xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_crat.c (revision be969b7cfbcfa8a835a528f1dc467f0975c6d883)
1 /*
2  * Copyright 2015-2017 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/acpi.h>
25 #include "kfd_crat.h"
26 #include "kfd_priv.h"
27 #include "kfd_topology.h"
28 #include "kfd_iommu.h"
29 #include "amdgpu_amdkfd.h"
30 
31 /* GPU Processor ID base for dGPUs for which VCRAT needs to be created.
32  * GPU processor ID are expressed with Bit[31]=1.
33  * The base is set to 0x8000_0000 + 0x1000 to avoid collision with GPU IDs
34  * used in the CRAT.
35  */
36 static uint32_t gpu_processor_id_low = 0x80001000;
37 
38 /* Return the next available gpu_processor_id and increment it for next GPU
39  *	@total_cu_count - Total CUs present in the GPU including ones
40  *			  masked off
41  */
42 static inline unsigned int get_and_inc_gpu_processor_id(
43 				unsigned int total_cu_count)
44 {
45 	int current_id = gpu_processor_id_low;
46 
47 	gpu_processor_id_low += total_cu_count;
48 	return current_id;
49 }
50 
51 /* Static table to describe GPU Cache information */
52 struct kfd_gpu_cache_info {
53 	uint32_t	cache_size;
54 	uint32_t	cache_level;
55 	uint32_t	flags;
56 	/* Indicates how many Compute Units share this cache
57 	 * Value = 1 indicates the cache is not shared
58 	 */
59 	uint32_t	num_cu_shared;
60 };
61 
62 static struct kfd_gpu_cache_info kaveri_cache_info[] = {
63 	{
64 		/* TCP L1 Cache per CU */
65 		.cache_size = 16,
66 		.cache_level = 1,
67 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
68 				CRAT_CACHE_FLAGS_DATA_CACHE |
69 				CRAT_CACHE_FLAGS_SIMD_CACHE),
70 		.num_cu_shared = 1,
71 
72 	},
73 	{
74 		/* Scalar L1 Instruction Cache (in SQC module) per bank */
75 		.cache_size = 16,
76 		.cache_level = 1,
77 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
78 				CRAT_CACHE_FLAGS_INST_CACHE |
79 				CRAT_CACHE_FLAGS_SIMD_CACHE),
80 		.num_cu_shared = 2,
81 	},
82 	{
83 		/* Scalar L1 Data Cache (in SQC module) per bank */
84 		.cache_size = 8,
85 		.cache_level = 1,
86 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
87 				CRAT_CACHE_FLAGS_DATA_CACHE |
88 				CRAT_CACHE_FLAGS_SIMD_CACHE),
89 		.num_cu_shared = 2,
90 	},
91 
92 	/* TODO: Add L2 Cache information */
93 };
94 
95 
96 static struct kfd_gpu_cache_info carrizo_cache_info[] = {
97 	{
98 		/* TCP L1 Cache per CU */
99 		.cache_size = 16,
100 		.cache_level = 1,
101 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
102 				CRAT_CACHE_FLAGS_DATA_CACHE |
103 				CRAT_CACHE_FLAGS_SIMD_CACHE),
104 		.num_cu_shared = 1,
105 	},
106 	{
107 		/* Scalar L1 Instruction Cache (in SQC module) per bank */
108 		.cache_size = 8,
109 		.cache_level = 1,
110 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
111 				CRAT_CACHE_FLAGS_INST_CACHE |
112 				CRAT_CACHE_FLAGS_SIMD_CACHE),
113 		.num_cu_shared = 4,
114 	},
115 	{
116 		/* Scalar L1 Data Cache (in SQC module) per bank. */
117 		.cache_size = 4,
118 		.cache_level = 1,
119 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
120 				CRAT_CACHE_FLAGS_DATA_CACHE |
121 				CRAT_CACHE_FLAGS_SIMD_CACHE),
122 		.num_cu_shared = 4,
123 	},
124 
125 	/* TODO: Add L2 Cache information */
126 };
127 
128 /* NOTE: In future if more information is added to struct kfd_gpu_cache_info
129  * the following ASICs may need a separate table.
130  */
131 #define hawaii_cache_info kaveri_cache_info
132 #define tonga_cache_info carrizo_cache_info
133 #define fiji_cache_info  carrizo_cache_info
134 #define polaris10_cache_info carrizo_cache_info
135 #define polaris11_cache_info carrizo_cache_info
136 #define polaris12_cache_info carrizo_cache_info
137 #define vegam_cache_info carrizo_cache_info
138 /* TODO - check & update Vega10 cache details */
139 #define vega10_cache_info carrizo_cache_info
140 #define raven_cache_info carrizo_cache_info
141 #define renoir_cache_info carrizo_cache_info
142 /* TODO - check & update Navi10 cache details */
143 #define navi10_cache_info carrizo_cache_info
144 #define vangogh_cache_info carrizo_cache_info
145 
146 static void kfd_populated_cu_info_cpu(struct kfd_topology_device *dev,
147 		struct crat_subtype_computeunit *cu)
148 {
149 	dev->node_props.cpu_cores_count = cu->num_cpu_cores;
150 	dev->node_props.cpu_core_id_base = cu->processor_id_low;
151 	if (cu->hsa_capability & CRAT_CU_FLAGS_IOMMU_PRESENT)
152 		dev->node_props.capability |= HSA_CAP_ATS_PRESENT;
153 
154 	pr_debug("CU CPU: cores=%d id_base=%d\n", cu->num_cpu_cores,
155 			cu->processor_id_low);
156 }
157 
158 static void kfd_populated_cu_info_gpu(struct kfd_topology_device *dev,
159 		struct crat_subtype_computeunit *cu)
160 {
161 	dev->node_props.simd_id_base = cu->processor_id_low;
162 	dev->node_props.simd_count = cu->num_simd_cores;
163 	dev->node_props.lds_size_in_kb = cu->lds_size_in_kb;
164 	dev->node_props.max_waves_per_simd = cu->max_waves_simd;
165 	dev->node_props.wave_front_size = cu->wave_front_size;
166 	dev->node_props.array_count = cu->array_count;
167 	dev->node_props.cu_per_simd_array = cu->num_cu_per_array;
168 	dev->node_props.simd_per_cu = cu->num_simd_per_cu;
169 	dev->node_props.max_slots_scratch_cu = cu->max_slots_scatch_cu;
170 	if (cu->hsa_capability & CRAT_CU_FLAGS_HOT_PLUGGABLE)
171 		dev->node_props.capability |= HSA_CAP_HOT_PLUGGABLE;
172 	pr_debug("CU GPU: id_base=%d\n", cu->processor_id_low);
173 }
174 
175 /* kfd_parse_subtype_cu - parse compute unit subtypes and attach it to correct
176  * topology device present in the device_list
177  */
178 static int kfd_parse_subtype_cu(struct crat_subtype_computeunit *cu,
179 				struct list_head *device_list)
180 {
181 	struct kfd_topology_device *dev;
182 
183 	pr_debug("Found CU entry in CRAT table with proximity_domain=%d caps=%x\n",
184 			cu->proximity_domain, cu->hsa_capability);
185 	list_for_each_entry(dev, device_list, list) {
186 		if (cu->proximity_domain == dev->proximity_domain) {
187 			if (cu->flags & CRAT_CU_FLAGS_CPU_PRESENT)
188 				kfd_populated_cu_info_cpu(dev, cu);
189 
190 			if (cu->flags & CRAT_CU_FLAGS_GPU_PRESENT)
191 				kfd_populated_cu_info_gpu(dev, cu);
192 			break;
193 		}
194 	}
195 
196 	return 0;
197 }
198 
199 static struct kfd_mem_properties *
200 find_subtype_mem(uint32_t heap_type, uint32_t flags, uint32_t width,
201 		struct kfd_topology_device *dev)
202 {
203 	struct kfd_mem_properties *props;
204 
205 	list_for_each_entry(props, &dev->mem_props, list) {
206 		if (props->heap_type == heap_type
207 				&& props->flags == flags
208 				&& props->width == width)
209 			return props;
210 	}
211 
212 	return NULL;
213 }
