, 1):
175 	case IP_VERSION(11, 0, 2):
176 	case IP_VERSION(11, 0, 3):
177 	case IP_VERSION(11, 0, 4):
178 	case IP_VERSION(11, 5, 0):
179 	case IP_VERSION(11, 5, 1):
180 	case IP_VERSION(11, 5, 2):
181 		kfd->device_info.event_interrupt_class = &event_interrupt_class_v11;
182 		break;
183 	case IP_VERSION(12, 0, 0):
184 	case IP_VERSION(12, 0, 1):
185 		/* GFX12_TODO: Change to v12 version. */
186 		kfd->device_info.event_interrupt_class = &event_interrupt_class_v11;
187 		break;
188 	default:
189 		dev_warn(kfd_device, "v9 event interrupt handler is set due to "
190 			"mismatch of gc ip block(GC_HWIP:0x%x).\n", gc_version);
191 		kfd->device_info.event_interrupt_class = &event_interrupt_class_v9;
192 	}
193 }
194 
195 static void kfd_device_info_init(struct kfd_dev *kfd,
196 				 bool vf, uint32_t gfx_target_version)
197 {
198 	uint32_t gc_version = KFD_GC_VERSION(kfd);
199 	uint32_t asic_type = kfd->adev->asic_type;
200 
201 	kfd->device_info.max_pasid_bits = 16;
202 	kfd->device_info.max_no_of_hqd = 24;
203 	kfd->device_info.num_of_watch_points = 4;
204 	kfd->device_info.mqd_size_aligned = MQD_SIZE_ALIGNED;
205 	kfd->device_info.gfx_target_version = gfx_target_version;
206 
207 	if (KFD_IS_SOC15(kfd)) {
208 		kfd->device_info.doorbell_size = 8;
209 		kfd->device_info.ih_ring_entry_size = 8 * sizeof(uint32_t);
210 		kfd->device_info.supports_cwsr = true;
211 
212 		kfd_device_info_set_sdma_info(kfd);
213 
214 		kfd_device_info_set_event_interrupt_class(kfd);
215 
216 		if (gc_version < IP_VERSION(11, 0, 0)) {
217 			/* Navi2x+, Navi1x+ */
218 			if (gc_version == IP_VERSION(10, 3, 6))
219 				kfd->device_info.no_atomic_fw_version = 14;
220 			else if (gc_version == IP_VERSION(10, 3, 7))
221 				kfd->device_info.no_atomic_fw_version = 3;
222 			else if (gc_version >= IP_VERSION(10, 3, 0))
223 				kfd->device_info.no_atomic_fw_version = 92;
224 			else if (gc_version >= IP_VERSION(10, 1, 1))
225 				kfd->device_info.no_atomic_fw_version = 145;
226 
227 			/* Navi1x+ */
228 			if (gc_version >= IP_VERSION(10, 1, 1))
229 				kfd->device_info.needs_pci_atomics = true;
230 		} else if (gc_version < IP_VERSION(12, 0, 0)) {
231 			/*
232 			 * PCIe atomics support acknowledgment in GFX11 RS64 CPFW requires
233 			 * MEC version >= 509. Prior RS64 CPFW versions (and all F32) require
234 			 * PCIe atomics support.
235 			 */
236 			kfd->device_info.needs_pci_atomics = true;
237 			kfd->device_info.no_atomic_fw_version = kfd->adev->gfx.rs64_enable ? 509 : 0;
238 		} else if (gc_version < IP_VERSION(13, 0, 0)) {
239 			kfd->device_info.needs_pci_atomics = true;
240 			kfd->device_info.no_atomic_fw_version = 2090;
241 		} else {
242 			kfd->device_info.needs_pci_atomics = true;
243 		}
244 	} else {
245 		kfd->device_info.doorbell_size = 4;
246 		kfd->device_info.ih_ring_entry_size = 4 * sizeof(uint32_t);
247 		kfd->device_info.event_interrupt_class = &event_interrupt_class_cik;
248 		kfd->device_info.num_sdma_queues_per_engine = 2;
249 
250 		if (asic_type != CHIP_KAVERI &&
251 		    asic_type != CHIP_HAWAII &&
252 		    asic_type != CHIP_TONGA)
253 			kfd->device_info.supports_cwsr = true;
254 
255 		if (asic_type != CHIP_HAWAII && !vf)
256 			kfd->device_info.needs_pci_atomics = true;
257 	}
258 }
259 
260 struct kfd_dev *kgd2kfd_probe(struct amdgpu_device *adev, bool vf)
261 {
262 	struct kfd_dev *kfd = NULL;
263 	const struct kfd2kgd_calls *f2g = NULL;
264 	uint32_t gfx_target_version = 0;
265 
266 	switch (adev->asic_type) {
267 #ifdef CONFIG_DRM_AMDGPU_CIK
268 	case CHIP_KAVERI:
269 		gfx_target_version = 70000;
270 		if (!vf)
271 			f2g = &gfx_v7_kfd2kgd;
272 		break;
273 #endif
274 	case CHIP_CARRIZO:
275 		gfx_target_version = 80001;
276 		if (!vf)
277 			f2g = &gfx_v8_kfd2kgd;
278 		break;
279 #ifdef CONFIG_DRM_AMDGPU_CIK
280 	case CHIP_HAWAII:
281 		gfx_target_version = 70001;
282 		if (!amdgpu_exp_hw_support)
283 			pr_info(
284 	"KFD support on Hawaii is experimental. See modparam exp_hw_support\n"
285 				);
286 		else if (!vf)
287 			f2g = &gfx_v7_kfd2kgd;
288 		break;
289 #endif
290 	case CHIP_TONGA:
291 		gfx_target_version = 80002;
292 		if (!vf)
293 			f2g = &gfx_v8_kfd2kgd;
294 		break;
295 	case CHIP_FIJI:
296 	case CHIP_POLARIS10:
297 		gfx_target_version = 80003;
298 		f2g = &gfx_v8_kfd2kgd;
299 		break;
300 	case CHIP_POLARIS11:
301 	case CHIP_POLARIS12:
302 	case CHIP_VEGAM:
303 		gfx_target_version = 80003;
304 		if (!vf)
305 			f2g = &gfx_v8_kfd2kgd;
306 		break;
307 	default:
308 		switch (amdgpu_ip_version(adev, GC_HWIP, 0)) {
309 		/* Vega 10 */
310 		case IP_VERSION(9, 0, 1):
311 			gfx_target_version = 90000;
312 			f2g = &gfx_v9_kfd2kgd;
313 			break;
314 		/* Raven */
315 		case IP_VERSION(9, 1, 0):
316 		case IP_VERSION(9, 2, 2):
317 			gfx_target_version = 90002;
318 			if (!vf)
319 				f2g = &gfx_v9_kfd2kgd;
320 			break;
321 		/* Vega12 */
322 		case IP_VERSION(9, 2, 1):
323 			gfx_target_version = 90004;
324 			if (!vf)
325 				f2g = &gfx_v9_kfd2kgd;
326 			break;
327 		/* Renoir */
328 		case IP_VERSION(9, 3, 0):
329 			gfx_target_version = 90012;
330 			if (!vf)
331 				f2g = &gfx_v9_kfd2kgd;
332 			break;
333 		/* Vega20 */
334 		case IP_VERSION(9, 4, 0):
