xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_device.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/bsearch.h>
25 #include <linux/pci.h>
26 #include <linux/slab.h>
27 #include "kfd_priv.h"
28 #include "kfd_device_queue_manager.h"
29 #include "kfd_pm4_headers_vi.h"
30 #include "kfd_pm4_headers_aldebaran.h"
31 #include "cwsr_trap_handler.h"
32 #include "amdgpu_amdkfd.h"
33 #include "kfd_smi_events.h"
34 #include "kfd_svm.h"
35 #include "kfd_migrate.h"
36 #include "amdgpu.h"
37 #include "amdgpu_xcp.h"
38 
39 #define MQD_SIZE_ALIGNED 768
40 
41 /*
42  * kfd_locked is used to lock the kfd driver during suspend or reset
43  * once locked, kfd driver will stop any further GPU execution.
44  * create process (open) will return -EAGAIN.
45  */
46 static int kfd_locked;
47 
48 #ifdef CONFIG_DRM_AMDGPU_CIK
49 extern const struct kfd2kgd_calls gfx_v7_kfd2kgd;
50 #endif
51 extern const struct kfd2kgd_calls gfx_v8_kfd2kgd;
52 extern const struct kfd2kgd_calls gfx_v9_kfd2kgd;
53 extern const struct kfd2kgd_calls arcturus_kfd2kgd;
54 extern const struct kfd2kgd_calls aldebaran_kfd2kgd;
55 extern const struct kfd2kgd_calls gc_9_4_3_kfd2kgd;
56 extern const struct kfd2kgd_calls gfx_v10_kfd2kgd;
57 extern const struct kfd2kgd_calls gfx_v10_3_kfd2kgd;
58 extern const struct kfd2kgd_calls gfx_v11_kfd2kgd;
59 
60 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
61 				unsigned int chunk_size);
62 static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
63 
64 static int kfd_resume(struct kfd_node *kfd);
65 
66 static void kfd_device_info_set_sdma_info(struct kfd_dev *kfd)
67 {
68 	uint32_t sdma_version = amdgpu_ip_version(kfd->adev, SDMA0_HWIP, 0);
69 
70 	switch (sdma_version) {
71 	case IP_VERSION(4, 0, 0):/* VEGA10 */
72 	case IP_VERSION(4, 0, 1):/* VEGA12 */
73 	case IP_VERSION(4, 1, 0):/* RAVEN */
74 	case IP_VERSION(4, 1, 1):/* RAVEN */
75 	case IP_VERSION(4, 1, 2):/* RENOIR */
76 	case IP_VERSION(5, 2, 1):/* VANGOGH */
77 	case IP_VERSION(5, 2, 3):/* YELLOW_CARP */
78 	case IP_VERSION(5, 2, 6):/* GC 10.3.6 */
79 	case IP_VERSION(5, 2, 7):/* GC 10.3.7 */
80 		kfd->device_info.num_sdma_queues_per_engine = 2;
81 		break;
82 	case IP_VERSION(4, 2, 0):/* VEGA20 */
83 	case IP_VERSION(4, 2, 2):/* ARCTURUS */
84 	case IP_VERSION(4, 4, 0):/* ALDEBARAN */
85 	case IP_VERSION(4, 4, 2):
86 	case IP_VERSION(5, 0, 0):/* NAVI10 */
87 	case IP_VERSION(5, 0, 1):/* CYAN_SKILLFISH */
88 	case IP_VERSION(5, 0, 2):/* NAVI14 */
89 	case IP_VERSION(5, 0, 5):/* NAVI12 */
90 	case IP_VERSION(5, 2, 0):/* SIENNA_CICHLID */
91 	case IP_VERSION(5, 2, 2):/* NAVY_FLOUNDER */
92 	case IP_VERSION(5, 2, 4):/* DIMGREY_CAVEFISH */
93 	case IP_VERSION(5, 2, 5):/* BEIGE_GOBY */
94 	case IP_VERSION(6, 0, 0):
95 	case IP_VERSION(6, 0, 1):
96 	case IP_VERSION(6, 0, 2):
97 	case IP_VERSION(6, 0, 3):
98 	case IP_VERSION(6, 1, 0):
99 	case IP_VERSION(6, 1, 1):
100 		kfd->device_info.num_sdma_queues_per_engine = 8;
101 		break;
102 	default:
103 		dev_warn(kfd_device,
104 			"Default sdma queue per engine(8) is set due to mismatch of sdma ip block(SDMA_HWIP:0x%x).\n",
105 			sdma_version);
106 		kfd->device_info.num_sdma_queues_per_engine = 8;
107 	}
108 
109 	bitmap_zero(kfd->device_info.reserved_sdma_queues_bitmap, KFD_MAX_SDMA_QUEUES);
110 
111 	switch (sdma_version) {
112 	case IP_VERSION(6, 0, 0):
113 	case IP_VERSION(6, 0, 1):
114 	case IP_VERSION(6, 0, 2):
115 	case IP_VERSION(6, 0, 3):
116 	case IP_VERSION(6, 1, 0):
117 	case IP_VERSION(6, 1, 1):
118 		/* Reserve 1 for paging and 1 for gfx */
119 		kfd->device_info.num_reserved_sdma_queues_per_engine = 2;
120 		/* BIT(0)=engine-0 queue-0; BIT(1)=engine-1 queue-0; BIT(2)=engine-0 queue-1; ... */
121 		bitmap_set(kfd->device_info.reserved_sdma_queues_bitmap, 0,
122 			   kfd->adev->sdma.num_instances *
123 			   kfd->device_info.num_reserved_sdma_queues_per_engine);
124 		break;
125 	default:
126 		break;
127 	}
128 }
129 
130 static void kfd_device_info_set_event_interrupt_class(struct kfd_dev *kfd)
131 {
132 	uint32_t gc_version = KFD_GC_VERSION(kfd);
133 
134 	switch (gc_version) {
135 	case IP_VERSION(9, 0, 1): /* VEGA10 */
136 	case IP_VERSION(9, 1, 0): /* RAVEN */
137 	case IP_VERSION(9, 2, 1): /* VEGA12 */
138 	case IP_VERSION(9, 2, 2): /* RAVEN */
139 	case IP_VERSION(9, 3, 0): /* RENOIR */
140 	case IP_VERSION(9, 4, 0): /* VEGA20 */
141 	case IP_VERSION(9, 4, 1): /* ARCTURUS */
142 	case IP_VERSION(9, 4, 2): /* ALDEBARAN */
143 		kfd->device_info.event_interrupt_class = &event_interrupt_class_v9;
144 		break;
145 	case IP_VERSION(9, 4, 3): /* GC 9.4.3 */
146 		kfd->device_info.event_interrupt_class =
147 						&event_interrupt_class_v9_4_3;
148 		break;
149 	case IP_VERSION(10, 3, 1): /* VANGOGH */
150 	case IP_VERSION(10, 3, 3): /* YELLOW_CARP */
151 	case IP_VERSION(10, 3, 6): /* GC 10.3.6 */
152 	case IP_VERSION(10, 3, 7): /* GC 10.3.7 */
153 	case IP_VERSION(10, 1, 3): /* CYAN_SKILLFISH */
154 	case IP_VERSION(10, 1, 4):
155 	case IP_VERSION(10, 1, 10): /* NAVI10 */
156 	case IP_VERSION(10, 1, 2): /* NAVI12 */
157 	case IP_VERSION(10, 1, 1): /* NAVI14 */
158 	case IP_VERSION(10, 3, 0): /* SIENNA_CICHLID */
159 	case IP_VERSION(10, 3, 2): /* NAVY_FLOUNDER */
160 	case IP_VERSION(10, 3, 4): /* DIMGREY_CAVEFISH */
161 	case IP_VERSION(10, 3, 5): /* BEIGE_GOBY */
162 		kfd->device_info.event_interrupt_class = &event_interrupt_class_v10;
163 		break;
164 	case IP_VERSION(11, 0, 0):
165 	case IP_VERSION(11, 0, 1):
166 	case IP_VERSION(11, 0, 2):
167 	case IP_VERSION(11, 0, 3):
168 	case IP_VERSION(11, 0, 4):
