xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_chardev.c (revision e65e175b07bef5974045cc42238de99057669ca7)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/device.h>
25 #include <linux/export.h>
26 #include <linux/err.h>
27 #include <linux/fs.h>
28 #include <linux/file.h>
29 #include <linux/sched.h>
30 #include <linux/slab.h>
31 #include <linux/uaccess.h>
32 #include <linux/compat.h>
33 #include <uapi/linux/kfd_ioctl.h>
34 #include <linux/time.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/ptrace.h>
38 #include <linux/dma-buf.h>
39 #include <linux/fdtable.h>
40 #include <linux/processor.h>
41 #include "kfd_priv.h"
42 #include "kfd_device_queue_manager.h"
43 #include "kfd_svm.h"
44 #include "amdgpu_amdkfd.h"
45 #include "kfd_smi_events.h"
46 #include "amdgpu_dma_buf.h"
47 
48 static long kfd_ioctl(struct file *, unsigned int, unsigned long);
49 static int kfd_open(struct inode *, struct file *);
50 static int kfd_release(struct inode *, struct file *);
51 static int kfd_mmap(struct file *, struct vm_area_struct *);
52 
53 static const char kfd_dev_name[] = "kfd";
54 
55 static const struct file_operations kfd_fops = {
56 	.owner = THIS_MODULE,
57 	.unlocked_ioctl = kfd_ioctl,
58 	.compat_ioctl = compat_ptr_ioctl,
59 	.open = kfd_open,
60 	.release = kfd_release,
61 	.mmap = kfd_mmap,
62 };
63 
64 static int kfd_char_dev_major = -1;
65 static struct class *kfd_class;
66 struct device *kfd_device;
67 
68 static inline struct kfd_process_device *kfd_lock_pdd_by_id(struct kfd_process *p, __u32 gpu_id)
69 {
70 	struct kfd_process_device *pdd;
71 
72 	mutex_lock(&p->mutex);
73 	pdd = kfd_process_device_data_by_id(p, gpu_id);
74 
75 	if (pdd)
76 		return pdd;
77 
78 	mutex_unlock(&p->mutex);
79 	return NULL;
80 }
81 
82 static inline void kfd_unlock_pdd(struct kfd_process_device *pdd)
83 {
84 	mutex_unlock(&pdd->process->mutex);
85 }
86 
87 int kfd_chardev_init(void)
88 {
89 	int err = 0;
90 
91 	kfd_char_dev_major = register_chrdev(0, kfd_dev_name, &kfd_fops);
92 	err = kfd_char_dev_major;
93 	if (err < 0)
94 		goto err_register_chrdev;
95 
96 	kfd_class = class_create(THIS_MODULE, kfd_dev_name);
97 	err = PTR_ERR(kfd_class);
98 	if (IS_ERR(kfd_class))
99 		goto err_class_create;
100 
101 	kfd_device = device_create(kfd_class, NULL,
102 					MKDEV(kfd_char_dev_major, 0),
103 					NULL, kfd_dev_name);
104 	err = PTR_ERR(kfd_device);
105 	if (IS_ERR(kfd_device))
106 		goto err_device_create;
107 
108 	return 0;
109 
110 err_device_create:
111 	class_destroy(kfd_class);
112 err_class_create:
113 	unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
114 err_register_chrdev:
115 	return err;
116 }
117 
118 void kfd_chardev_exit(void)
119 {
120 	device_destroy(kfd_class, MKDEV(kfd_char_dev_major, 0));
121 	class_destroy(kfd_class);
122 	unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
123 	kfd_device = NULL;
124 }
125 
126 
127 static int kfd_open(struct inode *inode, struct file *filep)
128 {
129 	struct kfd_process *process;
130 	bool is_32bit_user_mode;
131 
132 	if (iminor(inode) != 0)
133 		return -ENODEV;
134 
135 	is_32bit_user_mode = in_compat_syscall();
136 
137 	if (is_32bit_user_mode) {
138 		dev_warn(kfd_device,
139 			"Process %d (32-bit) failed to open /dev/kfd\n"
140 			"32-bit processes are not supported by amdkfd\n",
141 			current->pid);
142 		return -EPERM;
143 	}
144 
145 	process = kfd_create_process(filep);
146 	if (IS_ERR(process))
147 		return PTR_ERR(process);
148 
149 	if (kfd_is_locked()) {
150 		dev_dbg(kfd_device, "kfd is locked!\n"
151 				"process %d unreferenced", process->pasid);
152 		kfd_unref_process(process);
153 		return -EAGAIN;
154 	}
155 
156 	/* filep now owns the reference returned by kfd_create_process */
157 	filep->private_data = process;
158 
159 	dev_dbg(kfd_device, "process %d opened, compat mode (32 bit) - %d\n",
160 		process->pasid, process->is_32bit_user_mode);
161 
162 	return 0;
163 }
164 
165 static int kfd_release(struct inode *inode, struct file *filep)
166 {
167 	struct kfd_process *process = filep->private_data;
168 
169 	if (process)
170 		kfd_unref_process(process);
171 
172 	return 0;
173 }
174 
175 static int kfd_ioctl_get_version(struct file *filep, struct kfd_process *p,
176 					void *data)
177 {
178 	struct kfd_ioctl_get_version_args *args = data;
179 
180 	args->major_version = KFD_IOCTL_MAJOR_VERSION;
181 	args->minor_version = KFD_IOCTL_MINOR_VERSION;
182 
183 	return 0;
184 }
185 
186 static int set_queue_properties_from_user(struct queue_properties *q_properties,
187 				struct kfd_ioctl_create_queue_args *args)
188 {
189 	if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) {
190 		pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
191 		return -EINVAL;
192 	}
193 
194 	if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
195 		pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
196 		return -EINVAL;
197 	}
198 
199 	if ((args->ring_base_address) &&
200 		(!access_ok((const void __user *) args->ring_base_address,
201 			sizeof(uint64_t)))) {
202 		pr_err("Can't access ring base address\n");
203 		return -EFAULT;
204 	}
205 
206 	if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
207 		pr_err("Ring size must be a power of 2 or 0\n");
208 		return -EINVAL;
209 	}
210 
211 	if (!access_ok((const void __user *) args->read_pointer_address,
212 			sizeof(uint32_t))) {
213 		pr_err("Can't access read pointer\n");
214 		return -EFAULT;
215 	}
216 
217 	if (!access_ok((const void __user *) args->write_pointer_address,
218 			sizeof(uint32_t))) {
219 		pr_err("Can't access write pointer\n");
220 		return -EFAULT;
221 	}
222 
223 	if (args->eop_buffer_address &&
224 		!access_ok((const void __user *) args->eop_buffer_address,
225 			sizeof(uint32_t))) {
226 		pr_debug("Can't access eop buffer");
227 		return -EFAULT;
228 	}
229 
230 	if (args->ctx_save_restore_address &&
231 		!access_ok((const void __user *) args->ctx_save_restore_address,
232 			sizeof(uint32_t))) {
233 		pr_debug("Can't access ctx save restore buffer");
234 		return -EFAULT;
235 	}
236 
237 	q_properties->is_interop = false;
238 	q_properties->is_gws = false;
239 	q_properties->queue_percent = args->queue_percentage;
240 	q_properties->priority = args->queue_priority;
241 	q_properties->queue_address = args->ring_base_address;
242 	q_properties->queue_size = args->ring_size;
243 	q_properties->read_ptr = (uint32_t *) args->read_pointer_address;
244 	q_properties->write_ptr = (uint32_t *) args->write_pointer_address;
245 	q_properties->eop_ring_buffer_address = args->eop_buffer_address;
246 	q_properties->eop_ring_buffer_size = args->eop_buffer_size;
247 	q_properties->ctx_save_restore_area_address =
248 			args->ctx_save_restore_address;
249 	q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size;
250 	q_properties->ctl_stack_size = args->ctl_stack_size;
251 	if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE ||
252 		args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
253 		q_properties->type = KFD_QUEUE_TYPE_COMPUTE;
254 	else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA)
255 		q_properties->type = KFD_QUEUE_TYPE_SDMA;
256 	else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_XGMI)
257 		q_properties->type = KFD_QUEUE_TYPE_SDMA_XGMI;
258 	else
259 		return -ENOTSUPP;
260 
261 	if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
262 		q_properties->format = KFD_QUEUE_FORMAT_AQL;
263 	else
264 		q_properties->format = KFD_QUEUE_FORMAT_PM4;
265 
266 	pr_debug("Queue Percentage: %d, %d\n",
267 			q_properties->queue_percent, args->queue_percentage);
268 
269 	pr_debug("Queue Priority: %d, %d\n",
270 			q_properties->priority, args->queue_priority);
271 
272 	pr_debug("Queue Address: 0x%llX, 0x%llX\n",
273 			q_properties->queue_address, args->ring_base_address);
274 
275 	pr_debug("Queue Size: 0x%llX, %u\n",
276 			q_properties->queue_size, args->ring_size);
277 
278 	pr_debug("Queue r/w Pointers: %px, %px\n",
279 			q_properties->read_ptr,
280 			q_properties->write_ptr);
281 
282 	pr_debug("Queue Format: %d\n", q_properties->format);
283 
284 	pr_debug("Queue EOP: 0x%llX\n", q_properties->eop_ring_buffer_address);
285 
286 	pr_debug("Queue CTX save area: 0x%llX\n",
287 			q_properties->ctx_save_restore_area_address);
288 
289 	return 0;
290 }
291 
292 static int kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p,
293 					void *data)
294 {
295 	struct kfd_ioctl_create_queue_args *args = data;
296 	struct kfd_dev *dev;
297 	int err = 0;
298 	unsigned int queue_id;
299 	struct kfd_process_device *pdd;
300 	struct queue_properties q_properties;
301 	uint32_t doorbell_offset_in_process = 0;
302 	struct amdgpu_bo *wptr_bo = NULL;
303 
304 	memset(&q_properties, 0, sizeof(struct queue_properties));
305 
306 	pr_debug("Creating queue ioctl\n");
307 
308 	err = set_queue_properties_from_user(&q_properties, args);
309 	if (err)
310 		return err;
311 
312 	pr_debug("Looking for gpu id 0x%x\n", args->gpu_id);
313 
314 	mutex_lock(&p->mutex);
315 
316 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
317 	if (!pdd) {
318 		pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
319 		err = -EINVAL;
320 		goto err_pdd;
321 	}
322 	dev = pdd->dev;
323 
324 	pdd = kfd_bind_process_to_device(dev, p);
325 	if (IS_ERR(pdd)) {
326 		err = -ESRCH;
327 		goto err_bind_process;
328 	}
329 
330 	if (!pdd->doorbell_index &&
331 	    kfd_alloc_process_doorbells(dev, &pdd->doorbell_index) < 0) {
332 		err = -ENOMEM;
333 		goto err_alloc_doorbells;
334 	}
335 
336 	/* Starting with GFX11, wptr BOs must be mapped to GART for MES to determine work
337 	 * on unmapped queues for usermode queue oversubscription (no aggregated doorbell)
338 	 */
339 	if (dev->shared_resources.enable_mes &&
340 			((dev->adev->mes.sched_version & AMDGPU_MES_API_VERSION_MASK)
341 			>> AMDGPU_MES_API_VERSION_SHIFT) >= 2) {
342 		struct amdgpu_bo_va_mapping *wptr_mapping;
343 		struct amdgpu_vm *wptr_vm;
344 
345 		wptr_vm = drm_priv_to_vm(pdd->drm_priv);
346 		err = amdgpu_bo_reserve(wptr_vm->root.bo, false);
347 		if (err)
348 			goto err_wptr_map_gart;
349 
350 		wptr_mapping = amdgpu_vm_bo_lookup_mapping(
351 				wptr_vm, args->write_pointer_address >> PAGE_SHIFT);
352 		amdgpu_bo_unreserve(wptr_vm->root.bo);
353 		if (!wptr_mapping) {
354 			pr_err("Failed to lookup wptr bo\n");
355 			err = -EINVAL;
356 			goto err_wptr_map_gart;
357 		}
358 
359 		wptr_bo = wptr_mapping->bo_va->base.bo;
360 		if (wptr_bo->tbo.base.size > PAGE_SIZE) {
361 			pr_err("Requested GART mapping for wptr bo larger than one page\n");
362 			err = -EINVAL;
363 			goto err_wptr_map_gart;
364 		}
365 
366 		err = amdgpu_amdkfd_map_gtt_bo_to_gart(dev->adev, wptr_bo);
367 		if (err) {
368 			pr_err("Failed to map wptr bo to GART\n");
369 			goto err_wptr_map_gart;
370 		}
371 	}
372 
373 	pr_debug("Creating queue for PASID 0x%x on gpu 0x%x\n",
374 			p->pasid,
375 			dev->id);
376 
377 	err = pqm_create_queue(&p->pqm, dev, filep, &q_properties, &queue_id, wptr_bo,
378 			NULL, NULL, NULL, &doorbell_offset_in_process);
379 	if (err != 0)
380 		goto err_create_queue;
381 
382 	args->queue_id = queue_id;
383 
384 
385 	/* Return gpu_id as doorbell offset for mmap usage */
386 	args->doorbell_offset = KFD_MMAP_TYPE_DOORBELL;
387 	args->doorbell_offset |= KFD_MMAP_GPU_ID(args->gpu_id);
388 	if (KFD_IS_SOC15(dev))
389 		/* On SOC15 ASICs, include the doorbell offset within the
390 		 * process doorbell frame, which is 2 pages.