335 			gfx_target_version = 90006;
336 			if (!vf)
337 				f2g = &gfx_v9_kfd2kgd;
338 			break;
339 		/* Arcturus */
340 		case IP_VERSION(9, 4, 1):
341 			gfx_target_version = 90008;
342 			f2g = &arcturus_kfd2kgd;
343 			break;
344 		/* Aldebaran */
345 		case IP_VERSION(9, 4, 2):
346 			gfx_target_version = 90010;
347 			f2g = &aldebaran_kfd2kgd;
348 			break;
349 		case IP_VERSION(9, 4, 3):
350 			gfx_target_version = adev->rev_id >= 1 ? 90402
351 					   : adev->flags & AMD_IS_APU ? 90400
352 					   : 90401;
353 			f2g = &gc_9_4_3_kfd2kgd;
354 			break;
355 		case IP_VERSION(9, 4, 4):
356 			gfx_target_version = 90402;
357 			f2g = &gc_9_4_3_kfd2kgd;
358 			break;
359 		/* Navi10 */
360 		case IP_VERSION(10, 1, 10):
361 			gfx_target_version = 100100;
362 			if (!vf)
363 				f2g = &gfx_v10_kfd2kgd;
364 			break;
365 		/* Navi12 */
366 		case IP_VERSION(10, 1, 2):
367 			gfx_target_version = 100101;
368 			f2g = &gfx_v10_kfd2kgd;
369 			break;
370 		/* Navi14 */
371 		case IP_VERSION(10, 1, 1):
372 			gfx_target_version = 100102;
373 			if (!vf)
374 				f2g = &gfx_v10_kfd2kgd;
375 			break;
376 		/* Cyan Skillfish */
377 		case IP_VERSION(10, 1, 3):
378 		case IP_VERSION(10, 1, 4):
379 			gfx_target_version = 100103;
380 			if (!vf)
381 				f2g = &gfx_v10_kfd2kgd;
382 			break;
383 		/* Sienna Cichlid */
384 		case IP_VERSION(10, 3, 0):
385 			gfx_target_version = 100300;
386 			f2g = &gfx_v10_3_kfd2kgd;
387 			break;
388 		/* Navy Flounder */
389 		case IP_VERSION(10, 3, 2):
390 			gfx_target_version = 100301;
391 			f2g = &gfx_v10_3_kfd2kgd;
392 			break;
393 		/* Van Gogh */
394 		case IP_VERSION(10, 3, 1):
395 			gfx_target_version = 100303;
396 			if (!vf)
397 				f2g = &gfx_v10_3_kfd2kgd;
398 			break;
399 		/* Dimgrey Cavefish */
400 		case IP_VERSION(10, 3, 4):
401 			gfx_target_version = 100302;
402 			f2g = &gfx_v10_3_kfd2kgd;
403 			break;
404 		/* Beige Goby */
405 		case IP_VERSION(10, 3, 5):
406 			gfx_target_version = 100304;
407 			f2g = &gfx_v10_3_kfd2kgd;
408 			break;
409 		/* Yellow Carp */
410 		case IP_VERSION(10, 3, 3):
411 			gfx_target_version = 100305;
412 			if (!vf)
413 				f2g = &gfx_v10_3_kfd2kgd;
414 			break;
415 		case IP_VERSION(10, 3, 6):
416 		case IP_VERSION(10, 3, 7):
417 			gfx_target_version = 100306;
418 			if (!vf)
419 				f2g = &gfx_v10_3_kfd2kgd;
420 			break;
421 		case IP_VERSION(11, 0, 0):
422 			gfx_target_version = 110000;
423 			f2g = &gfx_v11_kfd2kgd;
424 			break;
425 		case IP_VERSION(11, 0, 1):
426 		case IP_VERSION(11, 0, 4):
427 			gfx_target_version = 110003;
428 			f2g = &gfx_v11_kfd2kgd;
429 			break;
430 		case IP_VERSION(11, 0, 2):
431 			gfx_target_version = 110002;
432 			f2g = &gfx_v11_kfd2kgd;
433 			break;
434 		case IP_VERSION(11, 0, 3):
435 			/* Note: Compiler version is 11.0.1 while HW version is 11.0.3 */
436 			gfx_target_version = 110001;
437 			f2g = &gfx_v11_kfd2kgd;
438 			break;
439 		case IP_VERSION(11, 5, 0):
440 			gfx_target_version = 110500;
441 			f2g = &gfx_v11_kfd2kgd;
442 			break;
443 		case IP_VERSION(11, 5, 1):
444 			gfx_target_version = 110501;
445 			f2g = &gfx_v11_kfd2kgd;
446 			break;
447 		case IP_VERSION(11, 5, 2):
448 			gfx_target_version = 110502;
449 			f2g = &gfx_v11_kfd2kgd;
450 			break;
451 		case IP_VERSION(12, 0, 0):
452 			gfx_target_version = 120000;
453 			f2g = &gfx_v12_kfd2kgd;
454 			break;
455 		case IP_VERSION(12, 0, 1):
456 			gfx_target_version = 120001;
457 			f2g = &gfx_v12_kfd2kgd;
458 			break;
459 		default:
460 			break;
461 		}
462 		break;
463 	}
464 
465 	if (!f2g) {
466 		if (amdgpu_ip_version(adev, GC_HWIP, 0))
467 			dev_info(kfd_device,
468 				"GC IP %06x %s not supported in kfd\n",
469 				amdgpu_ip_version(adev, GC_HWIP, 0),
470 				vf ? "VF" : "");
471 		else
472 			dev_info(kfd_device, "%s %s not supported in kfd\n",
473 				amdgpu_asic_name[adev->asic_type], vf ? "VF" : "");
474 		return NULL;
475 	}
476 
477 	kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
478 	if (!kfd)
479 		return NULL;
480 
481 	kfd->adev = adev;
482 	kfd_device_info_init(kfd, vf, gfx_target_version);
483 	kfd->init_complete = false;
484 	kfd->kfd2kgd = f2g;
485 	atomic_set(&kfd->compute_profile, 0);
486 
487 	mutex_init(&kfd->doorbell_mutex);
488 
489 	ida_init(&kfd->doorbell_ida);
490 
491 	return kfd;
492 }
493 
494 static void kfd_cwsr_init(struct kfd_dev *kfd)
495 {
496 	if (cwsr_enable && kfd->device_info.supports_cwsr) {
497 		if (KFD_GC_VERSION(kfd) < IP_VERSION(9, 0, 1)) {
498 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex)
499 					     > KFD_CWSR_TMA_OFFSET);
500 			kfd->cwsr_isa = cwsr_trap_gfx8_hex;
501 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
502 		} else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 1)) {
503 			BUILD_BUG_ON(sizeof(cwsr_trap_arcturus_hex)
504 					     > KFD_CWSR_TMA_OFFSET);
505 			kfd->cwsr_isa = cwsr_trap_arcturus_hex;
506 			kfd->cwsr_isa_size = sizeof(cwsr_trap_arcturus_hex);
507 		} else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 2)) {
508 			BUILD_BUG_ON(sizeof(cwsr_trap_aldebaran_hex)
509 					     > KFD_CWSR_TMA_OFFSET);
510 			kfd->cwsr_isa = cwsr_trap_aldebaran_hex;
511 			kfd->cwsr_isa_size = sizeof(cwsr_trap_aldebaran_hex);
