xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_device.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/amd-iommu.h>
24 #include <linux/bsearch.h>
25 #include <linux/pci.h>
26 #include <linux/slab.h>
27 #include "kfd_priv.h"
28 #include "kfd_device_queue_manager.h"
29 #include "kfd_pm4_headers.h"
30 
31 #define MQD_SIZE_ALIGNED 768
32 
33 static const struct kfd_device_info kaveri_device_info = {
34 	.asic_family = CHIP_KAVERI,
35 	.max_pasid_bits = 16,
36 	/* max num of queues for KV.TODO should be a dynamic value */
37 	.max_no_of_hqd	= 24,
38 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
39 	.event_interrupt_class = &event_interrupt_class_cik,
40 	.num_of_watch_points = 4,
41 	.mqd_size_aligned = MQD_SIZE_ALIGNED
42 };
43 
44 static const struct kfd_device_info carrizo_device_info = {
45 	.asic_family = CHIP_CARRIZO,
46 	.max_pasid_bits = 16,
47 	/* max num of queues for CZ.TODO should be a dynamic value */
48 	.max_no_of_hqd	= 24,
49 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
50 	.event_interrupt_class = &event_interrupt_class_cik,
51 	.num_of_watch_points = 4,
52 	.mqd_size_aligned = MQD_SIZE_ALIGNED
53 };
54 
55 struct kfd_deviceid {
56 	unsigned short did;
57 	const struct kfd_device_info *device_info;
58 };
59 
60 /* Please keep this sorted by increasing device id. */
61 static const struct kfd_deviceid supported_devices[] = {
62 	{ 0x1304, &kaveri_device_info },	/* Kaveri */
63 	{ 0x1305, &kaveri_device_info },	/* Kaveri */
64 	{ 0x1306, &kaveri_device_info },	/* Kaveri */
65 	{ 0x1307, &kaveri_device_info },	/* Kaveri */
66 	{ 0x1309, &kaveri_device_info },	/* Kaveri */
67 	{ 0x130A, &kaveri_device_info },	/* Kaveri */
68 	{ 0x130B, &kaveri_device_info },	/* Kaveri */
69 	{ 0x130C, &kaveri_device_info },	/* Kaveri */
70 	{ 0x130D, &kaveri_device_info },	/* Kaveri */
71 	{ 0x130E, &kaveri_device_info },	/* Kaveri */
72 	{ 0x130F, &kaveri_device_info },	/* Kaveri */
73 	{ 0x1310, &kaveri_device_info },	/* Kaveri */
74 	{ 0x1311, &kaveri_device_info },	/* Kaveri */
75 	{ 0x1312, &kaveri_device_info },	/* Kaveri */
76 	{ 0x1313, &kaveri_device_info },	/* Kaveri */
77 	{ 0x1315, &kaveri_device_info },	/* Kaveri */
78 	{ 0x1316, &kaveri_device_info },	/* Kaveri */
79 	{ 0x1317, &kaveri_device_info },	/* Kaveri */
80 	{ 0x1318, &kaveri_device_info },	/* Kaveri */
81 	{ 0x131B, &kaveri_device_info },	/* Kaveri */
82 	{ 0x131C, &kaveri_device_info },	/* Kaveri */
83 	{ 0x131D, &kaveri_device_info },	/* Kaveri */
84 	{ 0x9870, &carrizo_device_info },	/* Carrizo */
85 	{ 0x9874, &carrizo_device_info },	/* Carrizo */
86 	{ 0x9875, &carrizo_device_info },	/* Carrizo */
87 	{ 0x9876, &carrizo_device_info },	/* Carrizo */
88 	{ 0x9877, &carrizo_device_info }	/* Carrizo */
89 };
90 
91 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
92 				unsigned int chunk_size);
93 static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
94 
95 static const struct kfd_device_info *lookup_device_info(unsigned short did)
96 {
97 	size_t i;
98 
99 	for (i = 0; i < ARRAY_SIZE(supported_devices); i++) {
100 		if (supported_devices[i].did == did) {
101 			BUG_ON(supported_devices[i].device_info == NULL);
102 			return supported_devices[i].device_info;
103 		}
104 	}
105 
106 	return NULL;
107 }
108 
109 struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
110 	struct pci_dev *pdev, const struct kfd2kgd_calls *f2g)
111 {
112 	struct kfd_dev *kfd;
113 
114 	const struct kfd_device_info *device_info =
115 					lookup_device_info(pdev->device);