214 /* kfd_parse_subtype_mem - parse memory subtypes and attach it to correct
215  * topology device present in the device_list
216  */
217 static int kfd_parse_subtype_mem(struct crat_subtype_memory *mem,
218 				struct list_head *device_list)
219 {
220 	struct kfd_mem_properties *props;
221 	struct kfd_topology_device *dev;
222 	uint32_t heap_type;
223 	uint64_t size_in_bytes;
224 	uint32_t flags = 0;
225 	uint32_t width;
226 
227 	pr_debug("Found memory entry in CRAT table with proximity_domain=%d\n",
228 			mem->proximity_domain);
229 	list_for_each_entry(dev, device_list, list) {
230 		if (mem->proximity_domain == dev->proximity_domain) {
231 			/* We're on GPU node */
232 			if (dev->node_props.cpu_cores_count == 0) {
233 				/* APU */
234 				if (mem->visibility_type == 0)
235 					heap_type =
236 						HSA_MEM_HEAP_TYPE_FB_PRIVATE;
237 				/* dGPU */
238 				else
239 					heap_type = mem->visibility_type;
240 			} else
241 				heap_type = HSA_MEM_HEAP_TYPE_SYSTEM;
242 
243 			if (mem->flags & CRAT_MEM_FLAGS_HOT_PLUGGABLE)
244 				flags |= HSA_MEM_FLAGS_HOT_PLUGGABLE;
245 			if (mem->flags & CRAT_MEM_FLAGS_NON_VOLATILE)
246 				flags |= HSA_MEM_FLAGS_NON_VOLATILE;
247 
248 			size_in_bytes =
249 				((uint64_t)mem->length_high << 32) +
250 							mem->length_low;
251 			width = mem->width;
252 
253 			/* Multiple banks of the same type are aggregated into
254 			 * one. User mode doesn't care about multiple physical
255 			 * memory segments. It's managed as a single virtual
256 			 * heap for user mode.
257 			 */
258 			props = find_subtype_mem(heap_type, flags, width, dev);
259 			if (props) {
260 				props->size_in_bytes += size_in_bytes;
261 				break;
262 			}
263 
264 			props = kfd_alloc_struct(props);
265 			if (!props)
266 				return -ENOMEM;
267 
268 			props->heap_type = heap_type;
269 			props->flags = flags;
270 			props->size_in_bytes = size_in_bytes;
271 			props->width = width;
272 
273 			dev->node_props.mem_banks_count++;
274 			list_add_tail(&props->list, &dev->mem_props);
275 
276 			break;
277 		}
278 	}
279 
280 	return 0;
281 }
282 
283 /* kfd_parse_subtype_cache - parse cache subtypes and attach it to correct
284  * topology device present in the device_list
285  */
286 static int kfd_parse_subtype_cache(struct crat_subtype_cache *cache,
287 			struct list_head *device_list)
288 {
289 	struct kfd_cache_properties *props;
290 	struct kfd_topology_device *dev;
291 	uint32_t id;
292 	uint32_t total_num_of_cu;
293 
294 	id = cache->processor_id_low;
295 
296 	pr_debug("Found cache entry in CRAT table with processor_id=%d\n", id);
297 	list_for_each_entry(dev, device_list, list) {
298 		total_num_of_cu = (dev->node_props.array_count *
299 					dev->node_props.cu_per_simd_array);
300 
301 		/* Cache infomration in CRAT doesn't have proximity_domain
302 		 * information as it is associated with a CPU core or GPU
303 		 * Compute Unit. So map the cache using CPU core Id or SIMD
304 		 * (GPU) ID.
305 		 * TODO: This works because currently we can safely assume that
306 		 *  Compute Units are parsed before caches are parsed. In
307 		 *  future, remove this dependency
308 		 */
309 		if ((id >= dev->node_props.cpu_core_id_base &&
310 			id <= dev->node_props.cpu_core_id_base +
311 				dev->node_props.cpu_cores_count) ||
312 			(id >= dev->node_props.simd_id_base &&
313 			id < dev->node_props.simd_id_base +
314 				total_num_of_cu)) {
315 			props = kfd_alloc_struct(props);
316 			if (!props)
317 				return -ENOMEM;
318 
319 			props->processor_id_low = id;
320 			props->cache_level = cache->cache_level;
321 			props->cache_size = cache->cache_size;
322 			props->cacheline_size = cache->cache_line_size;
323 			props->cachelines_per_tag = cache->lines_per_tag;
324 			props->cache_assoc = cache->associativity;
325 			props->cache_latency = cache->cache_latency;
326 			memcpy(props->sibling_map, cache->sibling_map,
327 					sizeof(props->sibling_map));
328 
329 			if (cache->flags & CRAT_CACHE_FLAGS_DATA_CACHE)
330 				props->cache_type |= HSA_CACHE_TYPE_DATA;
331 			if (cache->flags & CRAT_CACHE_FLAGS_INST_CACHE)
332 				props->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
333 			if (cache->flags & CRAT_CACHE_FLAGS_CPU_CACHE)
334 				props->cache_type |= HSA_CACHE_TYPE_CPU;
335 			if (cache->flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
336 				props->cache_type |= HSA_CACHE_TYPE_HSACU;
337 
338 			dev->cache_count++;
339 			dev->node_props.caches_count++;
340 			list_add_tail(&props->list, &dev->cache_props);
341 
342 			break;
343 		}
344 	}
345 
346 	return 0;
347 }
348 
349 /* kfd_parse_subtype_iolink - parse iolink subtypes and attach it to correct
350  * topology device present in the device_list
351  */
352 static int kfd_parse_subtype_iolink(struct crat_subtype_iolink *iolink,
353 					struct list_head *device_list)
354 {
355 	struct kfd_iolink_properties *props = NULL, *props2;
356 	struct kfd_topology_device *dev, *to_dev;
357 	uint32_t id_from;
358 	uint32_t id_to;
359 
360 	id_from = iolink->proximity_domain_from;
361 	id_to = iolink->proximity_domain_to;
362 
363 	pr_debug("Found IO link entry in CRAT table with id_from=%d, id_to %d\n",
364 			id_from, id_to);
365 	list_for_each_entry(dev, device_list, list) {
366 		if (id_from == dev->proximity_domain) {
367 			props = kfd_alloc_struct(props);
368 			if (!props)
369 				return -ENOMEM;
370 
371 			props->node_from = id_from;
372 			props->node_to = id_to;
373 			props->ver_maj = iolink->version_major;
374 			props->ver_min = iolink->version_minor;
375 			props->iolink_type = iolink->io_interface_type;
376 
377 			if (props->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS)
378 				props->weight = 20;
379 			else if (props->iolink_type == CRAT_IOLINK_TYPE_XGMI)
380 				props->weight = 15 * iolink->num_hops_xgmi;
381 			else
382 				props->weight = node_distance(id_from, id_to);
383 
384 			props->min_latency = iolink->minimum_latency;
385 			props->max_latency = iolink->maximum_latency;
386 			props->min_bandwidth = iolink->minimum_bandwidth_mbs;
387 			props->max_bandwidth = iolink->maximum_bandwidth_mbs;
388 			props->rec_transfer_size =
389 					iolink->recommended_transfer_size;
390 
391 			dev->io_link_count++;
392 			dev->node_props.io_links_count++;
393 			list_add_tail(&props->list, &dev->io_link_props);
394 			break;
395 		}
396 	}
397 
398 	/* CPU topology is created before GPUs are detected, so CPU->GPU
399 	 * links are not built at that time. If a PCIe type is discovered, it
400 	 * means a GPU is detected and we are adding GPU->CPU to the topology.