512 		} else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 3) ||
513 			   KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 4)) {
514 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_4_3_hex)
515 					     > KFD_CWSR_TMA_OFFSET);
516 			kfd->cwsr_isa = cwsr_trap_gfx9_4_3_hex;
517 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_4_3_hex);
518 		} else if (KFD_GC_VERSION(kfd) < IP_VERSION(10, 1, 1)) {
519 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex)
520 					     > KFD_CWSR_TMA_OFFSET);
521 			kfd->cwsr_isa = cwsr_trap_gfx9_hex;
522 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
523 		} else if (KFD_GC_VERSION(kfd) < IP_VERSION(10, 3, 0)) {
524 			BUILD_BUG_ON(sizeof(cwsr_trap_nv1x_hex)
525 					     > KFD_CWSR_TMA_OFFSET);
526 			kfd->cwsr_isa = cwsr_trap_nv1x_hex;
527 			kfd->cwsr_isa_size = sizeof(cwsr_trap_nv1x_hex);
528 		} else if (KFD_GC_VERSION(kfd) < IP_VERSION(11, 0, 0)) {
529 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx10_hex)
530 					     > KFD_CWSR_TMA_OFFSET);
531 			kfd->cwsr_isa = cwsr_trap_gfx10_hex;
532 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx10_hex);
533 		} else if (KFD_GC_VERSION(kfd) < IP_VERSION(12, 0, 0)) {
534 			/* The gfx11 cwsr trap handler must fit inside a single
535 			   page. */
536 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx11_hex) > PAGE_SIZE);
537 			kfd->cwsr_isa = cwsr_trap_gfx11_hex;
538 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx11_hex);
539 		} else {
540 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx12_hex)
541 					     > KFD_CWSR_TMA_OFFSET);
542 			kfd->cwsr_isa = cwsr_trap_gfx12_hex;
543 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx12_hex);
544 		}
545 
546 		kfd->cwsr_enabled = true;
547 	}
548 }
549 
550 static int kfd_gws_init(struct kfd_node *node)
551 {
552 	int ret = 0;
553 	struct kfd_dev *kfd = node->kfd;
554 	uint32_t mes_rev = node->adev->mes.sched_version & AMDGPU_MES_VERSION_MASK;
555 
556 	if (node->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS)
557 		return 0;
558 
559 	if (hws_gws_support || (KFD_IS_SOC15(node) &&
560 		((KFD_GC_VERSION(node) == IP_VERSION(9, 0, 1)
561 			&& kfd->mec2_fw_version >= 0x81b3) ||
562 		(KFD_GC_VERSION(node) <= IP_VERSION(9, 4, 0)
563 			&& kfd->mec2_fw_version >= 0x1b3)  ||
564 		(KFD_GC_VERSION(node) == IP_VERSION(9, 4, 1)
565 			&& kfd->mec2_fw_version >= 0x30)   ||
566 		(KFD_GC_VERSION(node) == IP_VERSION(9, 4, 2)
567 			&& kfd->mec2_fw_version >= 0x28) ||
568 		(KFD_GC_VERSION(node) == IP_VERSION(9, 4, 3) ||
569 		 KFD_GC_VERSION(node) == IP_VERSION(9, 4, 4)) ||
570 		(KFD_GC_VERSION(node) >= IP_VERSION(10, 3, 0)
571 			&& KFD_GC_VERSION(node) < IP_VERSION(11, 0, 0)
572 			&& kfd->mec2_fw_version >= 0x6b) ||
573 		(KFD_GC_VERSION(node) >= IP_VERSION(11, 0, 0)
574 			&& KFD_GC_VERSION(node) < IP_VERSION(12, 0, 0)
575 			&& mes_rev >= 68))))
576 		ret = amdgpu_amdkfd_alloc_gws(node->adev,
577 				node->adev->gds.gws_size, &node->gws);
578 
579 	return ret;
580 }
581 
582 static void kfd_smi_init(struct kfd_node *dev)
583 {
584 	INIT_LIST_HEAD(&dev->smi_clients);
585 	spin_lock_init(&dev->smi_lock);
586 }
587 
588 static int kfd_init_node(struct kfd_node *node)
589 {
590 	int err = -1;
591 
592 	if (kfd_interrupt_init(node)) {
593 		dev_err(kfd_device, "Error initializing interrupts\n");
594 		goto kfd_interrupt_error;
595 	}
596 
597 	node->dqm = device_queue_manager_init(node);
598 	if (!node->dqm) {
599 		dev_err(kfd_device, "Error initializing queue manager\n");
600 		goto device_queue_manager_error;
601 	}
602 
603 	if (kfd_gws_init(node)) {
604 		dev_err(kfd_device, "Could not allocate %d gws\n",
605 			node->adev->gds.gws_size);
606 		goto gws_error;
607 	}
608 
609 	if (kfd_resume(node))
610 		goto kfd_resume_error;
611 
612 	if (kfd_topology_add_device(node)) {
613 		dev_err(kfd_device, "Error adding device to topology\n");
614 		goto kfd_topology_add_device_error;
615 	}
616 
617 	kfd_smi_init(node);
618 
619 	return 0;
620 
621 kfd_topology_add_device_error:
622 kfd_resume_error:
623 gws_error:
624 	device_queue_manager_uninit(node->dqm);
625 device_queue_manager_error:
626 	kfd_interrupt_exit(node);
627 kfd_interrupt_error:
628 	if (node->gws)
629 		amdgpu_amdkfd_free_gws(node->adev, node->gws);
630 
631 	/* Cleanup the node memory here */
632 	kfree(node);
633 	return err;
634 }
635 
636 static void kfd_cleanup_nodes(struct kfd_dev *kfd, unsigned int num_nodes)
637 {
638 	struct kfd_node *knode;
639 	unsigned int i;
640 
641 	for (i = 0; i < num_nodes; i++) {
642 		knode = kfd->nodes[i];
643 		device_queue_manager_uninit(knode->dqm);
644 		kfd_interrupt_exit(knode);
645 		kfd_topology_remove_device(knode);
646 		if (knode->gws)
647 			amdgpu_amdkfd_free_gws(knode->adev, knode->gws);
648 		kfree(knode);
649 		kfd->nodes[i] = NULL;
650 	}
651 }
652 
653 static void kfd_setup_interrupt_bitmap(struct kfd_node *node,
654 				       unsigned int kfd_node_idx)
655 {
656 	struct amdgpu_device *adev = node->adev;
657 	uint32_t xcc_mask = node->xcc_mask;
658 	uint32_t xcc, mapped_xcc;
659 	/*
660 	 * Interrupt bitmap is setup for processing interrupts from
661 	 * different XCDs and AIDs.
