xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_device.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/amd-iommu.h>
24 #include <linux/bsearch.h>
25 #include <linux/pci.h>
26 #include <linux/slab.h>
27 #include "kfd_priv.h"
28 #include "kfd_device_queue_manager.h"
29 #include "kfd_pm4_headers.h"
30 
31 #define MQD_SIZE_ALIGNED 768
32 
33 static const struct kfd_device_info kaveri_device_info = {
34 	.asic_family = CHIP_KAVERI,
35 	.max_pasid_bits = 16,
36 	/* max num of queues for KV.TODO should be a dynamic value */
37 	.max_no_of_hqd	= 24,
38 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
39 	.event_interrupt_class = &event_interrupt_class_cik,
40 	.num_of_watch_points = 4,
41 	.mqd_size_aligned = MQD_SIZE_ALIGNED
42 };
43 
44 static const struct kfd_device_info carrizo_device_info = {
45 	.asic_family = CHIP_CARRIZO,
46 	.max_pasid_bits = 16,
47 	/* max num of queues for CZ.TODO should be a dynamic value */
48 	.max_no_of_hqd	= 24,
49 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
50 	.event_interrupt_class = &event_interrupt_class_cik,
51 	.num_of_watch_points = 4,
52 	.mqd_size_aligned = MQD_SIZE_ALIGNED
53 };
54 
55 struct kfd_deviceid {
56 	unsigned short did;
57 	const struct kfd_device_info *device_info;
58 };
59 
60 /* Please keep this sorted by increasing device id. */
61 static const struct kfd_deviceid supported_devices[] = {
62 	{ 0x1304, &kaveri_device_info },	/* Kaveri */
63 	{ 0x1305, &kaveri_device_info },	/* Kaveri */
64 	{ 0x1306, &kaveri_device_info },	/* Kaveri */
65 	{ 0x1307, &kaveri_device_info },	/* Kaveri */
66 	{ 0x1309, &kaveri_device_info },	/* Kaveri */
67 	{ 0x130A, &kaveri_device_info },	/* Kaveri */
68 	{ 0x130B, &kaveri_device_info },	/* Kaveri */
69 	{ 0x130C, &kaveri_device_info },	/* Kaveri */
70 	{ 0x130D, &kaveri_device_info },	/* Kaveri */
71 	{ 0x130E, &kaveri_device_info },	/* Kaveri */
72 	{ 0x130F, &kaveri_device_info },	/* Kaveri */
73 	{ 0x1310, &kaveri_device_info },	/* Kaveri */
74 	{ 0x1311, &kaveri_device_info },	/* Kaveri */
75 	{ 0x1312, &kaveri_device_info },	/* Kaveri */
76 	{ 0x1313, &kaveri_device_info },	/* Kaveri */
77 	{ 0x1315, &kaveri_device_info },	/* Kaveri */
78 	{ 0x1316, &kaveri_device_info },	/* Kaveri */
79 	{ 0x1317, &kaveri_device_info },	/* Kaveri */
80 	{ 0x1318, &kaveri_device_info },	/* Kaveri */
81 	{ 0x131B, &kaveri_device_info },	/* Kaveri */
82 	{ 0x131C, &kaveri_device_info },	/* Kaveri */
83 	{ 0x131D, &kaveri_device_info }		/* Kaveri */
84 };
85 
86 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
87 				unsigned int chunk_size);
88 static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
89 
90 static const struct kfd_device_info *lookup_device_info(unsigned short did)
91 {
92 	size_t i;
93 
94 	for (i = 0; i < ARRAY_SIZE(supported_devices); i++) {
95 		if (supported_devices[i].did == did) {
96 			BUG_ON(supported_devices[i].device_info == NULL);
97 			return supported_devices[i].device_info;
98 		}
99 	}
100 
101 	return NULL;
102 }
103 
104 struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
105 	struct pci_dev *pdev, const struct kfd2kgd_calls *f2g)
106 {
107 	struct kfd_dev *kfd;
108 
109 	const struct kfd_device_info *device_info =
110 					lookup_device_info(pdev->device);
111 
112 	if (!device_info)
113 		return NULL;
114 
115 	kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
116 	if (!kfd)