391 		 */
392 		args->doorbell_offset |= doorbell_offset_in_process;
393 
394 	mutex_unlock(&p->mutex);
395 
396 	pr_debug("Queue id %d was created successfully\n", args->queue_id);
397 
398 	pr_debug("Ring buffer address == 0x%016llX\n",
399 			args->ring_base_address);
400 
401 	pr_debug("Read ptr address    == 0x%016llX\n",
402 			args->read_pointer_address);
403 
404 	pr_debug("Write ptr address   == 0x%016llX\n",
405 			args->write_pointer_address);
406 
407 	return 0;
408 
409 err_create_queue:
410 	if (wptr_bo)
411 		amdgpu_amdkfd_free_gtt_mem(dev->adev, wptr_bo);
412 err_wptr_map_gart:
413 err_alloc_doorbells:
414 err_bind_process:
415 err_pdd:
416 	mutex_unlock(&p->mutex);
417 	return err;
418 }
419 
420 static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p,
421 					void *data)
422 {
423 	int retval;
424 	struct kfd_ioctl_destroy_queue_args *args = data;
425 
426 	pr_debug("Destroying queue id %d for pasid 0x%x\n",
427 				args->queue_id,
428 				p->pasid);
429 
430 	mutex_lock(&p->mutex);
431 
432 	retval = pqm_destroy_queue(&p->pqm, args->queue_id);
433 
434 	mutex_unlock(&p->mutex);
435 	return retval;
436 }
437 
438 static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p,
439 					void *data)
440 {
441 	int retval;
442 	struct kfd_ioctl_update_queue_args *args = data;
443 	struct queue_properties properties;
444 
445 	if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) {
446 		pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
447 		return -EINVAL;
448 	}
449 
450 	if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
451 		pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
452 		return -EINVAL;
453 	}
454 
455 	if ((args->ring_base_address) &&
456 		(!access_ok((const void __user *) args->ring_base_address,
457 			sizeof(uint64_t)))) {
458 		pr_err("Can't access ring base address\n");
459 		return -EFAULT;
460 	}
461 
462 	if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
463 		pr_err("Ring size must be a power of 2 or 0\n");
464 		return -EINVAL;
465 	}
466 
467 	properties.queue_address = args->ring_base_address;
468 	properties.queue_size = args->ring_size;
469 	properties.queue_percent = args->queue_percentage;
470 	properties.priority = args->queue_priority;
471 
472 	pr_debug("Updating queue id %d for pasid 0x%x\n",
473 			args->queue_id, p->pasid);
474 
475 	mutex_lock(&p->mutex);
476 
477 	retval = pqm_update_queue_properties(&p->pqm, args->queue_id, &properties);
478 
479 	mutex_unlock(&p->mutex);
480 
481 	return retval;
482 }
483 
484 static int kfd_ioctl_set_cu_mask(struct file *filp, struct kfd_process *p,
485 					void *data)
486 {
487 	int retval;
488 	const int max_num_cus = 1024;
489 	struct kfd_ioctl_set_cu_mask_args *args = data;
490 	struct mqd_update_info minfo = {0};
491 	uint32_t __user *cu_mask_ptr = (uint32_t __user *)args->cu_mask_ptr;
492 	size_t cu_mask_size = sizeof(uint32_t) * (args->num_cu_mask / 32);
493 
494 	if ((args->num_cu_mask % 32) != 0) {
495 		pr_debug("num_cu_mask 0x%x must be a multiple of 32",
496 				args->num_cu_mask);
497 		return -EINVAL;
498 	}
499 
500 	minfo.cu_mask.count = args->num_cu_mask;
501 	if (minfo.cu_mask.count == 0) {
502 		pr_debug("CU mask cannot be 0");
503 		return -EINVAL;
504 	}
505 
506 	/* To prevent an unreasonably large CU mask size, set an arbitrary
507 	 * limit of max_num_cus bits.  We can then just drop any CU mask bits
508 	 * past max_num_cus bits and just use the first max_num_cus bits.
509 	 */
510 	if (minfo.cu_mask.count > max_num_cus) {
511 		pr_debug("CU mask cannot be greater than 1024 bits");
512 		minfo.cu_mask.count = max_num_cus;
513 		cu_mask_size = sizeof(uint32_t) * (max_num_cus/32);
514 	}
515 
516 	minfo.cu_mask.ptr = kzalloc(cu_mask_size, GFP_KERNEL);
517 	if (!minfo.cu_mask.ptr)
518 		return -ENOMEM;
519 
520 	retval = copy_from_user(minfo.cu_mask.ptr, cu_mask_ptr, cu_mask_size);
521 	if (retval) {
522 		pr_debug("Could not copy CU mask from userspace");
523 		retval = -EFAULT;
524 		goto out;
525 	}
526 
527 	minfo.update_flag = UPDATE_FLAG_CU_MASK;
528 
529 	mutex_lock(&p->mutex);
530 
531 	retval = pqm_update_mqd(&p->pqm, args->queue_id, &minfo);
532 
533 	mutex_unlock(&p->mutex);
534 
535 out:
536 	kfree(minfo.cu_mask.ptr);
537 	return retval;
538 }
539 
540 static int kfd_ioctl_get_queue_wave_state(struct file *filep,
541 					  struct kfd_process *p, void *data)
542 {
543 	struct kfd_ioctl_get_queue_wave_state_args *args = data;
544 	int r;
545 
546 	mutex_lock(&p->mutex);
547 
548 	r = pqm_get_wave_state(&p->pqm, args->queue_id,
549 			       (void __user *)args->ctl_stack_address,
550 			       &args->ctl_stack_used_size,
551 			       &args->save_area_used_size);
552 
553 	mutex_unlock(&p->mutex);
554 
555 	return r;
556 }
557 
558 static int kfd_ioctl_set_memory_policy(struct file *filep,
559 					struct kfd_process *p, void *data)
560 {
561 	struct kfd_ioctl_set_memory_policy_args *args = data;
562 	int err = 0;
563 	struct kfd_process_device *pdd;
564 	enum cache_policy default_policy, alternate_policy;
565 
566 	if (args->default_policy != KFD_IOC_CACHE_POLICY_COHERENT
567 	    && args->default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
568 		return -EINVAL;
569 	}
570 
571 	if (args->alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT
572 	    && args->alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
573 		return -EINVAL;
574 	}
575 
576 	mutex_lock(&p->mutex);
577 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
578 	if (!pdd) {
579 		pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
580 		err = -EINVAL;
581 		goto err_pdd;
582 	}
583 
584 	pdd = kfd_bind_process_to_device(pdd->dev, p);
585 	if (IS_ERR(pdd)) {
586 		err = -ESRCH;
587 		goto out;
588 	}
589 
590 	default_policy = (args->default_policy == KFD_IOC_CACHE_POLICY_COHERENT)
591 			 ? cache_policy_coherent : cache_policy_noncoherent;
592 
593 	alternate_policy =
594 		(args->alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT)
595 		   ? cache_policy_coherent : cache_policy_noncoherent;
596 
597 	if (!pdd->dev->dqm->ops.set_cache_memory_policy(pdd->dev->dqm,
598 				&pdd->qpd,
599 				default_policy,
600 				alternate_policy,
601 				(void __user *)args->alternate_aperture_base,
602 				args->alternate_aperture_size))
603 		err = -EINVAL;
604 
605 out:
606 err_pdd:
607 	mutex_unlock(&p->mutex);
608 
609 	return err;
610 }
611 
612 static int kfd_ioctl_set_trap_handler(struct file *filep,
613 					struct kfd_process *p, void *data)
614 {
615 	struct kfd_ioctl_set_trap_handler_args *args = data;
616 	int err = 0;
617 	struct kfd_process_device *pdd;
618 
619 	mutex_lock(&p->mutex);
620 
621 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
622 	if (!pdd) {
623 		err = -EINVAL;
624 		goto err_pdd;
625 	}
626 
627 	pdd = kfd_bind_process_to_device(pdd->dev, p);
628 	if (IS_ERR(pdd)) {
629 		err = -ESRCH;
630 		goto out;
631 	}
632 
633 	kfd_process_set_trap_handler(&pdd->qpd, args->tba_addr, args->tma_addr);
634 
635 out:
636 err_pdd:
637 	mutex_unlock(&p->mutex);
638 
639 	return err;
640 }
641 
642 static int kfd_ioctl_dbg_register(struct file *filep,
643 				struct kfd_process *p, void *data)
644 {
645 	return -EPERM;
646 }
647 
648 static int kfd_ioctl_dbg_unregister(struct file *filep,
649 				struct kfd_process *p, void *data)
650 {
651 	return -EPERM;
652 }
653 
654 static int kfd_ioctl_dbg_address_watch(struct file *filep,
655 					struct kfd_process *p, void *data)
656 {
657 	return -EPERM;
658 }
659 
660 /* Parse and generate fixed size data structure for wave control */
661 static int kfd_ioctl_dbg_wave_control(struct file *filep,
662 					struct kfd_process *p, void *data)
663 {
664 	return -EPERM;
665 }
666 
667 static int kfd_ioctl_get_clock_counters(struct file *filep,
668 				struct kfd_process *p, void *data)
669 {
670 	struct kfd_ioctl_get_clock_counters_args *args = data;
671 	struct kfd_process_device *pdd;
672 
673 	mutex_lock(&p->mutex);
674 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
675 	mutex_unlock(&p->mutex);
676 	if (pdd)
677 		/* Reading GPU clock counter from KGD */
678 		args->gpu_clock_counter = amdgpu_amdkfd_get_gpu_clock_counter(pdd->dev->adev);
679 	else
680 		/* Node without GPU resource */
681 		args->gpu_clock_counter = 0;
682 
683 	/* No access to rdtsc. Using raw monotonic time */
684 	args->cpu_clock_counter = ktime_get_raw_ns();
685 	args->system_clock_counter = ktime_get_boottime_ns();
686 
687 	/* Since the counter is in nano-seconds we use 1GHz frequency */
688 	args->system_clock_freq = 1000000000;
689 
690 	return 0;
691 }
692 
693 
694 static int kfd_ioctl_get_process_apertures(struct file *filp,
695 				struct kfd_process *p, void *data)
696 {
697 	struct kfd_ioctl_get_process_apertures_args *args = data;
698 	struct kfd_process_device_apertures *pAperture;
699 	int i;
700 
701 	dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
702 
703 	args->num_of_nodes = 0;
704 
705 	mutex_lock(&p->mutex);
706 	/* Run over all pdd of the process */
707 	for (i = 0; i < p->n_pdds; i++) {
708 		struct kfd_process_device *pdd = p->pdds[i];
709 
710 		pAperture =
711 			&args->process_apertures[args->num_of_nodes];
712 		pAperture->gpu_id = pdd->dev->id;
713 		pAperture->lds_base = pdd->lds_base;
714 		pAperture->lds_limit = pdd->lds_limit;
715 		pAperture->gpuvm_base = pdd->gpuvm_base;
716 		pAperture->gpuvm_limit = pdd->gpuvm_limit;
717 		pAperture->scratch_base = pdd->scratch_base;
718 		pAperture->scratch_limit = pdd->scratch_limit;
719 
720 		dev_dbg(kfd_device,
721 			"node id %u\n", args->num_of_nodes);
722 		dev_dbg(kfd_device,
723 			"gpu id %u\n", pdd->dev->id);