662 	 * Interrupt bitmap is defined as follows:
663 	 * 1. Bits 0-15 - correspond to the NodeId field.
664 	 *    Each bit corresponds to NodeId number. For example, if
665 	 *    a KFD node has interrupt bitmap set to 0x7, then this
666 	 *    KFD node will process interrupts with NodeId = 0, 1 and 2
667 	 *    in the IH cookie.
668 	 * 2. Bits 16-31 - unused.
669 	 *
670 	 * Please note that the kfd_node_idx argument passed to this
671 	 * function is not related to NodeId field received in the
672 	 * IH cookie.
673 	 *
674 	 * In CPX mode, a KFD node will process an interrupt if:
675 	 * - the Node Id matches the corresponding bit set in
676 	 *   Bits 0-15.
677 	 * - AND VMID reported in the interrupt lies within the
678 	 *   VMID range of the node.
679 	 */
680 	for_each_inst(xcc, xcc_mask) {
681 		mapped_xcc = GET_INST(GC, xcc);
682 		node->interrupt_bitmap |= (mapped_xcc % 2 ? 5 : 3) << (4 * (mapped_xcc / 2));
683 	}
684 	dev_info(kfd_device, "Node: %d, interrupt_bitmap: %x\n", kfd_node_idx,
685 							node->interrupt_bitmap);
686 }
687 
688 bool kgd2kfd_device_init(struct kfd_dev *kfd,
689 			 const struct kgd2kfd_shared_resources *gpu_resources)
690 {
691 	unsigned int size, map_process_packet_size, i;
692 	struct kfd_node *node;
693 	uint32_t first_vmid_kfd, last_vmid_kfd, vmid_num_kfd;
694 	unsigned int max_proc_per_quantum;
695 	int partition_mode;
696 	int xcp_idx;
697 
698 	kfd->mec_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev,
699 			KGD_ENGINE_MEC1);
700 	kfd->mec2_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev,
701 			KGD_ENGINE_MEC2);
702 	kfd->sdma_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev,
703 			KGD_ENGINE_SDMA1);
704 	kfd->shared_resources = *gpu_resources;
705 
706 	kfd->num_nodes = amdgpu_xcp_get_num_xcp(kfd->adev->xcp_mgr);
707 
708 	if (kfd->num_nodes == 0) {
709 		dev_err(kfd_device,
710 			"KFD num nodes cannot be 0, num_xcc_in_node: %d\n",
711 			kfd->adev->gfx.num_xcc_per_xcp);
712 		goto out;
713 	}
714 
715 	/* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
716 	 * 32 and 64-bit requests are possible and must be
717 	 * supported.
718 	 */
719 	kfd->pci_atomic_requested = amdgpu_amdkfd_have_atomics_support(kfd->adev);
720 	if (!kfd->pci_atomic_requested &&
721 	    kfd->device_info.needs_pci_atomics &&
722 	    (!kfd->device_info.no_atomic_fw_version ||
723 	     kfd->mec_fw_version < kfd->device_info.no_atomic_fw_version)) {
724 		dev_info(kfd_device,
725 			 "skipped device %x:%x, PCI rejects atomics %d<%d\n",
726 			 kfd->adev->pdev->vendor, kfd->adev->pdev->device,
727 			 kfd->mec_fw_version,
728 			 kfd->device_info.no_atomic_fw_version);
729 		return false;
730 	}
731 
732 	first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
733 	last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
734 	vmid_num_kfd = last_vmid_kfd - first_vmid_kfd + 1;
735 
736 	/* For GFX9.4.3, we need special handling for VMIDs depending on
737 	 * partition mode.
738 	 * In CPX mode, the VMID range needs to be shared between XCDs.
739 	 * Additionally, there are 13 VMIDs (3-15) available for KFD. To
740 	 * divide them equally, we change starting VMID to 4 and not use
741 	 * VMID 3.
742 	 * If the VMID range changes for GFX9.4.3, then this code MUST be
743 	 * revisited.
744 	 */
745 	if (kfd->adev->xcp_mgr) {
746 		partition_mode = amdgpu_xcp_query_partition_mode(kfd->adev->xcp_mgr,
747 								 AMDGPU_XCP_FL_LOCKED);
748 		if (partition_mode == AMDGPU_CPX_PARTITION_MODE &&
749 		    kfd->num_nodes != 1) {
750 			vmid_num_kfd /= 2;
751 			first_vmid_kfd = last_vmid_kfd + 1 - vmid_num_kfd*2;
752 		}
753 	}
754 
755 	/* Verify module parameters regarding mapped process number*/
756 	if (hws_max_conc_proc >= 0)
757 		max_proc_per_quantum = min((u32)hws_max_conc_proc, vmid_num_kfd);
758 	else
759 		max_proc_per_quantum = vmid_num_kfd;
760 
761 	/* calculate max size of mqds needed for queues */
762 	size = max_num_of_queues_per_device *
763 			kfd->device_info.mqd_size_aligned;
764 
765 	/*
766 	 * calculate max size of runlist packet.
767 	 * There can be only 2 packets at once
768 	 */
769 	map_process_packet_size = KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 2) ?
770 				sizeof(struct pm4_mes_map_process_aldebaran) :
771 				sizeof(struct pm4_mes_map_process);
772 	size += (KFD_MAX_NUM_OF_PROCESSES * map_process_packet_size +
773 		max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
774 		+ sizeof(struct pm4_mes_runlist)) * 2;
775 
776 	/* Add size of HIQ & DIQ */
777 	size += KFD_KERNEL_QUEUE_SIZE * 2;
778 
779 	/* add another 512KB for all other allocations on gart (HPD, fences) */
780 	size += 512 * 1024;
781 
782 	if (amdgpu_amdkfd_alloc_gtt_mem(
783 			kfd->adev, size, &kfd->gtt_mem,
784 			&kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr,
785 			false)) {
786 		dev_err(kfd_device, "Could not allocate %d bytes\n", size);
787 		goto alloc_gtt_mem_failure;
788 	}
789 
790 	dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
791 
792 	/* Initialize GTT sa with 512 byte chunk size */
793 	if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
794 		dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
795 		goto kfd_gtt_sa_init_error;
796 	}
797 
798 	if (kfd_doorbell_init(kfd)) {
799 		dev_err(kfd_device,
800 			"Error initializing doorbell aperture\n");
801 		goto kfd_doorbell_error;
802 	}
803 
804 	if (amdgpu_use_xgmi_p2p)
805 		kfd->hive_id = kfd->adev->gmc.xgmi.hive_id;
806 
807 	/*
808 	 * For GFX9.4.3, the KFD abstracts all partitions within a socket as
809 	 * xGMI connected in the topology so assign a unique hive id per
810 	 * device based on the pci device location if device is in PCIe mode.