117 		return NULL;
118 
119 	kfd->kgd = kgd;
120 	kfd->device_info = device_info;
121 	kfd->pdev = pdev;
122 	kfd->init_complete = false;
123 	kfd->kfd2kgd = f2g;
124 
125 	mutex_init(&kfd->doorbell_mutex);
126 	memset(&kfd->doorbell_available_index, 0,
127 		sizeof(kfd->doorbell_available_index));
128 
129 	return kfd;
130 }
131 
132 static bool device_iommu_pasid_init(struct kfd_dev *kfd)
133 {
134 	const u32 required_iommu_flags = AMD_IOMMU_DEVICE_FLAG_ATS_SUP |
135 					AMD_IOMMU_DEVICE_FLAG_PRI_SUP |
136 					AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
137 
138 	struct amd_iommu_device_info iommu_info;
139 	unsigned int pasid_limit;
140 	int err;
141 
142 	err = amd_iommu_device_info(kfd->pdev, &iommu_info);
143 	if (err < 0) {
144 		dev_err(kfd_device,
145 			"error getting iommu info. is the iommu enabled?\n");
146 		return false;
147 	}
148 
149 	if ((iommu_info.flags & required_iommu_flags) != required_iommu_flags) {
150 		dev_err(kfd_device, "error required iommu flags ats(%i), pri(%i), pasid(%i)\n",
151 		       (iommu_info.flags & AMD_IOMMU_DEVICE_FLAG_ATS_SUP) != 0,
152 		       (iommu_info.flags & AMD_IOMMU_DEVICE_FLAG_PRI_SUP) != 0,
153 		       (iommu_info.flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP) != 0);
154 		return false;
155 	}
156 
157 	pasid_limit = min_t(unsigned int,
158 			(unsigned int)1 << kfd->device_info->max_pasid_bits,
159 			iommu_info.max_pasids);
160 	/*
161 	 * last pasid is used for kernel queues doorbells
162 	 * in the future the last pasid might be used for a kernel thread.
163 	 */
164 	pasid_limit = min_t(unsigned int,
165 				pasid_limit,
166 				kfd->doorbell_process_limit - 1);
167 
168 	err = amd_iommu_init_device(kfd->pdev, pasid_limit);
169 	if (err < 0) {
170 		dev_err(kfd_device, "error initializing iommu device\n");
171 		return false;
172 	}
173 
174 	if (!kfd_set_pasid_limit(pasid_limit)) {
175 		dev_err(kfd_device, "error setting pasid limit\n");
176 		amd_iommu_free_device(kfd->pdev);
177 		return false;
178 	}
179 
180 	return true;
181 }
182 
183 static void iommu_pasid_shutdown_callback(struct pci_dev *pdev, int pasid)
184 {
185 	struct kfd_dev *dev = kfd_device_by_pci_dev(pdev);
186 
187 	if (dev)
188 		kfd_unbind_process_from_device(dev, pasid);
189 }
190 
191 /*
192  * This function called by IOMMU driver on PPR failure
193  */
194 static int iommu_invalid_ppr_cb(struct pci_dev *pdev, int pasid,
195 		unsigned long address, u16 flags)
196 {
197 	struct kfd_dev *dev;
198 
199 	dev_warn(kfd_device,
200 			"Invalid PPR device %x:%x.%x pasid %d address 0x%lX flags 0x%X",
201 			PCI_BUS_NUM(pdev->devfn),
202 			PCI_SLOT(pdev->devfn),
203 			PCI_FUNC(pdev->devfn),
204 			pasid,
205 			address,
206 			flags);
207 
208 	dev = kfd_device_by_pci_dev(pdev);
209 	BUG_ON(dev == NULL);
210 
211 	kfd_signal_iommu_event(dev, pasid, address,
212 			flags & PPR_FAULT_WRITE, flags & PPR_FAULT_EXEC);
213 
214 	return AMD_IOMMU_INV_PRI_RSP_INVALID;
215 }
216 
217 bool kgd2kfd_device_init(struct kfd_dev *kfd,
218 			 const struct kgd2kfd_shared_resources *gpu_resources)
219 {
220 	unsigned int size;
221 
222 	kfd->shared_resources = *gpu_resources;
223 
224 	/* calculate max size of mqds needed for queues */
225 	size = max_num_of_queues_per_device *
226 			kfd->device_info->mqd_size_aligned;
227 
228 	/*
229 	 * calculate max size of runlist packet.