116 
117 	if (!device_info)
118 		return NULL;
119 
120 	kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
121 	if (!kfd)
122 		return NULL;
123 
124 	kfd->kgd = kgd;
125 	kfd->device_info = device_info;
126 	kfd->pdev = pdev;
127 	kfd->init_complete = false;
128 	kfd->kfd2kgd = f2g;
129 
130 	mutex_init(&kfd->doorbell_mutex);
131 	memset(&kfd->doorbell_available_index, 0,
132 		sizeof(kfd->doorbell_available_index));
133 
134 	return kfd;
135 }
136 
137 static bool device_iommu_pasid_init(struct kfd_dev *kfd)
138 {
139 	const u32 required_iommu_flags = AMD_IOMMU_DEVICE_FLAG_ATS_SUP |
140 					AMD_IOMMU_DEVICE_FLAG_PRI_SUP |
141 					AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
142 
143 	struct amd_iommu_device_info iommu_info;
144 	unsigned int pasid_limit;
145 	int err;
146 
147 	err = amd_iommu_device_info(kfd->pdev, &iommu_info);
148 	if (err < 0) {
149 		dev_err(kfd_device,
150 			"error getting iommu info. is the iommu enabled?\n");
151 		return false;
152 	}
153 
154 	if ((iommu_info.flags & required_iommu_flags) != required_iommu_flags) {
155 		dev_err(kfd_device, "error required iommu flags ats(%i), pri(%i), pasid(%i)\n",
156 		       (iommu_info.flags & AMD_IOMMU_DEVICE_FLAG_ATS_SUP) != 0,
157 		       (iommu_info.flags & AMD_IOMMU_DEVICE_FLAG_PRI_SUP) != 0,
158 		       (iommu_info.flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP) != 0);
159 		return false;
160 	}
161 
162 	pasid_limit = min_t(unsigned int,
163 			(unsigned int)1 << kfd->device_info->max_pasid_bits,
164 			iommu_info.max_pasids);
165 	/*
166 	 * last pasid is used for kernel queues doorbells
167 	 * in the future the last pasid might be used for a kernel thread.
168 	 */
169 	pasid_limit = min_t(unsigned int,
170 				pasid_limit,
171 				kfd->doorbell_process_limit - 1);
172 
173 	err = amd_iommu_init_device(kfd->pdev, pasid_limit);
174 	if (err < 0) {
175 		dev_err(kfd_device, "error initializing iommu device\n");
176 		return false;
177 	}
178 
179 	if (!kfd_set_pasid_limit(pasid_limit)) {
180 		dev_err(kfd_device, "error setting pasid limit\n");
181 		amd_iommu_free_device(kfd->pdev);
182 		return false;
183 	}
184 
185 	return true;
186 }
187 
188 static void iommu_pasid_shutdown_callback(struct pci_dev *pdev, int pasid)
189 {
190 	struct kfd_dev *dev = kfd_device_by_pci_dev(pdev);
191 
192 	if (dev)
193 		kfd_unbind_process_from_device(dev, pasid);
194 }
195 
196 /*
197  * This function called by IOMMU driver on PPR failure
198  */
199 static int iommu_invalid_ppr_cb(struct pci_dev *pdev, int pasid,
200 		unsigned long address, u16 flags)
201 {
202 	struct kfd_dev *dev;
203 
204 	dev_warn(kfd_device,
205 			"Invalid PPR device %x:%x.%x pasid %d address 0x%lX flags 0x%X",
206 			PCI_BUS_NUM(pdev->devfn),
207 			PCI_SLOT(pdev->devfn),
208 			PCI_FUNC(pdev->devfn),
209 			pasid,
210 			address,
211 			flags);
212 
213 	dev = kfd_device_by_pci_dev(pdev);
214 	BUG_ON(dev == NULL);
215 
216 	kfd_signal_iommu_event(dev, pasid, address,
217 			flags & PPR_FAULT_WRITE, flags & PPR_FAULT_EXEC);
218 
219 	return AMD_IOMMU_INV_PRI_RSP_INVALID;
220 }
221 
222 bool kgd2kfd_device_init(struct kfd_dev *kfd,
223 			 const struct kgd2kfd_shared_resources *gpu_resources)
224 {
225 	unsigned int size;
226 
227 	kfd->shared_resources = *gpu_resources;
228 
229 	/* calculate max size of mqds needed for queues */
230 	size = max_num_of_queues_per_device *
231 			kfd->device_info->mqd_size_aligned;
232 
233 	/*
234 	 * calculate max size of runlist packet.