811 	 */
812 	if (!kfd->hive_id &&
813 	    (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 3) ||
814 	     KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 4)) &&
815 	    kfd->num_nodes > 1)
816 		kfd->hive_id = pci_dev_id(kfd->adev->pdev);
817 
818 	kfd->noretry = kfd->adev->gmc.noretry;
819 
820 	kfd_cwsr_init(kfd);
821 
822 	dev_info(kfd_device, "Total number of KFD nodes to be created: %d\n",
823 				kfd->num_nodes);
824 
825 	/* Allocate the KFD nodes */
826 	for (i = 0, xcp_idx = 0; i < kfd->num_nodes; i++) {
827 		node = kzalloc(sizeof(struct kfd_node), GFP_KERNEL);
828 		if (!node)
829 			goto node_alloc_error;
830 
831 		node->node_id = i;
832 		node->adev = kfd->adev;
833 		node->kfd = kfd;
834 		node->kfd2kgd = kfd->kfd2kgd;
835 		node->vm_info.vmid_num_kfd = vmid_num_kfd;
836 		node->xcp = amdgpu_get_next_xcp(kfd->adev->xcp_mgr, &xcp_idx);
837 		/* TODO : Check if error handling is needed */
838 		if (node->xcp) {
839 			amdgpu_xcp_get_inst_details(node->xcp, AMDGPU_XCP_GFX,
840 						    &node->xcc_mask);
841 			++xcp_idx;
842 		} else {
843 			node->xcc_mask =
844 				(1U << NUM_XCC(kfd->adev->gfx.xcc_mask)) - 1;
845 		}
846 
847 		if (node->xcp) {
848 			dev_info(kfd_device, "KFD node %d partition %d size %lldM\n",
849 				node->node_id, node->xcp->mem_id,
850 				KFD_XCP_MEMORY_SIZE(node->adev, node->node_id) >> 20);
851 		}
852 
853 		if ((KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 3) ||
854 		     KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 4)) &&
855 		    partition_mode == AMDGPU_CPX_PARTITION_MODE &&
856 		    kfd->num_nodes != 1) {
857 			/* For GFX9.4.3 and CPX mode, first XCD gets VMID range
858 			 * 4-9 and second XCD gets VMID range 10-15.
859 			 */
860 
861 			node->vm_info.first_vmid_kfd = (i%2 == 0) ?
862 						first_vmid_kfd :
863 						first_vmid_kfd+vmid_num_kfd;
864 			node->vm_info.last_vmid_kfd = (i%2 == 0) ?
865 						last_vmid_kfd-vmid_num_kfd :
866 						last_vmid_kfd;
867 			node->compute_vmid_bitmap =
868 				((0x1 << (node->vm_info.last_vmid_kfd + 1)) - 1) -
869 				((0x1 << (node->vm_info.first_vmid_kfd)) - 1);
870 		} else {
871 			node->vm_info.first_vmid_kfd = first_vmid_kfd;
872 			node->vm_info.last_vmid_kfd = last_vmid_kfd;
873 			node->compute_vmid_bitmap =
874 				gpu_resources->compute_vmid_bitmap;
875 		}
876 		node->max_proc_per_quantum = max_proc_per_quantum;
877 		atomic_set(&node->sram_ecc_flag, 0);
878 
879 		amdgpu_amdkfd_get_local_mem_info(kfd->adev,
880 					&node->local_mem_info, node->xcp);
881 
882 		if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 3) ||
883 		    KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 4))
884 			kfd_setup_interrupt_bitmap(node, i);
885 
886 		/* Initialize the KFD node */
887 		if (kfd_init_node(node)) {
888 			dev_err(kfd_device, "Error initializing KFD node\n");
889 			goto node_init_error;
890 		}
891 
892 		spin_lock_init(&node->watch_points_lock);
893 
894 		kfd->nodes[i] = node;
895 	}
896 
897 	svm_range_set_max_pages(kfd->adev);
898 
899 	kfd->init_complete = true;
900 	dev_info(kfd_device, "added device %x:%x\n", kfd->adev->pdev->vendor,
901 		 kfd->adev->pdev->device);
902 
903 	pr_debug("Starting kfd with the following scheduling policy %d\n",
904 		node->dqm->sched_policy);
905 
906 	goto out;
907 
908 node_init_error:
909 node_alloc_error:
910 	kfd_cleanup_nodes(kfd, i);
911 	kfd_doorbell_fini(kfd);
912 kfd_doorbell_error:
913 	kfd_gtt_sa_fini(kfd);
914 kfd_gtt_sa_init_error:
915 	amdgpu_amdkfd_free_gtt_mem(kfd->adev, &kfd->gtt_mem);
916 alloc_gtt_mem_failure:
917 	dev_err(kfd_device,
918 		"device %x:%x NOT added due to errors\n",
919 		kfd->adev->pdev->vendor, kfd->adev->pdev->device);
920 out:
921 	return kfd->init_complete;
922 }
923 
924 void kgd2kfd_device_exit(struct kfd_dev *kfd)
925 {
926 	if (kfd->init_complete) {
927 		/* Cleanup KFD nodes */
928 		kfd_cleanup_nodes(kfd, kfd->num_nodes);
929 		/* Cleanup common/shared resources */
930 		kfd_doorbell_fini(kfd);
931 		ida_destroy(&kfd->doorbell_ida);
932 		kfd_gtt_sa_fini(kfd);
933 		amdgpu_amdkfd_free_gtt_mem(kfd->adev, &kfd->gtt_mem);
934 	}
935 
936 	kfree(kfd);
937 }
938 
939 int kgd2kfd_pre_reset(struct kfd_dev *kfd,
940 		      struct amdgpu_reset_context *reset_context)
941 {
942 	struct kfd_node *node;
943 	int i;
944 
945 	if (!kfd->init_complete)
946 		return 0;
947 
948 	for (i = 0; i < kfd->num_nodes; i++) {
949 		node = kfd->nodes[i];
950 		kfd_smi_event_update_gpu_reset(node, false, reset_context);
951 	}
952 
953 	kgd2kfd_suspend(kfd, false);
954 
955 	for (i = 0; i < kfd->num_nodes; i++)
956 		kfd_signal_reset_event(kfd->nodes[i]);
957 
958 	return 0;
959 }
960 
961 /*
962  * Fix me. KFD won't be able to resume existing process for now.
963  * We will keep all existing process in a evicted state and
964  * wait the process to be terminated.