230 	 * There can be only 2 packets at once
231 	 */
232 	size += (KFD_MAX_NUM_OF_PROCESSES * sizeof(struct pm4_map_process) +
233 		max_num_of_queues_per_device *
234 		sizeof(struct pm4_map_queues) + sizeof(struct pm4_runlist)) * 2;
235 
236 	/* Add size of HIQ & DIQ */
237 	size += KFD_KERNEL_QUEUE_SIZE * 2;
238 
239 	/* add another 512KB for all other allocations on gart (HPD, fences) */
240 	size += 512 * 1024;
241 
242 	if (kfd->kfd2kgd->init_gtt_mem_allocation(
243 			kfd->kgd, size, &kfd->gtt_mem,
244 			&kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr)){
245 		dev_err(kfd_device,
246 			"Could not allocate %d bytes for device (%x:%x)\n",
247 			size, kfd->pdev->vendor, kfd->pdev->device);
248 		goto out;
249 	}
250 
251 	dev_info(kfd_device,
252 		"Allocated %d bytes on gart for device(%x:%x)\n",
253 		size, kfd->pdev->vendor, kfd->pdev->device);
254 
255 	/* Initialize GTT sa with 512 byte chunk size */
256 	if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
257 		dev_err(kfd_device,
258 			"Error initializing gtt sub-allocator\n");
259 		goto kfd_gtt_sa_init_error;
260 	}
261 
262 	kfd_doorbell_init(kfd);
263 
264 	if (kfd_topology_add_device(kfd) != 0) {
265 		dev_err(kfd_device,
266 			"Error adding device (%x:%x) to topology\n",
267 			kfd->pdev->vendor, kfd->pdev->device);
268 		goto kfd_topology_add_device_error;
269 	}
270 
271 	if (kfd_interrupt_init(kfd)) {
272 		dev_err(kfd_device,
273 			"Error initializing interrupts for device (%x:%x)\n",
274 			kfd->pdev->vendor, kfd->pdev->device);
275 		goto kfd_interrupt_error;
276 	}
277 
278 	if (!device_iommu_pasid_init(kfd)) {
279 		dev_err(kfd_device,
280 			"Error initializing iommuv2 for device (%x:%x)\n",
281 			kfd->pdev->vendor, kfd->pdev->device);
282 		goto device_iommu_pasid_error;
283 	}
284 	amd_iommu_set_invalidate_ctx_cb(kfd->pdev,
285 						iommu_pasid_shutdown_callback);
286 	amd_iommu_set_invalid_ppr_cb(kfd->pdev, iommu_invalid_ppr_cb);
287 
288 	kfd->dqm = device_queue_manager_init(kfd);
289 	if (!kfd->dqm) {
290 		dev_err(kfd_device,
291 			"Error initializing queue manager for device (%x:%x)\n",
292 			kfd->pdev->vendor, kfd->pdev->device);
293 		goto device_queue_manager_error;
294 	}
295 
296 	if (kfd->dqm->ops.start(kfd->dqm) != 0) {
297 		dev_err(kfd_device,
298 			"Error starting queuen manager for device (%x:%x)\n",
299 			kfd->pdev->vendor, kfd->pdev->device);
300 		goto dqm_start_error;
301 	}
302 
303 	kfd->dbgmgr = NULL;
304 
305 	kfd->init_complete = true;
306 	dev_info(kfd_device, "added device (%x:%x)\n", kfd->pdev->vendor,
307 		 kfd->pdev->device);
308 
309 	pr_debug("kfd: Starting kfd with the following scheduling policy %d\n",
310 		sched_policy);
311 
312 	goto out;
313 
314 dqm_start_error:
315 	device_queue_manager_uninit(kfd->dqm);
316 device_queue_manager_error:
317 	amd_iommu_free_device(kfd->pdev);
318 device_iommu_pasid_error:
319 	kfd_interrupt_exit(kfd);
320 kfd_interrupt_error:
321 	kfd_topology_remove_device(kfd);
322 kfd_topology_add_device_error:
323 	kfd_gtt_sa_fini(kfd);
324 kfd_gtt_sa_init_error:
325 	kfd->kfd2kgd->free_gtt_mem(kfd->kgd, kfd->gtt_mem);
326 	dev_err(kfd_device,
327 		"device (%x:%x) NOT added due to errors\n",
328 		kfd->pdev->vendor, kfd->pdev->device);
329 out:
330 	return kfd->init_complete;
331 }
332 
333 void kgd2kfd_device_exit(struct kfd_dev *kfd)
334 {
335 	if (kfd->init_complete) {