724 		dev_dbg(kfd_device,
725 			"lds_base %llX\n", pdd->lds_base);
726 		dev_dbg(kfd_device,
727 			"lds_limit %llX\n", pdd->lds_limit);
728 		dev_dbg(kfd_device,
729 			"gpuvm_base %llX\n", pdd->gpuvm_base);
730 		dev_dbg(kfd_device,
731 			"gpuvm_limit %llX\n", pdd->gpuvm_limit);
732 		dev_dbg(kfd_device,
733 			"scratch_base %llX\n", pdd->scratch_base);
734 		dev_dbg(kfd_device,
735 			"scratch_limit %llX\n", pdd->scratch_limit);
736 
737 		if (++args->num_of_nodes >= NUM_OF_SUPPORTED_GPUS)
738 			break;
739 	}
740 	mutex_unlock(&p->mutex);
741 
742 	return 0;
743 }
744 
745 static int kfd_ioctl_get_process_apertures_new(struct file *filp,
746 				struct kfd_process *p, void *data)
747 {
748 	struct kfd_ioctl_get_process_apertures_new_args *args = data;
749 	struct kfd_process_device_apertures *pa;
750 	int ret;
751 	int i;
752 
753 	dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
754 
755 	if (args->num_of_nodes == 0) {
756 		/* Return number of nodes, so that user space can alloacate
757 		 * sufficient memory
758 		 */
759 		mutex_lock(&p->mutex);
760 		args->num_of_nodes = p->n_pdds;
761 		goto out_unlock;
762 	}
763 
764 	/* Fill in process-aperture information for all available
765 	 * nodes, but not more than args->num_of_nodes as that is
766 	 * the amount of memory allocated by user
767 	 */
768 	pa = kzalloc((sizeof(struct kfd_process_device_apertures) *
769 				args->num_of_nodes), GFP_KERNEL);
770 	if (!pa)
771 		return -ENOMEM;
772 
773 	mutex_lock(&p->mutex);
774 
775 	if (!p->n_pdds) {
776 		args->num_of_nodes = 0;
777 		kfree(pa);
778 		goto out_unlock;
779 	}
780 
781 	/* Run over all pdd of the process */
782 	for (i = 0; i < min(p->n_pdds, args->num_of_nodes); i++) {
783 		struct kfd_process_device *pdd = p->pdds[i];
784 
785 		pa[i].gpu_id = pdd->dev->id;
786 		pa[i].lds_base = pdd->lds_base;
787 		pa[i].lds_limit = pdd->lds_limit;
788 		pa[i].gpuvm_base = pdd->gpuvm_base;
789 		pa[i].gpuvm_limit = pdd->gpuvm_limit;
790 		pa[i].scratch_base = pdd->scratch_base;
791 		pa[i].scratch_limit = pdd->scratch_limit;
792 
793 		dev_dbg(kfd_device,
794 			"gpu id %u\n", pdd->dev->id);
795 		dev_dbg(kfd_device,
796 			"lds_base %llX\n", pdd->lds_base);
797 		dev_dbg(kfd_device,
798 			"lds_limit %llX\n", pdd->lds_limit);
799 		dev_dbg(kfd_device,
800 			"gpuvm_base %llX\n", pdd->gpuvm_base);
801 		dev_dbg(kfd_device,
802 			"gpuvm_limit %llX\n", pdd->gpuvm_limit);
803 		dev_dbg(kfd_device,
804 			"scratch_base %llX\n", pdd->scratch_base);
805 		dev_dbg(kfd_device,
806 			"scratch_limit %llX\n", pdd->scratch_limit);
807 	}
808 	mutex_unlock(&p->mutex);
809 
810 	args->num_of_nodes = i;
811 	ret = copy_to_user(
812 			(void __user *)args->kfd_process_device_apertures_ptr,
813 			pa,
814 			(i * sizeof(struct kfd_process_device_apertures)));
815 	kfree(pa);
816 	return ret ? -EFAULT : 0;
817 
818 out_unlock:
819 	mutex_unlock(&p->mutex);
820 	return 0;
821 }
822 
823 static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p,
824 					void *data)
825 {
826 	struct kfd_ioctl_create_event_args *args = data;
827 	int err;
828 
829 	/* For dGPUs the event page is allocated in user mode. The
830 	 * handle is passed to KFD with the first call to this IOCTL
831 	 * through the event_page_offset field.
832 	 */
833 	if (args->event_page_offset) {
834 		mutex_lock(&p->mutex);
835 		err = kfd_kmap_event_page(p, args->event_page_offset);
836 		mutex_unlock(&p->mutex);
837 		if (err)
838 			return err;
839 	}
840 
841 	err = kfd_event_create(filp, p, args->event_type,
842 				args->auto_reset != 0, args->node_id,
843 				&args->event_id, &args->event_trigger_data,
844 				&args->event_page_offset,
845 				&args->event_slot_index);
846 
847 	pr_debug("Created event (id:0x%08x) (%s)\n", args->event_id, __func__);
848 	return err;
849 }
850 
851 static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p,
852 					void *data)
853 {
854 	struct kfd_ioctl_destroy_event_args *args = data;
855 
856 	return kfd_event_destroy(p, args->event_id);
857 }
858 
859 static int kfd_ioctl_set_event(struct file *filp, struct kfd_process *p,
860 				void *data)
861 {
862 	struct kfd_ioctl_set_event_args *args = data;
863 
864 	return kfd_set_event(p, args->event_id);
865 }
866 
867 static int kfd_ioctl_reset_event(struct file *filp, struct kfd_process *p,
868 				void *data)
869 {
870 	struct kfd_ioctl_reset_event_args *args = data;
871 
872 	return kfd_reset_event(p, args->event_id);
873 }
874 
875 static int kfd_ioctl_wait_events(struct file *filp, struct kfd_process *p,
876 				void *data)
877 {
878 	struct kfd_ioctl_wait_events_args *args = data;
879 
880 	return kfd_wait_on_events(p, args->num_events,
881 			(void __user *)args->events_ptr,
882 			(args->wait_for_all != 0),
883 			&args->timeout, &args->wait_result);
884 }
885 static int kfd_ioctl_set_scratch_backing_va(struct file *filep,
886 					struct kfd_process *p, void *data)
887 {
888 	struct kfd_ioctl_set_scratch_backing_va_args *args = data;
889 	struct kfd_process_device *pdd;
890 	struct kfd_dev *dev;
891 	long err;
892 
893 	mutex_lock(&p->mutex);
894 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
895 	if (!pdd) {
896 		err = -EINVAL;
897 		goto err_pdd;
898 	}
899 	dev = pdd->dev;
900 
901 	pdd = kfd_bind_process_to_device(dev, p);
902 	if (IS_ERR(pdd)) {
903 		err = PTR_ERR(pdd);
904 		goto bind_process_to_device_fail;
905 	}
906 
907 	pdd->qpd.sh_hidden_private_base = args->va_addr;
908 
909 	mutex_unlock(&p->mutex);
910 
911 	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS &&
912 	    pdd->qpd.vmid != 0 && dev->kfd2kgd->set_scratch_backing_va)
913 		dev->kfd2kgd->set_scratch_backing_va(
914 			dev->adev, args->va_addr, pdd->qpd.vmid);
915 
916 	return 0;
917 
918 bind_process_to_device_fail:
919 err_pdd:
920 	mutex_unlock(&p->mutex);
921 	return err;
922 }
923 
924 static int kfd_ioctl_get_tile_config(struct file *filep,
925 		struct kfd_process *p, void *data)
926 {
927 	struct kfd_ioctl_get_tile_config_args *args = data;
928 	struct kfd_process_device *pdd;
929 	struct tile_config config;
930 	int err = 0;
931 
932 	mutex_lock(&p->mutex);
933 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
934 	mutex_unlock(&p->mutex);
935 	if (!pdd)
936 		return -EINVAL;
937 
938 	amdgpu_amdkfd_get_tile_config(pdd->dev->adev, &config);
939 
940 	args->gb_addr_config = config.gb_addr_config;
941 	args->num_banks = config.num_banks;
942 	args->num_ranks = config.num_ranks;
943 
944 	if (args->num_tile_configs > config.num_tile_configs)
945 		args->num_tile_configs = config.num_tile_configs;
946 	err = copy_to_user((void __user *)args->tile_config_ptr,
947 			config.tile_config_ptr,
948 			args->num_tile_configs * sizeof(uint32_t));
949 	if (err) {
950 		args->num_tile_configs = 0;
951 		return -EFAULT;
952 	}
953 
954 	if (args->num_macro_tile_configs > config.num_macro_tile_configs)
955 		args->num_macro_tile_configs =
956 				config.num_macro_tile_configs;
957 	err = copy_to_user((void __user *)args->macro_tile_config_ptr,
958 			config.macro_tile_config_ptr,
959 			args->num_macro_tile_configs * sizeof(uint32_t));
960 	if (err) {
961 		args->num_macro_tile_configs = 0;
962 		return -EFAULT;
963 	}
964 
965 	return 0;
966 }
967 
968 static int kfd_ioctl_acquire_vm(struct file *filep, struct kfd_process *p,
969 				void *data)
970 {
971 	struct kfd_ioctl_acquire_vm_args *args = data;
972 	struct kfd_process_device *pdd;
973 	struct file *drm_file;
974 	int ret;
975 
976 	drm_file = fget(args->drm_fd);
977 	if (!drm_file)
978 		return -EINVAL;
979 
980 	mutex_lock(&p->mutex);
981 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
982 	if (!pdd) {
983 		ret = -EINVAL;
984 		goto err_pdd;
985 	}
986 
987 	if (pdd->drm_file) {
988 		ret = pdd->drm_file == drm_file ? 0 : -EBUSY;
989 		goto err_drm_file;
990 	}
991 
992 	ret = kfd_process_device_init_vm(pdd, drm_file);
993 	if (ret)
994 		goto err_unlock;
995 
996 	/* On success, the PDD keeps the drm_file reference */
997 	mutex_unlock(&p->mutex);
998 
999 	return 0;
1000 
1001 err_unlock:
1002 err_pdd:
1003 err_drm_file:
1004 	mutex_unlock(&p->mutex);
1005 	fput(drm_file);
1006 	return ret;
1007 }
1008 
1009 bool kfd_dev_is_large_bar(struct kfd_dev *dev)
1010 {
1011 	if (debug_largebar) {
1012 		pr_debug("Simulate large-bar allocation on non large-bar machine\n");
1013 		return true;
1014 	}
1015 
1016 	if (dev->use_iommu_v2)
1017 		return false;
1018 
1019 	if (dev->local_mem_info.local_mem_size_private == 0 &&
1020 			dev->local_mem_info.local_mem_size_public > 0)
1021 		return true;
1022 	return false;
1023 }
1024 
1025 static int kfd_ioctl_get_available_memory(struct file *filep,
1026 					  struct kfd_process *p, void *data)
1027 {
1028 	struct kfd_ioctl_get_available_memory_args *args = data;
1029 	struct kfd_process_device *pdd = kfd_lock_pdd_by_id(p, args->gpu_id);
1030 
1031 	if (!pdd)
1032 		return -EINVAL;
1033 	args->available = amdgpu_amdkfd_get_available_memory(pdd->dev->adev);
1034 	kfd_unlock_pdd(pdd);
1035 	return 0;
1036 }
1037 
1038 static int kfd_ioctl_alloc_memory_of_gpu(struct file *filep,
1039 					struct kfd_process *p, void *data)
1040 {
1041 	struct kfd_ioctl_alloc_memory_of_gpu_args *args = data;
1042 	struct kfd_process_device *pdd;
1043 	void *mem;
1044 	struct kfd_dev *dev;
1045 	int idr_handle;
1046 	long err;
1047 	uint64_t offset = args->mmap_offset;
1048 	uint32_t flags = args->flags;
1049 
1050 	if (args->size == 0)
1051 		return -EINVAL;
1052 
1053 #if IS_ENABLED(CONFIG_HSA_AMD_SVM)
1054 	/* Flush pending deferred work to avoid racing with deferred actions
1055 	 * from previous memory map changes (e.g. munmap).