965  */
966 
967 int kgd2kfd_post_reset(struct kfd_dev *kfd)
968 {
969 	int ret;
970 	struct kfd_node *node;
971 	int i;
972 
973 	if (!kfd->init_complete)
974 		return 0;
975 
976 	for (i = 0; i < kfd->num_nodes; i++) {
977 		ret = kfd_resume(kfd->nodes[i]);
978 		if (ret)
979 			return ret;
980 	}
981 
982 	mutex_lock(&kfd_processes_mutex);
983 	--kfd_locked;
984 	mutex_unlock(&kfd_processes_mutex);
985 
986 	for (i = 0; i < kfd->num_nodes; i++) {
987 		node = kfd->nodes[i];
988 		atomic_set(&node->sram_ecc_flag, 0);
989 		kfd_smi_event_update_gpu_reset(node, true, NULL);
990 	}
991 
992 	return 0;
993 }
994 
995 bool kfd_is_locked(void)
996 {
997 	lockdep_assert_held(&kfd_processes_mutex);
998 	return  (kfd_locked > 0);
999 }
1000 
1001 void kgd2kfd_suspend(struct kfd_dev *kfd, bool run_pm)
1002 {
1003 	struct kfd_node *node;
1004 	int i;
1005 
1006 	if (!kfd->init_complete)
1007 		return;
1008 
1009 	/* for runtime suspend, skip locking kfd */
1010 	if (!run_pm) {
1011 		mutex_lock(&kfd_processes_mutex);
1012 		/* For first KFD device suspend all the KFD processes */
1013 		if (++kfd_locked == 1)
1014 			kfd_suspend_all_processes();
1015 		mutex_unlock(&kfd_processes_mutex);
1016 	}
1017 
1018 	for (i = 0; i < kfd->num_nodes; i++) {
1019 		node = kfd->nodes[i];
1020 		node->dqm->ops.stop(node->dqm);
1021 	}
1022 }
1023 
1024 int kgd2kfd_resume(struct kfd_dev *kfd, bool run_pm)
1025 {
1026 	int ret, i;
1027 
1028 	if (!kfd->init_complete)
1029 		return 0;
1030 
1031 	for (i = 0; i < kfd->num_nodes; i++) {
1032 		ret = kfd_resume(kfd->nodes[i]);
1033 		if (ret)
1034 			return ret;
1035 	}
1036 
1037 	/* for runtime resume, skip unlocking kfd */
1038 	if (!run_pm) {
1039 		mutex_lock(&kfd_processes_mutex);
1040 		if (--kfd_locked == 0)
1041 			ret = kfd_resume_all_processes();
1042 		WARN_ONCE(kfd_locked < 0, "KFD suspend / resume ref. error");
1043 		mutex_unlock(&kfd_processes_mutex);
1044 	}
1045 
1046 	return ret;
1047 }
1048 
1049 static int kfd_resume(struct kfd_node *node)
1050 {
1051 	int err = 0;
1052 
1053 	err = node->dqm->ops.start(node->dqm);
1054 	if (err)
1055 		dev_err(kfd_device,
1056 			"Error starting queue manager for device %x:%x\n",
1057 			node->adev->pdev->vendor, node->adev->pdev->device);
1058 
1059 	return err;
1060 }
1061 
1062 static inline void kfd_queue_work(struct workqueue_struct *wq,
1063 				  struct work_struct *work)
1064 {
1065 	int cpu, new_cpu;
1066 
1067 	cpu = new_cpu = smp_processor_id();
1068 	do {
1069 		new_cpu = cpumask_next(new_cpu, cpu_online_mask) % nr_cpu_ids;
1070 		if (cpu_to_node(new_cpu) == numa_node_id())
1071 			break;
1072 	} while (cpu != new_cpu);
1073 
1074 	queue_work_on(new_cpu, wq, work);
1075 }
1076 
1077 /* This is called directly from KGD at ISR. */
1078 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
1079 {
1080 	uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE], i;
1081 	bool is_patched = false;
1082 	unsigned long flags;
1083 	struct kfd_node *node;
1084 
1085 	if (!kfd->init_complete)
1086 		return;
1087 
1088 	if (kfd->device_info.ih_ring_entry_size > sizeof(patched_ihre)) {
1089 		dev_err_once(kfd_device, "Ring entry too small\n");
1090 		return;
1091 	}
1092 
1093 	for (i = 0; i < kfd->num_nodes; i++) {
1094 		node = kfd->nodes[i];
1095 		spin_lock_irqsave(&node->interrupt_lock, flags);
1096 
1097 		if (node->interrupts_active
1098 		    && interrupt_is_wanted(node, ih_ring_entry,
1099 			    	patched_ihre, &is_patched)
1100 		    && enqueue_ih_ring_entry(node,
1101 			    	is_patched ? patched_ihre : ih_ring_entry)) {
1102 			kfd_queue_work(node->ih_wq, &node->interrupt_work);
1103 			spin_unlock_irqrestore(&node->interrupt_lock, flags);
1104 			return;
1105 		}
1106 		spin_unlock_irqrestore(&node->interrupt_lock, flags);
1107 	}
1108 
1109 }
1110 
1111 int kgd2kfd_quiesce_mm(struct mm_struct *mm, uint32_t trigger)
1112 {
1113 	struct kfd_process *p;
1114 	int r;
1115 
1116 	/* Because we are called from arbitrary context (workqueue) as opposed
1117 	 * to process context, kfd_process could attempt to exit while we are
1118 	 * running so the lookup function increments the process ref count.
1119 	 */
1120 	p = kfd_lookup_process_by_mm(mm);
1121 	if (!p)
1122 		return -ESRCH;
1123 
1124 	WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
1125 	r = kfd_process_evict_queues(p, trigger);
1126 
1127 	kfd_unref_process(p);
1128 	return r;
1129 }
1130 
1131 int kgd2kfd_resume_mm(struct mm_struct *mm)
1132 {
1133 	struct kfd_process *p;
1134 	int r;
1135 
1136 	/* Because we are called from arbitrary context (workqueue) as opposed
1137 	 * to process context, kfd_process could attempt to exit while we are
1138 	 * running so the lookup function increments the process ref count.
1139 	 */
1140 	p = kfd_lookup_process_by_mm(mm);
1141 	if (!p)
1142 		return -ESRCH;
1143 
1144 	r = kfd_process_restore_queues(p);
1145 
1146 	kfd_unref_process(p);
1147 	return r;
1148 }
1149 
1150 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
1151  *   prepare for safe eviction of KFD BOs that belong to the specified
1152  *   process.