235 	 * There can be only 2 packets at once
236 	 */
237 	size += (KFD_MAX_NUM_OF_PROCESSES * sizeof(struct pm4_map_process) +
238 		max_num_of_queues_per_device *
239 		sizeof(struct pm4_map_queues) + sizeof(struct pm4_runlist)) * 2;
240 
241 	/* Add size of HIQ & DIQ */
242 	size += KFD_KERNEL_QUEUE_SIZE * 2;
243 
244 	/* add another 512KB for all other allocations on gart (HPD, fences) */
245 	size += 512 * 1024;
246 
247 	if (kfd->kfd2kgd->init_gtt_mem_allocation(
248 			kfd->kgd, size, &kfd->gtt_mem,
249 			&kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr)){
250 		dev_err(kfd_device,
251 			"Could not allocate %d bytes for device (%x:%x)\n",
252 			size, kfd->pdev->vendor, kfd->pdev->device);
253 		goto out;
254 	}
255 
256 	dev_info(kfd_device,
257 		"Allocated %d bytes on gart for device(%x:%x)\n",
258 		size, kfd->pdev->vendor, kfd->pdev->device);
259 
260 	/* Initialize GTT sa with 512 byte chunk size */
261 	if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
262 		dev_err(kfd_device,
263 			"Error initializing gtt sub-allocator\n");
264 		goto kfd_gtt_sa_init_error;
265 	}
266 
267 	kfd_doorbell_init(kfd);
268 
269 	if (kfd_topology_add_device(kfd) != 0) {
270 		dev_err(kfd_device,
271 			"Error adding device (%x:%x) to topology\n",
272 			kfd->pdev->vendor, kfd->pdev->device);
273 		goto kfd_topology_add_device_error;
274 	}
275 
276 	if (kfd_interrupt_init(kfd)) {
277 		dev_err(kfd_device,
278 			"Error initializing interrupts for device (%x:%x)\n",
279 			kfd->pdev->vendor, kfd->pdev->device);
280 		goto kfd_interrupt_error;
281 	}
282 
283 	if (!device_iommu_pasid_init(kfd)) {
284 		dev_err(kfd_device,
285 			"Error initializing iommuv2 for device (%x:%x)\n",
286 			kfd->pdev->vendor, kfd->pdev->device);
287 		goto device_iommu_pasid_error;
288 	}
289 	amd_iommu_set_invalidate_ctx_cb(kfd->pdev,
290 						iommu_pasid_shutdown_callback);
291 	amd_iommu_set_invalid_ppr_cb(kfd->pdev, iommu_invalid_ppr_cb);
292 
293 	kfd->dqm = device_queue_manager_init(kfd);
294 	if (!kfd->dqm) {
295 		dev_err(kfd_device,
296 			"Error initializing queue manager for device (%x:%x)\n",
297 			kfd->pdev->vendor, kfd->pdev->device);
298 		goto device_queue_manager_error;
299 	}
300 
301 	if (kfd->dqm->ops.start(kfd->dqm) != 0) {
302 		dev_err(kfd_device,
303 			"Error starting queuen manager for device (%x:%x)\n",
304 			kfd->pdev->vendor, kfd->pdev->device);
305 		goto dqm_start_error;
306 	}
307 
308 	kfd->dbgmgr = NULL;
309 
310 	kfd->init_complete = true;
311 	dev_info(kfd_device, "added device (%x:%x)\n", kfd->pdev->vendor,
312 		 kfd->pdev->device);
313 
314 	pr_debug("kfd: Starting kfd with the following scheduling policy %d\n",
315 		sched_policy);
316 
317 	goto out;
318 
319 dqm_start_error:
320 	device_queue_manager_uninit(kfd->dqm);
321 device_queue_manager_error:
322 	amd_iommu_free_device(kfd->pdev);
323 device_iommu_pasid_error:
324 	kfd_interrupt_exit(kfd);
325 kfd_interrupt_error:
326 	kfd_topology_remove_device(kfd);
327 kfd_topology_add_device_error:
328 	kfd_gtt_sa_fini(kfd);
329 kfd_gtt_sa_init_error:
330 	kfd->kfd2kgd->free_gtt_mem(kfd->kgd, kfd->gtt_mem);
331 	dev_err(kfd_device,
332 		"device (%x:%x) NOT added due to errors\n",
333 		kfd->pdev->vendor, kfd->pdev->device);
334 out:
335 	return kfd->init_complete;
336 }
337 
338 void kgd2kfd_device_exit(struct kfd_dev *kfd)
339 {
340 	if (kfd->init_complete) {