336 		device_queue_manager_uninit(kfd->dqm);
337 		amd_iommu_free_device(kfd->pdev);
338 		kfd_interrupt_exit(kfd);
339 		kfd_topology_remove_device(kfd);
340 		kfd_gtt_sa_fini(kfd);
341 		kfd->kfd2kgd->free_gtt_mem(kfd->kgd, kfd->gtt_mem);
342 	}
343 
344 	kfree(kfd);
345 }
346 
347 void kgd2kfd_suspend(struct kfd_dev *kfd)
348 {
349 	BUG_ON(kfd == NULL);
350 
351 	if (kfd->init_complete) {
352 		kfd->dqm->ops.stop(kfd->dqm);
353 		amd_iommu_set_invalidate_ctx_cb(kfd->pdev, NULL);
354 		amd_iommu_set_invalid_ppr_cb(kfd->pdev, NULL);
355 		amd_iommu_free_device(kfd->pdev);
356 	}
357 }
358 
359 int kgd2kfd_resume(struct kfd_dev *kfd)
360 {
361 	unsigned int pasid_limit;
362 	int err;
363 
364 	BUG_ON(kfd == NULL);
365 
366 	pasid_limit = kfd_get_pasid_limit();
367 
368 	if (kfd->init_complete) {
369 		err = amd_iommu_init_device(kfd->pdev, pasid_limit);
370 		if (err < 0)
371 			return -ENXIO;
372 		amd_iommu_set_invalidate_ctx_cb(kfd->pdev,
373 						iommu_pasid_shutdown_callback);
374 		amd_iommu_set_invalid_ppr_cb(kfd->pdev, iommu_invalid_ppr_cb);
375 		kfd->dqm->ops.start(kfd->dqm);
376 	}
377 
378 	return 0;
379 }
380 
381 /* This is called directly from KGD at ISR. */
382 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
383 {
384 	if (!kfd->init_complete)
385 		return;
386 
387 	spin_lock(&kfd->interrupt_lock);
388 
389 	if (kfd->interrupts_active
390 	    && interrupt_is_wanted(kfd, ih_ring_entry)
391 	    && enqueue_ih_ring_entry(kfd, ih_ring_entry))
392 		schedule_work(&kfd->interrupt_work);
393 
394 	spin_unlock(&kfd->interrupt_lock);
395 }
396 
397 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
398 				unsigned int chunk_size)
399 {
400 	unsigned int num_of_bits;
401 
402 	BUG_ON(!kfd);
403 	BUG_ON(!kfd->gtt_mem);
404 	BUG_ON(buf_size < chunk_size);
405 	BUG_ON(buf_size == 0);
406 	BUG_ON(chunk_size == 0);
407 
408 	kfd->gtt_sa_chunk_size = chunk_size;
409 	kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
410 
411 	num_of_bits = kfd->gtt_sa_num_of_chunks / BITS_PER_BYTE;
412 	BUG_ON(num_of_bits == 0);
413 
414 	kfd->gtt_sa_bitmap = kzalloc(num_of_bits, GFP_KERNEL);
415 
416 	if (!kfd->gtt_sa_bitmap)
417 		return -ENOMEM;
418 
419 	pr_debug("kfd: gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
420 			kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
421 
422 	mutex_init(&kfd->gtt_sa_lock);
423 
424 	return 0;
425 
426 }
427 
428 static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
429 {
430 	mutex_destroy(&kfd->gtt_sa_lock);
431 	kfree(kfd->gtt_sa_bitmap);
432 }
433 
434 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
435 						unsigned int bit_num,
436 						unsigned int chunk_size)
437 {
438 	return start_addr + bit_num * chunk_size;
439 }
440 
441 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
442 						unsigned int bit_num,
443 						unsigned int chunk_size)
444 {
445 	return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
446 }
447 
448 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
449 			struct kfd_mem_obj **mem_obj)
450 {
451 	unsigned int found, start_search, cur_size;
452 
453 	BUG_ON(!kfd);
454 
455 	if (size == 0)
456 		return -EINVAL;
457 
458 	if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
459 		return -ENOMEM;
460 
461 	*mem_obj = kmalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
462 	if ((*mem_obj) == NULL)
463 		return -ENOMEM;
464 