401 	 * At this time, also add the corresponded CPU->GPU link if GPU
402 	 * is large bar.
403 	 * For xGMI, we only added the link with one direction in the crat
404 	 * table, add corresponded reversed direction link now.
405 	 */
406 	if (props && (iolink->flags & CRAT_IOLINK_FLAGS_BI_DIRECTIONAL)) {
407 		to_dev = kfd_topology_device_by_proximity_domain(id_to);
408 		if (!to_dev)
409 			return -ENODEV;
410 		/* same everything but the other direction */
411 		props2 = kmemdup(props, sizeof(*props2), GFP_KERNEL);
412 		props2->node_from = id_to;
413 		props2->node_to = id_from;
414 		props2->kobj = NULL;
415 		to_dev->io_link_count++;
416 		to_dev->node_props.io_links_count++;
417 		list_add_tail(&props2->list, &to_dev->io_link_props);
418 	}
419 
420 	return 0;
421 }
422 
423 /* kfd_parse_subtype - parse subtypes and attach it to correct topology device
424  * present in the device_list
425  *	@sub_type_hdr - subtype section of crat_image
426  *	@device_list - list of topology devices present in this crat_image
427  */
428 static int kfd_parse_subtype(struct crat_subtype_generic *sub_type_hdr,
429 				struct list_head *device_list)
430 {
431 	struct crat_subtype_computeunit *cu;
432 	struct crat_subtype_memory *mem;
433 	struct crat_subtype_cache *cache;
434 	struct crat_subtype_iolink *iolink;
435 	int ret = 0;
436 
437 	switch (sub_type_hdr->type) {
438 	case CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY:
439 		cu = (struct crat_subtype_computeunit *)sub_type_hdr;
440 		ret = kfd_parse_subtype_cu(cu, device_list);
441 		break;
442 	case CRAT_SUBTYPE_MEMORY_AFFINITY:
443 		mem = (struct crat_subtype_memory *)sub_type_hdr;
444 		ret = kfd_parse_subtype_mem(mem, device_list);
445 		break;
446 	case CRAT_SUBTYPE_CACHE_AFFINITY:
447 		cache = (struct crat_subtype_cache *)sub_type_hdr;
448 		ret = kfd_parse_subtype_cache(cache, device_list);
449 		break;
450 	case CRAT_SUBTYPE_TLB_AFFINITY:
451 		/*
452 		 * For now, nothing to do here
453 		 */
454 		pr_debug("Found TLB entry in CRAT table (not processing)\n");
455 		break;
456 	case CRAT_SUBTYPE_CCOMPUTE_AFFINITY:
457 		/*
458 		 * For now, nothing to do here
459 		 */
460 		pr_debug("Found CCOMPUTE entry in CRAT table (not processing)\n");
461 		break;
462 	case CRAT_SUBTYPE_IOLINK_AFFINITY:
463 		iolink = (struct crat_subtype_iolink *)sub_type_hdr;
464 		ret = kfd_parse_subtype_iolink(iolink, device_list);
465 		break;
466 	default:
467 		pr_warn("Unknown subtype %d in CRAT\n",
468 				sub_type_hdr->type);
469 	}
470 
471 	return ret;
472 }
473 
474 /* kfd_parse_crat_table - parse CRAT table. For each node present in CRAT
475  * create a kfd_topology_device and add in to device_list. Also parse
476  * CRAT subtypes and attach it to appropriate kfd_topology_device
477  *	@crat_image - input image containing CRAT
478  *	@device_list - [OUT] list of kfd_topology_device generated after
479  *		       parsing crat_image
480  *	@proximity_domain - Proximity domain of the first device in the table
481  *
482  *	Return - 0 if successful else -ve value
483  */
484 int kfd_parse_crat_table(void *crat_image, struct list_head *device_list,
485 			 uint32_t proximity_domain)
486 {
487 	struct kfd_topology_device *top_dev = NULL;
488 	struct crat_subtype_generic *sub_type_hdr;
489 	uint16_t node_id;
490 	int ret = 0;
491 	struct crat_header *crat_table = (struct crat_header *)crat_image;
492 	uint16_t num_nodes;
493 	uint32_t image_len;
494 
495 	if (!crat_image)
496 		return -EINVAL;
497 
498 	if (!list_empty(device_list)) {
499 		pr_warn("Error device list should be empty\n");
500 		return -EINVAL;
501 	}
502 
503 	num_nodes = crat_table->num_domains;
504 	image_len = crat_table->length;
505 
506 	pr_debug("Parsing CRAT table with %d nodes\n", num_nodes);
507 
508 	for (node_id = 0; node_id < num_nodes; node_id++) {
509 		top_dev = kfd_create_topology_device(device_list);
510 		if (!top_dev)
511 			break;
512 		top_dev->proximity_domain = proximity_domain++;
513 	}
514 
515 	if (!top_dev) {
516 		ret = -ENOMEM;
517 		goto err;
518 	}
519 
520 	memcpy(top_dev->oem_id, crat_table->oem_id, CRAT_OEMID_LENGTH);
521 	memcpy(top_dev->oem_table_id, crat_table->oem_table_id,
522 			CRAT_OEMTABLEID_LENGTH);
523 	top_dev->oem_revision = crat_table->oem_revision;
524 
525 	sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1);
526 	while ((char *)sub_type_hdr + sizeof(struct crat_subtype_generic) <
527 			((char *)crat_image) + image_len) {
528 		if (sub_type_hdr->flags & CRAT_SUBTYPE_FLAGS_ENABLED) {
529 			ret = kfd_parse_subtype(sub_type_hdr, device_list);
530 			if (ret)
531 				break;
532 		}
533 
534 		sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
535 				sub_type_hdr->length);
536 	}
537 
538 err:
539 	if (ret)
540 		kfd_release_topology_device_list(device_list);
541 
542 	return ret;
543 }
544 
545 /* Helper function. See kfd_fill_gpu_cache_info for parameter description */
546 static int fill_in_pcache(struct crat_subtype_cache *pcache,
547 				struct kfd_gpu_cache_info *pcache_info,
548 				struct kfd_cu_info *cu_info,
549 				int mem_available,
550 				int cu_bitmask,
551 				int cache_type, unsigned int cu_processor_id,
552 				int cu_block)
553 {
554 	unsigned int cu_sibling_map_mask;
555 	int first_active_cu;
556 
557 	/* First check if enough memory is available */
558 	if (sizeof(struct crat_subtype_cache) > mem_available)
559 		return -ENOMEM;
560 
561 	cu_sibling_map_mask = cu_bitmask;
562 	cu_sibling_map_mask >>= cu_block;
563 	cu_sibling_map_mask &=
564 		((1 << pcache_info[cache_type].num_cu_shared) - 1);
565 	first_active_cu = ffs(cu_sibling_map_mask);
566 
567 	/* CU could be inactive. In case of shared cache find the first active
568 	 * CU. and incase of non-shared cache check if the CU is inactive. If
569 	 * inactive active skip it
570 	 */
571 	if (first_active_cu) {
572 		memset(pcache, 0, sizeof(struct crat_subtype_cache));
573 		pcache->type = CRAT_SUBTYPE_CACHE_AFFINITY;