169 	case IP_VERSION(11, 5, 0):
170 	case IP_VERSION(11, 5, 1):
171 		kfd->device_info.event_interrupt_class = &event_interrupt_class_v11;
172 		break;
173 	default:
174 		dev_warn(kfd_device, "v9 event interrupt handler is set due to "
175 			"mismatch of gc ip block(GC_HWIP:0x%x).\n", gc_version);
176 		kfd->device_info.event_interrupt_class = &event_interrupt_class_v9;
177 	}
178 }
179 
180 static void kfd_device_info_init(struct kfd_dev *kfd,
181 				 bool vf, uint32_t gfx_target_version)
182 {
183 	uint32_t gc_version = KFD_GC_VERSION(kfd);
184 	uint32_t asic_type = kfd->adev->asic_type;
185 
186 	kfd->device_info.max_pasid_bits = 16;
187 	kfd->device_info.max_no_of_hqd = 24;
188 	kfd->device_info.num_of_watch_points = 4;
189 	kfd->device_info.mqd_size_aligned = MQD_SIZE_ALIGNED;
190 	kfd->device_info.gfx_target_version = gfx_target_version;
191 
192 	if (KFD_IS_SOC15(kfd)) {
193 		kfd->device_info.doorbell_size = 8;
194 		kfd->device_info.ih_ring_entry_size = 8 * sizeof(uint32_t);
195 		kfd->device_info.supports_cwsr = true;
196 
197 		kfd_device_info_set_sdma_info(kfd);
198 
199 		kfd_device_info_set_event_interrupt_class(kfd);
200 
201 		if (gc_version < IP_VERSION(11, 0, 0)) {
202 			/* Navi2x+, Navi1x+ */
203 			if (gc_version == IP_VERSION(10, 3, 6))
204 				kfd->device_info.no_atomic_fw_version = 14;
205 			else if (gc_version == IP_VERSION(10, 3, 7))
206 				kfd->device_info.no_atomic_fw_version = 3;
207 			else if (gc_version >= IP_VERSION(10, 3, 0))
208 				kfd->device_info.no_atomic_fw_version = 92;
209 			else if (gc_version >= IP_VERSION(10, 1, 1))
210 				kfd->device_info.no_atomic_fw_version = 145;
211 
212 			/* Navi1x+ */
213 			if (gc_version >= IP_VERSION(10, 1, 1))
214 				kfd->device_info.needs_pci_atomics = true;
215 		} else if (gc_version < IP_VERSION(12, 0, 0)) {
216 			/*
217 			 * PCIe atomics support acknowledgment in GFX11 RS64 CPFW requires
218 			 * MEC version >= 509. Prior RS64 CPFW versions (and all F32) require
219 			 * PCIe atomics support.
220 			 */
221 			kfd->device_info.needs_pci_atomics = true;
222 			kfd->device_info.no_atomic_fw_version = kfd->adev->gfx.rs64_enable ? 509 : 0;
223 		}
224 	} else {
225 		kfd->device_info.doorbell_size = 4;
226 		kfd->device_info.ih_ring_entry_size = 4 * sizeof(uint32_t);
227 		kfd->device_info.event_interrupt_class = &event_interrupt_class_cik;
228 		kfd->device_info.num_sdma_queues_per_engine = 2;
229 
230 		if (asic_type != CHIP_KAVERI &&
231 		    asic_type != CHIP_HAWAII &&
232 		    asic_type != CHIP_TONGA)
233 			kfd->device_info.supports_cwsr = true;
234 
235 		if (asic_type != CHIP_HAWAII && !vf)
236 			kfd->device_info.needs_pci_atomics = true;
237 	}
238 }
239 
240 struct kfd_dev *kgd2kfd_probe(struct amdgpu_device *adev, bool vf)
241 {
242 	struct kfd_dev *kfd = NULL;
243 	const struct kfd2kgd_calls *f2g = NULL;
244 	uint32_t gfx_target_version = 0;
245 
246 	switch (adev->asic_type) {
247 #ifdef CONFIG_DRM_AMDGPU_CIK
248 	case CHIP_KAVERI:
249 		gfx_target_version = 70000;
250 		if (!vf)
251 			f2g = &gfx_v7_kfd2kgd;
252 		break;
253 #endif
254 	case CHIP_CARRIZO:
255 		gfx_target_version = 80001;
256 		if (!vf)
257 			f2g = &gfx_v8_kfd2kgd;
258 		break;
259 #ifdef CONFIG_DRM_AMDGPU_CIK
260 	case CHIP_HAWAII:
261 		gfx_target_version = 70001;
262 		if (!amdgpu_exp_hw_support)
263 			pr_info(
264 	"KFD support on Hawaii is experimental. See modparam exp_hw_support\n"
265 				);
266 		else if (!vf)
267 			f2g = &gfx_v7_kfd2kgd;
268 		break;
269 #endif
270 	case CHIP_TONGA:
271 		gfx_target_version = 80002;
272 		if (!vf)
273 			f2g = &gfx_v8_kfd2kgd;
274 		break;
275 	case CHIP_FIJI:
276 	case CHIP_POLARIS10:
277 		gfx_target_version = 80003;
278 		f2g = &gfx_v8_kfd2kgd;
279 		break;
280 	case CHIP_POLARIS11:
281 	case CHIP_POLARIS12:
282 	case CHIP_VEGAM:
283 		gfx_target_version = 80003;
284 		if (!vf)
285 			f2g = &gfx_v8_kfd2kgd;
286 		break;
287 	default:
288 		switch (amdgpu_ip_version(adev, GC_HWIP, 0)) {
289 		/* Vega 10 */
290 		case IP_VERSION(9, 0, 1):
291 			gfx_target_version = 90000;
292 			f2g = &gfx_v9_kfd2kgd;
293 			break;
294 		/* Raven */
295 		case IP_VERSION(9, 1, 0):
296 		case IP_VERSION(9, 2, 2):
297 			gfx_target_version = 90002;
298 			if (!vf)
299 				f2g = &gfx_v9_kfd2kgd;
300 			break;
301 		/* Vega12 */
302 		case IP_VERSION(9, 2, 1):
303 			gfx_target_version = 90004;
304 			if (!vf)
305 				f2g = &gfx_v9_kfd2kgd;
306 			break;
307 		/* Renoir */
308 		case IP_VERSION(9, 3, 0):
309 			gfx_target_version = 90012;
310 			if (!vf)
311 				f2g = &gfx_v9_kfd2kgd;
312 			break;
313 		/* Vega20 */
314 		case IP_VERSION(9, 4, 0):
315 			gfx_target_version = 90006;
316 			if (!vf)
317 				f2g = &gfx_v9_kfd2kgd;
318 			break;
319 		/* Arcturus */
320 		case IP_VERSION(9, 4, 1):
321 			gfx_target_version = 90008;
322 			f2g = &arcturus_kfd2kgd;
323 			break;
324 		/* Aldebaran */
325 		case IP_VERSION(9, 4, 2):
326 			gfx_target_version = 90010;
327 			f2g = &aldebaran_kfd2kgd;
328 			break;
329 		case IP_VERSION(9, 4, 3):
330 			gfx_target_version = adev->rev_id >= 1 ? 90402
331 					   : adev->flags & AMD_IS_APU ? 90400
332 					   : 90401;
333 			f2g = &gc_9_4_3_kfd2kgd;
334 			break;
335 		/* Navi10 */
336 		case IP_VERSION(10, 1, 10):
337 			gfx_target_version = 100100;
338 			if (!vf)
339 				f2g = &gfx_v10_kfd2kgd;
340 			break;
341 		/* Navi12 */
342 		case IP_VERSION(10, 1, 2):
343 			gfx_target_version = 100101;
344 			f2g = &gfx_v10_kfd2kgd;
345 			break;
346 		/* Navi14 */
347 		case IP_VERSION(10, 1, 1):
