1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2014-2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include <linux/device.h> 25 #include <linux/export.h> 26 #include <linux/err.h> 27 #include <linux/fs.h> 28 #include <linux/file.h> 29 #include <linux/sched.h> 30 #include <linux/slab.h> 31 #include <linux/uaccess.h> 32 #include <linux/compat.h> 33 #include <uapi/linux/kfd_ioctl.h> 34 #include <linux/time.h> 35 #include <linux/mm.h> 36 #include <linux/mman.h> 37 #include <linux/ptrace.h> 38 #include <linux/dma-buf.h> 39 #include <linux/fdtable.h> 40 #include <linux/processor.h> 41 #include "kfd_priv.h" 42 #include "kfd_device_queue_manager.h" 43 #include "kfd_svm.h" 44 #include "amdgpu_amdkfd.h" 45 #include "kfd_smi_events.h" 46 #include "amdgpu_dma_buf.h" 47 #include "kfd_debug.h" 48 49 static long kfd_ioctl(struct file *, unsigned int, unsigned long); 50 static int kfd_open(struct inode *, struct file *); 51 static int kfd_release(struct inode *, struct file *); 52 static int kfd_mmap(struct file *, struct vm_area_struct *); 53 54 static const char kfd_dev_name[] = "kfd"; 55 56 static const struct file_operations kfd_fops = { 57 .owner = THIS_MODULE, 58 .unlocked_ioctl = kfd_ioctl, 59 .compat_ioctl = compat_ptr_ioctl, 60 .open = kfd_open, 61 .release = kfd_release, 62 .mmap = kfd_mmap, 63 }; 64 65 static int kfd_char_dev_major = -1; 66 struct device *kfd_device; 67 static const struct class kfd_class = { 68 .name = kfd_dev_name, 69 }; 70 71 static inline struct kfd_process_device *kfd_lock_pdd_by_id(struct kfd_process *p, __u32 gpu_id) 72 { 73 struct kfd_process_device *pdd; 74 75 mutex_lock(&p->mutex); 76 pdd = kfd_process_device_data_by_id(p, gpu_id); 77 78 if (pdd) 79 return pdd; 80 81 mutex_unlock(&p->mutex); 82 return NULL; 83 } 84 85 static inline void kfd_unlock_pdd(struct kfd_process_device *pdd) 86 { 87 mutex_unlock(&pdd->process->mutex); 88 } 89 90 int kfd_chardev_init(void) 91 { 92 int err = 0; 93 94 kfd_char_dev_major = register_chrdev(0, kfd_dev_name, &kfd_fops); 95 err = kfd_char_dev_major; 96 if (err < 0) 97 goto err_register_chrdev; 98 99 err = class_register(&kfd_class); 100 if (err) 101 goto err_class_create; 102 103 kfd_device = device_create(&kfd_class, NULL, 104 MKDEV(kfd_char_dev_major, 0), 105 NULL, kfd_dev_name); 106 err = PTR_ERR(kfd_device); 107 if (IS_ERR(kfd_device)) 108 goto err_device_create; 109 110 return 0; 111 112 err_device_create: 113 class_unregister(&kfd_class); 114 err_class_create: 115 unregister_chrdev(kfd_char_dev_major, kfd_dev_name); 116 err_register_chrdev: 117 return err; 118 } 119 120 void kfd_chardev_exit(void) 121 { 122 device_destroy(&kfd_class, MKDEV(kfd_char_dev_major, 0)); 123 class_unregister(&kfd_class); 124 unregister_chrdev(kfd_char_dev_major, kfd_dev_name); 125 kfd_device = NULL; 126 } 127 128 129 static int kfd_open(struct inode *inode, struct file *filep) 130 { 131 struct kfd_process *process; 132 bool is_32bit_user_mode; 133 134 if (iminor(inode) != 0) 135 return -ENODEV; 136 137 is_32bit_user_mode = in_compat_syscall(); 138 139 if (is_32bit_user_mode) { 140 dev_warn(kfd_device, 141 "Process %d (32-bit) failed to open /dev/kfd\n" 142 "32-bit processes are not supported by amdkfd\n", 143 current->pid); 144 return -EPERM; 145 } 146 147 process = kfd_create_process(current); 148 if (IS_ERR(process)) 149 return PTR_ERR(process); 150 151 if (kfd_process_init_cwsr_apu(process, filep)) { 152 kfd_unref_process(process); 153 return -EFAULT; 154 } 155 156 /* filep now owns the reference returned by kfd_create_process */ 157 filep->private_data = process; 158 159 dev_dbg(kfd_device, "process %d opened, compat mode (32 bit) - %d\n", 160 process->pasid, process->is_32bit_user_mode); 161 162 return 0; 163 } 164 165 static int kfd_release(struct inode *inode, struct file *filep) 166 { 167 struct kfd_process *process = filep->private_data; 168 169 if (process) 170 kfd_unref_process(process); 171 172 return 0; 173 } 174 175 static int kfd_ioctl_get_version(struct file *filep, struct kfd_process *p, 176 void *data) 177 { 178 struct kfd_ioctl_get_version_args *args = data; 179 180 args->major_version = KFD_IOCTL_MAJOR_VERSION; 181 args->minor_version = KFD_IOCTL_MINOR_VERSION; 182 183 return 0; 184 } 185 186 static int set_queue_properties_from_user(struct queue_properties *q_properties, 187 struct kfd_ioctl_create_queue_args *args) 188 { 189 /* 190 * Repurpose queue percentage to accommodate new features: 191 * bit 0-7: queue percentage 192 * bit 8-15: pm4_target_xcc 193 */ 194 if ((args->queue_percentage & 0xFF) > KFD_MAX_QUEUE_PERCENTAGE) { 195 pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n"); 196 return -EINVAL; 197 } 198 199 if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) { 200 pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n"); 201 return -EINVAL; 202 } 203 204 if ((args->ring_base_address) && 205 (!access_ok((const void __user *) args->ring_base_address, 206 sizeof(uint64_t)))) { 207 pr_err("Can't access ring base address\n"); 208 return -EFAULT; 209 } 210 211 if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) { 212 pr_err("Ring size must be a power of 2 or 0\n"); 213 return -EINVAL; 214 } 215 216 if (!access_ok((const void __user *) args->read_pointer_address, 217 sizeof(uint32_t))) { 218 pr_err("Can't access read pointer\n"); 219 return -EFAULT; 220 } 221 222 if (!access_ok((const void __user *) args->write_pointer_address, 223 sizeof(uint32_t))) { 224 pr_err("Can't access write pointer\n"); 225 return -EFAULT; 226 } 227 228 if (args->eop_buffer_address && 229 !access_ok((const void __user *) args->eop_buffer_address, 230 sizeof(uint32_t))) { 231 pr_debug("Can't access eop buffer"); 232 return -EFAULT; 233 } 234 235 if (args->ctx_save_restore_address && 236 !access_ok((const void __user *) args->ctx_save_restore_address, 237 sizeof(uint32_t))) { 238 pr_debug("Can't access ctx save restore buffer"); 239 return -EFAULT; 240 } 241 242 q_properties->is_interop = false; 243 q_properties->is_gws = false; 244 q_properties->queue_percent = args->queue_percentage & 0xFF; 245 /* bit 8-15 are repurposed to be PM4 target XCC */ 246 q_properties->pm4_target_xcc = (args->queue_percentage >> 8) & 0xFF; 247 q_properties->priority = args->queue_priority; 248 q_properties->queue_address = args->ring_base_address; 249 q_properties->queue_size = args->ring_size; 250 q_properties->read_ptr = (uint32_t *) args->read_pointer_address; 251 q_properties->write_ptr = (uint32_t *) args->write_pointer_address; 252 q_properties->eop_ring_buffer_address = args->eop_buffer_address; 253 q_properties->eop_ring_buffer_size = args->eop_buffer_size; 254 q_properties->ctx_save_restore_area_address = 255 args->ctx_save_restore_address; 256 q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size; 257 q_properties->ctl_stack_size = args->ctl_stack_size; 258 if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE || 259 args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL) 260 q_properties->type = KFD_QUEUE_TYPE_COMPUTE; 261 else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA) 262 q_properties->type = KFD_QUEUE_TYPE_SDMA; 263 else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_XGMI) 264 q_properties->type = KFD_QUEUE_TYPE_SDMA_XGMI; 265 else 266 return -ENOTSUPP; 267 268 if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL) 269 q_properties->format = KFD_QUEUE_FORMAT_AQL; 270 else 271 q_properties->format = KFD_QUEUE_FORMAT_PM4; 272 273 pr_debug("Queue Percentage: %d, %d\n", 274 q_properties->queue_percent, args->queue_percentage); 275 276 pr_debug("Queue Priority: %d, %d\n", 277 q_properties->priority, args->queue_priority); 278 279 pr_debug("Queue Address: 0x%llX, 0x%llX\n", 280 q_properties->queue_address, args->ring_base_address); 281 282 pr_debug("Queue Size: 0x%llX, %u\n", 283 q_properties->queue_size, args->ring_size); 284 285 pr_debug("Queue r/w Pointers: %px, %px\n", 286 q_properties->read_ptr, 287 q_properties->write_ptr); 288 289 pr_debug("Queue Format: %d\n", q_properties->format); 290 291 pr_debug("Queue EOP: 0x%llX\n", q_properties->eop_ring_buffer_address); 292 293 pr_debug("Queue CTX save area: 0x%llX\n", 294 q_properties->ctx_save_restore_area_address); 295 296 return 0; 297 } 298 299 static int kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p, 300 void *data) 301 { 302 struct kfd_ioctl_create_queue_args *args = data; 303 struct kfd_node *dev; 304 int err = 0; 305 unsigned int queue_id; 306 struct kfd_process_device *pdd; 307 struct queue_properties q_properties; 308 uint32_t doorbell_offset_in_process = 0; 309 struct amdgpu_bo *wptr_bo = NULL; 310 311 memset(&q_properties, 0, sizeof(struct queue_properties)); 312 313 pr_debug("Creating queue ioctl\n"); 314 315 err = set_queue_properties_from_user(&q_properties, args); 316 if (err) 317 return err; 318 319 pr_debug("Looking for gpu id 0x%x\n", args->gpu_id); 320 321 mutex_lock(&p->mutex); 322 323 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 324 if (!pdd) { 325 pr_debug("Could not find gpu id 0x%x\n", args->gpu_id); 326 err = -EINVAL; 327 goto err_pdd; 328 } 329 dev = pdd->dev; 330 331 pdd = kfd_bind_process_to_device(dev, p); 332 if (IS_ERR(pdd)) { 333 err = -ESRCH; 334 goto err_bind_process; 335 } 336 337 if (!pdd->qpd.proc_doorbells) { 338 err = kfd_alloc_process_doorbells(dev->kfd, pdd); 339 if (err) { 340 pr_debug("failed to allocate process doorbells\n"); 341 goto err_bind_process; 342 } 343 } 344 345 /* Starting with GFX11, wptr BOs must be mapped to GART for MES to determine work 346 * on unmapped queues for usermode queue oversubscription (no aggregated doorbell) 347 */ 348 if (dev->kfd->shared_resources.enable_mes && 349 ((dev->adev->mes.sched_version & AMDGPU_MES_API_VERSION_MASK) 350 >> AMDGPU_MES_API_VERSION_SHIFT) >= 2) { 351 struct amdgpu_bo_va_mapping *wptr_mapping; 352 struct amdgpu_vm *wptr_vm; 353 354 wptr_vm = drm_priv_to_vm(pdd->drm_priv); 355 err = amdgpu_bo_reserve(wptr_vm->root.bo, false); 356 if (err) 357 goto err_wptr_map_gart; 358 359 wptr_mapping = amdgpu_vm_bo_lookup_mapping( 360 wptr_vm, args->write_pointer_address >> PAGE_SHIFT); 361 amdgpu_bo_unreserve(wptr_vm->root.bo); 362 if (!wptr_mapping) { 363 pr_err("Failed to lookup wptr bo\n"); 364 err = -EINVAL; 365 goto err_wptr_map_gart; 366 } 367 368 wptr_bo = wptr_mapping->bo_va->base.bo; 369 if (wptr_bo->tbo.base.size > PAGE_SIZE) { 370 pr_err("Requested GART mapping for wptr bo larger than one page\n"); 371 err = -EINVAL; 372 goto err_wptr_map_gart; 373 } 374 if (dev->adev != amdgpu_ttm_adev(wptr_bo->tbo.bdev)) { 375 pr_err("Queue memory allocated to wrong device\n"); 376 err = -EINVAL; 377 goto err_wptr_map_gart; 378 } 379 380 err = amdgpu_amdkfd_map_gtt_bo_to_gart(wptr_bo); 381 if (err) { 382 pr_err("Failed to map wptr bo to GART\n"); 383 goto err_wptr_map_gart; 384 } 385 } 386 387 pr_debug("Creating queue for PASID 0x%x on gpu 0x%x\n", 388 p->pasid, 389 dev->id); 390 391 err = pqm_create_queue(&p->pqm, dev, filep, &q_properties, &queue_id, wptr_bo, 392 NULL, NULL, NULL, &doorbell_offset_in_process); 393 if (err != 0) 394 goto err_create_queue; 395 396 args->queue_id = queue_id; 397 398 399 /* Return gpu_id as doorbell offset for mmap usage */ 400 args->doorbell_offset = KFD_MMAP_TYPE_DOORBELL; 401 args->doorbell_offset |= KFD_MMAP_GPU_ID(args->gpu_id); 402 if (KFD_IS_SOC15(dev)) 403 /* On SOC15 ASICs, include the doorbell offset within the 404 * process doorbell frame, which is 2 pages. 