341 		device_queue_manager_uninit(kfd->dqm);
342 		amd_iommu_free_device(kfd->pdev);
343 		kfd_interrupt_exit(kfd);
344 		kfd_topology_remove_device(kfd);
345 		kfd_gtt_sa_fini(kfd);
346 		kfd->kfd2kgd->free_gtt_mem(kfd->kgd, kfd->gtt_mem);
347 	}
348 
349 	kfree(kfd);
350 }
351 
352 void kgd2kfd_suspend(struct kfd_dev *kfd)
353 {
354 	BUG_ON(kfd == NULL);
355 
356 	if (kfd->init_complete) {
357 		kfd->dqm->ops.stop(kfd->dqm);
358 		amd_iommu_set_invalidate_ctx_cb(kfd->pdev, NULL);
359 		amd_iommu_set_invalid_ppr_cb(kfd->pdev, NULL);
360 		amd_iommu_free_device(kfd->pdev);
361 	}
362 }
363 
364 int kgd2kfd_resume(struct kfd_dev *kfd)
365 {
366 	unsigned int pasid_limit;
367 	int err;
368 
369 	BUG_ON(kfd == NULL);
370 
371 	pasid_limit = kfd_get_pasid_limit();
372 
373 	if (kfd->init_complete) {
374 		err = amd_iommu_init_device(kfd->pdev, pasid_limit);
375 		if (err < 0)
376 			return -ENXIO;
377 		amd_iommu_set_invalidate_ctx_cb(kfd->pdev,
378 						iommu_pasid_shutdown_callback);
379 		amd_iommu_set_invalid_ppr_cb(kfd->pdev, iommu_invalid_ppr_cb);
380 		kfd->dqm->ops.start(kfd->dqm);
381 	}
382 
383 	return 0;
384 }
385 
386 /* This is called directly from KGD at ISR. */
387 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
388 {
389 	if (!kfd->init_complete)
390 		return;
391 
392 	spin_lock(&kfd->interrupt_lock);
393 
394 	if (kfd->interrupts_active
395 	    && interrupt_is_wanted(kfd, ih_ring_entry)
396 	    && enqueue_ih_ring_entry(kfd, ih_ring_entry))
397 		schedule_work(&kfd->interrupt_work);
398 
399 	spin_unlock(&kfd->interrupt_lock);
400 }
401 
402 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
403 				unsigned int chunk_size)
404 {
405 	unsigned int num_of_bits;
406 
407 	BUG_ON(!kfd);
408 	BUG_ON(!kfd->gtt_mem);
409 	BUG_ON(buf_size < chunk_size);
410 	BUG_ON(buf_size == 0);
411 	BUG_ON(chunk_size == 0);
412 
413 	kfd->gtt_sa_chunk_size = chunk_size;
414 	kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
415 
416 	num_of_bits = kfd->gtt_sa_num_of_chunks / BITS_PER_BYTE;
417 	BUG_ON(num_of_bits == 0);
418 
419 	kfd->gtt_sa_bitmap = kzalloc(num_of_bits, GFP_KERNEL);
420 
421 	if (!kfd->gtt_sa_bitmap)
422 		return -ENOMEM;
423 
424 	pr_debug("kfd: gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
425 			kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
426 
427 	mutex_init(&kfd->gtt_sa_lock);
428 
429 	return 0;
430 
431 }
432 
433 static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
434 {
435 	mutex_destroy(&kfd->gtt_sa_lock);
436 	kfree(kfd->gtt_sa_bitmap);
437 }
438 
439 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
440 						unsigned int bit_num,
441 						unsigned int chunk_size)
442 {
443 	return start_addr + bit_num * chunk_size;
444 }
445 
446 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
447 						unsigned int bit_num,
448 						unsigned int chunk_size)
449 {
450 	return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
451 }
452 
453 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
454 			struct kfd_mem_obj **mem_obj)
455 {
456 	unsigned int found, start_search, cur_size;
457 
458 	BUG_ON(!kfd);
459 
460 	if (size == 0)
461 		return -EINVAL;
462 
463 	if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
464 		return -ENOMEM;
465 
466 	*mem_obj = kmalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
467 	if ((*mem_obj) == NULL)
468 		return -ENOMEM;
469 