1056 	 */
1057 	svm_range_list_lock_and_flush_work(&p->svms, current->mm);
1058 	mutex_lock(&p->svms.lock);
1059 	mmap_write_unlock(current->mm);
1060 	if (interval_tree_iter_first(&p->svms.objects,
1061 				     args->va_addr >> PAGE_SHIFT,
1062 				     (args->va_addr + args->size - 1) >> PAGE_SHIFT)) {
1063 		pr_err("Address: 0x%llx already allocated by SVM\n",
1064 			args->va_addr);
1065 		mutex_unlock(&p->svms.lock);
1066 		return -EADDRINUSE;
1067 	}
1068 	mutex_unlock(&p->svms.lock);
1069 #endif
1070 	mutex_lock(&p->mutex);
1071 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
1072 	if (!pdd) {
1073 		err = -EINVAL;
1074 		goto err_pdd;
1075 	}
1076 
1077 	dev = pdd->dev;
1078 
1079 	if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) &&
1080 		(flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) &&
1081 		!kfd_dev_is_large_bar(dev)) {
1082 		pr_err("Alloc host visible vram on small bar is not allowed\n");
1083 		err = -EINVAL;
1084 		goto err_large_bar;
1085 	}
1086 
1087 	pdd = kfd_bind_process_to_device(dev, p);
1088 	if (IS_ERR(pdd)) {
1089 		err = PTR_ERR(pdd);
1090 		goto err_unlock;
1091 	}
1092 
1093 	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
1094 		if (args->size != kfd_doorbell_process_slice(dev)) {
1095 			err = -EINVAL;
1096 			goto err_unlock;
1097 		}
1098 		offset = kfd_get_process_doorbells(pdd);
1099 		if (!offset) {
1100 			err = -ENOMEM;
1101 			goto err_unlock;
1102 		}
1103 	} else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
1104 		if (args->size != PAGE_SIZE) {
1105 			err = -EINVAL;
1106 			goto err_unlock;
1107 		}
1108 		offset = dev->adev->rmmio_remap.bus_addr;
1109 		if (!offset) {
1110 			err = -ENOMEM;
1111 			goto err_unlock;
1112 		}
1113 	}
1114 
1115 	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(
1116 		dev->adev, args->va_addr, args->size,
1117 		pdd->drm_priv, (struct kgd_mem **) &mem, &offset,
1118 		flags, false);
1119 
1120 	if (err)
1121 		goto err_unlock;
1122 
1123 	idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1124 	if (idr_handle < 0) {
1125 		err = -EFAULT;
1126 		goto err_free;
1127 	}
1128 
1129 	/* Update the VRAM usage count */
1130 	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
1131 		uint64_t size = args->size;
1132 
1133 		if (flags & KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM)
1134 			size >>= 1;
1135 		WRITE_ONCE(pdd->vram_usage, pdd->vram_usage + PAGE_ALIGN(size));
1136 	}
1137 
1138 	mutex_unlock(&p->mutex);
1139 
1140 	args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1141 	args->mmap_offset = offset;
1142 
1143 	/* MMIO is mapped through kfd device
1144 	 * Generate a kfd mmap offset
1145 	 */
1146 	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1147 		args->mmap_offset = KFD_MMAP_TYPE_MMIO
1148 					| KFD_MMAP_GPU_ID(args->gpu_id);
1149 
1150 	return 0;
1151 
1152 err_free:
1153 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, (struct kgd_mem *)mem,
1154 					       pdd->drm_priv, NULL);
1155 err_unlock:
1156 err_pdd:
1157 err_large_bar:
1158 	mutex_unlock(&p->mutex);
1159 	return err;
1160 }
1161 
1162 static int kfd_ioctl_free_memory_of_gpu(struct file *filep,
1163 					struct kfd_process *p, void *data)
1164 {
1165 	struct kfd_ioctl_free_memory_of_gpu_args *args = data;
1166 	struct kfd_process_device *pdd;
1167 	void *mem;
1168 	int ret;
1169 	uint64_t size = 0;
1170 
1171 	mutex_lock(&p->mutex);
1172 	/*
1173 	 * Safeguard to prevent user space from freeing signal BO.
1174 	 * It will be freed at process termination.
1175 	 */
1176 	if (p->signal_handle && (p->signal_handle == args->handle)) {
1177 		pr_err("Free signal BO is not allowed\n");
1178 		ret = -EPERM;
1179 		goto err_unlock;
1180 	}
1181 
1182 	pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1183 	if (!pdd) {
1184 		pr_err("Process device data doesn't exist\n");
1185 		ret = -EINVAL;
1186 		goto err_pdd;
1187 	}
1188 
1189 	mem = kfd_process_device_translate_handle(
1190 		pdd, GET_IDR_HANDLE(args->handle));
1191 	if (!mem) {
1192 		ret = -EINVAL;
1193 		goto err_unlock;
1194 	}
1195 
1196 	ret = amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev,
1197 				(struct kgd_mem *)mem, pdd->drm_priv, &size);
1198 
1199 	/* If freeing the buffer failed, leave the handle in place for
1200 	 * clean-up during process tear-down.
1201 	 */
1202 	if (!ret)
1203 		kfd_process_device_remove_obj_handle(
1204 			pdd, GET_IDR_HANDLE(args->handle));
1205 
1206 	WRITE_ONCE(pdd->vram_usage, pdd->vram_usage - size);
1207 
1208 err_unlock:
1209 err_pdd:
1210 	mutex_unlock(&p->mutex);
1211 	return ret;
1212 }
1213 
1214 static int kfd_ioctl_map_memory_to_gpu(struct file *filep,
1215 					struct kfd_process *p, void *data)
1216 {
1217 	struct kfd_ioctl_map_memory_to_gpu_args *args = data;
1218 	struct kfd_process_device *pdd, *peer_pdd;
1219 	void *mem;
1220 	struct kfd_dev *dev;
1221 	long err = 0;
1222 	int i;
1223 	uint32_t *devices_arr = NULL;
1224 
1225 	if (!args->n_devices) {
1226 		pr_debug("Device IDs array empty\n");
1227 		return -EINVAL;
1228 	}
1229 	if (args->n_success > args->n_devices) {
1230 		pr_debug("n_success exceeds n_devices\n");
1231 		return -EINVAL;
1232 	}
1233 
1234 	devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1235 				    GFP_KERNEL);
1236 	if (!devices_arr)
1237 		return -ENOMEM;
1238 
1239 	err = copy_from_user(devices_arr,
1240 			     (void __user *)args->device_ids_array_ptr,
1241 			     args->n_devices * sizeof(*devices_arr));
1242 	if (err != 0) {
1243 		err = -EFAULT;
1244 		goto copy_from_user_failed;
1245 	}
1246 
1247 	mutex_lock(&p->mutex);
1248 	pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1249 	if (!pdd) {
1250 		err = -EINVAL;
1251 		goto get_process_device_data_failed;
1252 	}
1253 	dev = pdd->dev;
1254 
1255 	pdd = kfd_bind_process_to_device(dev, p);
1256 	if (IS_ERR(pdd)) {
1257 		err = PTR_ERR(pdd);
1258 		goto bind_process_to_device_failed;
1259 	}
1260 
1261 	mem = kfd_process_device_translate_handle(pdd,
1262 						GET_IDR_HANDLE(args->handle));
1263 	if (!mem) {
1264 		err = -ENOMEM;
1265 		goto get_mem_obj_from_handle_failed;
1266 	}
1267 
1268 	for (i = args->n_success; i < args->n_devices; i++) {
1269 		peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1270 		if (!peer_pdd) {
1271 			pr_debug("Getting device by id failed for 0x%x\n",
1272 				 devices_arr[i]);
1273 			err = -EINVAL;
1274 			goto get_mem_obj_from_handle_failed;
1275 		}
1276 
1277 		peer_pdd = kfd_bind_process_to_device(peer_pdd->dev, p);
1278 		if (IS_ERR(peer_pdd)) {
1279 			err = PTR_ERR(peer_pdd);
1280 			goto get_mem_obj_from_handle_failed;
1281 		}
1282 
1283 		err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(
1284 			peer_pdd->dev->adev, (struct kgd_mem *)mem,
1285 			peer_pdd->drm_priv);
1286 		if (err) {
1287 			struct pci_dev *pdev = peer_pdd->dev->adev->pdev;
1288 
1289 			dev_err(dev->adev->dev,
1290 			       "Failed to map peer:%04x:%02x:%02x.%d mem_domain:%d\n",
1291 			       pci_domain_nr(pdev->bus),
1292 			       pdev->bus->number,
1293 			       PCI_SLOT(pdev->devfn),
1294 			       PCI_FUNC(pdev->devfn),
1295 			       ((struct kgd_mem *)mem)->domain);
1296 			goto map_memory_to_gpu_failed;
1297 		}
1298 		args->n_success = i+1;
1299 	}
1300 
1301 	mutex_unlock(&p->mutex);
1302 
1303 	err = amdgpu_amdkfd_gpuvm_sync_memory(dev->adev, (struct kgd_mem *) mem, true);
1304 	if (err) {
1305 		pr_debug("Sync memory failed, wait interrupted by user signal\n");
1306 		goto sync_memory_failed;
1307 	}
1308 
1309 	/* Flush TLBs after waiting for the page table updates to complete */
1310 	for (i = 0; i < args->n_devices; i++) {
1311 		peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1312 		if (WARN_ON_ONCE(!peer_pdd))
1313 			continue;
1314 		kfd_flush_tlb(peer_pdd, TLB_FLUSH_LEGACY);
1315 	}
1316 	kfree(devices_arr);
1317 
1318 	return err;
1319 
1320 get_process_device_data_failed:
1321 bind_process_to_device_failed:
1322 get_mem_obj_from_handle_failed:
1323 map_memory_to_gpu_failed:
1324 	mutex_unlock(&p->mutex);
1325 copy_from_user_failed:
1326 sync_memory_failed:
1327 	kfree(devices_arr);
1328 
1329 	return err;
1330 }
1331 
1332 static int kfd_ioctl_unmap_memory_from_gpu(struct file *filep,
1333 					struct kfd_process *p, void *data)
1334 {
1335 	struct kfd_ioctl_unmap_memory_from_gpu_args *args = data;
1336 	struct kfd_process_device *pdd, *peer_pdd;
1337 	void *mem;
1338 	long err = 0;
1339 	uint32_t *devices_arr = NULL, i;
1340 
1341 	if (!args->n_devices) {
1342 		pr_debug("Device IDs array empty\n");
1343 		return -EINVAL;
1344 	}
1345 	if (args->n_success > args->n_devices) {
1346 		pr_debug("n_success exceeds n_devices\n");
1347 		return -EINVAL;
1348 	}
1349 
1350 	devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1351 				    GFP_KERNEL);
1352 	if (!devices_arr)
1353 		return -ENOMEM;
1354 