348 			gfx_target_version = 100102;
349 			if (!vf)
350 				f2g = &gfx_v10_kfd2kgd;
351 			break;
352 		/* Cyan Skillfish */
353 		case IP_VERSION(10, 1, 3):
354 		case IP_VERSION(10, 1, 4):
355 			gfx_target_version = 100103;
356 			if (!vf)
357 				f2g = &gfx_v10_kfd2kgd;
358 			break;
359 		/* Sienna Cichlid */
360 		case IP_VERSION(10, 3, 0):
361 			gfx_target_version = 100300;
362 			f2g = &gfx_v10_3_kfd2kgd;
363 			break;
364 		/* Navy Flounder */
365 		case IP_VERSION(10, 3, 2):
366 			gfx_target_version = 100301;
367 			f2g = &gfx_v10_3_kfd2kgd;
368 			break;
369 		/* Van Gogh */
370 		case IP_VERSION(10, 3, 1):
371 			gfx_target_version = 100303;
372 			if (!vf)
373 				f2g = &gfx_v10_3_kfd2kgd;
374 			break;
375 		/* Dimgrey Cavefish */
376 		case IP_VERSION(10, 3, 4):
377 			gfx_target_version = 100302;
378 			f2g = &gfx_v10_3_kfd2kgd;
379 			break;
380 		/* Beige Goby */
381 		case IP_VERSION(10, 3, 5):
382 			gfx_target_version = 100304;
383 			f2g = &gfx_v10_3_kfd2kgd;
384 			break;
385 		/* Yellow Carp */
386 		case IP_VERSION(10, 3, 3):
387 			gfx_target_version = 100305;
388 			if (!vf)
389 				f2g = &gfx_v10_3_kfd2kgd;
390 			break;
391 		case IP_VERSION(10, 3, 6):
392 		case IP_VERSION(10, 3, 7):
393 			gfx_target_version = 100306;
394 			if (!vf)
395 				f2g = &gfx_v10_3_kfd2kgd;
396 			break;
397 		case IP_VERSION(11, 0, 0):
398 			gfx_target_version = 110000;
399 			f2g = &gfx_v11_kfd2kgd;
400 			break;
401 		case IP_VERSION(11, 0, 1):
402 		case IP_VERSION(11, 0, 4):
403 			gfx_target_version = 110003;
404 			f2g = &gfx_v11_kfd2kgd;
405 			break;
406 		case IP_VERSION(11, 0, 2):
407 			gfx_target_version = 110002;
408 			f2g = &gfx_v11_kfd2kgd;
409 			break;
410 		case IP_VERSION(11, 0, 3):
411 			if ((adev->pdev->device == 0x7460 &&
412 			     adev->pdev->revision == 0x00) ||
413 			    (adev->pdev->device == 0x7461 &&
414 			     adev->pdev->revision == 0x00))
415 				/* Note: Compiler version is 11.0.5 while HW version is 11.0.3 */
416 				gfx_target_version = 110005;
417 			else
418 				/* Note: Compiler version is 11.0.1 while HW version is 11.0.3 */
419 				gfx_target_version = 110001;
420 			f2g = &gfx_v11_kfd2kgd;
421 			break;
422 		case IP_VERSION(11, 5, 0):
423 			gfx_target_version = 110500;
424 			f2g = &gfx_v11_kfd2kgd;
425 			break;
426 		case IP_VERSION(11, 5, 1):
427 			gfx_target_version = 110501;
428 			f2g = &gfx_v11_kfd2kgd;
429 			break;
430 		default:
431 			break;
432 		}
433 		break;
434 	}
435 
436 	if (!f2g) {
437 		if (amdgpu_ip_version(adev, GC_HWIP, 0))
438 			dev_info(kfd_device,
439 				"GC IP %06x %s not supported in kfd\n",
440 				amdgpu_ip_version(adev, GC_HWIP, 0),
441 				vf ? "VF" : "");
442 		else
443 			dev_info(kfd_device, "%s %s not supported in kfd\n",
444 				amdgpu_asic_name[adev->asic_type], vf ? "VF" : "");
445 		return NULL;
446 	}
447 
448 	kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
449 	if (!kfd)
450 		return NULL;
451 
452 	kfd->adev = adev;
453 	kfd_device_info_init(kfd, vf, gfx_target_version);
454 	kfd->init_complete = false;
455 	kfd->kfd2kgd = f2g;
456 	atomic_set(&kfd->compute_profile, 0);
457 
458 	mutex_init(&kfd->doorbell_mutex);
459 
460 	ida_init(&kfd->doorbell_ida);
461 
462 	return kfd;
463 }
464 
465 static void kfd_cwsr_init(struct kfd_dev *kfd)
466 {
467 	if (cwsr_enable && kfd->device_info.supports_cwsr) {
468 		if (KFD_GC_VERSION(kfd) < IP_VERSION(9, 0, 1)) {
469 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex)
470 					     > KFD_CWSR_TMA_OFFSET);
471 			kfd->cwsr_isa = cwsr_trap_gfx8_hex;
472 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
473 		} else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 1)) {
474 			BUILD_BUG_ON(sizeof(cwsr_trap_arcturus_hex)
475 					     > KFD_CWSR_TMA_OFFSET);
476 			kfd->cwsr_isa = cwsr_trap_arcturus_hex;
477 			kfd->cwsr_isa_size = sizeof(cwsr_trap_arcturus_hex);
478 		} else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 2)) {
479 			BUILD_BUG_ON(sizeof(cwsr_trap_aldebaran_hex)
480 					     > KFD_CWSR_TMA_OFFSET);
481 			kfd->cwsr_isa = cwsr_trap_aldebaran_hex;
482 			kfd->cwsr_isa_size = sizeof(cwsr_trap_aldebaran_hex);
483 		} else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 3)) {
484 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_4_3_hex)
485 					     > KFD_CWSR_TMA_OFFSET);
486 			kfd->cwsr_isa = cwsr_trap_gfx9_4_3_hex;
487 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_4_3_hex);
488 		} else if (KFD_GC_VERSION(kfd) < IP_VERSION(10, 1, 1)) {
489 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex)
490 					     > KFD_CWSR_TMA_OFFSET);
491 			kfd->cwsr_isa = cwsr_trap_gfx9_hex;
492 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
493 		} else if (KFD_GC_VERSION(kfd) < IP_VERSION(10, 3, 0)) {
494 			BUILD_BUG_ON(sizeof(cwsr_trap_nv1x_hex)
495 					     > KFD_CWSR_TMA_OFFSET);
496 			kfd->cwsr_isa = cwsr_trap_nv1x_hex;
497 			kfd->cwsr_isa_size = sizeof(cwsr_trap_nv1x_hex);
498 		} else if (KFD_GC_VERSION(kfd) < IP_VERSION(11, 0, 0)) {
499 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx10_hex)
500 					     > KFD_CWSR_TMA_OFFSET);
501 			kfd->cwsr_isa = cwsr_trap_gfx10_hex;
502 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx10_hex);
503 		} else {
504 			/* The gfx11 cwsr trap handler must fit inside a single
505 			   page. */
506 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx11_hex) > PAGE_SIZE);
507 			kfd->cwsr_isa = cwsr_trap_gfx11_hex;
508 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx11_hex);
509 		}
510 