465 	pr_debug("kfd: allocated mem_obj = %p for size = %d\n", *mem_obj, size);
466 
467 	start_search = 0;
468 
469 	mutex_lock(&kfd->gtt_sa_lock);
470 
471 kfd_gtt_restart_search:
472 	/* Find the first chunk that is free */
473 	found = find_next_zero_bit(kfd->gtt_sa_bitmap,
474 					kfd->gtt_sa_num_of_chunks,
475 					start_search);
476 
477 	pr_debug("kfd: found = %d\n", found);
478 
479 	/* If there wasn't any free chunk, bail out */
480 	if (found == kfd->gtt_sa_num_of_chunks)
481 		goto kfd_gtt_no_free_chunk;
482 
483 	/* Update fields of mem_obj */
484 	(*mem_obj)->range_start = found;
485 	(*mem_obj)->range_end = found;
486 	(*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
487 					kfd->gtt_start_gpu_addr,
488 					found,
489 					kfd->gtt_sa_chunk_size);
490 	(*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
491 					kfd->gtt_start_cpu_ptr,
492 					found,
493 					kfd->gtt_sa_chunk_size);
494 
495 	pr_debug("kfd: gpu_addr = %p, cpu_addr = %p\n",
496 			(uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
497 
498 	/* If we need only one chunk, mark it as allocated and get out */
499 	if (size <= kfd->gtt_sa_chunk_size) {
500 		pr_debug("kfd: single bit\n");
501 		set_bit(found, kfd->gtt_sa_bitmap);
502 		goto kfd_gtt_out;
503 	}
504 
505 	/* Otherwise, try to see if we have enough contiguous chunks */
506 	cur_size = size - kfd->gtt_sa_chunk_size;
507 	do {
508 		(*mem_obj)->range_end =
509 			find_next_zero_bit(kfd->gtt_sa_bitmap,
510 					kfd->gtt_sa_num_of_chunks, ++found);
511 		/*
512 		 * If next free chunk is not contiguous than we need to
513 		 * restart our search from the last free chunk we found (which
514 		 * wasn't contiguous to the previous ones
515 		 */
516 		if ((*mem_obj)->range_end != found) {
517 			start_search = found;
518 			goto kfd_gtt_restart_search;
519 		}
520 
521 		/*
522 		 * If we reached end of buffer, bail out with error
523 		 */
524 		if (found == kfd->gtt_sa_num_of_chunks)
525 			goto kfd_gtt_no_free_chunk;
526 
527 		/* Check if we don't need another chunk */
528 		if (cur_size <= kfd->gtt_sa_chunk_size)
529 			cur_size = 0;
530 		else
531 			cur_size -= kfd->gtt_sa_chunk_size;
532 
533 	} while (cur_size > 0);
534 
535 	pr_debug("kfd: range_start = %d, range_end = %d\n",
536 		(*mem_obj)->range_start, (*mem_obj)->range_end);
537 
538 	/* Mark the chunks as allocated */
539 	for (found = (*mem_obj)->range_start;
540 		found <= (*mem_obj)->range_end;
541 		found++)
542 		set_bit(found, kfd->gtt_sa_bitmap);
543 
544 kfd_gtt_out:
545 	mutex_unlock(&kfd->gtt_sa_lock);
546 	return 0;
547 
548 kfd_gtt_no_free_chunk:
549 	pr_debug("kfd: allocation failed with mem_obj = %p\n", mem_obj);
550 	mutex_unlock(&kfd->gtt_sa_lock);
551 	kfree(mem_obj);
552 	return -ENOMEM;
553 }
554 
555 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj)
556 {
557 	unsigned int bit;
558 
559 	BUG_ON(!kfd);
560 
561 	/* Act like kfree when trying to free a NULL object */
562 	if (!mem_obj)
563 		return 0;
564 
565 	pr_debug("kfd: free mem_obj = %p, range_start = %d, range_end = %d\n",
566 			mem_obj, mem_obj->range_start, mem_obj->range_end);
567 
568 	mutex_lock(&kfd->gtt_sa_lock);
569 
570 	/* Mark the chunks as free */
571 	for (bit = mem_obj->range_start;
572 		bit <= mem_obj->range_end;
573 		bit++)
574 		clear_bit(bit, kfd->gtt_sa_bitmap);
575 
576 	mutex_unlock(&kfd->gtt_sa_lock);
577 
578 	kfree(mem_obj);
579 	return 0;
580 }
581