1355 	err = copy_from_user(devices_arr,
1356 			     (void __user *)args->device_ids_array_ptr,
1357 			     args->n_devices * sizeof(*devices_arr));
1358 	if (err != 0) {
1359 		err = -EFAULT;
1360 		goto copy_from_user_failed;
1361 	}
1362 
1363 	mutex_lock(&p->mutex);
1364 	pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1365 	if (!pdd) {
1366 		err = -EINVAL;
1367 		goto bind_process_to_device_failed;
1368 	}
1369 
1370 	mem = kfd_process_device_translate_handle(pdd,
1371 						GET_IDR_HANDLE(args->handle));
1372 	if (!mem) {
1373 		err = -ENOMEM;
1374 		goto get_mem_obj_from_handle_failed;
1375 	}
1376 
1377 	for (i = args->n_success; i < args->n_devices; i++) {
1378 		peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1379 		if (!peer_pdd) {
1380 			err = -EINVAL;
1381 			goto get_mem_obj_from_handle_failed;
1382 		}
1383 		err = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
1384 			peer_pdd->dev->adev, (struct kgd_mem *)mem, peer_pdd->drm_priv);
1385 		if (err) {
1386 			pr_err("Failed to unmap from gpu %d/%d\n",
1387 			       i, args->n_devices);
1388 			goto unmap_memory_from_gpu_failed;
1389 		}
1390 		args->n_success = i+1;
1391 	}
1392 	mutex_unlock(&p->mutex);
1393 
1394 	if (kfd_flush_tlb_after_unmap(pdd->dev)) {
1395 		err = amdgpu_amdkfd_gpuvm_sync_memory(pdd->dev->adev,
1396 				(struct kgd_mem *) mem, true);
1397 		if (err) {
1398 			pr_debug("Sync memory failed, wait interrupted by user signal\n");
1399 			goto sync_memory_failed;
1400 		}
1401 
1402 		/* Flush TLBs after waiting for the page table updates to complete */
1403 		for (i = 0; i < args->n_devices; i++) {
1404 			peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1405 			if (WARN_ON_ONCE(!peer_pdd))
1406 				continue;
1407 			kfd_flush_tlb(peer_pdd, TLB_FLUSH_HEAVYWEIGHT);
1408 		}
1409 	}
1410 	kfree(devices_arr);
1411 
1412 	return 0;
1413 
1414 bind_process_to_device_failed:
1415 get_mem_obj_from_handle_failed:
1416 unmap_memory_from_gpu_failed:
1417 	mutex_unlock(&p->mutex);
1418 copy_from_user_failed:
1419 sync_memory_failed:
1420 	kfree(devices_arr);
1421 	return err;
1422 }
1423 
1424 static int kfd_ioctl_alloc_queue_gws(struct file *filep,
1425 		struct kfd_process *p, void *data)
1426 {
1427 	int retval;
1428 	struct kfd_ioctl_alloc_queue_gws_args *args = data;
1429 	struct queue *q;
1430 	struct kfd_dev *dev;
1431 
1432 	mutex_lock(&p->mutex);
1433 	q = pqm_get_user_queue(&p->pqm, args->queue_id);
1434 
1435 	if (q) {
1436 		dev = q->device;
1437 	} else {
1438 		retval = -EINVAL;
1439 		goto out_unlock;
1440 	}
1441 
1442 	if (!dev->gws) {
1443 		retval = -ENODEV;
1444 		goto out_unlock;
1445 	}
1446 
1447 	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
1448 		retval = -ENODEV;
1449 		goto out_unlock;
1450 	}
1451 
1452 	retval = pqm_set_gws(&p->pqm, args->queue_id, args->num_gws ? dev->gws : NULL);
1453 	mutex_unlock(&p->mutex);
1454 
1455 	args->first_gws = 0;
1456 	return retval;
1457 
1458 out_unlock:
1459 	mutex_unlock(&p->mutex);
1460 	return retval;
1461 }
1462 
1463 static int kfd_ioctl_get_dmabuf_info(struct file *filep,
1464 		struct kfd_process *p, void *data)
1465 {
1466 	struct kfd_ioctl_get_dmabuf_info_args *args = data;
1467 	struct kfd_dev *dev = NULL;
1468 	struct amdgpu_device *dmabuf_adev;
1469 	void *metadata_buffer = NULL;
1470 	uint32_t flags;
1471 	unsigned int i;
1472 	int r;
1473 
1474 	/* Find a KFD GPU device that supports the get_dmabuf_info query */
1475 	for (i = 0; kfd_topology_enum_kfd_devices(i, &dev) == 0; i++)
1476 		if (dev)
1477 			break;
1478 	if (!dev)
1479 		return -EINVAL;
1480 
1481 	if (args->metadata_ptr) {
1482 		metadata_buffer = kzalloc(args->metadata_size, GFP_KERNEL);
1483 		if (!metadata_buffer)
1484 			return -ENOMEM;
1485 	}
1486 
1487 	/* Get dmabuf info from KGD */
1488 	r = amdgpu_amdkfd_get_dmabuf_info(dev->adev, args->dmabuf_fd,
1489 					  &dmabuf_adev, &args->size,
1490 					  metadata_buffer, args->metadata_size,
1491 					  &args->metadata_size, &flags);
1492 	if (r)
1493 		goto exit;
1494 
1495 	/* Reverse-lookup gpu_id from kgd pointer */
1496 	dev = kfd_device_by_adev(dmabuf_adev);
1497 	if (!dev) {
1498 		r = -EINVAL;
1499 		goto exit;
1500 	}
1501 	args->gpu_id = dev->id;
1502 	args->flags = flags;
1503 
1504 	/* Copy metadata buffer to user mode */
1505 	if (metadata_buffer) {
1506 		r = copy_to_user((void __user *)args->metadata_ptr,
1507 				 metadata_buffer, args->metadata_size);
1508 		if (r != 0)
1509 			r = -EFAULT;
1510 	}
1511 
1512 exit:
1513 	kfree(metadata_buffer);
1514 
1515 	return r;
1516 }
1517 
1518 static int kfd_ioctl_import_dmabuf(struct file *filep,
1519 				   struct kfd_process *p, void *data)
1520 {
1521 	struct kfd_ioctl_import_dmabuf_args *args = data;
1522 	struct kfd_process_device *pdd;
1523 	struct dma_buf *dmabuf;
1524 	int idr_handle;
1525 	uint64_t size;
1526 	void *mem;
1527 	int r;
1528 
1529 	dmabuf = dma_buf_get(args->dmabuf_fd);
1530 	if (IS_ERR(dmabuf))
1531 		return PTR_ERR(dmabuf);
1532 
1533 	mutex_lock(&p->mutex);
1534 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
1535 	if (!pdd) {
1536 		r = -EINVAL;
1537 		goto err_unlock;
1538 	}
1539 
1540 	pdd = kfd_bind_process_to_device(pdd->dev, p);
1541 	if (IS_ERR(pdd)) {
1542 		r = PTR_ERR(pdd);
1543 		goto err_unlock;
1544 	}
1545 
1546 	r = amdgpu_amdkfd_gpuvm_import_dmabuf(pdd->dev->adev, dmabuf,
1547 					      args->va_addr, pdd->drm_priv,
1548 					      (struct kgd_mem **)&mem, &size,
1549 					      NULL);
1550 	if (r)
1551 		goto err_unlock;
1552 
1553 	idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1554 	if (idr_handle < 0) {
1555 		r = -EFAULT;
1556 		goto err_free;
1557 	}
1558 
1559 	mutex_unlock(&p->mutex);
1560 	dma_buf_put(dmabuf);
1561 
1562 	args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1563 
1564 	return 0;
1565 
1566 err_free:
1567 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, (struct kgd_mem *)mem,
1568 					       pdd->drm_priv, NULL);
1569 err_unlock:
1570 	mutex_unlock(&p->mutex);
1571 	dma_buf_put(dmabuf);
1572 	return r;
1573 }
1574 
1575 /* Handle requests for watching SMI events */
1576 static int kfd_ioctl_smi_events(struct file *filep,
1577 				struct kfd_process *p, void *data)
1578 {
1579 	struct kfd_ioctl_smi_events_args *args = data;
1580 	struct kfd_process_device *pdd;
1581 
1582 	mutex_lock(&p->mutex);
1583 
1584 	pdd = kfd_process_device_data_by_id(p, args->gpuid);
1585 	mutex_unlock(&p->mutex);
1586 	if (!pdd)
1587 		return -EINVAL;
1588 
1589 	return kfd_smi_event_open(pdd->dev, &args->anon_fd);
1590 }
1591 
1592 #if IS_ENABLED(CONFIG_HSA_AMD_SVM)
1593 
1594 static int kfd_ioctl_set_xnack_mode(struct file *filep,
1595 				    struct kfd_process *p, void *data)
1596 {
1597 	struct kfd_ioctl_set_xnack_mode_args *args = data;
1598 	int r = 0;
1599 
1600 	mutex_lock(&p->mutex);
1601 	if (args->xnack_enabled >= 0) {
1602 		if (!list_empty(&p->pqm.queues)) {
1603 			pr_debug("Process has user queues running\n");
1604 			r = -EBUSY;
1605 			goto out_unlock;
1606 		}
1607 
1608 		if (p->xnack_enabled == args->xnack_enabled)
1609 			goto out_unlock;
1610 
1611 		if (args->xnack_enabled && !kfd_process_xnack_mode(p, true)) {
1612 			r = -EPERM;
1613 			goto out_unlock;
1614 		}
1615 
1616 		r = svm_range_switch_xnack_reserve_mem(p, args->xnack_enabled);
1617 	} else {
1618 		args->xnack_enabled = p->xnack_enabled;
1619 	}
1620 
1621 out_unlock:
1622 	mutex_unlock(&p->mutex);
1623 
1624 	return r;
1625 }
1626 
1627 static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1628 {
1629 	struct kfd_ioctl_svm_args *args = data;
1630 	int r = 0;
1631 
1632 	pr_debug("start 0x%llx size 0x%llx op 0x%x nattr 0x%x\n",
1633 		 args->start_addr, args->size, args->op, args->nattr);
1634 
1635 	if ((args->start_addr & ~PAGE_MASK) || (args->size & ~PAGE_MASK))
1636 		return -EINVAL;
1637 	if (!args->start_addr || !args->size)
1638 		return -EINVAL;
1639 
1640 	r = svm_ioctl(p, args->op, args->start_addr, args->size, args->nattr,
1641 		      args->attrs);
1642 
1643 	return r;
1644 }
1645 #else
1646 static int kfd_ioctl_set_xnack_mode(struct file *filep,
1647 				    struct kfd_process *p, void *data)
1648 {
1649 	return -EPERM;
1650 }
1651 static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1652 {
1653 	return -EPERM;
1654 }
1655 #endif
1656 
1657 static int criu_checkpoint_process(struct kfd_process *p,
1658 			     uint8_t __user *user_priv_data,
1659 			     uint64_t *priv_offset)
1660 {
1661 	struct kfd_criu_process_priv_data process_priv;
1662 	int ret;
1663 
1664 	memset(&process_priv, 0, sizeof(process_priv));
1665 
1666 	process_priv.version = KFD_CRIU_PRIV_VERSION;
1667 	/* For CR, we don't consider negative xnack mode which is used for
1668 	 * querying without changing it, here 0 simply means disabled and 1
1669 	 * means enabled so retry for finding a valid PTE.