511 		kfd->cwsr_enabled = true;
512 	}
513 }
514 
515 static int kfd_gws_init(struct kfd_node *node)
516 {
517 	int ret = 0;
518 	struct kfd_dev *kfd = node->kfd;
519 	uint32_t mes_rev = node->adev->mes.sched_version & AMDGPU_MES_VERSION_MASK;
520 
521 	if (node->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS)
522 		return 0;
523 
524 	if (hws_gws_support || (KFD_IS_SOC15(node) &&
525 		((KFD_GC_VERSION(node) == IP_VERSION(9, 0, 1)
526 			&& kfd->mec2_fw_version >= 0x81b3) ||
527 		(KFD_GC_VERSION(node) <= IP_VERSION(9, 4, 0)
528 			&& kfd->mec2_fw_version >= 0x1b3)  ||
529 		(KFD_GC_VERSION(node) == IP_VERSION(9, 4, 1)
530 			&& kfd->mec2_fw_version >= 0x30)   ||
531 		(KFD_GC_VERSION(node) == IP_VERSION(9, 4, 2)
532 			&& kfd->mec2_fw_version >= 0x28) ||
533 		(KFD_GC_VERSION(node) == IP_VERSION(9, 4, 3)) ||
534 		(KFD_GC_VERSION(node) >= IP_VERSION(10, 3, 0)
535 			&& KFD_GC_VERSION(node) < IP_VERSION(11, 0, 0)
536 			&& kfd->mec2_fw_version >= 0x6b) ||
537 		(KFD_GC_VERSION(node) >= IP_VERSION(11, 0, 0)
538 			&& KFD_GC_VERSION(node) < IP_VERSION(12, 0, 0)
539 			&& mes_rev >= 68))))
540 		ret = amdgpu_amdkfd_alloc_gws(node->adev,
541 				node->adev->gds.gws_size, &node->gws);
542 
543 	return ret;
544 }
545 
546 static void kfd_smi_init(struct kfd_node *dev)
547 {
548 	INIT_LIST_HEAD(&dev->smi_clients);
549 	spin_lock_init(&dev->smi_lock);
550 }
551 
552 static int kfd_init_node(struct kfd_node *node)
553 {
554 	int err = -1;
555 
556 	if (kfd_interrupt_init(node)) {
557 		dev_err(kfd_device, "Error initializing interrupts\n");
558 		goto kfd_interrupt_error;
559 	}
560 
561 	node->dqm = device_queue_manager_init(node);
562 	if (!node->dqm) {
563 		dev_err(kfd_device, "Error initializing queue manager\n");
564 		goto device_queue_manager_error;
565 	}
566 
567 	if (kfd_gws_init(node)) {
568 		dev_err(kfd_device, "Could not allocate %d gws\n",
569 			node->adev->gds.gws_size);
570 		goto gws_error;
571 	}
572 
573 	if (kfd_resume(node))
574 		goto kfd_resume_error;
575 
576 	if (kfd_topology_add_device(node)) {
577 		dev_err(kfd_device, "Error adding device to topology\n");
578 		goto kfd_topology_add_device_error;
579 	}
580 
581 	kfd_smi_init(node);
582 
583 	return 0;
584 
585 kfd_topology_add_device_error:
586 kfd_resume_error:
587 gws_error:
588 	device_queue_manager_uninit(node->dqm);
589 device_queue_manager_error:
590 	kfd_interrupt_exit(node);
591 kfd_interrupt_error:
592 	if (node->gws)
593 		amdgpu_amdkfd_free_gws(node->adev, node->gws);
594 
595 	/* Cleanup the node memory here */
596 	kfree(node);
597 	return err;
598 }
599 
600 static void kfd_cleanup_nodes(struct kfd_dev *kfd, unsigned int num_nodes)
601 {
602 	struct kfd_node *knode;
603 	unsigned int i;
604 
605 	for (i = 0; i < num_nodes; i++) {
606 		knode = kfd->nodes[i];
607 		device_queue_manager_uninit(knode->dqm);
608 		kfd_interrupt_exit(knode);
609 		kfd_topology_remove_device(knode);
610 		if (knode->gws)
611 			amdgpu_amdkfd_free_gws(knode->adev, knode->gws);
612 		kfree(knode);
613 		kfd->nodes[i] = NULL;
614 	}
615 }
616 
617 static void kfd_setup_interrupt_bitmap(struct kfd_node *node,
618 				       unsigned int kfd_node_idx)
619 {
620 	struct amdgpu_device *adev = node->adev;
621 	uint32_t xcc_mask = node->xcc_mask;
622 	uint32_t xcc, mapped_xcc;
623 	/*
624 	 * Interrupt bitmap is setup for processing interrupts from
625 	 * different XCDs and AIDs.
626 	 * Interrupt bitmap is defined as follows:
627 	 * 1. Bits 0-15 - correspond to the NodeId field.
628 	 *    Each bit corresponds to NodeId number. For example, if
629 	 *    a KFD node has interrupt bitmap set to 0x7, then this
630 	 *    KFD node will process interrupts with NodeId = 0, 1 and 2
631 	 *    in the IH cookie.
632 	 * 2. Bits 16-31 - unused.
633 	 *
634 	 * Please note that the kfd_node_idx argument passed to this
635 	 * function is not related to NodeId field received in the
636 	 * IH cookie.
637 	 *
638 	 * In CPX mode, a KFD node will process an interrupt if:
639 	 * - the Node Id matches the corresponding bit set in
640 	 *   Bits 0-15.
641 	 * - AND VMID reported in the interrupt lies within the
642 	 *   VMID range of the node.
643 	 */
644 	for_each_inst(xcc, xcc_mask) {
645 		mapped_xcc = GET_INST(GC, xcc);
646 		node->interrupt_bitmap |= (mapped_xcc % 2 ? 5 : 3) << (4 * (mapped_xcc / 2));
647 	}
648 	dev_info(kfd_device, "Node: %d, interrupt_bitmap: %x\n", kfd_node_idx,
649 							node->interrupt_bitmap);
650 }
651 
652 bool kgd2kfd_device_init(struct kfd_dev *kfd,
653 			 const struct kgd2kfd_shared_resources *gpu_resources)
654 {
655 	unsigned int size, map_process_packet_size, i;
656 	struct kfd_node *node;
657 	uint32_t first_vmid_kfd, last_vmid_kfd, vmid_num_kfd;
658 	unsigned int max_proc_per_quantum;
659 	int partition_mode;
660 	int xcp_idx;
661 
662 	kfd->mec_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev,
663 			KGD_ENGINE_MEC1);
664 	kfd->mec2_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev,
665 			KGD_ENGINE_MEC2);
666 	kfd->sdma_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev,
667 			KGD_ENGINE_SDMA1);
668 	kfd->shared_resources = *gpu_resources;
669 
670 	kfd->num_nodes = amdgpu_xcp_get_num_xcp(kfd->adev->xcp_mgr);
671 
672 	if (kfd->num_nodes == 0) {
673 		dev_err(kfd_device,
674 			"KFD num nodes cannot be 0, num_xcc_in_node: %d\n",
675 			kfd->adev->gfx.num_xcc_per_xcp);
676 		goto out;
677 	}
678 
679 	/* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
680 	 * 32 and 64-bit requests are possible and must be
681 	 * supported.