574 		pcache->length = sizeof(struct crat_subtype_cache);
575 		pcache->flags = pcache_info[cache_type].flags;
576 		pcache->processor_id_low = cu_processor_id
577 					 + (first_active_cu - 1);
578 		pcache->cache_level = pcache_info[cache_type].cache_level;
579 		pcache->cache_size = pcache_info[cache_type].cache_size;
580 
581 		/* Sibling map is w.r.t processor_id_low, so shift out
582 		 * inactive CU
583 		 */
584 		cu_sibling_map_mask =
585 			cu_sibling_map_mask >> (first_active_cu - 1);
586 
587 		pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF);
588 		pcache->sibling_map[1] =
589 				(uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
590 		pcache->sibling_map[2] =
591 				(uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
592 		pcache->sibling_map[3] =
593 				(uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
594 		return 0;
595 	}
596 	return 1;
597 }
598 
599 /* kfd_fill_gpu_cache_info - Fill GPU cache info using kfd_gpu_cache_info
600  * tables
601  *
602  *	@kdev - [IN] GPU device
603  *	@gpu_processor_id - [IN] GPU processor ID to which these caches
604  *			    associate
605  *	@available_size - [IN] Amount of memory available in pcache
606  *	@cu_info - [IN] Compute Unit info obtained from KGD
607  *	@pcache - [OUT] memory into which cache data is to be filled in.
608  *	@size_filled - [OUT] amount of data used up in pcache.
609  *	@num_of_entries - [OUT] number of caches added
610  */
611 static int kfd_fill_gpu_cache_info(struct kfd_dev *kdev,
612 			int gpu_processor_id,
613 			int available_size,
614 			struct kfd_cu_info *cu_info,
615 			struct crat_subtype_cache *pcache,
616 			int *size_filled,
617 			int *num_of_entries)
618 {
619 	struct kfd_gpu_cache_info *pcache_info;
620 	int num_of_cache_types = 0;
621 	int i, j, k;
622 	int ct = 0;
623 	int mem_available = available_size;
624 	unsigned int cu_processor_id;
625 	int ret;
626 
627 	switch (kdev->device_info->asic_family) {
628 	case CHIP_KAVERI:
629 		pcache_info = kaveri_cache_info;
630 		num_of_cache_types = ARRAY_SIZE(kaveri_cache_info);
631 		break;
632 	case CHIP_HAWAII:
633 		pcache_info = hawaii_cache_info;
634 		num_of_cache_types = ARRAY_SIZE(hawaii_cache_info);
635 		break;
636 	case CHIP_CARRIZO:
637 		pcache_info = carrizo_cache_info;
638 		num_of_cache_types = ARRAY_SIZE(carrizo_cache_info);
639 		break;
640 	case CHIP_TONGA:
641 		pcache_info = tonga_cache_info;
642 		num_of_cache_types = ARRAY_SIZE(tonga_cache_info);
643 		break;
644 	case CHIP_FIJI:
645 		pcache_info = fiji_cache_info;
646 		num_of_cache_types = ARRAY_SIZE(fiji_cache_info);
647 		break;
648 	case CHIP_POLARIS10:
649 		pcache_info = polaris10_cache_info;
650 		num_of_cache_types = ARRAY_SIZE(polaris10_cache_info);
651 		break;
652 	case CHIP_POLARIS11:
653 		pcache_info = polaris11_cache_info;
654 		num_of_cache_types = ARRAY_SIZE(polaris11_cache_info);
655 		break;
656 	case CHIP_POLARIS12:
657 		pcache_info = polaris12_cache_info;
658 		num_of_cache_types = ARRAY_SIZE(polaris12_cache_info);
659 		break;
660 	case CHIP_VEGAM:
661 		pcache_info = vegam_cache_info;
662 		num_of_cache_types = ARRAY_SIZE(vegam_cache_info);
663 		break;
664 	case CHIP_VEGA10:
665 	case CHIP_VEGA12:
666 	case CHIP_VEGA20:
667 	case CHIP_ARCTURUS:
668 		pcache_info = vega10_cache_info;
669 		num_of_cache_types = ARRAY_SIZE(vega10_cache_info);
670 		break;
671 	case CHIP_RAVEN:
672 		pcache_info = raven_cache_info;
673 		num_of_cache_types = ARRAY_SIZE(raven_cache_info);
674 		break;
675 	case CHIP_RENOIR:
676 		pcache_info = renoir_cache_info;
677 		num_of_cache_types = ARRAY_SIZE(renoir_cache_info);
678 		break;
679 	case CHIP_NAVI10:
680 	case CHIP_NAVI12:
681 	case CHIP_NAVI14:
682 	case CHIP_SIENNA_CICHLID:
683 	case CHIP_NAVY_FLOUNDER:
684 	case CHIP_DIMGREY_CAVEFISH:
685 		pcache_info = navi10_cache_info;
686 		num_of_cache_types = ARRAY_SIZE(navi10_cache_info);
687 		break;
688 	case CHIP_VANGOGH:
689 		pcache_info = vangogh_cache_info;
690 		num_of_cache_types = ARRAY_SIZE(vangogh_cache_info);
691 		break;
692 	default:
693 		return -EINVAL;
694 	}
695 
696 	*size_filled = 0;
697 	*num_of_entries = 0;
698 
699 	/* For each type of cache listed in the kfd_gpu_cache_info table,
700 	 * go through all available Compute Units.
701 	 * The [i,j,k] loop will
702 	 *		if kfd_gpu_cache_info.num_cu_shared = 1
703 	 *			will parse through all available CU
704 	 *		If (kfd_gpu_cache_info.num_cu_shared != 1)
705 	 *			then it will consider only one CU from
706 	 *			the shared unit
707 	 */
708 
709 	for (ct = 0; ct < num_of_cache_types; ct++) {
710 		cu_processor_id = gpu_processor_id;
711 		for (i = 0; i < cu_info->num_shader_engines; i++) {
712 			for (j = 0; j < cu_info->num_shader_arrays_per_engine;
713 				j++) {
714 				for (k = 0; k < cu_info->num_cu_per_sh;
715 					k += pcache_info[ct].num_cu_shared) {
716 
717 					ret = fill_in_pcache(pcache,
718 						pcache_info,
719 						cu_info,
720 						mem_available,
721 						cu_info->cu_bitmap[i % 4][j + i / 4],
722 						ct,
723 						cu_processor_id,
724 						k);
725 
726 					if (ret < 0)
727 						break;
728 
729 					if (!ret) {
730 						pcache++;
731 						(*num_of_entries)++;
732 						mem_available -=
733 							sizeof(*pcache);
734 						(*size_filled) +=
735 							sizeof(*pcache);
736 					}
737 
738 					/* Move to next CU block */
739 					cu_processor_id +=
740 						pcache_info[ct].num_cu_shared;
741 				}
742 			}
743 		}
744 	}
745 
746 	pr_debug("Added [%d] GPU cache entries\n", *num_of_entries);
747 
748 	return 0;
749 }
750 
751 static bool kfd_ignore_crat(void)
752 {
753 	bool ret;
754 
755 	if (ignore_crat)
756 		return true;
757 
758 #ifndef KFD_SUPPORT_IOMMU_V2
759 	ret = true;
760 #else
761 	ret = false;
762 #endif
763 
764 	return ret;
765 }
766 
767 /*
768  * kfd_create_crat_image_acpi - Allocates memory for CRAT image and
769  * copies CRAT from ACPI (if available).