1670 	 */
1671 	process_priv.xnack_mode = p->xnack_enabled ? 1 : 0;
1672 
1673 	ret = copy_to_user(user_priv_data + *priv_offset,
1674 				&process_priv, sizeof(process_priv));
1675 
1676 	if (ret) {
1677 		pr_err("Failed to copy process information to user\n");
1678 		ret = -EFAULT;
1679 	}
1680 
1681 	*priv_offset += sizeof(process_priv);
1682 	return ret;
1683 }
1684 
1685 static int criu_checkpoint_devices(struct kfd_process *p,
1686 			     uint32_t num_devices,
1687 			     uint8_t __user *user_addr,
1688 			     uint8_t __user *user_priv_data,
1689 			     uint64_t *priv_offset)
1690 {
1691 	struct kfd_criu_device_priv_data *device_priv = NULL;
1692 	struct kfd_criu_device_bucket *device_buckets = NULL;
1693 	int ret = 0, i;
1694 
1695 	device_buckets = kvzalloc(num_devices * sizeof(*device_buckets), GFP_KERNEL);
1696 	if (!device_buckets) {
1697 		ret = -ENOMEM;
1698 		goto exit;
1699 	}
1700 
1701 	device_priv = kvzalloc(num_devices * sizeof(*device_priv), GFP_KERNEL);
1702 	if (!device_priv) {
1703 		ret = -ENOMEM;
1704 		goto exit;
1705 	}
1706 
1707 	for (i = 0; i < num_devices; i++) {
1708 		struct kfd_process_device *pdd = p->pdds[i];
1709 
1710 		device_buckets[i].user_gpu_id = pdd->user_gpu_id;
1711 		device_buckets[i].actual_gpu_id = pdd->dev->id;
1712 
1713 		/*
1714 		 * priv_data does not contain useful information for now and is reserved for
1715 		 * future use, so we do not set its contents.
1716 		 */
1717 	}
1718 
1719 	ret = copy_to_user(user_addr, device_buckets, num_devices * sizeof(*device_buckets));
1720 	if (ret) {
1721 		pr_err("Failed to copy device information to user\n");
1722 		ret = -EFAULT;
1723 		goto exit;
1724 	}
1725 
1726 	ret = copy_to_user(user_priv_data + *priv_offset,
1727 			   device_priv,
1728 			   num_devices * sizeof(*device_priv));
1729 	if (ret) {
1730 		pr_err("Failed to copy device information to user\n");
1731 		ret = -EFAULT;
1732 	}
1733 	*priv_offset += num_devices * sizeof(*device_priv);
1734 
1735 exit:
1736 	kvfree(device_buckets);
1737 	kvfree(device_priv);
1738 	return ret;
1739 }
1740 
1741 static uint32_t get_process_num_bos(struct kfd_process *p)
1742 {
1743 	uint32_t num_of_bos = 0;
1744 	int i;
1745 
1746 	/* Run over all PDDs of the process */
1747 	for (i = 0; i < p->n_pdds; i++) {
1748 		struct kfd_process_device *pdd = p->pdds[i];
1749 		void *mem;
1750 		int id;
1751 
1752 		idr_for_each_entry(&pdd->alloc_idr, mem, id) {
1753 			struct kgd_mem *kgd_mem = (struct kgd_mem *)mem;
1754 
1755 			if ((uint64_t)kgd_mem->va > pdd->gpuvm_base)
1756 				num_of_bos++;
1757 		}
1758 	}
1759 	return num_of_bos;
1760 }
1761 
1762 static int criu_get_prime_handle(struct drm_gem_object *gobj, int flags,
1763 				      u32 *shared_fd)
1764 {
1765 	struct dma_buf *dmabuf;
1766 	int ret;
1767 
1768 	dmabuf = amdgpu_gem_prime_export(gobj, flags);
1769 	if (IS_ERR(dmabuf)) {
1770 		ret = PTR_ERR(dmabuf);
1771 		pr_err("dmabuf export failed for the BO\n");
1772 		return ret;
1773 	}
1774 
1775 	ret = dma_buf_fd(dmabuf, flags);
1776 	if (ret < 0) {
1777 		pr_err("dmabuf create fd failed, ret:%d\n", ret);
1778 		goto out_free_dmabuf;
1779 	}
1780 
1781 	*shared_fd = ret;
1782 	return 0;
1783 
1784 out_free_dmabuf:
1785 	dma_buf_put(dmabuf);
1786 	return ret;
1787 }
1788 
1789 static int criu_checkpoint_bos(struct kfd_process *p,
1790 			       uint32_t num_bos,
1791 			       uint8_t __user *user_bos,
1792 			       uint8_t __user *user_priv_data,
1793 			       uint64_t *priv_offset)
1794 {
1795 	struct kfd_criu_bo_bucket *bo_buckets;
1796 	struct kfd_criu_bo_priv_data *bo_privs;
1797 	int ret = 0, pdd_index, bo_index = 0, id;
1798 	void *mem;
1799 
1800 	bo_buckets = kvzalloc(num_bos * sizeof(*bo_buckets), GFP_KERNEL);
1801 	if (!bo_buckets)
1802 		return -ENOMEM;
1803 
1804 	bo_privs = kvzalloc(num_bos * sizeof(*bo_privs), GFP_KERNEL);
1805 	if (!bo_privs) {
1806 		ret = -ENOMEM;
1807 		goto exit;
1808 	}
1809 
1810 	for (pdd_index = 0; pdd_index < p->n_pdds; pdd_index++) {
1811 		struct kfd_process_device *pdd = p->pdds[pdd_index];
1812 		struct amdgpu_bo *dumper_bo;
1813 		struct kgd_mem *kgd_mem;
1814 
1815 		idr_for_each_entry(&pdd->alloc_idr, mem, id) {
1816 			struct kfd_criu_bo_bucket *bo_bucket;
1817 			struct kfd_criu_bo_priv_data *bo_priv;
1818 			int i, dev_idx = 0;
1819 
1820 			if (!mem) {
1821 				ret = -ENOMEM;
1822 				goto exit;
1823 			}
1824 
1825 			kgd_mem = (struct kgd_mem *)mem;
1826 			dumper_bo = kgd_mem->bo;
1827 
1828 			if ((uint64_t)kgd_mem->va <= pdd->gpuvm_base)
1829 				continue;
1830 
1831 			bo_bucket = &bo_buckets[bo_index];
1832 			bo_priv = &bo_privs[bo_index];
1833 
1834 			bo_bucket->gpu_id = pdd->user_gpu_id;
1835 			bo_bucket->addr = (uint64_t)kgd_mem->va;
1836 			bo_bucket->size = amdgpu_bo_size(dumper_bo);
1837 			bo_bucket->alloc_flags = (uint32_t)kgd_mem->alloc_flags;
1838 			bo_priv->idr_handle = id;
1839 
1840 			if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
1841 				ret = amdgpu_ttm_tt_get_userptr(&dumper_bo->tbo,
1842 								&bo_priv->user_addr);
1843 				if (ret) {
1844 					pr_err("Failed to obtain user address for user-pointer bo\n");
1845 					goto exit;
1846 				}
1847 			}
1848 			if (bo_bucket->alloc_flags
1849 			    & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) {
1850 				ret = criu_get_prime_handle(&dumper_bo->tbo.base,
1851 						bo_bucket->alloc_flags &
1852 						KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? DRM_RDWR : 0,
1853 						&bo_bucket->dmabuf_fd);
1854 				if (ret)
1855 					goto exit;
1856 			} else {
1857 				bo_bucket->dmabuf_fd = KFD_INVALID_FD;
1858 			}
1859 
1860 			if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL)
1861 				bo_bucket->offset = KFD_MMAP_TYPE_DOORBELL |
1862 					KFD_MMAP_GPU_ID(pdd->dev->id);
1863 			else if (bo_bucket->alloc_flags &
1864 				KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1865 				bo_bucket->offset = KFD_MMAP_TYPE_MMIO |
1866 					KFD_MMAP_GPU_ID(pdd->dev->id);
1867 			else
1868 				bo_bucket->offset = amdgpu_bo_mmap_offset(dumper_bo);
1869 
1870 			for (i = 0; i < p->n_pdds; i++) {
1871 				if (amdgpu_amdkfd_bo_mapped_to_dev(p->pdds[i]->dev->adev, kgd_mem))
1872 					bo_priv->mapped_gpuids[dev_idx++] = p->pdds[i]->user_gpu_id;
1873 			}
1874 
1875 			pr_debug("bo_size = 0x%llx, bo_addr = 0x%llx bo_offset = 0x%llx\n"
1876 					"gpu_id = 0x%x alloc_flags = 0x%x idr_handle = 0x%x",
1877 					bo_bucket->size,
1878 					bo_bucket->addr,
1879 					bo_bucket->offset,
1880 					bo_bucket->gpu_id,
1881 					bo_bucket->alloc_flags,
1882 					bo_priv->idr_handle);
1883 			bo_index++;
1884 		}
1885 	}
1886 
1887 	ret = copy_to_user(user_bos, bo_buckets, num_bos * sizeof(*bo_buckets));
1888 	if (ret) {
1889 		pr_err("Failed to copy BO information to user\n");
1890 		ret = -EFAULT;
1891 		goto exit;
1892 	}
1893 
1894 	ret = copy_to_user(user_priv_data + *priv_offset, bo_privs, num_bos * sizeof(*bo_privs));
1895 	if (ret) {
1896 		pr_err("Failed to copy BO priv information to user\n");
1897 		ret = -EFAULT;
1898 		goto exit;
1899 	}
1900 
1901 	*priv_offset += num_bos * sizeof(*bo_privs);
1902 
1903 exit:
1904 	while (ret && bo_index--) {
1905 		if (bo_buckets[bo_index].alloc_flags
1906 		    & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT))
1907 			close_fd(bo_buckets[bo_index].dmabuf_fd);
1908 	}
1909 
1910 	kvfree(bo_buckets);
1911 	kvfree(bo_privs);
1912 	return ret;
1913 }
1914 
1915 static int criu_get_process_object_info(struct kfd_process *p,
1916 					uint32_t *num_devices,
1917 					uint32_t *num_bos,
1918 					uint32_t *num_objects,
1919 					uint64_t *objs_priv_size)
1920 {
1921 	uint64_t queues_priv_data_size, svm_priv_data_size, priv_size;
1922 	uint32_t num_queues, num_events, num_svm_ranges;
1923 	int ret;
1924 
1925 	*num_devices = p->n_pdds;
1926 	*num_bos = get_process_num_bos(p);
1927 
1928 	ret = kfd_process_get_queue_info(p, &num_queues, &queues_priv_data_size);
1929 	if (ret)
1930 		return ret;
1931 
1932 	num_events = kfd_get_num_events(p);
1933 
1934 	ret = svm_range_get_info(p, &num_svm_ranges, &svm_priv_data_size);
1935 	if (ret)
1936 		return ret;
1937 
1938 	*num_objects = num_queues + num_events + num_svm_ranges;
1939 
1940 	if (objs_priv_size) {
1941 		priv_size = sizeof(struct kfd_criu_process_priv_data);
1942 		priv_size += *num_devices * sizeof(struct kfd_criu_device_priv_data);
1943 		priv_size += *num_bos * sizeof(struct kfd_criu_bo_priv_data);
1944 		priv_size += queues_priv_data_size;
1945 		priv_size += num_events * sizeof(struct kfd_criu_event_priv_data);
1946 		priv_size += svm_priv_data_size;
1947 		*objs_priv_size = priv_size;
1948 	}
1949 	return 0;
1950 }
1951 
1952 static int criu_checkpoint(struct file *filep,
1953 			   struct kfd_process *p,
1954 			   struct kfd_ioctl_criu_args *args)
1955 {
1956 	int ret;
1957 	uint32_t num_devices, num_bos, num_objects;
1958 	uint64_t priv_size, priv_offset = 0, bo_priv_offset;
1959 
1960 	if (!args->devices || !args->bos || !args->priv_data)
1961 		return -EINVAL;
1962 
1963 	mutex_lock(&p->mutex);
1964 
1965 	if (!p->n_pdds) {
1966 		pr_err("No pdd for given process\n");
1967 		ret = -ENODEV;
1968 		goto exit_unlock;
1969 	}
1970 
1971 	/* Confirm all process queues are evicted */
1972 	if (!p->queues_paused) {
1973 		pr_err("Cannot dump process when queues are not in evicted state\n");
1974 		/* CRIU plugin did not call op PROCESS_INFO before checkpointing */
1975 		ret = -EINVAL;
1976 		goto exit_unlock;
1977 	}
1978 
1979 	ret = criu_get_process_object_info(p, &num_devices, &num_bos, &num_objects, &priv_size);
1980 	if (ret)
1981 		goto exit_unlock;
1982 
1983 	if (num_devices != args->num_devices ||
1984 	    num_bos != args->num_bos ||
1985 	    num_objects != args->num_objects ||
1986 	    priv_size != args->priv_data_size) {
1987 
1988 		ret = -EINVAL;
1989 		goto exit_unlock;
1990 	}
1991 
1992 	/* each function will store private data inside priv_data and adjust priv_offset */
1993 	ret = criu_checkpoint_process(p, (uint8_t __user *)args->priv_data, &priv_offset);
1994 	if (ret)
1995 		goto exit_unlock;
1996 
1997 	ret = criu_checkpoint_devices(p, num_devices, (uint8_t __user *)args->devices,
1998 				(uint8_t __user *)args->priv_data, &priv_offset);
1999 	if (ret)
2000 		goto exit_unlock;
2001 
2002 	/* Leave room for BOs in the private data. They need to be restored
2003 	 * before events, but we checkpoint them last to simplify the error
2004 	 * handling.