682 	 */
683 	kfd->pci_atomic_requested = amdgpu_amdkfd_have_atomics_support(kfd->adev);
684 	if (!kfd->pci_atomic_requested &&
685 	    kfd->device_info.needs_pci_atomics &&
686 	    (!kfd->device_info.no_atomic_fw_version ||
687 	     kfd->mec_fw_version < kfd->device_info.no_atomic_fw_version)) {
688 		dev_info(kfd_device,
689 			 "skipped device %x:%x, PCI rejects atomics %d<%d\n",
690 			 kfd->adev->pdev->vendor, kfd->adev->pdev->device,
691 			 kfd->mec_fw_version,
692 			 kfd->device_info.no_atomic_fw_version);
693 		return false;
694 	}
695 
696 	first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
697 	last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
698 	vmid_num_kfd = last_vmid_kfd - first_vmid_kfd + 1;
699 
700 	/* For GFX9.4.3, we need special handling for VMIDs depending on
701 	 * partition mode.
702 	 * In CPX mode, the VMID range needs to be shared between XCDs.
703 	 * Additionally, there are 13 VMIDs (3-15) available for KFD. To
704 	 * divide them equally, we change starting VMID to 4 and not use
705 	 * VMID 3.
706 	 * If the VMID range changes for GFX9.4.3, then this code MUST be
707 	 * revisited.
708 	 */
709 	if (kfd->adev->xcp_mgr) {
710 		partition_mode = amdgpu_xcp_query_partition_mode(kfd->adev->xcp_mgr,
711 								 AMDGPU_XCP_FL_LOCKED);
712 		if (partition_mode == AMDGPU_CPX_PARTITION_MODE &&
713 		    kfd->num_nodes != 1) {
714 			vmid_num_kfd /= 2;
715 			first_vmid_kfd = last_vmid_kfd + 1 - vmid_num_kfd*2;
716 		}
717 	}
718 
719 	/* Verify module parameters regarding mapped process number*/
720 	if (hws_max_conc_proc >= 0)
721 		max_proc_per_quantum = min((u32)hws_max_conc_proc, vmid_num_kfd);
722 	else
723 		max_proc_per_quantum = vmid_num_kfd;
724 
725 	/* calculate max size of mqds needed for queues */
726 	size = max_num_of_queues_per_device *
727 			kfd->device_info.mqd_size_aligned;
728 
729 	/*
730 	 * calculate max size of runlist packet.
731 	 * There can be only 2 packets at once
732 	 */
733 	map_process_packet_size = KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 2) ?
734 				sizeof(struct pm4_mes_map_process_aldebaran) :
735 				sizeof(struct pm4_mes_map_process);
736 	size += (KFD_MAX_NUM_OF_PROCESSES * map_process_packet_size +
737 		max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
738 		+ sizeof(struct pm4_mes_runlist)) * 2;
739 
740 	/* Add size of HIQ & DIQ */
741 	size += KFD_KERNEL_QUEUE_SIZE * 2;
742 
743 	/* add another 512KB for all other allocations on gart (HPD, fences) */
744 	size += 512 * 1024;
745 
746 	if (amdgpu_amdkfd_alloc_gtt_mem(
747 			kfd->adev, size, &kfd->gtt_mem,
748 			&kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr,
749 			false)) {
750 		dev_err(kfd_device, "Could not allocate %d bytes\n", size);
751 		goto alloc_gtt_mem_failure;
752 	}
753 
754 	dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
755 
756 	/* Initialize GTT sa with 512 byte chunk size */
757 	if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
758 		dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
759 		goto kfd_gtt_sa_init_error;
760 	}
761 
762 	if (kfd_doorbell_init(kfd)) {
763 		dev_err(kfd_device,
764 			"Error initializing doorbell aperture\n");
765 		goto kfd_doorbell_error;
766 	}
767 
768 	if (amdgpu_use_xgmi_p2p)
769 		kfd->hive_id = kfd->adev->gmc.xgmi.hive_id;
770 
771 	/*
772 	 * For GFX9.4.3, the KFD abstracts all partitions within a socket as
773 	 * xGMI connected in the topology so assign a unique hive id per
774 	 * device based on the pci device location if device is in PCIe mode.
775 	 */
776 	if (!kfd->hive_id && (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 3)) && kfd->num_nodes > 1)
777 		kfd->hive_id = pci_dev_id(kfd->adev->pdev);
778 
779 	kfd->noretry = kfd->adev->gmc.noretry;
780 
781 	kfd_cwsr_init(kfd);
782 
783 	dev_info(kfd_device, "Total number of KFD nodes to be created: %d\n",
784 				kfd->num_nodes);
785 
786 	/* Allocate the KFD nodes */
787 	for (i = 0, xcp_idx = 0; i < kfd->num_nodes; i++) {
788 		node = kzalloc(sizeof(struct kfd_node), GFP_KERNEL);
789 		if (!node)
790 			goto node_alloc_error;
791 
792 		node->node_id = i;
793 		node->adev = kfd->adev;
794 		node->kfd = kfd;
795 		node->kfd2kgd = kfd->kfd2kgd;
796 		node->vm_info.vmid_num_kfd = vmid_num_kfd;
797 		node->xcp = amdgpu_get_next_xcp(kfd->adev->xcp_mgr, &xcp_idx);
798 		/* TODO : Check if error handling is needed */
799 		if (node->xcp) {
800 			amdgpu_xcp_get_inst_details(node->xcp, AMDGPU_XCP_GFX,
801 						    &node->xcc_mask);
802 			++xcp_idx;
803 		} else {
804 			node->xcc_mask =
805 				(1U << NUM_XCC(kfd->adev->gfx.xcc_mask)) - 1;
806 		}
807 
808 		if (node->xcp) {
809 			dev_info(kfd_device, "KFD node %d partition %d size %lldM\n",
810 				node->node_id, node->xcp->mem_id,
811 				KFD_XCP_MEMORY_SIZE(node->adev, node->node_id) >> 20);
812 		}
813 
814 		if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 3) &&
815 		    partition_mode == AMDGPU_CPX_PARTITION_MODE &&
816 		    kfd->num_nodes != 1) {
817 			/* For GFX9.4.3 and CPX mode, first XCD gets VMID range
818 			 * 4-9 and second XCD gets VMID range 10-15.
819 			 */
820 
821 			node->vm_info.first_vmid_kfd = (i%2 == 0) ?
822 						first_vmid_kfd :
823 						first_vmid_kfd+vmid_num_kfd;
824 			node->vm_info.last_vmid_kfd = (i%2 == 0) ?