1153  *
1154  * @mm: mm_struct that identifies the specified KFD process
1155  * @fence: eviction fence attached to KFD process BOs
1156  *
1157  */
1158 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
1159 					       struct dma_fence *fence)
1160 {
1161 	struct kfd_process *p;
1162 	unsigned long active_time;
1163 	unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
1164 
1165 	if (!fence)
1166 		return -EINVAL;
1167 
1168 	if (dma_fence_is_signaled(fence))
1169 		return 0;
1170 
1171 	p = kfd_lookup_process_by_mm(mm);
1172 	if (!p)
1173 		return -ENODEV;
1174 
1175 	if (fence->seqno == p->last_eviction_seqno)
1176 		goto out;
1177 
1178 	p->last_eviction_seqno = fence->seqno;
1179 
1180 	/* Avoid KFD process starvation. Wait for at least
1181 	 * PROCESS_ACTIVE_TIME_MS before evicting the process again
1182 	 */
1183 	active_time = get_jiffies_64() - p->last_restore_timestamp;
1184 	if (delay_jiffies > active_time)
1185 		delay_jiffies -= active_time;
1186 	else
1187 		delay_jiffies = 0;
1188 
1189 	/* During process initialization eviction_work.dwork is initialized
1190 	 * to kfd_evict_bo_worker
1191 	 */
1192 	WARN(debug_evictions, "Scheduling eviction of pid %d in %ld jiffies",
1193 	     p->lead_thread->pid, delay_jiffies);
1194 	schedule_delayed_work(&p->eviction_work, delay_jiffies);
1195 out:
1196 	kfd_unref_process(p);
1197 	return 0;
1198 }
1199 
1200 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
1201 				unsigned int chunk_size)
1202 {
1203 	if (WARN_ON(buf_size < chunk_size))
1204 		return -EINVAL;
1205 	if (WARN_ON(buf_size == 0))
1206 		return -EINVAL;
1207 	if (WARN_ON(chunk_size == 0))
1208 		return -EINVAL;
1209 
1210 	kfd->gtt_sa_chunk_size = chunk_size;
1211 	kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
1212 
1213 	kfd->gtt_sa_bitmap = bitmap_zalloc(kfd->gtt_sa_num_of_chunks,
1214 					   GFP_KERNEL);
1215 	if (!kfd->gtt_sa_bitmap)
1216 		return -ENOMEM;
1217 
1218 	pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
1219 			kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
1220 
1221 	mutex_init(&kfd->gtt_sa_lock);
1222 
1223 	return 0;
1224 }
1225 
1226 static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
1227 {
1228 	mutex_destroy(&kfd->gtt_sa_lock);
1229 	bitmap_free(kfd->gtt_sa_bitmap);
1230 }
1231 
1232 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
1233 						unsigned int bit_num,
1234 						unsigned int chunk_size)
1235 {
1236 	return start_addr + bit_num * chunk_size;
1237 }
1238 
1239 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
1240 						unsigned int bit_num,
1241 						unsigned int chunk_size)
1242 {
1243 	return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
1244 }
1245 
1246 int kfd_gtt_sa_allocate(struct kfd_node *node, unsigned int size,
1247 			struct kfd_mem_obj **mem_obj)
1248 {
1249 	unsigned int found, start_search, cur_size;
1250 	struct kfd_dev *kfd = node->kfd;
1251 
1252 	if (size == 0)
1253 		return -EINVAL;
1254 
1255 	if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
1256 		return -ENOMEM;
1257 
1258 	*mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
1259 	if (!(*mem_obj))
1260 		return -ENOMEM;
1261 
1262 	pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
1263 
1264 	start_search = 0;
1265 
1266 	mutex_lock(&kfd->gtt_sa_lock);
1267 
1268 kfd_gtt_restart_search:
1269 	/* Find the first chunk that is free */
1270 	found = find_next_zero_bit(kfd->gtt_sa_bitmap,
1271 					kfd->gtt_sa_num_of_chunks,
1272 					start_search);
1273 
1274 	pr_debug("Found = %d\n", found);
1275 
1276 	/* If there wasn't any free chunk, bail out */
1277 	if (found == kfd->gtt_sa_num_of_chunks)
1278 		goto kfd_gtt_no_free_chunk;
1279 
1280 	/* Update fields of mem_obj */
1281 	(*mem_obj)->range_start = found;
1282 	(*mem_obj)->range_end = found;
1283 	(*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
1284 					kfd->gtt_start_gpu_addr,
1285 					found,
1286 					kfd->gtt_sa_chunk_size);
1287 	(*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
1288 					kfd->gtt_start_cpu_ptr,
1289 					found,
1290 					kfd->gtt_sa_chunk_size);
1291 
1292 	pr_debug("gpu_addr = %p, cpu_addr = %p\n",
1293 			(uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
1294 
1295 	/* If we need only one chunk, mark it as allocated and get out */
1296 	if (size <= kfd->gtt_sa_chunk_size) {
1297 		pr_debug("Single bit\n");
1298 		__set_bit(found, kfd->gtt_sa_bitmap);
1299 		goto kfd_gtt_out;
1300 	}
1301 
1302 	/* Otherwise, try to see if we have enough contiguous chunks */
1303 	cur_size = size - kfd->gtt_sa_chunk_size;
1304 	do {
1305 		(*mem_obj)->range_end =
1306 			find_next_zero_bit(kfd->gtt_sa_bitmap,
1307 					kfd->gtt_sa_num_of_chunks, ++found);
1308 		/*
1309 		 * If next free chunk is not contiguous than we need to
1310 		 * restart our search from the last free chunk we found (which
1311 		 * wasn't contiguous to the previous ones
1312 		 */
1313 		if ((*mem_obj)->range_end != found) {
1314 			start_search = found;
1315 			goto kfd_gtt_restart_search;
1316 		}
1317 
1318 		/*
1319 		 * If we reached end of buffer, bail out with error
1320 		 */
1321 		if (found == kfd->gtt_sa_num_of_chunks)
1322 			goto kfd_gtt_no_free_chunk;
1323 
1324 		/* Check if we don't need another chunk */
1325 		if (cur_size <= kfd->gtt_sa_chunk_size)
1326 			cur_size = 0;
1327 		else
1328 			cur_size -= kfd->gtt_sa_chunk_size;
1329 
1330 	} while (cur_size > 0);
1331 
1332 	pr_debug("range_start = %d, range_end = %d\n",
1333 		(*mem_obj)->range_start, (*mem_obj)->range_end);
1334 
1335 	/* Mark the chunks as allocated */
1336 	bitmap_set(kfd->gtt_sa_bitmap, (*mem_obj)->range_start,
1337 		   (*mem_obj)->range_end - (*mem_obj)->range_start + 1);
1338 
1339 kfd_gtt_out:
1340 	mutex_unlock(&kfd->gtt_sa_lock);
1341 	return 0;
1342 
1343 kfd_gtt_no_free_chunk:
1344 	pr_debug("Allocation failed with mem_obj = %p\n", *mem_obj);
1345 	mutex_unlock(&kfd->gtt_sa_lock);
1346 	kfree(*mem_obj);
1347 	return -ENOMEM;
1348 }
1349 
1350 int kfd_gtt_sa_free(struct kfd_node *node, struct kfd_mem_obj *mem_obj)
1351 {
1352 	struct kfd_dev *kfd = node->kfd;
1353 
1354 	/* Act like kfree when trying to free a NULL object */
1355 	if (!mem_obj)
1356 		return 0;
1357 
1358 	pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
1359 			mem_obj, mem_obj->range_start, mem_obj->range_end);
1360 
1361 	mutex_lock(&kfd->gtt_sa_lock);
1362 
1363 	/* Mark the chunks as free */
1364 	bitmap_clear(kfd->gtt_sa_bitmap, mem_obj->range_start,
1365 		     mem_obj->range_end - mem_obj->range_start + 1);
1366 
1367 	mutex_unlock(&kfd->gtt_sa_lock);
1368 
1369 	kfree(mem_obj);
1370 	return 0;
1371 }
1372 
1373 void kgd2kfd_set_sram_ecc_flag(struct kfd_dev *kfd)
1374 {
1375 	/*
1376 	 * TODO: Currently update SRAM ECC flag for first node.