2005 	 */
2006 	bo_priv_offset = priv_offset;
2007 	priv_offset += num_bos * sizeof(struct kfd_criu_bo_priv_data);
2008 
2009 	if (num_objects) {
2010 		ret = kfd_criu_checkpoint_queues(p, (uint8_t __user *)args->priv_data,
2011 						 &priv_offset);
2012 		if (ret)
2013 			goto exit_unlock;
2014 
2015 		ret = kfd_criu_checkpoint_events(p, (uint8_t __user *)args->priv_data,
2016 						 &priv_offset);
2017 		if (ret)
2018 			goto exit_unlock;
2019 
2020 		ret = kfd_criu_checkpoint_svm(p, (uint8_t __user *)args->priv_data, &priv_offset);
2021 		if (ret)
2022 			goto exit_unlock;
2023 	}
2024 
2025 	/* This must be the last thing in this function that can fail.
2026 	 * Otherwise we leak dmabuf file descriptors.
2027 	 */
2028 	ret = criu_checkpoint_bos(p, num_bos, (uint8_t __user *)args->bos,
2029 			   (uint8_t __user *)args->priv_data, &bo_priv_offset);
2030 
2031 exit_unlock:
2032 	mutex_unlock(&p->mutex);
2033 	if (ret)
2034 		pr_err("Failed to dump CRIU ret:%d\n", ret);
2035 	else
2036 		pr_debug("CRIU dump ret:%d\n", ret);
2037 
2038 	return ret;
2039 }
2040 
2041 static int criu_restore_process(struct kfd_process *p,
2042 				struct kfd_ioctl_criu_args *args,
2043 				uint64_t *priv_offset,
2044 				uint64_t max_priv_data_size)
2045 {
2046 	int ret = 0;
2047 	struct kfd_criu_process_priv_data process_priv;
2048 
2049 	if (*priv_offset + sizeof(process_priv) > max_priv_data_size)
2050 		return -EINVAL;
2051 
2052 	ret = copy_from_user(&process_priv,
2053 				(void __user *)(args->priv_data + *priv_offset),
2054 				sizeof(process_priv));
2055 	if (ret) {
2056 		pr_err("Failed to copy process private information from user\n");
2057 		ret = -EFAULT;
2058 		goto exit;
2059 	}
2060 	*priv_offset += sizeof(process_priv);
2061 
2062 	if (process_priv.version != KFD_CRIU_PRIV_VERSION) {
2063 		pr_err("Invalid CRIU API version (checkpointed:%d current:%d)\n",
2064 			process_priv.version, KFD_CRIU_PRIV_VERSION);
2065 		return -EINVAL;
2066 	}
2067 
2068 	pr_debug("Setting XNACK mode\n");
2069 	if (process_priv.xnack_mode && !kfd_process_xnack_mode(p, true)) {
2070 		pr_err("xnack mode cannot be set\n");
2071 		ret = -EPERM;
2072 		goto exit;
2073 	} else {
2074 		pr_debug("set xnack mode: %d\n", process_priv.xnack_mode);
2075 		p->xnack_enabled = process_priv.xnack_mode;
2076 	}
2077 
2078 exit:
2079 	return ret;
2080 }
2081 
2082 static int criu_restore_devices(struct kfd_process *p,
2083 				struct kfd_ioctl_criu_args *args,
2084 				uint64_t *priv_offset,
2085 				uint64_t max_priv_data_size)
2086 {
2087 	struct kfd_criu_device_bucket *device_buckets;
2088 	struct kfd_criu_device_priv_data *device_privs;
2089 	int ret = 0;
2090 	uint32_t i;
2091 
2092 	if (args->num_devices != p->n_pdds)
2093 		return -EINVAL;
2094 
2095 	if (*priv_offset + (args->num_devices * sizeof(*device_privs)) > max_priv_data_size)
2096 		return -EINVAL;
2097 
2098 	device_buckets = kmalloc_array(args->num_devices, sizeof(*device_buckets), GFP_KERNEL);
2099 	if (!device_buckets)
2100 		return -ENOMEM;
2101 
2102 	ret = copy_from_user(device_buckets, (void __user *)args->devices,
2103 				args->num_devices * sizeof(*device_buckets));
2104 	if (ret) {
2105 		pr_err("Failed to copy devices buckets from user\n");
2106 		ret = -EFAULT;
2107 		goto exit;
2108 	}
2109 
2110 	for (i = 0; i < args->num_devices; i++) {
2111 		struct kfd_dev *dev;
2112 		struct kfd_process_device *pdd;
2113 		struct file *drm_file;
2114 
2115 		/* device private data is not currently used */
2116 
2117 		if (!device_buckets[i].user_gpu_id) {
2118 			pr_err("Invalid user gpu_id\n");
2119 			ret = -EINVAL;
2120 			goto exit;
2121 		}
2122 
2123 		dev = kfd_device_by_id(device_buckets[i].actual_gpu_id);
2124 		if (!dev) {
2125 			pr_err("Failed to find device with gpu_id = %x\n",
2126 				device_buckets[i].actual_gpu_id);
2127 			ret = -EINVAL;
2128 			goto exit;
2129 		}
2130 
2131 		pdd = kfd_get_process_device_data(dev, p);
2132 		if (!pdd) {
2133 			pr_err("Failed to get pdd for gpu_id = %x\n",
2134 					device_buckets[i].actual_gpu_id);
2135 			ret = -EINVAL;
2136 			goto exit;
2137 		}
2138 		pdd->user_gpu_id = device_buckets[i].user_gpu_id;
2139 
2140 		drm_file = fget(device_buckets[i].drm_fd);
2141 		if (!drm_file) {
2142 			pr_err("Invalid render node file descriptor sent from plugin (%d)\n",
2143 				device_buckets[i].drm_fd);
2144 			ret = -EINVAL;
2145 			goto exit;
2146 		}
2147 
2148 		if (pdd->drm_file) {
2149 			ret = -EINVAL;
2150 			goto exit;
2151 		}
2152 
2153 		/* create the vm using render nodes for kfd pdd */
2154 		if (kfd_process_device_init_vm(pdd, drm_file)) {
2155 			pr_err("could not init vm for given pdd\n");
2156 			/* On success, the PDD keeps the drm_file reference */
2157 			fput(drm_file);
2158 			ret = -EINVAL;
2159 			goto exit;
2160 		}
2161 		/*
2162 		 * pdd now already has the vm bound to render node so below api won't create a new
2163 		 * exclusive kfd mapping but use existing one with renderDXXX but is still needed
2164 		 * for iommu v2 binding  and runtime pm.
2165 		 */
2166 		pdd = kfd_bind_process_to_device(dev, p);
2167 		if (IS_ERR(pdd)) {
2168 			ret = PTR_ERR(pdd);
2169 			goto exit;
2170 		}
2171 
2172 		if (!pdd->doorbell_index &&
2173 		    kfd_alloc_process_doorbells(pdd->dev, &pdd->doorbell_index) < 0) {
2174 			ret = -ENOMEM;
2175 			goto exit;
2176 		}
2177 	}
2178 
2179 	/*
2180 	 * We are not copying device private data from user as we are not using the data for now,
2181 	 * but we still adjust for its private data.