825 						last_vmid_kfd-vmid_num_kfd :
826 						last_vmid_kfd;
827 			node->compute_vmid_bitmap =
828 				((0x1 << (node->vm_info.last_vmid_kfd + 1)) - 1) -
829 				((0x1 << (node->vm_info.first_vmid_kfd)) - 1);
830 		} else {
831 			node->vm_info.first_vmid_kfd = first_vmid_kfd;
832 			node->vm_info.last_vmid_kfd = last_vmid_kfd;
833 			node->compute_vmid_bitmap =
834 				gpu_resources->compute_vmid_bitmap;
835 		}
836 		node->max_proc_per_quantum = max_proc_per_quantum;
837 		atomic_set(&node->sram_ecc_flag, 0);
838 
839 		amdgpu_amdkfd_get_local_mem_info(kfd->adev,
840 					&node->local_mem_info, node->xcp);
841 
842 		if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 3))
843 			kfd_setup_interrupt_bitmap(node, i);
844 
845 		/* Initialize the KFD node */
846 		if (kfd_init_node(node)) {
847 			dev_err(kfd_device, "Error initializing KFD node\n");
848 			goto node_init_error;
849 		}
850 		kfd->nodes[i] = node;
851 	}
852 
853 	svm_range_set_max_pages(kfd->adev);
854 
855 	spin_lock_init(&kfd->watch_points_lock);
856 
857 	kfd->init_complete = true;
858 	dev_info(kfd_device, "added device %x:%x\n", kfd->adev->pdev->vendor,
859 		 kfd->adev->pdev->device);
860 
861 	pr_debug("Starting kfd with the following scheduling policy %d\n",
862 		node->dqm->sched_policy);
863 
864 	goto out;
865 
866 node_init_error:
867 node_alloc_error:
868 	kfd_cleanup_nodes(kfd, i);
869 	kfd_doorbell_fini(kfd);
870 kfd_doorbell_error:
871 	kfd_gtt_sa_fini(kfd);
872 kfd_gtt_sa_init_error:
873 	amdgpu_amdkfd_free_gtt_mem(kfd->adev, kfd->gtt_mem);
874 alloc_gtt_mem_failure:
875 	dev_err(kfd_device,
876 		"device %x:%x NOT added due to errors\n",
877 		kfd->adev->pdev->vendor, kfd->adev->pdev->device);
878 out:
879 	return kfd->init_complete;
880 }
881 
882 void kgd2kfd_device_exit(struct kfd_dev *kfd)
883 {
884 	if (kfd->init_complete) {
885 		/* Cleanup KFD nodes */
886 		kfd_cleanup_nodes(kfd, kfd->num_nodes);
887 		/* Cleanup common/shared resources */
888 		kfd_doorbell_fini(kfd);
889 		ida_destroy(&kfd->doorbell_ida);
890 		kfd_gtt_sa_fini(kfd);
891 		amdgpu_amdkfd_free_gtt_mem(kfd->adev, kfd->gtt_mem);
892 	}
893 
894 	kfree(kfd);
895 }
896 
897 int kgd2kfd_pre_reset(struct kfd_dev *kfd)
898 {
899 	struct kfd_node *node;
900 	int i;
901 
902 	if (!kfd->init_complete)
903 		return 0;
904 
905 	for (i = 0; i < kfd->num_nodes; i++) {
906 		node = kfd->nodes[i];
907 		kfd_smi_event_update_gpu_reset(node, false);
908 		node->dqm->ops.pre_reset(node->dqm);
909 	}
910 
911 	kgd2kfd_suspend(kfd, false);
912 
913 	for (i = 0; i < kfd->num_nodes; i++)
914 		kfd_signal_reset_event(kfd->nodes[i]);
915 
916 	return 0;
917 }
918 
919 /*
920  * Fix me. KFD won't be able to resume existing process for now.
921  * We will keep all existing process in a evicted state and
922  * wait the process to be terminated.
923  */
924 
925 int kgd2kfd_post_reset(struct kfd_dev *kfd)
926 {
927 	int ret;
928 	struct kfd_node *node;
929 	int i;
930 
931 	if (!kfd->init_complete)
932 		return 0;
933 
934 	for (i = 0; i < kfd->num_nodes; i++) {
935 		ret = kfd_resume(kfd->nodes[i]);
936 		if (ret)
937 			return ret;
938 	}
939 
940 	mutex_lock(&kfd_processes_mutex);
941 	--kfd_locked;
942 	mutex_unlock(&kfd_processes_mutex);
943 
944 	for (i = 0; i < kfd->num_nodes; i++) {
945 		node = kfd->nodes[i];
946 		atomic_set(&node->sram_ecc_flag, 0);
947 		kfd_smi_event_update_gpu_reset(node, true);
948 	}
949 
950 	return 0;
951 }
952 
953 bool kfd_is_locked(void)
954 {
955 	lockdep_assert_held(&kfd_processes_mutex);
956 	return  (kfd_locked > 0);
957 }
958 
959 void kgd2kfd_suspend(struct kfd_dev *kfd, bool run_pm)
960 {
961 	struct kfd_node *node;
962 	int i;
963 
964 	if (!kfd->init_complete)
965 		return;
966 
967 	/* for runtime suspend, skip locking kfd */
968 	if (!run_pm) {
969 		mutex_lock(&kfd_processes_mutex);
970 		/* For first KFD device suspend all the KFD processes */
971 		if (++kfd_locked == 1)
972 			kfd_suspend_all_processes();
973 		mutex_unlock(&kfd_processes_mutex);
974 	}
975 
976 	for (i = 0; i < kfd->num_nodes; i++) {
977 		node = kfd->nodes[i];
978 		node->dqm->ops.stop(node->dqm);
979 	}
980 }
981 
982 int kgd2kfd_resume(struct kfd_dev *kfd, bool run_pm)
983 {
984 	int ret, i;
985 
986 	if (!kfd->init_complete)
987 		return 0;
988 
989 	for (i = 0; i < kfd->num_nodes; i++) {
990 		ret = kfd_resume(kfd->nodes[i]);
991 		if (ret)
992 			return ret;
993 	}
994 
995 	/* for runtime resume, skip unlocking kfd */
996 	if (!run_pm) {
997 		mutex_lock(&kfd_processes_mutex);
998 		if (--kfd_locked == 0)
999 			ret = kfd_resume_all_processes();
1000 		WARN_ONCE(kfd_locked < 0, "KFD suspend / resume ref. error");
1001 		mutex_unlock(&kfd_processes_mutex);
1002 	}
1003 
1004 	return ret;
1005 }
1006 
1007 static int kfd_resume(struct kfd_node *node)
1008 {
1009 	int err = 0;
1010 
1011 	err = node->dqm->ops.start(node->dqm);
1012 	if (err)
1013 		dev_err(kfd_device,
1014 			"Error starting queue manager for device %x:%x\n",
1015 			node->adev->pdev->vendor, node->adev->pdev->device);
1016 
1017 	return err;
1018 }
1019 
1020 static inline void kfd_queue_work(struct workqueue_struct *wq,
1021 				  struct work_struct *work)
1022 {
1023 	int cpu, new_cpu;
1024 
1025 	cpu = new_cpu = smp_processor_id();
1026 	do {
1027 		new_cpu = cpumask_next(new_cpu, cpu_online_mask) % nr_cpu_ids;
1028 		if (cpu_to_node(new_cpu) == numa_node_id())
1029 			break;
1030 	} while (cpu != new_cpu);
1031 
1032 	queue_work_on(new_cpu, wq, work);
1033 }
1034 
1035 /* This is called directly from KGD at ISR. */
1036 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
1037 {
1038 	uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE], i;
1039 	bool is_patched = false;
1040 	unsigned long flags;
1041 	struct kfd_node *node;
1042 
1043 	if (!kfd->init_complete)
1044 		return;
1045 
1046 	if (kfd->device_info.ih_ring_entry_size > sizeof(patched_ihre)) {
1047 		dev_err_once(kfd_device, "Ring entry too small\n");
1048 		return;
1049 	}
1050 
1051 	for (i = 0; i < kfd->num_nodes; i++) {
1052 		node = kfd->nodes[i];
1053 		spin_lock_irqsave(&node->interrupt_lock, flags);
1054 
1055 		if (node->interrupts_active
1056 		    && interrupt_is_wanted(node, ih_ring_entry,
1057 			    	patched_ihre, &is_patched)
1058 		    && enqueue_ih_ring_entry(node,
1059 			    	is_patched ? patched_ihre : ih_ring_entry)) {
1060 			kfd_queue_work(node->ih_wq, &node->interrupt_work);
1061 			spin_unlock_irqrestore(&node->interrupt_lock, flags);
1062 			return;
1063 		}
1064 		spin_unlock_irqrestore(&node->interrupt_lock, flags);
1065 	}
1066 
1067 }
1068 
1069 int kgd2kfd_quiesce_mm(struct mm_struct *mm, uint32_t trigger)
1070 {
1071 	struct kfd_process *p;
1072 	int r;
1073 
1074 	/* Because we are called from arbitrary context (workqueue) as opposed
1075 	 * to process context, kfd_process could attempt to exit while we are
1076 	 * running so the lookup function increments the process ref count.