770  * NOTE: Call kfd_destroy_crat_image to free CRAT image memory
771  *
772  *	@crat_image: CRAT read from ACPI. If no CRAT in ACPI then
773  *		     crat_image will be NULL
774  *	@size: [OUT] size of crat_image
775  *
776  *	Return 0 if successful else return error code
777  */
778 int kfd_create_crat_image_acpi(void **crat_image, size_t *size)
779 {
780 	struct acpi_table_header *crat_table;
781 	acpi_status status;
782 	void *pcrat_image;
783 	int rc = 0;
784 
785 	if (!crat_image)
786 		return -EINVAL;
787 
788 	*crat_image = NULL;
789 
790 	if (kfd_ignore_crat()) {
791 		pr_info("CRAT table disabled by module option\n");
792 		return -ENODATA;
793 	}
794 
795 	/* Fetch the CRAT table from ACPI */
796 	status = acpi_get_table(CRAT_SIGNATURE, 0, &crat_table);
797 	if (status == AE_NOT_FOUND) {
798 		pr_warn("CRAT table not found\n");
799 		return -ENODATA;
800 	} else if (ACPI_FAILURE(status)) {
801 		const char *err = acpi_format_exception(status);
802 
803 		pr_err("CRAT table error: %s\n", err);
804 		return -EINVAL;
805 	}
806 
807 	pcrat_image = kvmalloc(crat_table->length, GFP_KERNEL);
808 	if (!pcrat_image) {
809 		rc = -ENOMEM;
810 		goto out;
811 	}
812 
813 	memcpy(pcrat_image, crat_table, crat_table->length);
814 	*crat_image = pcrat_image;
815 	*size = crat_table->length;
816 out:
817 	acpi_put_table(crat_table);
818 	return rc;
819 }
820 
821 /* Memory required to create Virtual CRAT.
822  * Since there is no easy way to predict the amount of memory required, the
823  * following amount is allocated for GPU Virtual CRAT. This is
824  * expected to cover all known conditions. But to be safe additional check
825  * is put in the code to ensure we don't overwrite.
826  */
827 #define VCRAT_SIZE_FOR_GPU	(4 * PAGE_SIZE)
828 
829 /* kfd_fill_cu_for_cpu - Fill in Compute info for the given CPU NUMA node
830  *
831  *	@numa_node_id: CPU NUMA node id
832  *	@avail_size: Available size in the memory
833  *	@sub_type_hdr: Memory into which compute info will be filled in
834  *
835  *	Return 0 if successful else return -ve value
836  */
837 static int kfd_fill_cu_for_cpu(int numa_node_id, int *avail_size,
838 				int proximity_domain,
839 				struct crat_subtype_computeunit *sub_type_hdr)
840 {
841 	const struct cpumask *cpumask;
842 
843 	*avail_size -= sizeof(struct crat_subtype_computeunit);
844 	if (*avail_size < 0)
845 		return -ENOMEM;
846 
847 	memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit));
848 
849 	/* Fill in subtype header data */
850 	sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY;
851 	sub_type_hdr->length = sizeof(struct crat_subtype_computeunit);
852 	sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
853 
854 	cpumask = cpumask_of_node(numa_node_id);
855 
856 	/* Fill in CU data */
857 	sub_type_hdr->flags |= CRAT_CU_FLAGS_CPU_PRESENT;
858 	sub_type_hdr->proximity_domain = proximity_domain;
859 	sub_type_hdr->processor_id_low = kfd_numa_node_to_apic_id(numa_node_id);
860 	if (sub_type_hdr->processor_id_low == -1)
861 		return -EINVAL;
862 
863 	sub_type_hdr->num_cpu_cores = cpumask_weight(cpumask);
864 
865 	return 0;
866 }
867 
868 /* kfd_fill_mem_info_for_cpu - Fill in Memory info for the given CPU NUMA node
869  *
870  *	@numa_node_id: CPU NUMA node id
871  *	@avail_size: Available size in the memory
872  *	@sub_type_hdr: Memory into which compute info will be filled in
873  *
874  *	Return 0 if successful else return -ve value
875  */
876 static int kfd_fill_mem_info_for_cpu(int numa_node_id, int *avail_size,
877 			int proximity_domain,
878 			struct crat_subtype_memory *sub_type_hdr)
879 {
880 	uint64_t mem_in_bytes = 0;
881 	pg_data_t *pgdat;
882 	int zone_type;
883 
884 	*avail_size -= sizeof(struct crat_subtype_memory);
885 	if (*avail_size < 0)
886 		return -ENOMEM;
887 
888 	memset(sub_type_hdr, 0, sizeof(struct crat_subtype_memory));
889 
890 	/* Fill in subtype header data */
891 	sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY;
892 	sub_type_hdr->length = sizeof(struct crat_subtype_memory);
893 	sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
894 
895 	/* Fill in Memory Subunit data */
896 
897 	/* Unlike si_meminfo, si_meminfo_node is not exported. So
898 	 * the following lines are duplicated from si_meminfo_node
899 	 * function
900 	 */
901 	pgdat = NODE_DATA(numa_node_id);
902 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
903 		mem_in_bytes += zone_managed_pages(&pgdat->node_zones[zone_type]);
904 	mem_in_bytes <<= PAGE_SHIFT;
905 
906 	sub_type_hdr->length_low = lower_32_bits(mem_in_bytes);
907 	sub_type_hdr->length_high = upper_32_bits(mem_in_bytes);
908 	sub_type_hdr->proximity_domain = proximity_domain;
909 
910 	return 0;
911 }
912 
913 #ifdef CONFIG_X86_64
914 static int kfd_fill_iolink_info_for_cpu(int numa_node_id, int *avail_size,
915 				uint32_t *num_entries,
916 				struct crat_subtype_iolink *sub_type_hdr)
917 {
918 	int nid;
919 	struct cpuinfo_x86 *c = &cpu_data(0);
920 	uint8_t link_type;
921 
922 	if (c->x86_vendor == X86_VENDOR_AMD)
923 		link_type = CRAT_IOLINK_TYPE_HYPERTRANSPORT;
924 	else
925 		link_type = CRAT_IOLINK_TYPE_QPI_1_1;
926 
927 	*num_entries = 0;
928 
929 	/* Create IO links from this node to other CPU nodes */
930 	for_each_online_node(nid) {
931 		if (nid == numa_node_id) /* node itself */
932 			continue;
933 
934 		*avail_size -= sizeof(struct crat_subtype_iolink);
935 		if (*avail_size < 0)
936 			return -ENOMEM;
937 
938 		memset(sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));
939 
940 		/* Fill in subtype header data */
941 		sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
942 		sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
943 		sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
944 
945 		/* Fill in IO link data */
946 		sub_type_hdr->proximity_domain_from = numa_node_id;
947 		sub_type_hdr->proximity_domain_to = nid;
948 		sub_type_hdr->io_interface_type = link_type;
949 
950 		(*num_entries)++;
951 		sub_type_hdr++;
952 	}
953 
954 	return 0;
955 }
956 #endif
957 
958 /* kfd_create_vcrat_image_cpu - Create Virtual CRAT for CPU
959  *
960  *	@pcrat_image: Fill in VCRAT for CPU
961  *	@size:	[IN] allocated size of crat_image.