405 */ 406 args->doorbell_offset |= doorbell_offset_in_process; 407 408 mutex_unlock(&p->mutex); 409 410 pr_debug("Queue id %d was created successfully\n", args->queue_id); 411 412 pr_debug("Ring buffer address == 0x%016llX\n", 413 args->ring_base_address); 414 415 pr_debug("Read ptr address == 0x%016llX\n", 416 args->read_pointer_address); 417 418 pr_debug("Write ptr address == 0x%016llX\n", 419 args->write_pointer_address); 420 421 kfd_dbg_ev_raise(KFD_EC_MASK(EC_QUEUE_NEW), p, dev, queue_id, false, NULL, 0); 422 return 0; 423 424 err_create_queue: 425 if (wptr_bo) 426 amdgpu_amdkfd_free_gtt_mem(dev->adev, wptr_bo); 427 err_wptr_map_gart: 428 err_bind_process: 429 err_pdd: 430 mutex_unlock(&p->mutex); 431 return err; 432 } 433 434 static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p, 435 void *data) 436 { 437 int retval; 438 struct kfd_ioctl_destroy_queue_args *args = data; 439 440 pr_debug("Destroying queue id %d for pasid 0x%x\n", 441 args->queue_id, 442 p->pasid); 443 444 mutex_lock(&p->mutex); 445 446 retval = pqm_destroy_queue(&p->pqm, args->queue_id); 447 448 mutex_unlock(&p->mutex); 449 return retval; 450 } 451 452 static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p, 453 void *data) 454 { 455 int retval; 456 struct kfd_ioctl_update_queue_args *args = data; 457 struct queue_properties properties; 458 459 /* 460 * Repurpose queue percentage to accommodate new features: 461 * bit 0-7: queue percentage 462 * bit 8-15: pm4_target_xcc 463 */ 464 if ((args->queue_percentage & 0xFF) > KFD_MAX_QUEUE_PERCENTAGE) { 465 pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n"); 466 return -EINVAL; 467 } 468 469 if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) { 470 pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n"); 471 return -EINVAL; 472 } 473 474 if ((args->ring_base_address) && 475 (!access_ok((const void __user *) args->ring_base_address, 476 sizeof(uint64_t)))) { 477 pr_err("Can't access ring base address\n"); 478 return -EFAULT; 479 } 480 481 if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) { 482 pr_err("Ring size must be a power of 2 or 0\n"); 483 return -EINVAL; 484 } 485 486 properties.queue_address = args->ring_base_address; 487 properties.queue_size = args->ring_size; 488 properties.queue_percent = args->queue_percentage & 0xFF; 489 /* bit 8-15 are repurposed to be PM4 target XCC */ 490 properties.pm4_target_xcc = (args->queue_percentage >> 8) & 0xFF; 491 properties.priority = args->queue_priority; 492 493 pr_debug("Updating queue id %d for pasid 0x%x\n", 494 args->queue_id, p->pasid); 495 496 mutex_lock(&p->mutex); 497 498 retval = pqm_update_queue_properties(&p->pqm, args->queue_id, &properties); 499 500 mutex_unlock(&p->mutex); 501 502 return retval; 503 } 504 505 static int kfd_ioctl_set_cu_mask(struct file *filp, struct kfd_process *p, 506 void *data) 507 { 508 int retval; 509 const int max_num_cus = 1024; 510 struct kfd_ioctl_set_cu_mask_args *args = data; 511 struct mqd_update_info minfo = {0}; 512 uint32_t __user *cu_mask_ptr = (uint32_t __user *)args->cu_mask_ptr; 513 size_t cu_mask_size = sizeof(uint32_t) * (args->num_cu_mask / 32); 514 515 if ((args->num_cu_mask % 32) != 0) { 516 pr_debug("num_cu_mask 0x%x must be a multiple of 32", 517 args->num_cu_mask); 518 return -EINVAL; 519 } 520 521 minfo.cu_mask.count = args->num_cu_mask; 522 if (minfo.cu_mask.count == 0) { 523 pr_debug("CU mask cannot be 0"); 524 return -EINVAL; 525 } 526 527 /* To prevent an unreasonably large CU mask size, set an arbitrary 528 * limit of max_num_cus bits. We can then just drop any CU mask bits 529 * past max_num_cus bits and just use the first max_num_cus bits. 530 */ 531 if (minfo.cu_mask.count > max_num_cus) { 532 pr_debug("CU mask cannot be greater than 1024 bits"); 533 minfo.cu_mask.count = max_num_cus; 534 cu_mask_size = sizeof(uint32_t) * (max_num_cus/32); 535 } 536 537 minfo.cu_mask.ptr = kzalloc(cu_mask_size, GFP_KERNEL); 538 if (!minfo.cu_mask.ptr) 539 return -ENOMEM; 540 541 retval = copy_from_user(minfo.cu_mask.ptr, cu_mask_ptr, cu_mask_size); 542 if (retval) { 543 pr_debug("Could not copy CU mask from userspace"); 544 retval = -EFAULT; 545 goto out; 546 } 547 548 mutex_lock(&p->mutex); 549 550 retval = pqm_update_mqd(&p->pqm, args->queue_id, &minfo); 551 552 mutex_unlock(&p->mutex); 553 554 out: 555 kfree(minfo.cu_mask.ptr); 556 return retval; 557 } 558 559 static int kfd_ioctl_get_queue_wave_state(struct file *filep, 560 struct kfd_process *p, void *data) 561 { 562 struct kfd_ioctl_get_queue_wave_state_args *args = data; 563 int r; 564 565 mutex_lock(&p->mutex); 566 567 r = pqm_get_wave_state(&p->pqm, args->queue_id, 568 (void __user *)args->ctl_stack_address, 569 &args->ctl_stack_used_size, 570 &args->save_area_used_size); 571 572 mutex_unlock(&p->mutex); 573 574 return r; 575 } 576 577 static int kfd_ioctl_set_memory_policy(struct file *filep, 578 struct kfd_process *p, void *data) 579 { 580 struct kfd_ioctl_set_memory_policy_args *args = data; 581 int err = 0; 582 struct kfd_process_device *pdd; 583 enum cache_policy default_policy, alternate_policy; 584 585 if (args->default_policy != KFD_IOC_CACHE_POLICY_COHERENT 586 && args->default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) { 587 return -EINVAL; 588 } 589 590 if (args->alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT 591 && args->alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) { 592 return -EINVAL; 593 } 594 595 mutex_lock(&p->mutex); 596 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 597 if (!pdd) { 598 pr_debug("Could not find gpu id 0x%x\n", args->gpu_id); 599 err = -EINVAL; 600 goto err_pdd; 601 } 602 603 pdd = kfd_bind_process_to_device(pdd->dev, p); 604 if (IS_ERR(pdd)) { 605 err = -ESRCH; 606 goto out; 607 } 608 609 default_policy = (args->default_policy == KFD_IOC_CACHE_POLICY_COHERENT) 610 ? cache_policy_coherent : cache_policy_noncoherent; 611 612 alternate_policy = 613 (args->alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT) 614 ? cache_policy_coherent : cache_policy_noncoherent; 615 616 if (!pdd->dev->dqm->ops.set_cache_memory_policy(pdd->dev->dqm, 617 &pdd->qpd, 618 default_policy, 619 alternate_policy, 620 (void __user *)args->alternate_aperture_base, 621 args->alternate_aperture_size)) 622 err = -EINVAL; 623 624 out: 625 err_pdd: 626 mutex_unlock(&p->mutex); 627 628 return err; 629 } 630 631 static int kfd_ioctl_set_trap_handler(struct file *filep, 632 struct kfd_process *p, void *data) 633 { 634 struct kfd_ioctl_set_trap_handler_args *args = data; 635 int err = 0; 636 struct kfd_process_device *pdd; 637 638 mutex_lock(&p->mutex); 639 640 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 641 if (!pdd) { 642 err = -EINVAL; 643 goto err_pdd; 644 } 645 646 pdd = kfd_bind_process_to_device(pdd->dev, p); 647 if (IS_ERR(pdd)) { 648 err = -ESRCH; 649 goto out; 650 } 651 652 kfd_process_set_trap_handler(&pdd->qpd, args->tba_addr, args->tma_addr); 653 654 out: 655 err_pdd: 656 mutex_unlock(&p->mutex); 657 658 return err; 659 } 660 661 static int kfd_ioctl_dbg_register(struct file *filep, 662 struct kfd_process *p, void *data) 663 { 664 return -EPERM; 665 } 666 667 static int kfd_ioctl_dbg_unregister(struct file *filep, 668 struct kfd_process *p, void *data) 669 { 670 return -EPERM; 671 } 672 673 static int kfd_ioctl_dbg_address_watch(struct file *filep, 674 struct kfd_process *p, void *data) 675 { 676 return -EPERM; 677 } 678 679 /* Parse and generate fixed size data structure for wave control */ 680 static int kfd_ioctl_dbg_wave_control(struct file *filep, 681 struct kfd_process *p, void *data) 682 { 683 return -EPERM; 684 } 685 686 static int kfd_ioctl_get_clock_counters(struct file *filep, 687 struct kfd_process *p, void *data) 688 { 689 struct kfd_ioctl_get_clock_counters_args *args = data; 690 struct kfd_process_device *pdd; 691 692 mutex_lock(&p->mutex); 693 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 694 mutex_unlock(&p->mutex); 695 if (pdd) 696 /* Reading GPU clock counter from KGD */ 697 args->gpu_clock_counter = amdgpu_amdkfd_get_gpu_clock_counter(pdd->dev->adev); 698 else 699 /* Node without GPU resource */ 700 args->gpu_clock_counter = 0; 701 702 /* No access to rdtsc. Using raw monotonic time */ 703 args->cpu_clock_counter = ktime_get_raw_ns(); 704 args->system_clock_counter = ktime_get_boottime_ns(); 705 706 /* Since the counter is in nano-seconds we use 1GHz frequency */ 707 args->system_clock_freq = 1000000000; 708 709 return 0; 710 } 711 712 713 static int kfd_ioctl_get_process_apertures(struct file *filp, 714 struct kfd_process *p, void *data) 715 { 716 struct kfd_ioctl_get_process_apertures_args *args = data; 717 struct kfd_process_device_apertures *pAperture; 718 int i; 719 720 dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid); 721 722 args->num_of_nodes = 0; 723 724 mutex_lock(&p->mutex); 725 /* Run over all pdd of the process */ 726 for (i = 0; i < p->n_pdds; i++) { 727 struct kfd_process_device *pdd = p->pdds[i]; 728 729 pAperture = 730 &args->process_apertures[args->num_of_nodes]; 731 pAperture->gpu_id = pdd->dev->id; 732 pAperture->lds_base = pdd->lds_base; 733 pAperture->lds_limit = pdd->lds_limit; 734 pAperture->gpuvm_base = pdd->gpuvm_base; 735 pAperture->gpuvm_limit = pdd->gpuvm_limit; 736 pAperture->scratch_base = pdd->scratch_base; 737 pAperture->scratch_limit = pdd->scratch_limit; 738 739 dev_dbg(kfd_device, 740 "node id %u\n", args->num_of_nodes); 741 dev_dbg(kfd_device, 742 "gpu id %u\n", pdd->dev->id); 743 dev_dbg(kfd_device, 744 "lds_base %llX\n", pdd->lds_base); 745 dev_dbg(kfd_device, 746 "lds_limit %llX\n", pdd->lds_limit); 747 dev_dbg(kfd_device, 748 "gpuvm_base %llX\n", pdd->gpuvm_base); 749 dev_dbg(kfd_device, 750 "gpuvm_limit %llX\n", pdd->gpuvm_limit); 751 dev_dbg(kfd_device, 752 "scratch_base %llX\n", pdd->scratch_base); 753 dev_dbg(kfd_device, 754 "scratch_limit %llX\n", pdd->scratch_limit); 755 756 if (++args->num_of_nodes >= NUM_OF_SUPPORTED_GPUS) 757 break; 758 } 759 mutex_unlock(&p->mutex); 760 761 return 0; 762 } 763 764 static int kfd_ioctl_get_process_apertures_new(struct file *filp, 765 struct kfd_process *p, void *data) 766 { 767 struct kfd_ioctl_get_process_apertures_new_args *args = data; 768 struct kfd_process_device_apertures *pa; 769 int ret; 770 int i; 771 772 dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid); 773 774 if (args->num_of_nodes == 0) { 775 /* Return number of nodes, so that user space can alloacate 776 * sufficient memory 777 */ 778 mutex_lock(&p->mutex); 779 args->num_of_nodes = p->n_pdds; 780 goto out_unlock; 781 } 782 783 /* Fill in process-aperture information for all available 784 * nodes, but not more than args->num_of_nodes as that is 785 * the amount of memory allocated by user 786 */ 787 pa = kcalloc(args->num_of_nodes, sizeof(struct kfd_process_device_apertures), 788 GFP_KERNEL); 789 if (!pa) 790 return -ENOMEM; 791 792 mutex_lock(&p->mutex); 793 794 if (!p->n_pdds) { 795 args->num_of_nodes = 0; 796 kfree(pa); 797 goto out_unlock; 798 } 799 800 /* Run over all pdd of the process */ 801 for (i = 0; i < min(p->n_pdds, args->num_of_nodes); i++) { 802 struct kfd_process_device *pdd = p->pdds[i]; 803 804 pa[i].gpu_id = pdd->dev->id; 805 pa[i].lds_base = pdd->lds_base; 806 pa[i].lds_limit = pdd->lds_limit; 807 pa[i].gpuvm_base = pdd->gpuvm_base; 808 pa[i].gpuvm_limit = pdd->gpuvm_limit; 809 pa[i].scratch_base = pdd->scratch_base; 810 pa[i].scratch_limit = pdd->scratch_limit; 811 812 dev_dbg(kfd_device, 813 "gpu id %u\n", pdd->dev->id); 814 dev_dbg(kfd_device, 815 "lds_base %llX\n", pdd->lds_base); 816 dev_dbg(kfd_device, 817 "lds_limit %llX\n", pdd->lds_limit); 818 dev_dbg(kfd_device, 819 "gpuvm_base %llX\n", pdd->gpuvm_base); 820 dev_dbg(kfd_device, 821 "gpuvm_limit %llX\n", pdd->gpuvm_limit); 822 dev_dbg(kfd_device, 823 "scratch_base %llX\n", pdd->scratch_base); 824 dev_dbg(kfd_device, 825 "scratch_limit %llX\n", pdd->scratch_limit); 826 } 827 mutex_unlock(&p->mutex); 828 829 args->num_of_nodes = i; 830 ret = copy_to_user( 831 (void __user *)args->kfd_process_device_apertures_ptr, 832 pa, 833 (i * sizeof(struct kfd_process_device_apertures))); 834 kfree(pa); 835 return ret ? -EFAULT : 0; 836 837 out_unlock: 838 mutex_unlock(&p->mutex); 839 return 0; 840 } 841 842 static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p, 843 void *data) 844 { 845 struct kfd_ioctl_create_event_args *args = data; 846 int err; 847 848 /* For dGPUs the event page is allocated in user mode. The 849 * handle is passed to KFD with the first call to this IOCTL 850 * through the event_page_offset field. 