1077 	 */
1078 	p = kfd_lookup_process_by_mm(mm);
1079 	if (!p)
1080 		return -ESRCH;
1081 
1082 	WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
1083 	r = kfd_process_evict_queues(p, trigger);
1084 
1085 	kfd_unref_process(p);
1086 	return r;
1087 }
1088 
1089 int kgd2kfd_resume_mm(struct mm_struct *mm)
1090 {
1091 	struct kfd_process *p;
1092 	int r;
1093 
1094 	/* Because we are called from arbitrary context (workqueue) as opposed
1095 	 * to process context, kfd_process could attempt to exit while we are
1096 	 * running so the lookup function increments the process ref count.
1097 	 */
1098 	p = kfd_lookup_process_by_mm(mm);
1099 	if (!p)
1100 		return -ESRCH;
1101 
1102 	r = kfd_process_restore_queues(p);
1103 
1104 	kfd_unref_process(p);
1105 	return r;
1106 }
1107 
1108 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
1109  *   prepare for safe eviction of KFD BOs that belong to the specified
1110  *   process.
1111  *
1112  * @mm: mm_struct that identifies the specified KFD process
1113  * @fence: eviction fence attached to KFD process BOs
1114  *
1115  */
1116 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
1117 					       struct dma_fence *fence)
1118 {
1119 	struct kfd_process *p;
1120 	unsigned long active_time;
1121 	unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
1122 
1123 	if (!fence)
1124 		return -EINVAL;
1125 
1126 	if (dma_fence_is_signaled(fence))
1127 		return 0;
1128 
1129 	p = kfd_lookup_process_by_mm(mm);
1130 	if (!p)
1131 		return -ENODEV;
1132 
1133 	if (fence->seqno == p->last_eviction_seqno)
1134 		goto out;
1135 
1136 	p->last_eviction_seqno = fence->seqno;
1137 
1138 	/* Avoid KFD process starvation. Wait for at least
1139 	 * PROCESS_ACTIVE_TIME_MS before evicting the process again
1140 	 */
1141 	active_time = get_jiffies_64() - p->last_restore_timestamp;
1142 	if (delay_jiffies > active_time)
1143 		delay_jiffies -= active_time;
1144 	else
1145 		delay_jiffies = 0;
1146 
1147 	/* During process initialization eviction_work.dwork is initialized
1148 	 * to kfd_evict_bo_worker
1149 	 */
1150 	WARN(debug_evictions, "Scheduling eviction of pid %d in %ld jiffies",
1151 	     p->lead_thread->pid, delay_jiffies);
1152 	schedule_delayed_work(&p->eviction_work, delay_jiffies);
1153 out:
1154 	kfd_unref_process(p);
1155 	return 0;
1156 }
1157 
1158 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
1159 				unsigned int chunk_size)
1160 {
1161 	if (WARN_ON(buf_size < chunk_size))
1162 		return -EINVAL;
1163 	if (WARN_ON(buf_size == 0))
1164 		return -EINVAL;
1165 	if (WARN_ON(chunk_size == 0))
1166 		return -EINVAL;
1167 
1168 	kfd->gtt_sa_chunk_size = chunk_size;
1169 	kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
1170 
1171 	kfd->gtt_sa_bitmap = bitmap_zalloc(kfd->gtt_sa_num_of_chunks,
1172 					   GFP_KERNEL);
1173 	if (!kfd->gtt_sa_bitmap)
1174 		return -ENOMEM;
1175 
1176 	pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
1177 			kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
1178 
1179 	mutex_init(&kfd->gtt_sa_lock);
1180 
1181 	return 0;
1182 }
1183 
1184 static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
1185 {
1186 	mutex_destroy(&kfd->gtt_sa_lock);
1187 	bitmap_free(kfd->gtt_sa_bitmap);
1188 }
1189 
1190 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
1191 						unsigned int bit_num,
1192 						unsigned int chunk_size)
1193 {
1194 	return start_addr + bit_num * chunk_size;
1195 }
1196 
1197 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
1198 						unsigned int bit_num,
1199 						unsigned int chunk_size)
1200 {
1201 	return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
1202 }
1203 
1204 int kfd_gtt_sa_allocate(struct kfd_node *node, unsigned int size,
1205 			struct kfd_mem_obj **mem_obj)
1206 {
1207 	unsigned int found, start_search, cur_size;
1208 	struct kfd_dev *kfd = node->kfd;
1209 
1210 	if (size == 0)
1211 		return -EINVAL;
1212 
1213 	if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
1214 		return -ENOMEM;
1215 
1216 	*mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
1217 	if (!(*mem_obj))
1218 		return -ENOMEM;
1219 
1220 	pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
1221 
1222 	start_search = 0;
1223 
1224 	mutex_lock(&kfd->gtt_sa_lock);
1225 
1226 kfd_gtt_restart_search:
1227 	/* Find the first chunk that is free */
1228 	found = find_next_zero_bit(kfd->gtt_sa_bitmap,
1229 					kfd->gtt_sa_num_of_chunks,
1230 					start_search);
1231 
1232 	pr_debug("Found = %d\n", found);
1233 
1234 	/* If there wasn't any free chunk, bail out */
1235 	if (found == kfd->gtt_sa_num_of_chunks)
1236 		goto kfd_gtt_no_free_chunk;
1237 
1238 	/* Update fields of mem_obj */
1239 	(*mem_obj)->range_start = found;
1240 	(*mem_obj)->range_end = found;
1241 	(*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
1242 					kfd->gtt_start_gpu_addr,
1243 					found,
1244 					kfd->gtt_sa_chunk_size);
1245 	(*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
1246 					kfd->gtt_start_cpu_ptr,
1247 					found,
1248 					kfd->gtt_sa_chunk_size);
1249 
1250 	pr_debug("gpu_addr = %p, cpu_addr = %p\n",
1251 			(uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
1252 
1253 	/* If we need only one chunk, mark it as allocated and get out */
1254 	if (size <= kfd->gtt_sa_chunk_size) {
1255 		pr_debug("Single bit\n");
1256 		__set_bit(found, kfd->gtt_sa_bitmap);