470 	pr_debug("kfd: allocated mem_obj = %p for size = %d\n", *mem_obj, size);
471 
472 	start_search = 0;
473 
474 	mutex_lock(&kfd->gtt_sa_lock);
475 
476 kfd_gtt_restart_search:
477 	/* Find the first chunk that is free */
478 	found = find_next_zero_bit(kfd->gtt_sa_bitmap,
479 					kfd->gtt_sa_num_of_chunks,
480 					start_search);
481 
482 	pr_debug("kfd: found = %d\n", found);
483 
484 	/* If there wasn't any free chunk, bail out */
485 	if (found == kfd->gtt_sa_num_of_chunks)
486 		goto kfd_gtt_no_free_chunk;
487 
488 	/* Update fields of mem_obj */
489 	(*mem_obj)->range_start = found;
490 	(*mem_obj)->range_end = found;
491 	(*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
492 					kfd->gtt_start_gpu_addr,
493 					found,
494 					kfd->gtt_sa_chunk_size);
495 	(*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
496 					kfd->gtt_start_cpu_ptr,
497 					found,
498 					kfd->gtt_sa_chunk_size);
499 
500 	pr_debug("kfd: gpu_addr = %p, cpu_addr = %p\n",
501 			(uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
502 
503 	/* If we need only one chunk, mark it as allocated and get out */
504 	if (size <= kfd->gtt_sa_chunk_size) {
505 		pr_debug("kfd: single bit\n");
506 		set_bit(found, kfd->gtt_sa_bitmap);
507 		goto kfd_gtt_out;
508 	}
509 
510 	/* Otherwise, try to see if we have enough contiguous chunks */
511 	cur_size = size - kfd->gtt_sa_chunk_size;
512 	do {
513 		(*mem_obj)->range_end =
514 			find_next_zero_bit(kfd->gtt_sa_bitmap,
515 					kfd->gtt_sa_num_of_chunks, ++found);
516 		/*
517 		 * If next free chunk is not contiguous than we need to
518 		 * restart our search from the last free chunk we found (which
519 		 * wasn't contiguous to the previous ones
520 		 */
521 		if ((*mem_obj)->range_end != found) {
522 			start_search = found;
523 			goto kfd_gtt_restart_search;
524 		}
525 
526 		/*
527 		 * If we reached end of buffer, bail out with error
528 		 */
529 		if (found == kfd->gtt_sa_num_of_chunks)
530 			goto kfd_gtt_no_free_chunk;
531 
532 		/* Check if we don't need another chunk */
533 		if (cur_size <= kfd->gtt_sa_chunk_size)
534 			cur_size = 0;
535 		else
536 			cur_size -= kfd->gtt_sa_chunk_size;
537 
538 	} while (cur_size > 0);
539 
540 	pr_debug("kfd: range_start = %d, range_end = %d\n",
541 		(*mem_obj)->range_start, (*mem_obj)->range_end);
542 
543 	/* Mark the chunks as allocated */
544 	for (found = (*mem_obj)->range_start;
545 		found <= (*mem_obj)->range_end;
546 		found++)
547 		set_bit(found, kfd->gtt_sa_bitmap);
548 
549 kfd_gtt_out:
550 	mutex_unlock(&kfd->gtt_sa_lock);
551 	return 0;
552 
553 kfd_gtt_no_free_chunk:
554 	pr_debug("kfd: allocation failed with mem_obj = %p\n", mem_obj);
555 	mutex_unlock(&kfd->gtt_sa_lock);
556 	kfree(mem_obj);
557 	return -ENOMEM;
558 }
559 
560 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj)
561 {
562 	unsigned int bit;
563 
564 	BUG_ON(!kfd);
565 
566 	/* Act like kfree when trying to free a NULL object */
567 	if (!mem_obj)
568 		return 0;
569 
570 	pr_debug("kfd: free mem_obj = %p, range_start = %d, range_end = %d\n",
571 			mem_obj, mem_obj->range_start, mem_obj->range_end);
572 
573 	mutex_lock(&kfd->gtt_sa_lock);
574 
575 	/* Mark the chunks as free */
576 	for (bit = mem_obj->range_start;
577 		bit <= mem_obj->range_end;
578 		bit++)
579 		clear_bit(bit, kfd->gtt_sa_bitmap);
580 
581 	mutex_unlock(&kfd->gtt_sa_lock);
582 
583 	kfree(mem_obj);
584 	return 0;
585 }
586