851 */ 852 if (args->event_page_offset) { 853 mutex_lock(&p->mutex); 854 err = kfd_kmap_event_page(p, args->event_page_offset); 855 mutex_unlock(&p->mutex); 856 if (err) 857 return err; 858 } 859 860 err = kfd_event_create(filp, p, args->event_type, 861 args->auto_reset != 0, args->node_id, 862 &args->event_id, &args->event_trigger_data, 863 &args->event_page_offset, 864 &args->event_slot_index); 865 866 pr_debug("Created event (id:0x%08x) (%s)\n", args->event_id, __func__); 867 return err; 868 } 869 870 static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p, 871 void *data) 872 { 873 struct kfd_ioctl_destroy_event_args *args = data; 874 875 return kfd_event_destroy(p, args->event_id); 876 } 877 878 static int kfd_ioctl_set_event(struct file *filp, struct kfd_process *p, 879 void *data) 880 { 881 struct kfd_ioctl_set_event_args *args = data; 882 883 return kfd_set_event(p, args->event_id); 884 } 885 886 static int kfd_ioctl_reset_event(struct file *filp, struct kfd_process *p, 887 void *data) 888 { 889 struct kfd_ioctl_reset_event_args *args = data; 890 891 return kfd_reset_event(p, args->event_id); 892 } 893 894 static int kfd_ioctl_wait_events(struct file *filp, struct kfd_process *p, 895 void *data) 896 { 897 struct kfd_ioctl_wait_events_args *args = data; 898 899 return kfd_wait_on_events(p, args->num_events, 900 (void __user *)args->events_ptr, 901 (args->wait_for_all != 0), 902 &args->timeout, &args->wait_result); 903 } 904 static int kfd_ioctl_set_scratch_backing_va(struct file *filep, 905 struct kfd_process *p, void *data) 906 { 907 struct kfd_ioctl_set_scratch_backing_va_args *args = data; 908 struct kfd_process_device *pdd; 909 struct kfd_node *dev; 910 long err; 911 912 mutex_lock(&p->mutex); 913 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 914 if (!pdd) { 915 err = -EINVAL; 916 goto err_pdd; 917 } 918 dev = pdd->dev; 919 920 pdd = kfd_bind_process_to_device(dev, p); 921 if (IS_ERR(pdd)) { 922 err = PTR_ERR(pdd); 923 goto bind_process_to_device_fail; 924 } 925 926 pdd->qpd.sh_hidden_private_base = args->va_addr; 927 928 mutex_unlock(&p->mutex); 929 930 if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS && 931 pdd->qpd.vmid != 0 && dev->kfd2kgd->set_scratch_backing_va) 932 dev->kfd2kgd->set_scratch_backing_va( 933 dev->adev, args->va_addr, pdd->qpd.vmid); 934 935 return 0; 936 937 bind_process_to_device_fail: 938 err_pdd: 939 mutex_unlock(&p->mutex); 940 return err; 941 } 942 943 static int kfd_ioctl_get_tile_config(struct file *filep, 944 struct kfd_process *p, void *data) 945 { 946 struct kfd_ioctl_get_tile_config_args *args = data; 947 struct kfd_process_device *pdd; 948 struct tile_config config; 949 int err = 0; 950 951 mutex_lock(&p->mutex); 952 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 953 mutex_unlock(&p->mutex); 954 if (!pdd) 955 return -EINVAL; 956 957 amdgpu_amdkfd_get_tile_config(pdd->dev->adev, &config); 958 959 args->gb_addr_config = config.gb_addr_config; 960 args->num_banks = config.num_banks; 961 args->num_ranks = config.num_ranks; 962 963 if (args->num_tile_configs > config.num_tile_configs) 964 args->num_tile_configs = config.num_tile_configs; 965 err = copy_to_user((void __user *)args->tile_config_ptr, 966 config.tile_config_ptr, 967 args->num_tile_configs * sizeof(uint32_t)); 968 if (err) { 969 args->num_tile_configs = 0; 970 return -EFAULT; 971 } 972 973 if (args->num_macro_tile_configs > config.num_macro_tile_configs) 974 args->num_macro_tile_configs = 975 config.num_macro_tile_configs; 976 err = copy_to_user((void __user *)args->macro_tile_config_ptr, 977 config.macro_tile_config_ptr, 978 args->num_macro_tile_configs * sizeof(uint32_t)); 979 if (err) { 980 args->num_macro_tile_configs = 0; 981 return -EFAULT; 982 } 983 984 return 0; 985 } 986 987 static int kfd_ioctl_acquire_vm(struct file *filep, struct kfd_process *p, 988 void *data) 989 { 990 struct kfd_ioctl_acquire_vm_args *args = data; 991 struct kfd_process_device *pdd; 992 struct file *drm_file; 993 int ret; 994 995 drm_file = fget(args->drm_fd); 996 if (!drm_file) 997 return -EINVAL; 998 999 mutex_lock(&p->mutex); 1000 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 1001 if (!pdd) { 1002 ret = -EINVAL; 1003 goto err_pdd; 1004 } 1005 1006 if (pdd->drm_file) { 1007 ret = pdd->drm_file == drm_file ? 0 : -EBUSY; 1008 goto err_drm_file; 1009 } 1010 1011 ret = kfd_process_device_init_vm(pdd, drm_file); 1012 if (ret) 1013 goto err_unlock; 1014 1015 /* On success, the PDD keeps the drm_file reference */ 1016 mutex_unlock(&p->mutex); 1017 1018 return 0; 1019 1020 err_unlock: 1021 err_pdd: 1022 err_drm_file: 1023 mutex_unlock(&p->mutex); 1024 fput(drm_file); 1025 return ret; 1026 } 1027 1028 bool kfd_dev_is_large_bar(struct kfd_node *dev) 1029 { 1030 if (dev->kfd->adev->debug_largebar) { 1031 pr_debug("Simulate large-bar allocation on non large-bar machine\n"); 1032 return true; 1033 } 1034 1035 if (dev->local_mem_info.local_mem_size_private == 0 && 1036 dev->local_mem_info.local_mem_size_public > 0) 1037 return true; 1038 1039 if (dev->local_mem_info.local_mem_size_public == 0 && 1040 dev->kfd->adev->gmc.is_app_apu) { 1041 pr_debug("APP APU, Consider like a large bar system\n"); 1042 return true; 1043 } 1044 1045 return false; 1046 } 1047 1048 static int kfd_ioctl_get_available_memory(struct file *filep, 1049 struct kfd_process *p, void *data) 1050 { 1051 struct kfd_ioctl_get_available_memory_args *args = data; 1052 struct kfd_process_device *pdd = kfd_lock_pdd_by_id(p, args->gpu_id); 1053 1054 if (!pdd) 1055 return -EINVAL; 1056 args->available = amdgpu_amdkfd_get_available_memory(pdd->dev->adev, 1057 pdd->dev->node_id); 1058 kfd_unlock_pdd(pdd); 1059 return 0; 1060 } 1061 1062 static int kfd_ioctl_alloc_memory_of_gpu(struct file *filep, 1063 struct kfd_process *p, void *data) 1064 { 1065 struct kfd_ioctl_alloc_memory_of_gpu_args *args = data; 1066 struct kfd_process_device *pdd; 1067 void *mem; 1068 struct kfd_node *dev; 1069 int idr_handle; 1070 long err; 1071 uint64_t offset = args->mmap_offset; 1072 uint32_t flags = args->flags; 1073 1074 if (args->size == 0) 1075 return -EINVAL; 1076 1077 #if IS_ENABLED(CONFIG_HSA_AMD_SVM) 1078 /* Flush pending deferred work to avoid racing with deferred actions 1079 * from previous memory map changes (e.g. munmap). 1080 */ 1081 svm_range_list_lock_and_flush_work(&p->svms, current->mm); 1082 mutex_lock(&p->svms.lock); 1083 mmap_write_unlock(current->mm); 1084 if (interval_tree_iter_first(&p->svms.objects, 1085 args->va_addr >> PAGE_SHIFT, 1086 (args->va_addr + args->size - 1) >> PAGE_SHIFT)) { 1087 pr_err("Address: 0x%llx already allocated by SVM\n", 1088 args->va_addr); 1089 mutex_unlock(&p->svms.lock); 1090 return -EADDRINUSE; 1091 } 1092 1093 /* When register user buffer check if it has been registered by svm by 1094 * buffer cpu virtual address. 1095 */ 1096 if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) && 1097 interval_tree_iter_first(&p->svms.objects, 1098 args->mmap_offset >> PAGE_SHIFT, 1099 (args->mmap_offset + args->size - 1) >> PAGE_SHIFT)) { 1100 pr_err("User Buffer Address: 0x%llx already allocated by SVM\n", 1101 args->mmap_offset); 1102 mutex_unlock(&p->svms.lock); 1103 return -EADDRINUSE; 1104 } 1105 1106 mutex_unlock(&p->svms.lock); 1107 #endif 1108 mutex_lock(&p->mutex); 1109 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 1110 if (!pdd) { 1111 err = -EINVAL; 1112 goto err_pdd; 1113 } 1114 1115 dev = pdd->dev; 1116 1117 if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) && 1118 (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) && 1119 !kfd_dev_is_large_bar(dev)) { 1120 pr_err("Alloc host visible vram on small bar is not allowed\n"); 1121 err = -EINVAL; 1122 goto err_large_bar; 1123 } 1124 1125 pdd = kfd_bind_process_to_device(dev, p); 1126 if (IS_ERR(pdd)) { 1127 err = PTR_ERR(pdd); 1128 goto err_unlock; 1129 } 1130 1131 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) { 1132 if (args->size != kfd_doorbell_process_slice(dev->kfd)) { 1133 err = -EINVAL; 1134 goto err_unlock; 1135 } 1136 offset = kfd_get_process_doorbells(pdd); 1137 if (!offset) { 1138 err = -ENOMEM; 1139 goto err_unlock; 1140 } 1141 } else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) { 1142 if (args->size != PAGE_SIZE) { 1143 err = -EINVAL; 1144 goto err_unlock; 1145 } 1146 offset = dev->adev->rmmio_remap.bus_addr; 1147 if (!offset) { 1148 err = -ENOMEM; 1149 goto err_unlock; 1150 } 1151 } 1152 1153 err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu( 1154 dev->adev, args->va_addr, args->size, 1155 pdd->drm_priv, (struct kgd_mem **) &mem, &offset, 1156 flags, false); 1157 1158 if (err) 1159 goto err_unlock; 1160 1161 idr_handle = kfd_process_device_create_obj_handle(pdd, mem); 1162 if (idr_handle < 0) { 1163 err = -EFAULT; 1164 goto err_free; 1165 } 1166 1167 /* Update the VRAM usage count */ 1168 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 1169 uint64_t size = args->size; 1170 1171 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM) 1172 size >>= 1; 1173 WRITE_ONCE(pdd->vram_usage, pdd->vram_usage + PAGE_ALIGN(size)); 1174 } 1175 1176 mutex_unlock(&p->mutex); 1177 1178 args->handle = MAKE_HANDLE(args->gpu_id, idr_handle); 1179 args->mmap_offset = offset; 1180 1181 /* MMIO is mapped through kfd device 1182 * Generate a kfd mmap offset 1183 */ 1184 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) 1185 args->mmap_offset = KFD_MMAP_TYPE_MMIO 1186 | KFD_MMAP_GPU_ID(args->gpu_id); 1187 1188 return 0; 1189 1190 err_free: 1191 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, (struct kgd_mem *)mem, 1192 pdd->drm_priv, NULL); 1193 err_unlock: 1194 err_pdd: 1195 err_large_bar: 1196 mutex_unlock(&p->mutex); 1197 return err; 1198 } 1199 1200 static int kfd_ioctl_free_memory_of_gpu(struct file *filep, 1201 struct kfd_process *p, void *data) 1202 { 1203 struct kfd_ioctl_free_memory_of_gpu_args *args = data; 1204 struct kfd_process_device *pdd; 1205 void *mem; 1206 int ret; 1207 uint64_t size = 0; 1208 1209 mutex_lock(&p->mutex); 1210 /* 1211 * Safeguard to prevent user space from freeing signal BO. 1212 * It will be freed at process termination. 1213 */ 1214 if (p->signal_handle && (p->signal_handle == args->handle)) { 1215 pr_err("Free signal BO is not allowed\n"); 1216 ret = -EPERM; 1217 goto err_unlock; 1218 } 1219 1220 pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle)); 1221 if (!pdd) { 1222 pr_err("Process device data doesn't exist\n"); 1223 ret = -EINVAL; 1224 goto err_pdd; 1225 } 1226 1227 mem = kfd_process_device_translate_handle( 1228 pdd, GET_IDR_HANDLE(args->handle)); 1229 if (!mem) { 1230 ret = -EINVAL; 1231 goto err_unlock; 1232 } 1233 1234 ret = amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, 1235 (struct kgd_mem *)mem, pdd->drm_priv, &size); 1236 1237 /* If freeing the buffer failed, leave the handle in place for 1238 * clean-up during process tear-down. 1239 */ 1240 if (!ret) 1241 kfd_process_device_remove_obj_handle( 1242 pdd, GET_IDR_HANDLE(args->handle)); 1243 1244 WRITE_ONCE(pdd->vram_usage, pdd->vram_usage - size); 1245 1246 err_unlock: 1247 err_pdd: 1248 mutex_unlock(&p->mutex); 1249 return ret; 1250 } 1251 1252 static int kfd_ioctl_map_memory_to_gpu(struct file *filep, 1253 struct kfd_process *p, void *data) 1254 { 1255 struct kfd_ioctl_map_memory_to_gpu_args *args = data; 1256 struct kfd_process_device *pdd, *peer_pdd; 1257 void *mem; 1258 struct kfd_node *dev; 1259 long err = 0; 1260 int i; 1261 uint32_t *devices_arr = NULL; 1262 1263 if (!args->n_devices) { 1264 pr_debug("Device IDs array empty\n"); 1265 return -EINVAL; 1266 } 1267 if (args->n_success > args->n_devices) { 1268 pr_debug("n_success exceeds n_devices\n"); 1269 return -EINVAL; 1270 } 1271 1272 devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr), 1273 GFP_KERNEL); 1274 if (!devices_arr) 1275 return -ENOMEM; 1276 1277 err = copy_from_user(devices_arr, 1278 (void __user *)args->device_ids_array_ptr, 1279 args->n_devices * sizeof(*devices_arr)); 1280 if (err != 0) { 1281 err = -EFAULT; 1282 goto copy_from_user_failed; 1283 } 1284 1285 mutex_lock(&p->mutex); 1286 pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle)); 1287 if (!pdd) { 1288 err = -EINVAL; 1289 goto get_process_device_data_failed; 1290 } 1291 dev = pdd->dev; 1292 1293 pdd = kfd_bind_process_to_device(dev, p); 1294 if (IS_ERR(pdd)) { 1295 err = PTR_ERR(pdd); 1296 goto bind_process_to_device_failed; 1297 } 1298 1299 mem = kfd_process_device_translate_handle(pdd, 1300 GET_IDR_HANDLE(args->handle)); 1301 if (!mem) { 1302 err = -ENOMEM; 1303 goto get_mem_obj_from_handle_failed; 1304 } 1305 1306 for (i = args->n_success; i < args->n_devices; i++) { 1307 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]); 1308 if (!peer_pdd) { 1309 pr_debug("Getting device by id failed for 0x%x\n", 1310 devices_arr[i]); 1311 err = -EINVAL; 1312 goto get_mem_obj_from_handle_failed; 1313 } 1314 1315 peer_pdd = kfd_bind_process_to_device(peer_pdd->dev, p); 1316 if (IS_ERR(peer_pdd)) { 1317 err = PTR_ERR(peer_pdd); 1318 goto get_mem_obj_from_handle_failed; 1319 } 1320 1321 err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu( 1322 peer_pdd->dev->adev, (struct kgd_mem *)mem, 1323 peer_pdd->drm_priv); 1324 if (err) { 1325 struct pci_dev *pdev = peer_pdd->dev->adev->pdev; 1326 1327 dev_err(dev->adev->dev, 1328 "Failed to map peer:%04x:%02x:%02x.