962  *		[OUT] actual size of data filled in crat_image
963  */
964 static int kfd_create_vcrat_image_cpu(void *pcrat_image, size_t *size)
965 {
966 	struct crat_header *crat_table = (struct crat_header *)pcrat_image;
967 	struct acpi_table_header *acpi_table;
968 	acpi_status status;
969 	struct crat_subtype_generic *sub_type_hdr;
970 	int avail_size = *size;
971 	int numa_node_id;
972 #ifdef CONFIG_X86_64
973 	uint32_t entries = 0;
974 #endif
975 	int ret = 0;
976 
977 	if (!pcrat_image)
978 		return -EINVAL;
979 
980 	/* Fill in CRAT Header.
981 	 * Modify length and total_entries as subunits are added.
982 	 */
983 	avail_size -= sizeof(struct crat_header);
984 	if (avail_size < 0)
985 		return -ENOMEM;
986 
987 	memset(crat_table, 0, sizeof(struct crat_header));
988 	memcpy(&crat_table->signature, CRAT_SIGNATURE,
989 			sizeof(crat_table->signature));
990 	crat_table->length = sizeof(struct crat_header);
991 
992 	status = acpi_get_table("DSDT", 0, &acpi_table);
993 	if (status != AE_OK)
994 		pr_warn("DSDT table not found for OEM information\n");
995 	else {
996 		crat_table->oem_revision = acpi_table->revision;
997 		memcpy(crat_table->oem_id, acpi_table->oem_id,
998 				CRAT_OEMID_LENGTH);
999 		memcpy(crat_table->oem_table_id, acpi_table->oem_table_id,
1000 				CRAT_OEMTABLEID_LENGTH);
1001 		acpi_put_table(acpi_table);
1002 	}
1003 	crat_table->total_entries = 0;
1004 	crat_table->num_domains = 0;
1005 
1006 	sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1);
1007 
1008 	for_each_online_node(numa_node_id) {
1009 		if (kfd_numa_node_to_apic_id(numa_node_id) == -1)
1010 			continue;
1011 
1012 		/* Fill in Subtype: Compute Unit */
1013 		ret = kfd_fill_cu_for_cpu(numa_node_id, &avail_size,
1014 			crat_table->num_domains,
1015 			(struct crat_subtype_computeunit *)sub_type_hdr);
1016 		if (ret < 0)
1017 			return ret;
1018 		crat_table->length += sub_type_hdr->length;
1019 		crat_table->total_entries++;
1020 
1021 		sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1022 			sub_type_hdr->length);
1023 
1024 		/* Fill in Subtype: Memory */
1025 		ret = kfd_fill_mem_info_for_cpu(numa_node_id, &avail_size,
1026 			crat_table->num_domains,
1027 			(struct crat_subtype_memory *)sub_type_hdr);
1028 		if (ret < 0)
1029 			return ret;
1030 		crat_table->length += sub_type_hdr->length;
1031 		crat_table->total_entries++;
1032 
1033 		sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1034 			sub_type_hdr->length);
1035 
1036 		/* Fill in Subtype: IO Link */
1037 #ifdef CONFIG_X86_64
1038 		ret = kfd_fill_iolink_info_for_cpu(numa_node_id, &avail_size,
1039 				&entries,
1040 				(struct crat_subtype_iolink *)sub_type_hdr);
1041 		if (ret < 0)
1042 			return ret;
1043 		crat_table->length += (sub_type_hdr->length * entries);
1044 		crat_table->total_entries += entries;
1045 
1046 		sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1047 				sub_type_hdr->length * entries);
1048 #else
1049 		pr_info("IO link not available for non x86 platforms\n");
1050 #endif
1051 
1052 		crat_table->num_domains++;
1053 	}
1054 
1055 	/* TODO: Add cache Subtype for CPU.
1056 	 * Currently, CPU cache information is available in function
1057 	 * detect_cache_attributes(cpu) defined in the file
1058 	 * ./arch/x86/kernel/cpu/intel_cacheinfo.c. This function is not
1059 	 * exported and to get the same information the code needs to be
1060 	 * duplicated.
1061 	 */
1062 
1063 	*size = crat_table->length;
1064 	pr_info("Virtual CRAT table created for CPU\n");
1065 
1066 	return 0;
1067 }
1068 
1069 static int kfd_fill_gpu_memory_affinity(int *avail_size,
1070 		struct kfd_dev *kdev, uint8_t type, uint64_t size,
1071 		struct crat_subtype_memory *sub_type_hdr,
1072 		uint32_t proximity_domain,
1073 		const struct kfd_local_mem_info *local_mem_info)
1074 {
1075 	*avail_size -= sizeof(struct crat_subtype_memory);
1076 	if (*avail_size < 0)
1077 		return -ENOMEM;
1078 
1079 	memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_memory));
1080 	sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY;
1081 	sub_type_hdr->length = sizeof(struct crat_subtype_memory);
1082 	sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED;
1083 
1084 	sub_type_hdr->proximity_domain = proximity_domain;
1085 
1086 	pr_debug("Fill gpu memory affinity - type 0x%x size 0x%llx\n",
1087 			type, size);
1088 
1089 	sub_type_hdr->length_low = lower_32_bits(size);
1090 	sub_type_hdr->length_high = upper_32_bits(size);
1091 
1092 	sub_type_hdr->width = local_mem_info->vram_width;
1093 	sub_type_hdr->visibility_type = type;
1094 
1095 	return 0;
1096 }
1097 
1098 /* kfd_fill_gpu_direct_io_link - Fill in direct io link from GPU
1099  * to its NUMA node
1100  *	@avail_size: Available size in the memory
1101  *	@kdev - [IN] GPU device
1102  *	@sub_type_hdr: Memory into which io link info will be filled in
1103  *	@proximity_domain - proximity domain of the GPU node
1104  *
1105  *	Return 0 if successful else return -ve value
1106  */
1107 static int kfd_fill_gpu_direct_io_link_to_cpu(int *avail_size,
1108 			struct kfd_dev *kdev,
1109 			struct crat_subtype_iolink *sub_type_hdr,
1110 			uint32_t proximity_domain)
1111 {
1112 	*avail_size -= sizeof(struct crat_subtype_iolink);
1113 	if (*avail_size < 0)
1114 		return -ENOMEM;
1115 
1116 	memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));
1117 
1118 	/* Fill in subtype header data */
1119 	sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
1120 	sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
1121 	sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED;
1122 	if (kfd_dev_is_large_bar(kdev))
1123 		sub_type_hdr->flags |= CRAT_IOLINK_FLAGS_BI_DIRECTIONAL;
1124 
1125 	/* Fill in IOLINK subtype.