1257 		goto kfd_gtt_out;
1258 	}
1259 
1260 	/* Otherwise, try to see if we have enough contiguous chunks */
1261 	cur_size = size - kfd->gtt_sa_chunk_size;
1262 	do {
1263 		(*mem_obj)->range_end =
1264 			find_next_zero_bit(kfd->gtt_sa_bitmap,
1265 					kfd->gtt_sa_num_of_chunks, ++found);
1266 		/*
1267 		 * If next free chunk is not contiguous than we need to
1268 		 * restart our search from the last free chunk we found (which
1269 		 * wasn't contiguous to the previous ones
1270 		 */
1271 		if ((*mem_obj)->range_end != found) {
1272 			start_search = found;
1273 			goto kfd_gtt_restart_search;
1274 		}
1275 
1276 		/*
1277 		 * If we reached end of buffer, bail out with error
1278 		 */
1279 		if (found == kfd->gtt_sa_num_of_chunks)
1280 			goto kfd_gtt_no_free_chunk;
1281 
1282 		/* Check if we don't need another chunk */
1283 		if (cur_size <= kfd->gtt_sa_chunk_size)
1284 			cur_size = 0;
1285 		else
1286 			cur_size -= kfd->gtt_sa_chunk_size;
1287 
1288 	} while (cur_size > 0);
1289 
1290 	pr_debug("range_start = %d, range_end = %d\n",
1291 		(*mem_obj)->range_start, (*mem_obj)->range_end);
1292 
1293 	/* Mark the chunks as allocated */
1294 	bitmap_set(kfd->gtt_sa_bitmap, (*mem_obj)->range_start,
1295 		   (*mem_obj)->range_end - (*mem_obj)->range_start + 1);
1296 
1297 kfd_gtt_out:
1298 	mutex_unlock(&kfd->gtt_sa_lock);
1299 	return 0;
1300 
1301 kfd_gtt_no_free_chunk:
1302 	pr_debug("Allocation failed with mem_obj = %p\n", *mem_obj);
1303 	mutex_unlock(&kfd->gtt_sa_lock);
1304 	kfree(*mem_obj);
1305 	return -ENOMEM;
1306 }
1307 
1308 int kfd_gtt_sa_free(struct kfd_node *node, struct kfd_mem_obj *mem_obj)
1309 {
1310 	struct kfd_dev *kfd = node->kfd;
1311 
1312 	/* Act like kfree when trying to free a NULL object */
1313 	if (!mem_obj)
1314 		return 0;
1315 
1316 	pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
1317 			mem_obj, mem_obj->range_start, mem_obj->range_end);
1318 
1319 	mutex_lock(&kfd->gtt_sa_lock);
1320 
1321 	/* Mark the chunks as free */
1322 	bitmap_clear(kfd->gtt_sa_bitmap, mem_obj->range_start,
1323 		     mem_obj->range_end - mem_obj->range_start + 1);
1324 
1325 	mutex_unlock(&kfd->gtt_sa_lock);
1326 
1327 	kfree(mem_obj);
1328 	return 0;
1329 }
1330 
1331 void kgd2kfd_set_sram_ecc_flag(struct kfd_dev *kfd)
1332 {
1333 	/*
1334 	 * TODO: Currently update SRAM ECC flag for first node.
1335 	 * This needs to be updated later when we can
1336 	 * identify SRAM ECC error on other nodes also.
1337 	 */
1338 	if (kfd)
1339 		atomic_inc(&kfd->nodes[0]->sram_ecc_flag);
1340 }
1341 
1342 void kfd_inc_compute_active(struct kfd_node *node)
1343 {
1344 	if (atomic_inc_return(&node->kfd->compute_profile) == 1)
1345 		amdgpu_amdkfd_set_compute_idle(node->adev, false);
1346 }
1347 
1348 void kfd_dec_compute_active(struct kfd_node *node)
1349 {
1350 	int count = atomic_dec_return(&node->kfd->compute_profile);
1351 
1352 	if (count == 0)
1353 		amdgpu_amdkfd_set_compute_idle(node->adev, true);
1354 	WARN_ONCE(count < 0, "Compute profile ref. count error");
1355 }
1356 
1357 void kgd2kfd_smi_event_throttle(struct kfd_dev *kfd, uint64_t throttle_bitmask)
1358 {
1359 	/*
1360 	 * TODO: For now, raise the throttling event only on first node.
1361 	 * This will need to change after we are able to determine
1362 	 * which node raised the throttling event.
1363 	 */
1364 	if (kfd && kfd->init_complete)
1365 		kfd_smi_event_update_thermal_throttling(kfd->nodes[0],
1366 							throttle_bitmask);
1367 }
1368 
1369 /* kfd_get_num_sdma_engines returns the number of PCIe optimized SDMA and
1370  * kfd_get_num_xgmi_sdma_engines returns the number of XGMI SDMA.
1371  * When the device has more than two engines, we reserve two for PCIe to enable
1372  * full-duplex and the rest are used as XGMI.
1373  */
1374 unsigned int kfd_get_num_sdma_engines(struct kfd_node *node)
1375 {
1376 	/* If XGMI is not supported, all SDMA engines are PCIe */
1377 	if (!node->adev->gmc.xgmi.supported)
1378 		return node->adev->sdma.num_instances/(int)node->kfd->num_nodes;
1379 
1380 	return min(node->adev->sdma.num_instances/(int)node->kfd->num_nodes, 2);
1381 }
1382 
1383 unsigned int kfd_get_num_xgmi_sdma_engines(struct kfd_node *node)
1384 {
1385 	/* After reserved for PCIe, the rest of engines are XGMI */
1386 	return node->adev->sdma.num_instances/(int)node->kfd->num_nodes -
1387 		kfd_get_num_sdma_engines(node);
1388 }
1389 
1390 int kgd2kfd_check_and_lock_kfd(void)
1391 {
1392 	mutex_lock(&kfd_processes_mutex);
1393 	if (!hash_empty(kfd_processes_table) || kfd_is_locked()) {
1394 		mutex_unlock(&kfd_processes_mutex);
1395 		return -EBUSY;
1396 	}
1397 
1398 	++kfd_locked;
1399 	mutex_unlock(&kfd_processes_mutex);
1400 
1401 	return 0;
1402 }
1403 
1404 void kgd2kfd_unlock_kfd(void)
1405 {
1406 	mutex_lock(&kfd_processes_mutex);
1407 	--kfd_locked;
1408 	mutex_unlock(&kfd_processes_mutex);
1409 }
1410 
1411 #if defined(CONFIG_DEBUG_FS)
1412 
1413 /* This function will send a package to HIQ to hang the HWS
1414  * which will trigger a GPU reset and bring the HWS back to normal state
1415  */
1416 int kfd_debugfs_hang_hws(struct kfd_node *dev)
1417 {
1418 	if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) {
1419 		pr_err("HWS is not enabled");
1420 		return -EINVAL;
1421 	}
1422 
1423 	return dqm_debugfs_hang_hws(dev->dqm);
1424 }
1425 
1426 #endif
1427