%d mem_domain:%d\n", 1329 pci_domain_nr(pdev->bus), 1330 pdev->bus->number, 1331 PCI_SLOT(pdev->devfn), 1332 PCI_FUNC(pdev->devfn), 1333 ((struct kgd_mem *)mem)->domain); 1334 goto map_memory_to_gpu_failed; 1335 } 1336 args->n_success = i+1; 1337 } 1338 1339 err = amdgpu_amdkfd_gpuvm_sync_memory(dev->adev, (struct kgd_mem *) mem, true); 1340 if (err) { 1341 pr_debug("Sync memory failed, wait interrupted by user signal\n"); 1342 goto sync_memory_failed; 1343 } 1344 1345 mutex_unlock(&p->mutex); 1346 1347 /* Flush TLBs after waiting for the page table updates to complete */ 1348 for (i = 0; i < args->n_devices; i++) { 1349 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]); 1350 if (WARN_ON_ONCE(!peer_pdd)) 1351 continue; 1352 kfd_flush_tlb(peer_pdd, TLB_FLUSH_LEGACY); 1353 } 1354 kfree(devices_arr); 1355 1356 return err; 1357 1358 get_process_device_data_failed: 1359 bind_process_to_device_failed: 1360 get_mem_obj_from_handle_failed: 1361 map_memory_to_gpu_failed: 1362 sync_memory_failed: 1363 mutex_unlock(&p->mutex); 1364 copy_from_user_failed: 1365 kfree(devices_arr); 1366 1367 return err; 1368 } 1369 1370 static int kfd_ioctl_unmap_memory_from_gpu(struct file *filep, 1371 struct kfd_process *p, void *data) 1372 { 1373 struct kfd_ioctl_unmap_memory_from_gpu_args *args = data; 1374 struct kfd_process_device *pdd, *peer_pdd; 1375 void *mem; 1376 long err = 0; 1377 uint32_t *devices_arr = NULL, i; 1378 bool flush_tlb; 1379 1380 if (!args->n_devices) { 1381 pr_debug("Device IDs array empty\n"); 1382 return -EINVAL; 1383 } 1384 if (args->n_success > args->n_devices) { 1385 pr_debug("n_success exceeds n_devices\n"); 1386 return -EINVAL; 1387 } 1388 1389 devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr), 1390 GFP_KERNEL); 1391 if (!devices_arr) 1392 return -ENOMEM; 1393 1394 err = copy_from_user(devices_arr, 1395 (void __user *)args->device_ids_array_ptr, 1396 args->n_devices * sizeof(*devices_arr)); 1397 if (err != 0) { 1398 err = -EFAULT; 1399 goto copy_from_user_failed; 1400 } 1401 1402 mutex_lock(&p->mutex); 1403 pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle)); 1404 if (!pdd) { 1405 err = -EINVAL; 1406 goto bind_process_to_device_failed; 1407 } 1408 1409 mem = kfd_process_device_translate_handle(pdd, 1410 GET_IDR_HANDLE(args->handle)); 1411 if (!mem) { 1412 err = -ENOMEM; 1413 goto get_mem_obj_from_handle_failed; 1414 } 1415 1416 for (i = args->n_success; i < args->n_devices; i++) { 1417 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]); 1418 if (!peer_pdd) { 1419 err = -EINVAL; 1420 goto get_mem_obj_from_handle_failed; 1421 } 1422 err = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu( 1423 peer_pdd->dev->adev, (struct kgd_mem *)mem, peer_pdd->drm_priv); 1424 if (err) { 1425 pr_err("Failed to unmap from gpu %d/%d\n", 1426 i, args->n_devices); 1427 goto unmap_memory_from_gpu_failed; 1428 } 1429 args->n_success = i+1; 1430 } 1431 1432 flush_tlb = kfd_flush_tlb_after_unmap(pdd->dev->kfd); 1433 if (flush_tlb) { 1434 err = amdgpu_amdkfd_gpuvm_sync_memory(pdd->dev->adev, 1435 (struct kgd_mem *) mem, true); 1436 if (err) { 1437 pr_debug("Sync memory failed, wait interrupted by user signal\n"); 1438 goto sync_memory_failed; 1439 } 1440 } 1441 1442 /* Flush TLBs after waiting for the page table updates to complete */ 1443 for (i = 0; i < args->n_devices; i++) { 1444 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]); 1445 if (WARN_ON_ONCE(!peer_pdd)) 1446 continue; 1447 if (flush_tlb) 1448 kfd_flush_tlb(peer_pdd, TLB_FLUSH_HEAVYWEIGHT); 1449 1450 /* Remove dma mapping after tlb flush to avoid IO_PAGE_FAULT */ 1451 err = amdgpu_amdkfd_gpuvm_dmaunmap_mem(mem, peer_pdd->drm_priv); 1452 if (err) 1453 goto sync_memory_failed; 1454 } 1455 1456 mutex_unlock(&p->mutex); 1457 1458 kfree(devices_arr); 1459 1460 return 0; 1461 1462 bind_process_to_device_failed: 1463 get_mem_obj_from_handle_failed: 1464 unmap_memory_from_gpu_failed: 1465 sync_memory_failed: 1466 mutex_unlock(&p->mutex); 1467 copy_from_user_failed: 1468 kfree(devices_arr); 1469 return err; 1470 } 1471 1472 static int kfd_ioctl_alloc_queue_gws(struct file *filep, 1473 struct kfd_process *p, void *data) 1474 { 1475 int retval; 1476 struct kfd_ioctl_alloc_queue_gws_args *args = data; 1477 struct queue *q; 1478 struct kfd_node *dev; 1479 1480 mutex_lock(&p->mutex); 1481 q = pqm_get_user_queue(&p->pqm, args->queue_id); 1482 1483 if (q) { 1484 dev = q->device; 1485 } else { 1486 retval = -EINVAL; 1487 goto out_unlock; 1488 } 1489 1490 if (!dev->gws) { 1491 retval = -ENODEV; 1492 goto out_unlock; 1493 } 1494 1495 if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) { 1496 retval = -ENODEV; 1497 goto out_unlock; 1498 } 1499 1500 if (p->debug_trap_enabled && (!kfd_dbg_has_gws_support(dev) || 1501 kfd_dbg_has_cwsr_workaround(dev))) { 1502 retval = -EBUSY; 1503 goto out_unlock; 1504 } 1505 1506 retval = pqm_set_gws(&p->pqm, args->queue_id, args->num_gws ? dev->gws : NULL); 1507 mutex_unlock(&p->mutex); 1508 1509 args->first_gws = 0; 1510 return retval; 1511 1512 out_unlock: 1513 mutex_unlock(&p->mutex); 1514 return retval; 1515 } 1516 1517 static int kfd_ioctl_get_dmabuf_info(struct file *filep, 1518 struct kfd_process *p, void *data) 1519 { 1520 struct kfd_ioctl_get_dmabuf_info_args *args = data; 1521 struct kfd_node *dev = NULL; 1522 struct amdgpu_device *dmabuf_adev; 1523 void *metadata_buffer = NULL; 1524 uint32_t flags; 1525 int8_t xcp_id; 1526 unsigned int i; 1527 int r; 1528 1529 /* Find a KFD GPU device that supports the get_dmabuf_info query */ 1530 for (i = 0; kfd_topology_enum_kfd_devices(i, &dev) == 0; i++) 1531 if (dev && !kfd_devcgroup_check_permission(dev)) 1532 break; 1533 if (!dev) 1534 return -EINVAL; 1535 1536 if (args->metadata_ptr) { 1537 metadata_buffer = kzalloc(args->metadata_size, GFP_KERNEL); 1538 if (!metadata_buffer) 1539 return -ENOMEM; 1540 } 1541 1542 /* Get dmabuf info from KGD */ 1543 r = amdgpu_amdkfd_get_dmabuf_info(dev->adev, args->dmabuf_fd, 1544 &dmabuf_adev, &args->size, 1545 metadata_buffer, args->metadata_size, 1546 &args->metadata_size, &flags, &xcp_id); 1547 if (r) 1548 goto exit; 1549 1550 if (xcp_id >= 0) 1551 args->gpu_id = dmabuf_adev->kfd.dev->nodes[xcp_id]->id; 1552 else 1553 args->gpu_id = dev->id; 1554 args->flags = flags; 1555 1556 /* Copy metadata buffer to user mode */ 1557 if (metadata_buffer) { 1558 r = copy_to_user((void __user *)args->metadata_ptr, 1559 metadata_buffer, args->metadata_size); 1560 if (r != 0) 1561 r = -EFAULT; 1562 } 1563 1564 exit: 1565 kfree(metadata_buffer); 1566 1567 return r; 1568 } 1569 1570 static int kfd_ioctl_import_dmabuf(struct file *filep, 1571 struct kfd_process *p, void *data) 1572 { 1573 struct kfd_ioctl_import_dmabuf_args *args = data; 1574 struct kfd_process_device *pdd; 1575 int idr_handle; 1576 uint64_t size; 1577 void *mem; 1578 int r; 1579 1580 mutex_lock(&p->mutex); 1581 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 1582 if (!pdd) { 1583 r = -EINVAL; 1584 goto err_unlock; 1585 } 1586 1587 pdd = kfd_bind_process_to_device(pdd->dev, p); 1588 if (IS_ERR(pdd)) { 1589 r = PTR_ERR(pdd); 1590 goto err_unlock; 1591 } 1592 1593 r = amdgpu_amdkfd_gpuvm_import_dmabuf_fd(pdd->dev->adev, args->dmabuf_fd, 1594 args->va_addr, pdd->drm_priv, 1595 (struct kgd_mem **)&mem, &size, 1596 NULL); 1597 if (r) 1598 goto err_unlock; 1599 1600 idr_handle = kfd_process_device_create_obj_handle(pdd, mem); 1601 if (idr_handle < 0) { 1602 r = -EFAULT; 1603 goto err_free; 1604 } 1605 1606 mutex_unlock(&p->mutex); 1607 1608 args->handle = MAKE_HANDLE(args->gpu_id, idr_handle); 1609 1610 return 0; 1611 1612 err_free: 1613 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, (struct kgd_mem *)mem, 1614 pdd->drm_priv, NULL); 1615 err_unlock: 1616 mutex_unlock(&p->mutex); 1617 return r; 1618 } 1619 1620 static int kfd_ioctl_export_dmabuf(struct file *filep, 1621 struct kfd_process *p, void *data) 1622 { 1623 struct kfd_ioctl_export_dmabuf_args *args = data; 1624 struct kfd_process_device *pdd; 1625 struct dma_buf *dmabuf; 1626 struct kfd_node *dev; 1627 void *mem; 1628 int ret = 0; 1629 1630 dev = kfd_device_by_id(GET_GPU_ID(args->handle)); 1631 if (!dev) 1632 return -EINVAL; 1633 1634 mutex_lock(&p->mutex); 1635 1636 pdd = kfd_get_process_device_data(dev, p); 1637 if (!pdd) { 1638 ret = -EINVAL; 1639 goto err_unlock; 1640 } 1641 1642 mem = kfd_process_device_translate_handle(pdd, 1643 GET_IDR_HANDLE(args->handle)); 1644 if (!mem) { 1645 ret = -EINVAL; 1646 goto err_unlock; 1647 } 1648 1649 ret = amdgpu_amdkfd_gpuvm_export_dmabuf(mem, &dmabuf); 1650 mutex_unlock(&p->mutex); 1651 if (ret) 1652 goto err_out; 1653 1654 ret = dma_buf_fd(dmabuf, args->flags); 1655 if (ret < 0) { 1656 dma_buf_put(dmabuf); 1657 goto err_out; 1658 } 1659 /* dma_buf_fd assigns the reference count to the fd, no need to 1660 * put the reference here. 1661 */ 1662 args->dmabuf_fd = ret; 1663 1664 return 0; 1665 1666 err_unlock: 1667 mutex_unlock(&p->mutex); 1668 err_out: 1669 return ret; 1670 } 1671 1672 /* Handle requests for watching SMI events */ 1673 static int kfd_ioctl_smi_events(struct file *filep, 1674 struct kfd_process *p, void *data) 1675 { 1676 struct kfd_ioctl_smi_events_args *args = data; 1677 struct kfd_process_device *pdd; 1678 1679 mutex_lock(&p->mutex); 1680 1681 pdd = kfd_process_device_data_by_id(p, args->gpuid); 1682 mutex_unlock(&p->mutex); 1683 if (!pdd) 1684 return -EINVAL; 1685 1686 return kfd_smi_event_open(pdd->dev, &args->anon_fd); 1687 } 1688 1689 #if IS_ENABLED(CONFIG_HSA_AMD_SVM) 1690 1691 static int kfd_ioctl_set_xnack_mode(struct file *filep, 1692 struct kfd_process *p, void *data) 1693 { 1694 struct kfd_ioctl_set_xnack_mode_args *args = data; 1695 int r = 0; 1696 1697 mutex_lock(&p->mutex); 1698 if (args->xnack_enabled >= 0) { 1699 if (!list_empty(&p->pqm.queues)) { 1700 pr_debug("Process has user queues running\n"); 1701 r = -EBUSY; 1702 goto out_unlock; 1703 } 1704 1705 if (p->xnack_enabled == args->xnack_enabled) 1706 goto out_unlock; 1707 1708 if (args->xnack_enabled && !kfd_process_xnack_mode(p, true)) { 1709 r = -EPERM; 1710 goto out_unlock; 1711 } 1712 1713 r = svm_range_switch_xnack_reserve_mem(p, args->xnack_enabled); 1714 } else { 1715 args->xnack_enabled = p->xnack_enabled; 1716 } 1717 1718 out_unlock: 1719 mutex_unlock(&p->mutex); 1720 1721 return r; 1722 } 1723 1724 static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data) 1725 { 1726 struct kfd_ioctl_svm_args *args = data; 1727 int r = 0; 1728 1729 pr_debug("start 0x%llx size 0x%llx op 0x%x nattr 0x%x\n", 1730 args->start_addr, args->size, args->op, args->nattr); 1731 1732 if ((args->start_addr & ~PAGE_MASK) || (args->size & ~PAGE_MASK)) 1733 return -EINVAL; 1734 if (!args->start_addr || !args->size) 1735 return -EINVAL; 1736 1737 r = svm_ioctl(p, args->op, args->start_addr, args->size, args->nattr, 1738 args->attrs); 1739 1740 return r; 1741 } 1742 #else 1743 static int kfd_ioctl_set_xnack_mode(struct file *filep, 1744 struct kfd_process *p, void *data) 1745 { 1746 return -EPERM; 1747 } 1748 static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data) 1749 { 1750 return -EPERM; 1751 } 1752 #endif 1753 1754 static int criu_checkpoint_process(struct kfd_process *p, 1755 uint8_t __user *user_priv_data, 1756 uint64_t *priv_offset) 1757 { 1758 struct kfd_criu_process_priv_data process_priv; 1759 int ret; 1760 1761 memset(&process_priv, 0, sizeof(process_priv)); 1762 1763 process_priv.version = KFD_CRIU_PRIV_VERSION; 1764 /* For CR, we don't consider negative xnack mode which is used for 1765 * querying without changing it, here 0 simply means disabled and 1 1766 * means enabled so retry for finding a valid PTE. 1767 */ 1768 process_priv.xnack_mode = p->xnack_enabled ? 