1377 	 * This needs to be updated later when we can
1378 	 * identify SRAM ECC error on other nodes also.
1379 	 */
1380 	if (kfd)
1381 		atomic_inc(&kfd->nodes[0]->sram_ecc_flag);
1382 }
1383 
1384 void kfd_inc_compute_active(struct kfd_node *node)
1385 {
1386 	if (atomic_inc_return(&node->kfd->compute_profile) == 1)
1387 		amdgpu_amdkfd_set_compute_idle(node->adev, false);
1388 }
1389 
1390 void kfd_dec_compute_active(struct kfd_node *node)
1391 {
1392 	int count = atomic_dec_return(&node->kfd->compute_profile);
1393 
1394 	if (count == 0)
1395 		amdgpu_amdkfd_set_compute_idle(node->adev, true);
1396 	WARN_ONCE(count < 0, "Compute profile ref. count error");
1397 }
1398 
1399 static bool kfd_compute_active(struct kfd_node *node)
1400 {
1401 	if (atomic_read(&node->kfd->compute_profile))
1402 		return true;
1403 	return false;
1404 }
1405 
1406 void kgd2kfd_smi_event_throttle(struct kfd_dev *kfd, uint64_t throttle_bitmask)
1407 {
1408 	/*
1409 	 * TODO: For now, raise the throttling event only on first node.
1410 	 * This will need to change after we are able to determine
1411 	 * which node raised the throttling event.
1412 	 */
1413 	if (kfd && kfd->init_complete)
1414 		kfd_smi_event_update_thermal_throttling(kfd->nodes[0],
1415 							throttle_bitmask);
1416 }
1417 
1418 /* kfd_get_num_sdma_engines returns the number of PCIe optimized SDMA and
1419  * kfd_get_num_xgmi_sdma_engines returns the number of XGMI SDMA.
1420  * When the device has more than two engines, we reserve two for PCIe to enable
1421  * full-duplex and the rest are used as XGMI.
1422  */
1423 unsigned int kfd_get_num_sdma_engines(struct kfd_node *node)
1424 {
1425 	/* If XGMI is not supported, all SDMA engines are PCIe */
1426 	if (!node->adev->gmc.xgmi.supported)
1427 		return node->adev->sdma.num_instances/(int)node->kfd->num_nodes;
1428 
1429 	return min(node->adev->sdma.num_instances/(int)node->kfd->num_nodes, 2);
1430 }
1431 
1432 unsigned int kfd_get_num_xgmi_sdma_engines(struct kfd_node *node)
1433 {
1434 	/* After reserved for PCIe, the rest of engines are XGMI */
1435 	return node->adev->sdma.num_instances/(int)node->kfd->num_nodes -
1436 		kfd_get_num_sdma_engines(node);
1437 }
1438 
1439 int kgd2kfd_check_and_lock_kfd(void)
1440 {
1441 	mutex_lock(&kfd_processes_mutex);
1442 	if (!hash_empty(kfd_processes_table) || kfd_is_locked()) {
1443 		mutex_unlock(&kfd_processes_mutex);
1444 		return -EBUSY;
1445 	}
1446 
1447 	++kfd_locked;
1448 	mutex_unlock(&kfd_processes_mutex);
1449 
1450 	return 0;
1451 }
1452 
1453 void kgd2kfd_unlock_kfd(void)
1454 {
1455 	mutex_lock(&kfd_processes_mutex);
1456 	--kfd_locked;
1457 	mutex_unlock(&kfd_processes_mutex);
1458 }
1459 
1460 int kgd2kfd_start_sched(struct kfd_dev *kfd, uint32_t node_id)
1461 {
1462 	struct kfd_node *node;
1463 	int ret;
1464 
1465 	if (!kfd->init_complete)
1466 		return 0;
1467 
1468 	if (node_id >= kfd->num_nodes) {
1469 		dev_warn(kfd->adev->dev, "Invalid node ID: %u exceeds %u\n",
1470 			 node_id, kfd->num_nodes - 1);
1471 		return -EINVAL;
1472 	}
1473 	node = kfd->nodes[node_id];
1474 
1475 	ret = node->dqm->ops.unhalt(node->dqm);
1476 	if (ret)
1477 		dev_err(kfd_device, "Error in starting scheduler\n");
1478 
1479 	return ret;
1480 }
1481 
1482 int kgd2kfd_stop_sched(struct kfd_dev *kfd, uint32_t node_id)
1483 {
1484 	struct kfd_node *node;
1485 
1486 	if (!kfd->init_complete)
1487 		return 0;
1488 
1489 	if (node_id >= kfd->num_nodes) {
1490 		dev_warn(kfd->adev->dev, "Invalid node ID: %u exceeds %u\n",
1491 			 node_id, kfd->num_nodes - 1);
1492 		return -EINVAL;
1493 	}
1494 
1495 	node = kfd->nodes[node_id];
1496 	return node->dqm->ops.halt(node->dqm);
1497 }
1498 
1499 bool kgd2kfd_compute_active(struct kfd_dev *kfd, uint32_t node_id)
1500 {
1501 	struct kfd_node *node;
1502 
1503 	if (!kfd->init_complete)
1504 		return false;
1505 
1506 	if (node_id >= kfd->num_nodes) {
1507 		dev_warn(kfd->adev->dev, "Invalid node ID: %u exceeds %u\n",
1508 			 node_id, kfd->num_nodes - 1);
1509 		return false;
1510 	}
1511 
1512 	node = kfd->nodes[node_id];
1513 
1514 	return kfd_compute_active(node);
1515 }
1516 
1517 #if defined(CONFIG_DEBUG_FS)
1518 
1519 /* This function will send a package to HIQ to hang the HWS
1520  * which will trigger a GPU reset and bring the HWS back to normal state
1521  */
1522 int kfd_debugfs_hang_hws(struct kfd_node *dev)
1523 {
1524 	if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) {
1525 		pr_err("HWS is not enabled");
1526 		return -EINVAL;
1527 	}
1528 
1529 	return dqm_debugfs_hang_hws(dev->dqm);
1530 }
1531 
1532 #endif
1533