1126 	 * TODO: Fill-in other fields of iolink subtype
1127 	 */
1128 	sub_type_hdr->io_interface_type = CRAT_IOLINK_TYPE_PCIEXPRESS;
1129 	sub_type_hdr->proximity_domain_from = proximity_domain;
1130 #ifdef CONFIG_NUMA
1131 	if (kdev->pdev->dev.numa_node == NUMA_NO_NODE)
1132 		sub_type_hdr->proximity_domain_to = 0;
1133 	else
1134 		sub_type_hdr->proximity_domain_to = kdev->pdev->dev.numa_node;
1135 #else
1136 	sub_type_hdr->proximity_domain_to = 0;
1137 #endif
1138 	return 0;
1139 }
1140 
1141 static int kfd_fill_gpu_xgmi_link_to_gpu(int *avail_size,
1142 			struct kfd_dev *kdev,
1143 			struct kfd_dev *peer_kdev,
1144 			struct crat_subtype_iolink *sub_type_hdr,
1145 			uint32_t proximity_domain_from,
1146 			uint32_t proximity_domain_to)
1147 {
1148 	*avail_size -= sizeof(struct crat_subtype_iolink);
1149 	if (*avail_size < 0)
1150 		return -ENOMEM;
1151 
1152 	memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));
1153 
1154 	sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
1155 	sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
1156 	sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED |
1157 			       CRAT_IOLINK_FLAGS_BI_DIRECTIONAL;
1158 
1159 	sub_type_hdr->io_interface_type = CRAT_IOLINK_TYPE_XGMI;
1160 	sub_type_hdr->proximity_domain_from = proximity_domain_from;
1161 	sub_type_hdr->proximity_domain_to = proximity_domain_to;
1162 	sub_type_hdr->num_hops_xgmi =
1163 		amdgpu_amdkfd_get_xgmi_hops_count(kdev->kgd, peer_kdev->kgd);
1164 	return 0;
1165 }
1166 
1167 /* kfd_create_vcrat_image_gpu - Create Virtual CRAT for CPU
1168  *
1169  *	@pcrat_image: Fill in VCRAT for GPU
1170  *	@size:	[IN] allocated size of crat_image.
1171  *		[OUT] actual size of data filled in crat_image
1172  */
1173 static int kfd_create_vcrat_image_gpu(void *pcrat_image,
1174 				      size_t *size, struct kfd_dev *kdev,
1175 				      uint32_t proximity_domain)
1176 {
1177 	struct crat_header *crat_table = (struct crat_header *)pcrat_image;
1178 	struct crat_subtype_generic *sub_type_hdr;
1179 	struct kfd_local_mem_info local_mem_info;
1180 	struct kfd_topology_device *peer_dev;
1181 	struct crat_subtype_computeunit *cu;
1182 	struct kfd_cu_info cu_info;
1183 	int avail_size = *size;
1184 	uint32_t total_num_of_cu;
1185 	int num_of_cache_entries = 0;
1186 	int cache_mem_filled = 0;
1187 	uint32_t nid = 0;
1188 	int ret = 0;
1189 
1190 	if (!pcrat_image || avail_size < VCRAT_SIZE_FOR_GPU)
1191 		return -EINVAL;
1192 
1193 	/* Fill the CRAT Header.
1194 	 * Modify length and total_entries as subunits are added.
1195 	 */
1196 	avail_size -= sizeof(struct crat_header);
1197 	if (avail_size < 0)
1198 		return -ENOMEM;
1199 
1200 	memset(crat_table, 0, sizeof(struct crat_header));
1201 
1202 	memcpy(&crat_table->signature, CRAT_SIGNATURE,
1203 			sizeof(crat_table->signature));
1204 	/* Change length as we add more subtypes*/
1205 	crat_table->length = sizeof(struct crat_header);
1206 	crat_table->num_domains = 1;
1207 	crat_table->total_entries = 0;
1208 
1209 	/* Fill in Subtype: Compute Unit
1210 	 * First fill in the sub type header and then sub type data
1211 	 */
1212 	avail_size -= sizeof(struct crat_subtype_computeunit);
1213 	if (avail_size < 0)
1214 		return -ENOMEM;
1215 
1216 	sub_type_hdr = (struct crat_subtype_generic *)(crat_table + 1);
1217 	memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit));
1218 
1219 	sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY;
1220 	sub_type_hdr->length = sizeof(struct crat_subtype_computeunit);
1221 	sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
1222 
1223 	/* Fill CU subtype data */
1224 	cu = (struct crat_subtype_computeunit *)sub_type_hdr;
1225 	cu->flags |= CRAT_CU_FLAGS_GPU_PRESENT;
1226 	cu->proximity_domain = proximity_domain;
1227 
1228 	amdgpu_amdkfd_get_cu_info(kdev->kgd, &cu_info);
1229 	cu->num_simd_per_cu = cu_info.simd_per_cu;
1230 	cu->num_simd_cores = cu_info.simd_per_cu * cu_info.cu_active_number;
1231 	cu->max_waves_simd = cu_info.max_waves_per_simd;
1232 
1233 	cu->wave_front_size = cu_info.wave_front_size;
1234 	cu->array_count = cu_info.num_shader_arrays_per_engine *
1235 		cu_info.num_shader_engines;
1236 	total_num_of_cu = (cu->array_count * cu_info.num_cu_per_sh);
1237 	cu->processor_id_low = get_and_inc_gpu_processor_id(total_num_of_cu);
1238 	cu->num_cu_per_array = cu_info.num_cu_per_sh;
1239 	cu->max_slots_scatch_cu = cu_info.max_scratch_slots_per_cu;
1240 	cu->num_banks = cu_info.num_shader_engines;
1241 	cu->lds_size_in_kb = cu_info.lds_size;
1242 
1243 	cu->hsa_capability = 0;
1244 
1245 	/* Check if this node supports IOMMU. During parsing this flag will
1246 	 * translate to HSA_CAP_ATS_PRESENT
1247 	 */
1248 	if (!kfd_iommu_check_device(kdev))
1249 		cu->hsa_capability |= CRAT_CU_FLAGS_IOMMU_PRESENT;
1250 
1251 	crat_table->length += sub_type_hdr->length;
1252 	crat_table->total_entries++;
1253 
1254 	/* Fill in Subtype: Memory. Only on systems with large BAR (no
1255 	 * private FB), report memory as public. On other systems
1256 	 * report the total FB size (public+private) as a single
1257 	 * private heap.