1 : 0; 1769 1770 ret = copy_to_user(user_priv_data + *priv_offset, 1771 &process_priv, sizeof(process_priv)); 1772 1773 if (ret) { 1774 pr_err("Failed to copy process information to user\n"); 1775 ret = -EFAULT; 1776 } 1777 1778 *priv_offset += sizeof(process_priv); 1779 return ret; 1780 } 1781 1782 static int criu_checkpoint_devices(struct kfd_process *p, 1783 uint32_t num_devices, 1784 uint8_t __user *user_addr, 1785 uint8_t __user *user_priv_data, 1786 uint64_t *priv_offset) 1787 { 1788 struct kfd_criu_device_priv_data *device_priv = NULL; 1789 struct kfd_criu_device_bucket *device_buckets = NULL; 1790 int ret = 0, i; 1791 1792 device_buckets = kvzalloc(num_devices * sizeof(*device_buckets), GFP_KERNEL); 1793 if (!device_buckets) { 1794 ret = -ENOMEM; 1795 goto exit; 1796 } 1797 1798 device_priv = kvzalloc(num_devices * sizeof(*device_priv), GFP_KERNEL); 1799 if (!device_priv) { 1800 ret = -ENOMEM; 1801 goto exit; 1802 } 1803 1804 for (i = 0; i < num_devices; i++) { 1805 struct kfd_process_device *pdd = p->pdds[i]; 1806 1807 device_buckets[i].user_gpu_id = pdd->user_gpu_id; 1808 device_buckets[i].actual_gpu_id = pdd->dev->id; 1809 1810 /* 1811 * priv_data does not contain useful information for now and is reserved for 1812 * future use, so we do not set its contents. 1813 */ 1814 } 1815 1816 ret = copy_to_user(user_addr, device_buckets, num_devices * sizeof(*device_buckets)); 1817 if (ret) { 1818 pr_err("Failed to copy device information to user\n"); 1819 ret = -EFAULT; 1820 goto exit; 1821 } 1822 1823 ret = copy_to_user(user_priv_data + *priv_offset, 1824 device_priv, 1825 num_devices * sizeof(*device_priv)); 1826 if (ret) { 1827 pr_err("Failed to copy device information to user\n"); 1828 ret = -EFAULT; 1829 } 1830 *priv_offset += num_devices * sizeof(*device_priv); 1831 1832 exit: 1833 kvfree(device_buckets); 1834 kvfree(device_priv); 1835 return ret; 1836 } 1837 1838 static uint32_t get_process_num_bos(struct kfd_process *p) 1839 { 1840 uint32_t num_of_bos = 0; 1841 int i; 1842 1843 /* Run over all PDDs of the process */ 1844 for (i = 0; i < p->n_pdds; i++) { 1845 struct kfd_process_device *pdd = p->pdds[i]; 1846 void *mem; 1847 int id; 1848 1849 idr_for_each_entry(&pdd->alloc_idr, mem, id) { 1850 struct kgd_mem *kgd_mem = (struct kgd_mem *)mem; 1851 1852 if (!kgd_mem->va || kgd_mem->va > pdd->gpuvm_base) 1853 num_of_bos++; 1854 } 1855 } 1856 return num_of_bos; 1857 } 1858 1859 static int criu_get_prime_handle(struct kgd_mem *mem, 1860 int flags, u32 *shared_fd) 1861 { 1862 struct dma_buf *dmabuf; 1863 int ret; 1864 1865 ret = amdgpu_amdkfd_gpuvm_export_dmabuf(mem, &dmabuf); 1866 if (ret) { 1867 pr_err("dmabuf export failed for the BO\n"); 1868 return ret; 1869 } 1870 1871 ret = dma_buf_fd(dmabuf, flags); 1872 if (ret < 0) { 1873 pr_err("dmabuf create fd failed, ret:%d\n", ret); 1874 goto out_free_dmabuf; 1875 } 1876 1877 *shared_fd = ret; 1878 return 0; 1879 1880 out_free_dmabuf: 1881 dma_buf_put(dmabuf); 1882 return ret; 1883 } 1884 1885 static int criu_checkpoint_bos(struct kfd_process *p, 1886 uint32_t num_bos, 1887 uint8_t __user *user_bos, 1888 uint8_t __user *user_priv_data, 1889 uint64_t *priv_offset) 1890 { 1891 struct kfd_criu_bo_bucket *bo_buckets; 1892 struct kfd_criu_bo_priv_data *bo_privs; 1893 int ret = 0, pdd_index, bo_index = 0, id; 1894 void *mem; 1895 1896 bo_buckets = kvzalloc(num_bos * sizeof(*bo_buckets), GFP_KERNEL); 1897 if (!bo_buckets) 1898 return -ENOMEM; 1899 1900 bo_privs = kvzalloc(num_bos * sizeof(*bo_privs), GFP_KERNEL); 1901 if (!bo_privs) { 1902 ret = -ENOMEM; 1903 goto exit; 1904 } 1905 1906 for (pdd_index = 0; pdd_index < p->n_pdds; pdd_index++) { 1907 struct kfd_process_device *pdd = p->pdds[pdd_index]; 1908 struct amdgpu_bo *dumper_bo; 1909 struct kgd_mem *kgd_mem; 1910 1911 idr_for_each_entry(&pdd->alloc_idr, mem, id) { 1912 struct kfd_criu_bo_bucket *bo_bucket; 1913 struct kfd_criu_bo_priv_data *bo_priv; 1914 int i, dev_idx = 0; 1915 1916 if (!mem) { 1917 ret = -ENOMEM; 1918 goto exit; 1919 } 1920 1921 kgd_mem = (struct kgd_mem *)mem; 1922 dumper_bo = kgd_mem->bo; 1923 1924 /* Skip checkpointing BOs that are used for Trap handler 1925 * code and state. Currently, these BOs have a VA that 1926 * is less GPUVM Base 1927 */ 1928 if (kgd_mem->va && kgd_mem->va <= pdd->gpuvm_base) 1929 continue; 1930 1931 bo_bucket = &bo_buckets[bo_index]; 1932 bo_priv = &bo_privs[bo_index]; 1933 1934 bo_bucket->gpu_id = pdd->user_gpu_id; 1935 bo_bucket->addr = (uint64_t)kgd_mem->va; 1936 bo_bucket->size = amdgpu_bo_size(dumper_bo); 1937 bo_bucket->alloc_flags = (uint32_t)kgd_mem->alloc_flags; 1938 bo_priv->idr_handle = id; 1939 1940 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 1941 ret = amdgpu_ttm_tt_get_userptr(&dumper_bo->tbo, 1942 &bo_priv->user_addr); 1943 if (ret) { 1944 pr_err("Failed to obtain user address for user-pointer bo\n"); 1945 goto exit; 1946 } 1947 } 1948 if (bo_bucket->alloc_flags 1949 & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) { 1950 ret = criu_get_prime_handle(kgd_mem, 1951 bo_bucket->alloc_flags & 1952 KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? DRM_RDWR : 0, 1953 &bo_bucket->dmabuf_fd); 1954 if (ret) 1955 goto exit; 1956 } else { 1957 bo_bucket->dmabuf_fd = KFD_INVALID_FD; 1958 } 1959 1960 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) 1961 bo_bucket->offset = KFD_MMAP_TYPE_DOORBELL | 1962 KFD_MMAP_GPU_ID(pdd->dev->id); 1963 else if (bo_bucket->alloc_flags & 1964 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) 1965 bo_bucket->offset = KFD_MMAP_TYPE_MMIO | 1966 KFD_MMAP_GPU_ID(pdd->dev->id); 1967 else 1968 bo_bucket->offset = amdgpu_bo_mmap_offset(dumper_bo); 1969 1970 for (i = 0; i < p->n_pdds; i++) { 1971 if (amdgpu_amdkfd_bo_mapped_to_dev(p->pdds[i]->dev->adev, kgd_mem)) 1972 bo_priv->mapped_gpuids[dev_idx++] = p->pdds[i]->user_gpu_id; 1973 } 1974 1975 pr_debug("bo_size = 0x%llx, bo_addr = 0x%llx bo_offset = 0x%llx\n" 1976 "gpu_id = 0x%x alloc_flags = 0x%x idr_handle = 0x%x", 1977 bo_bucket->size, 1978 bo_bucket->addr, 1979 bo_bucket->offset, 1980 bo_bucket->gpu_id, 1981 bo_bucket->alloc_flags, 1982 bo_priv->idr_handle); 1983 bo_index++; 1984 } 1985 } 1986 1987 ret = copy_to_user(user_bos, bo_buckets, num_bos * sizeof(*bo_buckets)); 1988 if (ret) { 1989 pr_err("Failed to copy BO information to user\n"); 1990 ret = -EFAULT; 1991 goto exit; 1992 } 1993 1994 ret = copy_to_user(user_priv_data + *priv_offset, bo_privs, num_bos * sizeof(*bo_privs)); 1995 if (ret) { 1996 pr_err("Failed to copy BO priv information to user\n"); 1997 ret = -EFAULT; 1998 goto exit; 1999 } 2000 2001 *priv_offset += num_bos * sizeof(*bo_privs); 2002 2003 exit: 2004 while (ret && bo_index--) { 2005 if (bo_buckets[bo_index].alloc_flags 2006 & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) 2007 close_fd(bo_buckets[bo_index].dmabuf_fd); 2008 } 2009 2010 kvfree(bo_buckets); 2011 kvfree(bo_privs); 2012 return ret; 2013 } 2014 2015 static int criu_get_process_object_info(struct kfd_process *p, 2016 uint32_t *num_devices, 2017 uint32_t *num_bos, 2018 uint32_t *num_objects, 2019 uint64_t *objs_priv_size) 2020 { 2021 uint64_t queues_priv_data_size, svm_priv_data_size, priv_size; 2022 uint32_t num_queues, num_events, num_svm_ranges; 2023 int ret; 2024 2025 *num_devices = p->n_pdds; 2026 *num_bos = get_process_num_bos(p); 2027 2028 ret = kfd_process_get_queue_info(p, &num_queues, &queues_priv_data_size); 2029 if (ret) 2030 return ret; 2031 2032 num_events = kfd_get_num_events(p); 2033 2034 ret = svm_range_get_info(p, &num_svm_ranges, &svm_priv_data_size); 2035 if (ret) 2036 return ret; 2037 2038 *num_objects = num_queues + num_events + num_svm_ranges; 2039 2040 if (objs_priv_size) { 2041 priv_size = sizeof(struct kfd_criu_process_priv_data); 2042 priv_size += *num_devices * sizeof(struct kfd_criu_device_priv_data); 2043 priv_size += *num_bos * sizeof(struct kfd_criu_bo_priv_data); 2044 priv_size += queues_priv_data_size; 2045 priv_size += num_events * sizeof(struct kfd_criu_event_priv_data); 2046 priv_size += svm_priv_data_size; 2047 *objs_priv_size = priv_size; 2048 } 2049 return 0; 2050 } 2051 2052 static int criu_checkpoint(struct file *filep, 2053 struct kfd_process *p, 2054 struct kfd_ioctl_criu_args *args) 2055 { 2056 int ret; 2057 uint32_t num_devices, num_bos, num_objects; 2058 uint64_t priv_size, priv_offset = 0, bo_priv_offset; 2059 2060 if (!args->devices || !args->bos || !args->priv_data) 2061 return -EINVAL; 2062 2063 mutex_lock(&p->mutex); 2064 2065 if (!p->n_pdds) { 2066 pr_err("No pdd for given process\n"); 2067 ret = -ENODEV; 2068 goto exit_unlock; 2069 } 2070 2071 /* Confirm all process queues are evicted */ 2072 if (!p->queues_paused) { 2073 pr_err("Cannot dump process when queues are not in evicted state\n"); 2074 /* CRIU plugin did not call op PROCESS_INFO before checkpointing */ 2075 ret = -EINVAL; 2076 goto exit_unlock; 2077 } 2078 2079 ret = criu_get_process_object_info(p, &num_devices, &num_bos, &num_objects, &priv_size); 2080 if (ret) 2081 goto exit_unlock; 2082 2083 if (num_devices != args->num_devices || 2084 num_bos != args->num_bos || 2085 num_objects != args->num_objects || 2086 priv_size != args->priv_data_size) { 2087 2088 ret = -EINVAL; 2089 goto exit_unlock; 2090 } 2091 2092 /* each function will store private data inside priv_data and adjust priv_offset */ 2093 ret = criu_checkpoint_process(p, (uint8_t __user *)args->priv_data, &priv_offset); 2094 if (ret) 2095 goto exit_unlock; 2096 2097 ret = criu_checkpoint_devices(p, num_devices, (uint8_t __user *)args->devices, 2098 (uint8_t __user *)args->priv_data, &priv_offset); 2099 if (ret) 2100 goto exit_unlock; 2101 2102 /* Leave room for BOs in the private data. They need to be restored 2103 * before events, but we checkpoint them last to simplify the error 2104 * handling. 2105 */ 2106 bo_priv_offset = priv_offset; 2107 priv_offset += num_bos * sizeof(struct kfd_criu_bo_priv_data); 2108 2109 if (num_objects) { 2110 ret = kfd_criu_checkpoint_queues(p, (uint8_t __user *)args->priv_data, 2111 &priv_offset); 2112 if (ret) 2113 goto exit_unlock; 2114 2115 ret = kfd_criu_checkpoint_events(p, (uint8_t __user *)args->priv_data, 2116 &priv_offset); 2117 if (ret) 2118 goto exit_unlock; 2119 2120 ret = kfd_criu_checkpoint_svm(p, (uint8_t __user *)args->priv_data, &priv_offset); 2121 if (ret) 2122 goto exit_unlock; 2123 } 2124 2125 /* This must be the last thing in this function that can fail. 2126 * Otherwise we leak dmabuf file descriptors. 2127 */ 2128 ret = criu_checkpoint_bos(p, num_bos, (uint8_t __user *)args->bos, 2129 (uint8_t __user *)args->priv_data, &bo_priv_offset); 2130 2131 exit_unlock: 2132 mutex_unlock(&p->mutex); 2133 if (ret) 2134 pr_err("Failed to dump CRIU ret:%d\n", ret); 2135 else 2136 pr_debug("CRIU dump ret:%d\n", ret); 2137 2138 return ret; 2139 } 2140 2141 static int criu_restore_process(struct kfd_process *p, 2142 struct kfd_ioctl_criu_args *args, 2143 uint64_t *priv_offset, 2144 uint64_t max_priv_data_size) 2145 { 2146 int ret = 0; 2147 struct kfd_criu_process_priv_data process_priv; 2148 2149 if (*priv_offset + sizeof(process_priv) > max_priv_data_size) 2150 return -EINVAL; 2151 2152 ret = copy_from_user(&process_priv, 2153 (void __user *)(args->priv_data + *priv_offset), 2154 sizeof(process_priv)); 2155 if (ret) { 2156 pr_err("Failed to copy process private information from user\n"); 2157 ret = -EFAULT; 2158 goto exit; 2159 } 2160 *priv_offset += sizeof(process_priv); 2161 2162 if (process_priv.version != KFD_CRIU_PRIV_VERSION) { 2163 pr_err("Invalid CRIU API version (checkpointed:%d current:%d)\n", 2164 process_priv.version, KFD_CRIU_PRIV_VERSION); 2165 return -EINVAL; 2166 } 2167 2168 pr_debug("Setting XNACK mode\n"); 2169 if (process_priv.xnack_mode && !kfd_process_xnack_mode(p, true)) { 2170 pr_err("xnack mode cannot be set\n"); 2171 ret = -EPERM; 2172 goto exit; 2173 } else { 2174 pr_debug("set xnack mode: %d\n", process_priv.xnack_mode); 2175 p->xnack_enabled = process_priv.xnack_mode; 2176 } 2177 2178 exit: 2179 return ret; 2180 } 2181 2182 static int criu_restore_devices(struct kfd_process *p, 2183 struct kfd_ioctl_criu_args *args, 2184 uint64_t *priv_offset, 2185 uint64_t max_priv_data_size) 2186 { 2187 struct kfd_criu_device_bucket *device_buckets; 2188 struct kfd_criu_device_priv_data *device_privs; 2189 int ret = 0; 2190 uint32_t i; 2191 2192 if (args->num_devices != p->n_pdds) 2193 return -EINVAL; 2194 2195 if (*priv_offset + (args->num_devices * sizeof(*device_privs)) > max_priv_data_size) 2196 return -EINVAL; 2197 2198 device_buckets = kmalloc_array(args->num_devices, sizeof(*device_buckets), GFP_KERNEL); 2199 if (!device_buckets) 2200 return -ENOMEM; 2201 2202 ret = copy_from_user(device_buckets, (void __user *)args->devices, 2203 args->num_devices * sizeof(*device_buckets)); 2204 if (ret) { 2205 pr_err("Failed to copy devices buckets from user\n"); 2206 ret = -EFAULT; 2207 goto exit; 2208 } 2209 2210 for (i = 0; i < args->num_devices; i++) { 2211 struct kfd_node *dev; 2212 struct kfd_process_device *pdd; 2213 struct file *drm_file; 2214 2215 /* device private data is not currently used */ 2216 2217 if (!device_buckets[i].user_gpu_id) { 2218 pr_err("Invalid user gpu_id\n"); 2219 ret = -EINVAL; 2220 goto exit; 2221 } 2222 2223 dev = kfd_device_by_id(device_buckets[i].actual_gpu_id); 2224 if (!dev) { 2225 pr_err("Failed to find device with gpu_id = %x\n", 2226 device_buckets[i].actual_gpu_id); 2227 ret = -EINVAL; 2228 goto exit; 2229 } 2230 2231 pdd = kfd_get_process_device_data(dev, p); 2232 if (!pdd) { 2233 pr_err("Failed to get pdd for gpu_id = %x\n", 2234 device_buckets[i].actual_gpu_id); 2235 ret = -EINVAL; 2236 goto exit; 2237 } 2238 pdd->user_gpu_id = device_buckets[i].user_gpu_id; 2239 2240 drm_file = fget(device_buckets[i].drm_fd); 2241 if (!drm_file) { 2242 pr_err("Invalid render node file descriptor sent from plugin (%d)\n", 2243 device_buckets[i].drm_fd); 2244 ret = -EINVAL; 2245 goto exit; 2246 } 2247 2248 if (pdd->drm_file) { 2249 ret = -EINVAL; 2250 goto exit; 2251 } 2252 2253 /* create the vm using render nodes for kfd pdd */ 2254 if (kfd_process_device_init_vm(pdd, drm_file)) { 2255 pr_err("could not init vm for given pdd\n"); 2256 /* On success, the PDD keeps the drm_file reference */ 2257 fput(drm_file); 2258 ret = -EINVAL; 2259 goto exit; 2260 } 2261 /* 2262 * pdd now already has the vm bound to render node so below api won't create a new 2263 * exclusive kfd mapping but use existing one with renderDXXX but is still needed 2264 * for iommu v2 binding and runtime pm. 2265 */ 2266 pdd = kfd_bind_process_to_device(dev, p); 2267 if (IS_ERR(pdd)) { 2268 ret = PTR_ERR(pdd); 2269 goto exit; 2270 } 2271 2272 if (!pdd->qpd.proc_doorbells) { 2273 ret = kfd_alloc_process_doorbells(dev->kfd, pdd); 2274 if (ret) 2275 goto exit; 2276 } 2277 } 2278 2279 /* 2280 * We are not copying device private data from user as we are not using the data for now, 2281 * but we still adjust for its private data. 2282 */ 2283 *priv_offset += args->num_devices * sizeof(*device_privs); 2284 2285 exit: 2286 kfree(device_buckets); 2287 return ret; 2288 } 2289 2290 static int criu_restore_memory_of_gpu(struct kfd_process_device *pdd, 2291 struct kfd_criu_bo_bucket *bo_bucket, 2292 struct kfd_criu_bo_priv_data *bo_priv, 2293 struct kgd_mem **kgd_mem) 2294 { 2295 int idr_handle; 2296 int ret; 2297 const bool criu_resume = true; 2298 u64 offset; 2299 2300 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) { 2301 if (bo_bucket->size != 2302 kfd_doorbell_process_slice(pdd->dev->kfd)) 2303 return -EINVAL; 2304 2305 offset = kfd_get_process_doorbells(pdd); 2306 if (!offset) 2307 return -ENOMEM; 2308 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) { 2309 /* MMIO BOs need remapped bus address */ 2310 if (bo_bucket->size != PAGE_SIZE) { 2311 pr_err("Invalid page size\n"); 2312 return -EINVAL; 2313 } 2314 offset = pdd->dev->adev->rmmio_remap.bus_addr; 2315 if (!offset) { 2316 pr_err("amdgpu_amdkfd_get_mmio_remap_phys_addr failed\n"); 2317 return -ENOMEM; 2318 } 2319 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 2320 offset = bo_priv->user_addr; 2321 } 2322 /* Create the BO */ 2323 ret = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(pdd->dev->adev, bo_bucket->addr, 2324 bo_bucket->size, pdd->drm_priv, kgd_mem, 2325 &offset, bo_bucket->alloc_flags, criu_resume); 2326 if (ret) { 2327 pr_err("Could not create the BO\n"); 2328 return ret; 2329 } 2330 pr_debug("New BO created: size:0x%llx addr:0x%llx offset:0x%llx\n", 2331 bo_bucket->size, bo_bucket->addr, offset); 2332 2333 /* Restore previous IDR handle */ 2334 pr_debug("Restoring old IDR handle for the BO"); 2335 idr_handle = idr_alloc(&pdd->alloc_idr, *kgd_mem, bo_priv->idr_handle, 2336 bo_priv->idr_handle + 1, GFP_KERNEL); 2337 2338 if (idr_handle < 0) { 2339 pr_err("Could not allocate idr\n"); 2340 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, *kgd_mem, pdd->drm_priv, 2341 NULL); 2342 return -ENOMEM; 2343 } 2344 2345 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) 2346 bo_bucket->restored_offset = KFD_MMAP_TYPE_DOORBELL | KFD_MMAP_GPU_ID(pdd->dev->id); 2347 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) { 2348 bo_bucket->restored_offset = KFD_MMAP_TYPE_MMIO | KFD_MMAP_GPU_ID(pdd->dev->id); 2349 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { 2350 bo_bucket->restored_offset = offset; 2351 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 2352 bo_bucket->restored_offset = offset; 2353 /* Update the VRAM usage count */ 2354 WRITE_ONCE(pdd->vram_usage, pdd->vram_usage + bo_bucket->size); 2355 } 2356 return 0; 2357 } 2358 2359 static int criu_restore_bo(struct kfd_process *p, 2360 struct kfd_criu_bo_bucket *bo_bucket, 2361 struct kfd_criu_bo_priv_data *bo_priv) 2362 { 2363 struct kfd_process_device *pdd; 2364 struct kgd_mem *kgd_mem; 2365 int ret; 2366 int j; 2367 2368 pr_debug("Restoring BO size:0x%llx addr:0x%llx gpu_id:0x%x flags:0x%x idr_handle:0x%x\n", 2369 bo_bucket->size, bo_bucket->addr, bo_bucket->gpu_id, bo_bucket->alloc_flags, 2370 bo_priv->idr_handle); 2371 2372 pdd = kfd_process_device_data_by_id(p, bo_bucket->gpu_id); 2373 if (!pdd) { 2374 pr_err("Failed to get pdd\n"); 2375 return -ENODEV; 2376 } 2377 2378 ret = criu_restore_memory_of_gpu(pdd, bo_bucket, bo_priv, &kgd_mem); 2379 if (ret) 2380 return ret; 2381 2382 /* now map these BOs to GPU/s */ 2383 for (j = 0; j < p->n_pdds; j++) { 2384 struct kfd_node *peer; 2385 struct kfd_process_device *peer_pdd; 2386 2387 if (!bo_priv->mapped_gpuids[j]) 2388 break; 2389 2390 peer_pdd = kfd_process_device_data_by_id(p, bo_priv->mapped_gpuids[j]); 2391 if (!peer_pdd) 2392 return -EINVAL; 2393 2394 peer = peer_pdd->dev; 2395 2396 peer_pdd = kfd_bind_process_to_device(peer, p); 2397 if (IS_ERR(peer_pdd)) 2398 return PTR_ERR(peer_pdd); 2399 2400 ret = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(peer->adev, kgd_mem, 2401 peer_pdd->drm_priv); 2402 if (ret) { 2403 pr_err("Failed to map to gpu %d/%d\n", j, p->n_pdds); 2404 return ret; 2405 } 2406 } 2407 2408 pr_debug("map memory was successful for the BO\n"); 2409 /* create the dmabuf object and export the bo */ 2410 if (bo_bucket->alloc_flags 2411 & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) { 2412 ret = criu_get_prime_handle(kgd_mem, DRM_RDWR, 2413 &bo_bucket->dmabuf_fd); 2414 if (ret) 2415 return ret; 2416 } else { 2417 bo_bucket->dmabuf_fd = KFD_INVALID_FD; 2418 } 2419 2420 return 0; 2421 } 2422 2423 static int criu_restore_bos(struct kfd_process *p, 2424 struct kfd_ioctl_criu_args *args, 2425 uint64_t *priv_offset, 2426 uint64_t max_priv_data_size) 2427 { 2428 struct kfd_criu_bo_bucket *bo_buckets = NULL; 2429 struct kfd_criu_bo_priv_data *bo_privs = NULL; 2430 int ret = 0; 2431 uint32_t i = 0; 2432 2433 if (*priv_offset + (args->num_bos * sizeof(*bo_privs)) > max_priv_data_size) 2434 return -EINVAL; 2435 2436 /* Prevent MMU notifications until stage-4 IOCTL (CRIU_RESUME) is received */ 2437 amdgpu_amdkfd_block_mmu_notifications(p->kgd_process_info); 2438 2439 bo_buckets = kvmalloc_array(args->num_bos, sizeof(*bo_buckets), GFP_KERNEL); 2440 if (!bo_buckets) 2441 return -ENOMEM; 2442 2443 ret = copy_from_user(bo_buckets, (void __user *)args->bos, 2444 args->num_bos * sizeof(*bo_buckets)); 2445 if (ret) { 2446 pr_err("Failed to copy BOs information from user\n"); 2447 ret = -EFAULT; 2448 goto exit; 2449 } 2450 2451 bo_privs = kvmalloc_array(args->num_bos, sizeof(*bo_privs), GFP_KERNEL); 2452 if (!bo_privs) { 2453 ret = -ENOMEM; 2454 goto exit; 2455 } 2456 2457 ret = copy_from_user(bo_privs, (void __user *)args->priv_data + *priv_offset, 2458 args->num_bos * sizeof(*bo_privs)); 2459 if (ret) { 2460 pr_err("Failed to copy BOs information from user\n"); 2461 ret = -EFAULT; 2462 goto exit; 2463 } 2464 *priv_offset += args->num_bos * sizeof(*bo_privs); 2465 2466 /* Create and map new BOs */ 2467 for (; i < args->num_bos; i++) { 2468 ret = criu_restore_bo(p, &bo_buckets[i], &bo_privs[i]); 2469 if (ret) { 2470 pr_debug("Failed to restore BO[%d] ret%d\n", i, ret); 2471 goto exit; 2472 } 2473 } /* done */ 2474 2475 /* Copy only the buckets back so user can read bo_buckets[N].restored_offset */ 2476 ret = copy_to_user((void __user *)args->bos, 2477 bo_buckets, 2478 (args->num_bos * sizeof(*bo_buckets))); 2479 if (ret) 2480 ret = -EFAULT; 2481 2482 exit: 2483 while (ret && i--) { 2484 if (bo_buckets[i].alloc_flags 2485 & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) 2486 close_fd(bo_buckets[i].dmabuf_fd); 2487 } 2488 kvfree(bo_buckets); 2489 kvfree(bo_privs); 2490 return ret; 2491 } 2492 2493 static int criu_restore_objects(struct file *filep, 2494 struct kfd_process *p, 2495 struct kfd_ioctl_criu_args *args, 2496 uint64_t *priv_offset, 2497 uint64_t max_priv_data_size) 2498 { 2499 int ret = 0; 2500 uint32_t i; 2501 2502 BUILD_BUG_ON(offsetof(struct kfd_criu_queue_priv_data, object_type)); 2503 BUILD_BUG_ON(offsetof(struct kfd_criu_event_priv_data, object_type)); 2504 BUILD_BUG_ON(offsetof(struct kfd_criu_svm_range_priv_data, object_type)); 2505 2506 for (i = 0; i < args->num_objects; i++) { 2507 uint32_t object_type; 2508 2509 if (*priv_offset + sizeof(object_type) > max_priv_data_size) { 2510 pr_err("Invalid private data size\n"); 2511 return -EINVAL; 2512 } 2513 2514 ret = get_user(object_type, (uint32_t __user *)(args->priv_data + *priv_offset)); 2515 if (ret) { 2516 pr_err("Failed to copy private information from user\n"); 2517 goto exit; 2518 } 2519 2520 switch (object_type) { 2521 case KFD_CRIU_OBJECT_TYPE_QUEUE: 2522 ret = kfd_criu_restore_queue(p, (uint8_t __user *)args->priv_data, 2523 priv_offset, max_priv_data_size); 2524 if (ret) 2525 goto exit; 2526 break; 2527 case KFD_CRIU_OBJECT_TYPE_EVENT: 2528 ret = kfd_criu_restore_event(filep, p, (uint8_t __user *)args->priv_data, 2529 priv_offset, max_priv_data_size); 2530 if (ret) 2531 goto exit; 2532 break; 2533 case KFD_CRIU_OBJECT_TYPE_SVM_RANGE: 2534 ret = kfd_criu_restore_svm(p, (uint8_t __user *)args->priv_data, 2535 priv_offset, max_priv_data_size); 2536 if (ret) 2537 goto exit; 2538 break; 2539 default: 2540 pr_err("Invalid object type:%u at index:%d\n", object_type, i); 2541 ret = -EINVAL; 2542 goto exit; 2543 } 2544 } 2545 exit: 2546 return ret; 2547 } 2548 2549 static int criu_restore(struct file *filep, 2550 struct kfd_process *p, 2551 struct kfd_ioctl_criu_args *args) 2552 { 2553 uint64_t priv_offset = 0; 2554 int ret = 0; 2555 2556 pr_debug("CRIU restore (num_devices:%u num_bos:%u num_objects:%u priv_data_size:%llu)\n", 2557 args->num_devices, args->num_bos, args->num_objects, args->priv_data_size); 2558 2559 if (!args->bos || !args->devices || !args->priv_data || !args->priv_data_size || 2560 !args->num_devices || !args->num_bos) 2561 return -EINVAL; 2562 2563 mutex_lock(&p->mutex); 2564 2565 /* 2566 * Set the process to evicted state to avoid running any new queues before all the memory 2567 * mappings are ready. 