1258 	 */
1259 	amdgpu_amdkfd_get_local_mem_info(kdev->kgd, &local_mem_info);
1260 	sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1261 			sub_type_hdr->length);
1262 
1263 	if (debug_largebar)
1264 		local_mem_info.local_mem_size_private = 0;
1265 
1266 	if (local_mem_info.local_mem_size_private == 0)
1267 		ret = kfd_fill_gpu_memory_affinity(&avail_size,
1268 				kdev, HSA_MEM_HEAP_TYPE_FB_PUBLIC,
1269 				local_mem_info.local_mem_size_public,
1270 				(struct crat_subtype_memory *)sub_type_hdr,
1271 				proximity_domain,
1272 				&local_mem_info);
1273 	else
1274 		ret = kfd_fill_gpu_memory_affinity(&avail_size,
1275 				kdev, HSA_MEM_HEAP_TYPE_FB_PRIVATE,
1276 				local_mem_info.local_mem_size_public +
1277 				local_mem_info.local_mem_size_private,
1278 				(struct crat_subtype_memory *)sub_type_hdr,
1279 				proximity_domain,
1280 				&local_mem_info);
1281 	if (ret < 0)
1282 		return ret;
1283 
1284 	crat_table->length += sizeof(struct crat_subtype_memory);
1285 	crat_table->total_entries++;
1286 
1287 	/* TODO: Fill in cache information. This information is NOT readily
1288 	 * available in KGD
1289 	 */
1290 	sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1291 		sub_type_hdr->length);
1292 	ret = kfd_fill_gpu_cache_info(kdev, cu->processor_id_low,
1293 				avail_size,
1294 				&cu_info,
1295 				(struct crat_subtype_cache *)sub_type_hdr,
1296 				&cache_mem_filled,
1297 				&num_of_cache_entries);
1298 
1299 	if (ret < 0)
1300 		return ret;
1301 
1302 	crat_table->length += cache_mem_filled;
1303 	crat_table->total_entries += num_of_cache_entries;
1304 	avail_size -= cache_mem_filled;
1305 
1306 	/* Fill in Subtype: IO_LINKS
1307 	 *  Only direct links are added here which is Link from GPU to
1308 	 *  to its NUMA node. Indirect links are added by userspace.
1309 	 */
1310 	sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1311 		cache_mem_filled);
1312 	ret = kfd_fill_gpu_direct_io_link_to_cpu(&avail_size, kdev,
1313 		(struct crat_subtype_iolink *)sub_type_hdr, proximity_domain);
1314 
1315 	if (ret < 0)
1316 		return ret;
1317 
1318 	crat_table->length += sub_type_hdr->length;
1319 	crat_table->total_entries++;
1320 
1321 
1322 	/* Fill in Subtype: IO_LINKS
1323 	 * Direct links from GPU to other GPUs through xGMI.
1324 	 * We will loop GPUs that already be processed (with lower value
1325 	 * of proximity_domain), add the link for the GPUs with same
1326 	 * hive id (from this GPU to other GPU) . The reversed iolink
1327 	 * (from other GPU to this GPU) will be added
1328 	 * in kfd_parse_subtype_iolink.
1329 	 */
1330 	if (kdev->hive_id) {
1331 		for (nid = 0; nid < proximity_domain; ++nid) {
1332 			peer_dev = kfd_topology_device_by_proximity_domain(nid);
1333 			if (!peer_dev->gpu)
1334 				continue;
1335 			if (peer_dev->gpu->hive_id != kdev->hive_id)
1336 				continue;
1337 			sub_type_hdr = (typeof(sub_type_hdr))(
1338 				(char *)sub_type_hdr +
1339 				sizeof(struct crat_subtype_iolink));
1340 			ret = kfd_fill_gpu_xgmi_link_to_gpu(
1341 				&avail_size, kdev, peer_dev->gpu,
1342 				(struct crat_subtype_iolink *)sub_type_hdr,
1343 				proximity_domain, nid);
1344 			if (ret < 0)
1345 				return ret;
1346 			crat_table->length += sub_type_hdr->length;
1347 			crat_table->total_entries++;
1348 		}
1349 	}
1350 	*size = crat_table->length;
1351 	pr_info("Virtual CRAT table created for GPU\n");
1352 
1353 	return ret;
1354 }
1355 
1356 /* kfd_create_crat_image_virtual - Allocates memory for CRAT image and
1357  *		creates a Virtual CRAT (VCRAT) image
1358  *
1359  * NOTE: Call kfd_destroy_crat_image to free CRAT image memory
1360  *
1361  *	@crat_image: VCRAT image created because ACPI does not have a
1362  *		     CRAT for this device
1363  *	@size: [OUT] size of virtual crat_image
1364  *	@flags:	COMPUTE_UNIT_CPU - Create VCRAT for CPU device
1365  *		COMPUTE_UNIT_GPU - Create VCRAT for GPU
1366  *		(COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU) - Create VCRAT for APU
1367  *			-- this option is not currently implemented.
1368  *			The assumption is that all AMD APUs will have CRAT
1369  *	@kdev: Valid kfd_device required if flags contain COMPUTE_UNIT_GPU
1370  *
1371  *	Return 0 if successful else return -ve value
1372  */
1373 int kfd_create_crat_image_virtual(void **crat_image, size_t *size,
1374 				  int flags, struct kfd_dev *kdev,
1375 				  uint32_t proximity_domain)
1376 {
1377 	void *pcrat_image = NULL;
1378 	int ret = 0, num_nodes;
1379 	size_t dyn_size;
1380 
1381 	if (!crat_image)
1382 		return -EINVAL;
1383 
1384 	*crat_image = NULL;
1385 
1386 	/* Allocate the CPU Virtual CRAT size based on the number of online
1387 	 * nodes. Allocate VCRAT_SIZE_FOR_GPU for GPU virtual CRAT image.
1388 	 * This should cover all the current conditions. A check is put not
1389 	 * to overwrite beyond allocated size for GPUs
1390 	 */
1391 	switch (flags) {
1392 	case COMPUTE_UNIT_CPU:
1393 		num_nodes = num_online_nodes();
1394 		dyn_size = sizeof(struct crat_header) +
1395 			num_nodes * (sizeof(struct crat_subtype_computeunit) +
1396 			sizeof(struct crat_subtype_memory) +
1397 			(num_nodes - 1) * sizeof(struct crat_subtype_iolink));
1398 		pcrat_image = kvmalloc(dyn_size, GFP_KERNEL);
1399 		if (!pcrat_image)
1400 			return -ENOMEM;
1401 		*size = dyn_size;
1402 		pr_debug("CRAT size is %ld", dyn_size);
1403 		ret = kfd_create_vcrat_image_cpu(pcrat_image, size);
1404 		break;
1405 	case COMPUTE_UNIT_GPU:
1406 		if (!kdev)
1407 			return -EINVAL;
1408 		pcrat_image = kvmalloc(VCRAT_SIZE_FOR_GPU, GFP_KERNEL);
1409 		if (!pcrat_image)
1410 			return -ENOMEM;
1411 		*size = VCRAT_SIZE_FOR_GPU;
1412 		ret = kfd_create_vcrat_image_gpu(pcrat_image, size, kdev,
1413 						 proximity_domain);
1414 		break;
1415 	case (COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU):
1416 		/* TODO: */
1417 		ret = -EINVAL;
1418 		pr_err("VCRAT not implemented for APU\n");
1419 		break;
1420 	default:
1421 		ret = -EINVAL;
1422 	}
1423 
1424 	if (!ret)
1425 		*crat_image = pcrat_image;
1426 	else
1427 		kvfree(pcrat_image);
1428 
1429 	return ret;
1430 }
1431 
1432 
1433 /* kfd_destroy_crat_image
1434  *
1435  *	@crat_image: [IN] - crat_image from kfd_create_crat_image_xxx(..)
1436  *
1437  */
1438 void kfd_destroy_crat_image(void *crat_image)
1439 {
1440 	kvfree(crat_image);
1441 }
1442