2568 */ 2569 ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_RESTORE); 2570 if (ret) 2571 goto exit_unlock; 2572 2573 /* Each function will adjust priv_offset based on how many bytes they consumed */ 2574 ret = criu_restore_process(p, args, &priv_offset, args->priv_data_size); 2575 if (ret) 2576 goto exit_unlock; 2577 2578 ret = criu_restore_devices(p, args, &priv_offset, args->priv_data_size); 2579 if (ret) 2580 goto exit_unlock; 2581 2582 ret = criu_restore_bos(p, args, &priv_offset, args->priv_data_size); 2583 if (ret) 2584 goto exit_unlock; 2585 2586 ret = criu_restore_objects(filep, p, args, &priv_offset, args->priv_data_size); 2587 if (ret) 2588 goto exit_unlock; 2589 2590 if (priv_offset != args->priv_data_size) { 2591 pr_err("Invalid private data size\n"); 2592 ret = -EINVAL; 2593 } 2594 2595 exit_unlock: 2596 mutex_unlock(&p->mutex); 2597 if (ret) 2598 pr_err("Failed to restore CRIU ret:%d\n", ret); 2599 else 2600 pr_debug("CRIU restore successful\n"); 2601 2602 return ret; 2603 } 2604 2605 static int criu_unpause(struct file *filep, 2606 struct kfd_process *p, 2607 struct kfd_ioctl_criu_args *args) 2608 { 2609 int ret; 2610 2611 mutex_lock(&p->mutex); 2612 2613 if (!p->queues_paused) { 2614 mutex_unlock(&p->mutex); 2615 return -EINVAL; 2616 } 2617 2618 ret = kfd_process_restore_queues(p); 2619 if (ret) 2620 pr_err("Failed to unpause queues ret:%d\n", ret); 2621 else 2622 p->queues_paused = false; 2623 2624 mutex_unlock(&p->mutex); 2625 2626 return ret; 2627 } 2628 2629 static int criu_resume(struct file *filep, 2630 struct kfd_process *p, 2631 struct kfd_ioctl_criu_args *args) 2632 { 2633 struct kfd_process *target = NULL; 2634 struct pid *pid = NULL; 2635 int ret = 0; 2636 2637 pr_debug("Inside %s, target pid for criu restore: %d\n", __func__, 2638 args->pid); 2639 2640 pid = find_get_pid(args->pid); 2641 if (!pid) { 2642 pr_err("Cannot find pid info for %i\n", args->pid); 2643 return -ESRCH; 2644 } 2645 2646 pr_debug("calling kfd_lookup_process_by_pid\n"); 2647 target = kfd_lookup_process_by_pid(pid); 2648 2649 put_pid(pid); 2650 2651 if (!target) { 2652 pr_debug("Cannot find process info for %i\n", args->pid); 2653 return -ESRCH; 2654 } 2655 2656 mutex_lock(&target->mutex); 2657 ret = kfd_criu_resume_svm(target); 2658 if (ret) { 2659 pr_err("kfd_criu_resume_svm failed for %i\n", args->pid); 2660 goto exit; 2661 } 2662 2663 ret = amdgpu_amdkfd_criu_resume(target->kgd_process_info); 2664 if (ret) 2665 pr_err("amdgpu_amdkfd_criu_resume failed for %i\n", args->pid); 2666 2667 exit: 2668 mutex_unlock(&target->mutex); 2669 2670 kfd_unref_process(target); 2671 return ret; 2672 } 2673 2674 static int criu_process_info(struct file *filep, 2675 struct kfd_process *p, 2676 struct kfd_ioctl_criu_args *args) 2677 { 2678 int ret = 0; 2679 2680 mutex_lock(&p->mutex); 2681 2682 if (!p->n_pdds) { 2683 pr_err("No pdd for given process\n"); 2684 ret = -ENODEV; 2685 goto err_unlock; 2686 } 2687 2688 ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_CHECKPOINT); 2689 if (ret) 2690 goto err_unlock; 2691 2692 p->queues_paused = true; 2693 2694 args->pid = task_pid_nr_ns(p->lead_thread, 2695 task_active_pid_ns(p->lead_thread)); 2696 2697 ret = criu_get_process_object_info(p, &args->num_devices, &args->num_bos, 2698 &args->num_objects, &args->priv_data_size); 2699 if (ret) 2700 goto err_unlock; 2701 2702 dev_dbg(kfd_device, "Num of devices:%u bos:%u objects:%u priv_data_size:%lld\n", 2703 args->num_devices, args->num_bos, args->num_objects, 2704 args->priv_data_size); 2705 2706 err_unlock: 2707 if (ret) { 2708 kfd_process_restore_queues(p); 2709 p->queues_paused = false; 2710 } 2711 mutex_unlock(&p->mutex); 2712 return ret; 2713 } 2714 2715 static int kfd_ioctl_criu(struct file *filep, struct kfd_process *p, void *data) 2716 { 2717 struct kfd_ioctl_criu_args *args = data; 2718 int ret; 2719 2720 dev_dbg(kfd_device, "CRIU operation: %d\n", args->op); 2721 switch (args->op) { 2722 case KFD_CRIU_OP_PROCESS_INFO: 2723 ret = criu_process_info(filep, p, args); 2724 break; 2725 case KFD_CRIU_OP_CHECKPOINT: 2726 ret = criu_checkpoint(filep, p, args); 2727 break; 2728 case KFD_CRIU_OP_UNPAUSE: 2729 ret = criu_unpause(filep, p, args); 2730 break; 2731 case KFD_CRIU_OP_RESTORE: 2732 ret = criu_restore(filep, p, args); 2733 break; 2734 case KFD_CRIU_OP_RESUME: 2735 ret = criu_resume(filep, p, args); 2736 break; 2737 default: 2738 dev_dbg(kfd_device, "Unsupported CRIU operation:%d\n", args->op); 2739 ret = -EINVAL; 2740 break; 2741 } 2742 2743 if (ret) 2744 dev_dbg(kfd_device, "CRIU operation:%d err:%d\n", args->op, ret); 2745 2746 return ret; 2747 } 2748 2749 static int runtime_enable(struct kfd_process *p, uint64_t r_debug, 2750 bool enable_ttmp_setup) 2751 { 2752 int i = 0, ret = 0; 2753 2754 if (p->is_runtime_retry) 2755 goto retry; 2756 2757 if (p->runtime_info.runtime_state != DEBUG_RUNTIME_STATE_DISABLED) 2758 return -EBUSY; 2759 2760 for (i = 0; i < p->n_pdds; i++) { 2761 struct kfd_process_device *pdd = p->pdds[i]; 2762 2763 if (pdd->qpd.queue_count) 2764 return -EEXIST; 2765 2766 /* 2767 * Setup TTMPs by default. 2768 * Note that this call must remain here for MES ADD QUEUE to 2769 * skip_process_ctx_clear unconditionally as the first call to 2770 * SET_SHADER_DEBUGGER clears any stale process context data 2771 * saved in MES. 2772 */ 2773 if (pdd->dev->kfd->shared_resources.enable_mes) 2774 kfd_dbg_set_mes_debug_mode(pdd, !kfd_dbg_has_cwsr_workaround(pdd->dev)); 2775 } 2776 2777 p->runtime_info.runtime_state = DEBUG_RUNTIME_STATE_ENABLED; 2778 p->runtime_info.r_debug = r_debug; 2779 p->runtime_info.ttmp_setup = enable_ttmp_setup; 2780 2781 if (p->runtime_info.ttmp_setup) { 2782 for (i = 0; i < p->n_pdds; i++) { 2783 struct kfd_process_device *pdd = p->pdds[i]; 2784 2785 if (!kfd_dbg_is_rlc_restore_supported(pdd->dev)) { 2786 amdgpu_gfx_off_ctrl(pdd->dev->adev, false); 2787 pdd->dev->kfd2kgd->enable_debug_trap( 2788 pdd->dev->adev, 2789 true, 2790 pdd->dev->vm_info.last_vmid_kfd); 2791 } else if (kfd_dbg_is_per_vmid_supported(pdd->dev)) { 2792 pdd->spi_dbg_override = pdd->dev->kfd2kgd->enable_debug_trap( 2793 pdd->dev->adev, 2794 false, 2795 0); 2796 } 2797 } 2798 } 2799 2800 retry: 2801 if (p->debug_trap_enabled) { 2802 if (!p->is_runtime_retry) { 2803 kfd_dbg_trap_activate(p); 2804 kfd_dbg_ev_raise(KFD_EC_MASK(EC_PROCESS_RUNTIME), 2805 p, NULL, 0, false, NULL, 0); 2806 } 2807 2808 mutex_unlock(&p->mutex); 2809 ret = down_interruptible(&p->runtime_enable_sema); 2810 mutex_lock(&p->mutex); 2811 2812 p->is_runtime_retry = !!ret; 2813 } 2814 2815 return ret; 2816 } 2817 2818 static int runtime_disable(struct kfd_process *p) 2819 { 2820 int i = 0, ret; 2821 bool was_enabled = p->runtime_info.runtime_state == DEBUG_RUNTIME_STATE_ENABLED; 2822 2823 p->runtime_info.runtime_state = DEBUG_RUNTIME_STATE_DISABLED; 2824 p->runtime_info.r_debug = 0; 2825 2826 if (p->debug_trap_enabled) { 2827 if (was_enabled) 2828 kfd_dbg_trap_deactivate(p, false, 0); 2829 2830 if (!p->is_runtime_retry) 2831 kfd_dbg_ev_raise(KFD_EC_MASK(EC_PROCESS_RUNTIME), 2832 p, NULL, 0, false, NULL, 0); 2833 2834 mutex_unlock(&p->mutex); 2835 ret = down_interruptible(&p->runtime_enable_sema); 2836 mutex_lock(&p->mutex); 2837 2838 p->is_runtime_retry = !!ret; 2839 if (ret) 2840 return ret; 2841 } 2842 2843 if (was_enabled && p->runtime_info.ttmp_setup) { 2844 for (i = 0; i < p->n_pdds; i++) { 2845 struct kfd_process_device *pdd = p->pdds[i]; 2846 2847 if (!kfd_dbg_is_rlc_restore_supported(pdd->dev)) 2848 amdgpu_gfx_off_ctrl(pdd->dev->adev, true); 2849 } 2850 } 2851 2852 p->runtime_info.ttmp_setup = false; 2853 2854 /* disable ttmp setup */ 2855 for (i = 0; i < p->n_pdds; i++) { 2856 struct kfd_process_device *pdd = p->pdds[i]; 2857 2858 if (kfd_dbg_is_per_vmid_supported(pdd->dev)) { 2859 pdd->spi_dbg_override = 2860 pdd->dev->kfd2kgd->disable_debug_trap( 2861 pdd->dev->adev, 2862 false, 2863 pdd->dev->vm_info.last_vmid_kfd); 2864 2865 if (!pdd->dev->kfd->shared_resources.enable_mes) 2866 debug_refresh_runlist(pdd->dev->dqm); 2867 else 2868 kfd_dbg_set_mes_debug_mode(pdd, 2869 !kfd_dbg_has_cwsr_workaround(pdd->dev)); 2870 } 2871 } 2872 2873 return 0; 2874 } 2875 2876 static int kfd_ioctl_runtime_enable(struct file *filep, struct kfd_process *p, void *data) 2877 { 2878 struct kfd_ioctl_runtime_enable_args *args = data; 2879 int r; 2880 2881 mutex_lock(&p->mutex); 2882 2883 if (args->mode_mask & KFD_RUNTIME_ENABLE_MODE_ENABLE_MASK) 2884 r = runtime_enable(p, args->r_debug, 2885 !!(args->mode_mask & KFD_RUNTIME_ENABLE_MODE_TTMP_SAVE_MASK)); 2886 else 2887 r = runtime_disable(p); 2888 2889 mutex_unlock(&p->mutex); 2890 2891 return r; 2892 } 2893 2894 static int kfd_ioctl_set_debug_trap(struct file *filep, struct kfd_process *p, void *data) 2895 { 2896 struct kfd_ioctl_dbg_trap_args *args = data; 2897 struct task_struct *thread = NULL; 2898 struct mm_struct *mm = NULL; 2899 struct pid *pid = NULL; 2900 struct kfd_process *target = NULL; 2901 struct kfd_process_device *pdd = NULL; 2902 int r = 0; 2903 2904 if (sched_policy == KFD_SCHED_POLICY_NO_HWS) { 2905 pr_err("Debugging does not support sched_policy %i", sched_policy); 2906 return -EINVAL; 2907 } 2908 2909 pid = find_get_pid(args->pid); 2910 if (!pid) { 2911 pr_debug("Cannot find pid info for %i\n", args->pid); 2912 r = -ESRCH; 2913 goto out; 2914 } 2915 2916 thread = get_pid_task(pid, PIDTYPE_PID); 2917 if (!thread) { 2918 r = -ESRCH; 2919 goto out; 2920 } 2921 2922 mm = get_task_mm(thread); 2923 if (!mm) { 2924 r = -ESRCH; 2925 goto out; 2926 } 2927 2928 if (args->op == KFD_IOC_DBG_TRAP_ENABLE) { 2929 bool create_process; 2930 2931 rcu_read_lock(); 2932 create_process = thread && thread != current && ptrace_parent(thread) == current; 2933 rcu_read_unlock(); 2934 2935 target = create_process ? kfd_create_process(thread) : 2936 kfd_lookup_process_by_pid(pid); 2937 } else { 2938 target = kfd_lookup_process_by_pid(pid); 2939 } 2940 2941 if (IS_ERR_OR_NULL(target)) { 2942 pr_debug("Cannot find process PID %i to debug\n", args->pid); 2943 r = target ? PTR_ERR(target) : -ESRCH; 2944 target = NULL; 2945 goto out; 2946 } 2947 2948 /* Check if target is still PTRACED. */ 2949 rcu_read_lock(); 2950 if (target != p && args->op != KFD_IOC_DBG_TRAP_DISABLE 2951 && ptrace_parent(target->lead_thread) != current) { 2952 pr_err("PID %i is not PTRACED and cannot be debugged\n", args->pid); 2953 r = -EPERM; 2954 } 2955 rcu_read_unlock(); 2956 2957 if (r) 2958 goto out; 2959 2960 mutex_lock(&target->mutex); 2961 2962 if (args->op != KFD_IOC_DBG_TRAP_ENABLE && !target->debug_trap_enabled) { 2963 pr_err("PID %i not debug enabled for op %i\n", args->pid, args->op); 2964 r = -EINVAL; 2965 goto unlock_out; 2966 } 2967 2968 if (target->runtime_info.runtime_state != DEBUG_RUNTIME_STATE_ENABLED && 2969 (args->op == KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_OVERRIDE || 2970 args->op == KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_MODE || 2971 args->op == KFD_IOC_DBG_TRAP_SUSPEND_QUEUES || 2972 args->op == KFD_IOC_DBG_TRAP_RESUME_QUEUES || 2973 args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH || 2974 args->op == KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH || 2975 args->op == KFD_IOC_DBG_TRAP_SET_FLAGS)) { 2976 r = -EPERM; 2977 goto unlock_out; 2978 } 2979 2980 if (args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH || 2981 args->op == KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH) { 2982 int user_gpu_id = kfd_process_get_user_gpu_id(target, 2983 args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ? 2984 args->set_node_address_watch.gpu_id : 2985 args->clear_node_address_watch.gpu_id); 2986 2987 pdd = kfd_process_device_data_by_id(target, user_gpu_id); 2988 if (user_gpu_id == -EINVAL || !pdd) { 2989 r = -ENODEV; 2990 goto unlock_out; 2991 } 2992 } 2993 2994 switch (args->op) { 2995 case KFD_IOC_DBG_TRAP_ENABLE: 2996 if (target != p) 2997 target->debugger_process = p; 2998 2999 r = kfd_dbg_trap_enable(target, 3000 args->enable.dbg_fd, 3001 (void __user *)args->enable.rinfo_ptr, 3002 &args->enable.rinfo_size); 3003 if (!r) 3004 target->exception_enable_mask = args->enable.exception_mask; 3005 3006 break; 3007 case KFD_IOC_DBG_TRAP_DISABLE: 3008 r = kfd_dbg_trap_disable(target); 3009 break; 3010 case KFD_IOC_DBG_TRAP_SEND_RUNTIME_EVENT: 3011 r = kfd_dbg_send_exception_to_runtime(target, 3012 args->send_runtime_event.gpu_id, 3013 args->send_runtime_event.queue_id, 3014 args->send_runtime_event.exception_mask); 3015 break; 3016 case KFD_IOC_DBG_TRAP_SET_EXCEPTIONS_ENABLED: 3017 kfd_dbg_set_enabled_debug_exception_mask(target, 3018 args->set_exceptions_enabled.exception_mask); 3019 break; 3020 case KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_OVERRIDE: 3021 r = kfd_dbg_trap_set_wave_launch_override(target, 3022 args->launch_override.override_mode, 3023 args->launch_override.enable_mask, 3024 args->launch_override.support_request_mask, 3025 &args->launch_override.enable_mask, 3026 &args->launch_override.support_request_mask); 3027 break; 3028 case KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_MODE: 3029 r = kfd_dbg_trap_set_wave_launch_mode(target, 3030 args->launch_mode.launch_mode); 3031 break; 3032 case KFD_IOC_DBG_TRAP_SUSPEND_QUEUES: 3033 r = suspend_queues(target, 3034 args->suspend_queues.num_queues, 3035 args->suspend_queues.grace_period, 3036 args->suspend_queues.exception_mask, 3037 (uint32_t *)args->suspend_queues.queue_array_ptr); 3038 3039 break; 3040 case KFD_IOC_DBG_TRAP_RESUME_QUEUES: 3041 r = resume_queues(target, args->resume_queues.num_queues, 3042 (uint32_t *)args->resume_queues.queue_array_ptr); 3043 break; 3044 case KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH: 3045 r = kfd_dbg_trap_set_dev_address_watch(pdd, 3046 args->set_node_address_watch.address, 3047 args->set_node_address_watch.mask, 3048 &args->set_node_address_watch.id, 3049 args->set_node_address_watch.mode); 3050 break; 3051 case KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH: 3052 r = kfd_dbg_trap_clear_dev_address_watch(pdd, 3053 args->clear_node_address_watch.id); 3054 break; 3055 case KFD_IOC_DBG_TRAP_SET_FLAGS: 3056 r = kfd_dbg_trap_set_flags(target, &args->set_flags.flags); 3057 break; 3058 case KFD_IOC_DBG_TRAP_QUERY_DEBUG_EVENT: 3059 r = kfd_dbg_ev_query_debug_event(target, 3060 &args->query_debug_event.queue_id, 3061 &args->query_debug_event.gpu_id, 3062 args->query_debug_event.exception_mask, 3063 &args->query_debug_event.exception_mask); 3064 break; 3065 case KFD_IOC_DBG_TRAP_QUERY_EXCEPTION_INFO: 3066 r = kfd_dbg_trap_query_exception_info(target, 3067 args->query_exception_info.source_id, 3068 args->query_exception_info.exception_code, 3069 args->query_exception_info.clear_exception, 3070 (void __user *)args->query_exception_info.info_ptr, 3071 &args->query_exception_info.info_size); 3072 break; 3073 case KFD_IOC_DBG_TRAP_GET_QUEUE_SNAPSHOT: 3074 r = pqm_get_queue_snapshot(&target->pqm, 3075 args->queue_snapshot.exception_mask, 3076 (void __user *)args->queue_snapshot.snapshot_buf_ptr, 3077 &args->queue_snapshot.num_queues, 3078 &args->queue_snapshot.entry_size); 3079 break; 3080 case KFD_IOC_DBG_TRAP_GET_DEVICE_SNAPSHOT: 3081 r = kfd_dbg_trap_device_snapshot(target, 3082 args->device_snapshot.exception_mask, 3083 (void __user *)args->device_snapshot.snapshot_buf_ptr, 3084 &args->device_snapshot.num_devices, 3085 &args->device_snapshot.entry_size); 3086 break; 3087 default: 3088 pr_err("Invalid option: %i\n", args->op); 3089 r = -EINVAL; 3090 } 3091 3092 unlock_out: 3093 mutex_unlock(&target->mutex); 3094 3095 out: 3096 if (thread) 3097 put_task_struct(thread); 3098 3099 if (mm) 3100 mmput(mm); 3101 3102 if (pid) 3103 put_pid(pid); 3104 3105 if (target) 3106 kfd_unref_process(target); 3107 3108 return r; 3109 } 3110 3111 #define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \ 3112 [_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, \ 3113 .cmd_drv = 0, .name = #ioctl} 3114 3115 /** Ioctl table */ 3116 static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = { 3117 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_VERSION, 3118 kfd_ioctl_get_version, 0), 3119 3120 AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_QUEUE, 3121 kfd_ioctl_create_queue, 0), 3122 3123 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_QUEUE, 3124 kfd_ioctl_destroy_queue, 0), 3125 3126 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_MEMORY_POLICY, 3127 kfd_ioctl_set_memory_policy, 0), 3128 3129 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_CLOCK_COUNTERS, 3130 kfd_ioctl_get_clock_counters, 0), 3131 3132 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES, 3133 kfd_ioctl_get_process_apertures, 0), 3134 3135 AMDKFD_IOCTL_DEF(AMDKFD_IOC_UPDATE_QUEUE, 3136 kfd_ioctl_update_queue, 0), 3137 3138 AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_EVENT, 3139 kfd_ioctl_create_event, 0), 3140 3141 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_EVENT, 3142 kfd_ioctl_destroy_event, 0), 3143 3144 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_EVENT, 3145 kfd_ioctl_set_event, 0), 3146 3147 AMDKFD_IOCTL_DEF(AMDKFD_IOC_RESET_EVENT, 3148 kfd_ioctl_reset_event, 0), 3149 3150 AMDKFD_IOCTL_DEF(AMDKFD_IOC_WAIT_EVENTS, 3151 kfd_ioctl_wait_events, 0), 3152 3153 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_REGISTER_DEPRECATED, 3154 kfd_ioctl_dbg_register, 0), 3155 3156 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_UNREGISTER_DEPRECATED, 3157 kfd_ioctl_dbg_unregister, 0), 3158 3159 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_ADDRESS_WATCH_DEPRECATED, 3160 kfd_ioctl_dbg_address_watch, 0), 3161 3162 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_WAVE_CONTROL_DEPRECATED, 3163 kfd_ioctl_dbg_wave_control, 0), 3164 3165 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_SCRATCH_BACKING_VA, 3166 kfd_ioctl_set_scratch_backing_va, 0), 3167 3168 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG, 3169 kfd_ioctl_get_tile_config, 0), 3170 3171 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_TRAP_HANDLER, 3172 kfd_ioctl_set_trap_handler, 0), 3173 3174 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES_NEW, 3175 kfd_ioctl_get_process_apertures_new, 0), 3176 3177 AMDKFD_IOCTL_DEF(AMDKFD_IOC_ACQUIRE_VM, 3178 kfd_ioctl_acquire_vm, 0), 3179 3180 AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_MEMORY_OF_GPU, 3181 kfd_ioctl_alloc_memory_of_gpu, 0), 3182 3183 AMDKFD_IOCTL_DEF(AMDKFD_IOC_FREE_MEMORY_OF_GPU, 3184 kfd_ioctl_free_memory_of_gpu, 0), 3185 3186 AMDKFD_IOCTL_DEF(AMDKFD_IOC_MAP_MEMORY_TO_GPU, 3187 kfd_ioctl_map_memory_to_gpu, 0), 3188 3189 AMDKFD_IOCTL_DEF(AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU, 3190 kfd_ioctl_unmap_memory_from_gpu, 0), 3191 3192 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_CU_MASK, 3193 kfd_ioctl_set_cu_mask, 0), 3194 3195 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_QUEUE_WAVE_STATE, 3196 kfd_ioctl_get_queue_wave_state, 0), 3197 3198 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_DMABUF_INFO, 3199 kfd_ioctl_get_dmabuf_info, 0), 3200 3201 AMDKFD_IOCTL_DEF(AMDKFD_IOC_IMPORT_DMABUF, 3202 kfd_ioctl_import_dmabuf, 0), 3203 3204 AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_QUEUE_GWS, 3205 kfd_ioctl_alloc_queue_gws, 0), 3206 3207 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SMI_EVENTS, 3208 kfd_ioctl_smi_events, 0), 3209 3210 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SVM, kfd_ioctl_svm, 0), 3211 3212 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_XNACK_MODE, 3213 kfd_ioctl_set_xnack_mode, 0), 3214 3215 AMDKFD_IOCTL_DEF(AMDKFD_IOC_CRIU_OP, 3216 kfd_ioctl_criu, KFD_IOC_FLAG_CHECKPOINT_RESTORE), 3217 3218 AMDKFD_IOCTL_DEF(AMDKFD_IOC_AVAILABLE_MEMORY, 3219 kfd_ioctl_get_available_memory, 0), 3220 3221 AMDKFD_IOCTL_DEF(AMDKFD_IOC_EXPORT_DMABUF, 3222 kfd_ioctl_export_dmabuf, 0), 3223 3224 AMDKFD_IOCTL_DEF(AMDKFD_IOC_RUNTIME_ENABLE, 3225 kfd_ioctl_runtime_enable, 0), 3226 3227 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_TRAP, 3228 kfd_ioctl_set_debug_trap, 0), 3229 }; 3230 3231 #define AMDKFD_CORE_IOCTL_COUNT ARRAY_SIZE(amdkfd_ioctls) 3232 3233 static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg) 3234 { 3235 struct kfd_process *process; 3236 amdkfd_ioctl_t *func; 3237 const struct amdkfd_ioctl_desc *ioctl = NULL; 3238 unsigned int nr = _IOC_NR(cmd); 3239 char stack_kdata[128]; 3240 char *kdata = NULL; 3241 unsigned int usize, asize; 3242 int retcode = -EINVAL; 3243 bool ptrace_attached = false; 3244 3245 if (nr >= AMDKFD_CORE_IOCTL_COUNT) 3246 goto err_i1; 3247 3248 if ((nr >= AMDKFD_COMMAND_START) && (nr < AMDKFD_COMMAND_END)) { 3249 u32 amdkfd_size; 3250 3251 ioctl = &amdkfd_ioctls[nr]; 3252 3253 amdkfd_size = _IOC_SIZE(ioctl->cmd); 3254 usize = asize = _IOC_SIZE(cmd); 3255 if (amdkfd_size > asize) 3256 asize = amdkfd_size; 3257 3258 cmd = ioctl->cmd; 3259 } else 3260 goto err_i1; 3261 3262 dev_dbg(kfd_device, "ioctl cmd 0x%x (#0x%x), arg 0x%lx\n", cmd, nr, arg); 3263 3264 /* Get the process struct from the filep. Only the process 3265 * that opened /dev/kfd can use the file descriptor. Child 3266 * processes need to create their own KFD device context. 3267 */ 3268 process = filep->private_data; 3269 3270 rcu_read_lock(); 3271 if ((ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE) && 3272 ptrace_parent(process->lead_thread) == current) 3273 ptrace_attached = true; 3274 rcu_read_unlock(); 3275 3276 if (process->lead_thread != current->group_leader 3277 && !ptrace_attached) { 3278 dev_dbg(kfd_device, "Using KFD FD in wrong process\n"); 3279 retcode = -EBADF; 3280 goto err_i1; 3281 } 3282 3283 /* Do not trust userspace, use our own definition */ 3284 func = ioctl->func; 3285 3286 if (unlikely(!func)) { 3287 dev_dbg(kfd_device, "no function\n"); 3288 retcode = -EINVAL; 3289 goto err_i1; 3290 } 3291 3292 /* 3293 * Versions of docker shipped in Ubuntu 18.xx and 20.xx do not support 3294 * CAP_CHECKPOINT_RESTORE, so we also allow access if CAP_SYS_ADMIN as CAP_SYS_ADMIN is a 3295 * more priviledged access. 3296 */ 3297 if (unlikely(ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE)) { 3298 if (!capable(CAP_CHECKPOINT_RESTORE) && 3299 !capable(CAP_SYS_ADMIN)) { 3300 retcode = -EACCES; 3301 goto err_i1; 3302 } 3303 } 3304 3305 if (cmd & (IOC_IN | IOC_OUT)) { 3306 if (asize <= sizeof(stack_kdata)) { 3307 kdata = stack_kdata; 3308 } else { 3309 kdata = kmalloc(asize, GFP_KERNEL); 3310 if (!kdata) { 3311 retcode = -ENOMEM; 3312 goto err_i1; 3313 } 3314 } 3315 if (asize > usize) 3316 memset(kdata + usize, 0, asize - usize); 3317 } 3318 3319 if (cmd & IOC_IN) { 3320 if (copy_from_user(kdata, (void __user *)arg, usize) != 0) { 3321 retcode = -EFAULT; 3322 goto err_i1; 3323 } 3324 } else if (cmd & IOC_OUT) { 3325 memset(kdata, 0, usize); 3326 } 3327 3328 retcode = func(filep, process, kdata); 3329 3330 if (cmd & IOC_OUT) 3331 if (copy_to_user((void __user *)arg, kdata, usize) != 0) 3332 retcode = -EFAULT; 3333 3334 err_i1: 3335 if (!ioctl) 3336 dev_dbg(kfd_device, "invalid ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n", 3337 task_pid_nr(current), cmd, nr); 3338 3339 if (kdata != stack_kdata) 3340 kfree(kdata); 3341 3342 if (retcode) 3343 dev_dbg(kfd_device, "ioctl cmd (#0x%x), arg 0x%lx, ret = %d\n", 3344 nr, arg, retcode); 3345 3346 return retcode; 3347 } 3348 3349 static int kfd_mmio_mmap(struct kfd_node *dev, struct kfd_process *process, 3350 struct vm_area_struct *vma) 3351 { 3352 phys_addr_t address; 3353 3354 if (vma->vm_end - vma->vm_start != PAGE_SIZE) 3355 return -EINVAL; 3356 3357 address = dev->adev->rmmio_remap.bus_addr; 3358 3359 vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE | 3360 VM_DONTDUMP | VM_PFNMAP); 3361 3362 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 3363 3364 pr_debug("pasid 0x%x mapping mmio page\n" 3365 " target user address == 0x%08llX\n" 3366 " physical address == 0x%08llX\n" 3367 " vm_flags == 0x%04lX\n" 3368 " size == 0x%04lX\n", 3369 process->pasid, (unsigned long long) vma->vm_start, 3370 address, vma->vm_flags, PAGE_SIZE); 3371 3372 return io_remap_pfn_range(vma, 3373 vma->vm_start, 3374 address >> PAGE_SHIFT, 3375 PAGE_SIZE, 3376 vma->vm_page_prot); 3377 } 3378 3379 3380 static int kfd_mmap(struct file *filp, struct vm_area_struct *vma) 3381 { 3382 struct kfd_process *process; 3383 struct kfd_node *dev = NULL; 3384 unsigned long mmap_offset; 3385 unsigned int gpu_id; 3386 3387 process = kfd_get_process(current); 3388 if (IS_ERR(process)) 3389 return PTR_ERR(process); 3390 3391 mmap_offset = vma->vm_pgoff << PAGE_SHIFT; 3392 gpu_id = KFD_MMAP_GET_GPU_ID(mmap_offset); 3393 if (gpu_id) 3394 dev = kfd_device_by_id(gpu_id); 3395 3396 switch (mmap_offset & KFD_MMAP_TYPE_MASK) { 3397 case KFD_MMAP_TYPE_DOORBELL: 3398 if (!dev) 3399 return -ENODEV; 3400 return kfd_doorbell_mmap(dev, process, vma); 3401 3402 case KFD_MMAP_TYPE_EVENTS: 3403 return kfd_event_mmap(process, vma); 3404 3405 case KFD_MMAP_TYPE_RESERVED_MEM: 3406 if (!dev) 3407 return -ENODEV; 3408 return kfd_reserved_mem_mmap(dev, process, vma); 3409 case KFD_MMAP_TYPE_MMIO: 3410 if (!dev) 3411 return -ENODEV; 3412 return kfd_mmio_mmap(dev, process, vma); 3413 } 3414 3415 return -EFAULT; 3416 } 3417