2182 	 */
2183 	*priv_offset += args->num_devices * sizeof(*device_privs);
2184 
2185 exit:
2186 	kfree(device_buckets);
2187 	return ret;
2188 }
2189 
2190 static int criu_restore_memory_of_gpu(struct kfd_process_device *pdd,
2191 				      struct kfd_criu_bo_bucket *bo_bucket,
2192 				      struct kfd_criu_bo_priv_data *bo_priv,
2193 				      struct kgd_mem **kgd_mem)
2194 {
2195 	int idr_handle;
2196 	int ret;
2197 	const bool criu_resume = true;
2198 	u64 offset;
2199 
2200 	if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
2201 		if (bo_bucket->size != kfd_doorbell_process_slice(pdd->dev))
2202 			return -EINVAL;
2203 
2204 		offset = kfd_get_process_doorbells(pdd);
2205 		if (!offset)
2206 			return -ENOMEM;
2207 	} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
2208 		/* MMIO BOs need remapped bus address */
2209 		if (bo_bucket->size != PAGE_SIZE) {
2210 			pr_err("Invalid page size\n");
2211 			return -EINVAL;
2212 		}
2213 		offset = pdd->dev->adev->rmmio_remap.bus_addr;
2214 		if (!offset) {
2215 			pr_err("amdgpu_amdkfd_get_mmio_remap_phys_addr failed\n");
2216 			return -ENOMEM;
2217 		}
2218 	} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
2219 		offset = bo_priv->user_addr;
2220 	}
2221 	/* Create the BO */
2222 	ret = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(pdd->dev->adev, bo_bucket->addr,
2223 						      bo_bucket->size, pdd->drm_priv, kgd_mem,
2224 						      &offset, bo_bucket->alloc_flags, criu_resume);
2225 	if (ret) {
2226 		pr_err("Could not create the BO\n");
2227 		return ret;
2228 	}
2229 	pr_debug("New BO created: size:0x%llx addr:0x%llx offset:0x%llx\n",
2230 		 bo_bucket->size, bo_bucket->addr, offset);
2231 
2232 	/* Restore previous IDR handle */
2233 	pr_debug("Restoring old IDR handle for the BO");
2234 	idr_handle = idr_alloc(&pdd->alloc_idr, *kgd_mem, bo_priv->idr_handle,
2235 			       bo_priv->idr_handle + 1, GFP_KERNEL);
2236 
2237 	if (idr_handle < 0) {
2238 		pr_err("Could not allocate idr\n");
2239 		amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, *kgd_mem, pdd->drm_priv,
2240 						       NULL);
2241 		return -ENOMEM;
2242 	}
2243 
2244 	if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL)
2245 		bo_bucket->restored_offset = KFD_MMAP_TYPE_DOORBELL | KFD_MMAP_GPU_ID(pdd->dev->id);
2246 	if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
2247 		bo_bucket->restored_offset = KFD_MMAP_TYPE_MMIO | KFD_MMAP_GPU_ID(pdd->dev->id);
2248 	} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) {
2249 		bo_bucket->restored_offset = offset;
2250 	} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
2251 		bo_bucket->restored_offset = offset;
2252 		/* Update the VRAM usage count */
2253 		WRITE_ONCE(pdd->vram_usage, pdd->vram_usage + bo_bucket->size);
2254 	}
2255 	return 0;
2256 }
2257 
2258 static int criu_restore_bo(struct kfd_process *p,
2259 			   struct kfd_criu_bo_bucket *bo_bucket,
2260 			   struct kfd_criu_bo_priv_data *bo_priv)
2261 {
2262 	struct kfd_process_device *pdd;
2263 	struct kgd_mem *kgd_mem;
2264 	int ret;
2265 	int j;
2266 
2267 	pr_debug("Restoring BO size:0x%llx addr:0x%llx gpu_id:0x%x flags:0x%x idr_handle:0x%x\n",
2268 		 bo_bucket->size, bo_bucket->addr, bo_bucket->gpu_id, bo_bucket->alloc_flags,
2269 		 bo_priv->idr_handle);
2270 
2271 	pdd = kfd_process_device_data_by_id(p, bo_bucket->gpu_id);
2272 	if (!pdd) {
2273 		pr_err("Failed to get pdd\n");
2274 		return -ENODEV;
2275 	}
2276 
2277 	ret = criu_restore_memory_of_gpu(pdd, bo_bucket, bo_priv, &kgd_mem);
2278 	if (ret)
2279 		return ret;
2280 
2281 	/* now map these BOs to GPU/s */
2282 	for (j = 0; j < p->n_pdds; j++) {
2283 		struct kfd_dev *peer;
2284 		struct kfd_process_device *peer_pdd;
2285 
2286 		if (!bo_priv->mapped_gpuids[j])
2287 			break;
2288 
2289 		peer_pdd = kfd_process_device_data_by_id(p, bo_priv->mapped_gpuids[j]);
2290 		if (!peer_pdd)
2291 			return -EINVAL;
2292 
2293 		peer = peer_pdd->dev;
2294 
2295 		peer_pdd = kfd_bind_process_to_device(peer, p);
2296 		if (IS_ERR(peer_pdd))
2297 			return PTR_ERR(peer_pdd);
2298 
2299 		ret = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(peer->adev, kgd_mem,
2300 							    peer_pdd->drm_priv);
2301 		if (ret) {
2302 			pr_err("Failed to map to gpu %d/%d\n", j, p->n_pdds);
2303 			return ret;
2304 		}
2305 	}
2306 
2307 	pr_debug("map memory was successful for the BO\n");
2308 	/* create the dmabuf object and export the bo */
2309 	if (bo_bucket->alloc_flags
2310 	    & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) {
2311 		ret = criu_get_prime_handle(&kgd_mem->bo->tbo.base, DRM_RDWR,
2312 					    &bo_bucket->dmabuf_fd);
2313 		if (ret)
2314 			return ret;
2315 	} else {
2316 		bo_bucket->dmabuf_fd = KFD_INVALID_FD;
2317 	}
2318 
2319 	return 0;
2320 }
2321 
2322 static int criu_restore_bos(struct kfd_process *p,
2323 			    struct kfd_ioctl_criu_args *args,
2324 			    uint64_t *priv_offset,
2325 			    uint64_t max_priv_data_size)
2326 {
2327 	struct kfd_criu_bo_bucket *bo_buckets = NULL;
2328 	struct kfd_criu_bo_priv_data *bo_privs = NULL;
2329 	int ret = 0;
2330 	uint32_t i = 0;
2331 
2332 	if (*priv_offset + (args->num_bos * sizeof(*bo_privs)) > max_priv_data_size)
2333 		return -EINVAL;
2334 
2335 	/* Prevent MMU notifications until stage-4 IOCTL (CRIU_RESUME) is received */
2336 	amdgpu_amdkfd_block_mmu_notifications(p->kgd_process_info);
2337 
2338 	bo_buckets = kvmalloc_array(args->num_bos, sizeof(*bo_buckets), GFP_KERNEL);
2339 	if (!bo_buckets)
2340 		return -ENOMEM;
2341 
2342 	ret = copy_from_user(bo_buckets, (void __user *)args->bos,
2343 			     args->num_bos * sizeof(*bo_buckets));
2344 	if (ret) {
2345 		pr_err("Failed to copy BOs information from user\n");
2346 		ret = -EFAULT;
2347 		goto exit;
2348 	}
2349 
2350 	bo_privs = kvmalloc_array(args->num_bos, sizeof(*bo_privs), GFP_KERNEL);
2351 	if (!bo_privs) {
2352 		ret = -ENOMEM;
2353 		goto exit;
2354 	}
2355 
2356 	ret = copy_from_user(bo_privs, (void __user *)args->priv_data + *priv_offset,
2357 			     args->num_bos * sizeof(*bo_privs));
2358 	if (ret) {
2359 		pr_err("Failed to copy BOs information from user\n");
2360 		ret = -EFAULT;
2361 		goto exit;
2362 	}
2363 	*priv_offset += args->num_bos * sizeof(*bo_privs);
2364 
2365 	/* Create and map new BOs */
2366 	for (; i < args->num_bos; i++) {
2367 		ret = criu_restore_bo(p, &bo_buckets[i], &bo_privs[i]);
2368 		if (ret) {
2369 			pr_debug("Failed to restore BO[%d] ret%d\n", i, ret);
2370 			goto exit;
2371 		}
2372 	} /* done */
2373 
2374 	/* Copy only the buckets back so user can read bo_buckets[N].restored_offset */
2375 	ret = copy_to_user((void __user *)args->bos,
2376 				bo_buckets,
2377 				(args->num_bos * sizeof(*bo_buckets)));
2378 	if (ret)
2379 		ret = -EFAULT;
2380 
2381 exit:
2382 	while (ret && i--) {
2383 		if (bo_buckets[i].alloc_flags
2384 		   & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT))
2385 			close_fd(bo_buckets[i].dmabuf_fd);
2386 	}
2387 	kvfree(bo_buckets);
2388 	kvfree(bo_privs);
2389 	return ret;
2390 }
2391 
2392 static int criu_restore_objects(struct file *filep,
2393 				struct kfd_process *p,
2394 				struct kfd_ioctl_criu_args *args,
2395 				uint64_t *priv_offset,
2396 				uint64_t max_priv_data_size)
2397 {
2398 	int ret = 0;
2399 	uint32_t i;
2400 
2401 	BUILD_BUG_ON(offsetof(struct kfd_criu_queue_priv_data, object_type));
2402 	BUILD_BUG_ON(offsetof(struct kfd_criu_event_priv_data, object_type));
2403 	BUILD_BUG_ON(offsetof(struct kfd_criu_svm_range_priv_data, object_type));
2404 
2405 	for (i = 0; i < args->num_objects; i++) {
2406 		uint32_t object_type;
2407 
2408 		if (*priv_offset + sizeof(object_type) > max_priv_data_size) {
2409 			pr_err("Invalid private data size\n");
2410 			return -EINVAL;
2411 		}
2412 
2413 		ret = get_user(object_type, (uint32_t __user *)(args->priv_data + *priv_offset));
2414 		if (ret) {
2415 			pr_err("Failed to copy private information from user\n");
2416 			goto exit;
2417 		}
2418 
2419 		switch (object_type) {
2420 		case KFD_CRIU_OBJECT_TYPE_QUEUE:
2421 			ret = kfd_criu_restore_queue(p, (uint8_t __user *)args->priv_data,
2422 						     priv_offset, max_priv_data_size);
2423 			if (ret)
2424 				goto exit;
2425 			break;
2426 		case KFD_CRIU_OBJECT_TYPE_EVENT:
2427 			ret = kfd_criu_restore_event(filep, p, (uint8_t __user *)args->priv_data,
2428 						     priv_offset, max_priv_data_size);
2429 			if (ret)
2430 				goto exit;
2431 			break;
2432 		case KFD_CRIU_OBJECT_TYPE_SVM_RANGE:
2433 			ret = kfd_criu_restore_svm(p, (uint8_t __user *)args->priv_data,
2434 						     priv_offset, max_priv_data_size);
2435 			if (ret)
2436 				goto exit;
2437 			break;
2438 		default:
2439 			pr_err("Invalid object type:%u at index:%d\n", object_type, i);
2440 			ret = -EINVAL;
2441 			goto exit;
2442 		}
2443 	}
2444 exit:
2445 	return ret;
2446 }
2447 
2448 static int criu_restore(struct file *filep,
2449 			struct kfd_process *p,
2450 			struct kfd_ioctl_criu_args *args)
2451 {
2452 	uint64_t priv_offset = 0;
2453 	int ret = 0;
2454 
2455 	pr_debug("CRIU restore (num_devices:%u num_bos:%u num_objects:%u priv_data_size:%llu)\n",
2456 		 args->num_devices, args->num_bos, args->num_objects, args->priv_data_size);
2457 
2458 	if (!args->bos || !args->devices || !args->priv_data || !args->priv_data_size ||
2459 	    !args->num_devices || !args->num_bos)
2460 		return -EINVAL;
2461 
2462 	mutex_lock(&p->mutex);
2463 
2464 	/*
2465 	 * Set the process to evicted state to avoid running any new queues before all the memory
2466 	 * mappings are ready.
2467 	 */
2468 	ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_RESTORE);
2469 	if (ret)
2470 		goto exit_unlock;
2471 
2472 	/* Each function will adjust priv_offset based on how many bytes they consumed */
2473 	ret = criu_restore_process(p, args, &priv_offset, args->priv_data_size);
2474 	if (ret)
2475 		goto exit_unlock;
2476 
2477 	ret = criu_restore_devices(p, args, &priv_offset, args->priv_data_size);
2478 	if (ret)
2479 		goto exit_unlock;
2480 
2481 	ret = criu_restore_bos(p, args, &priv_offset, args->priv_data_size);
2482 	if (ret)
2483 		goto exit_unlock;
2484 
2485 	ret = criu_restore_objects(filep, p, args, &priv_offset, args->priv_data_size);
2486 	if (ret)
2487 		goto exit_unlock;
2488 
2489 	if (priv_offset != args->priv_data_size) {
2490 		pr_err("Invalid private data size\n");
2491 		ret = -EINVAL;
2492 	}
2493 
2494 exit_unlock:
2495 	mutex_unlock(&p->mutex);
2496 	if (ret)
2497 		pr_err("Failed to restore CRIU ret:%d\n", ret);
2498 	else
2499 		pr_debug("CRIU restore successful\n");
2500 
2501 	return ret;
2502 }
2503 
2504 static int criu_unpause(struct file *filep,
2505 			struct kfd_process *p,
2506 			struct kfd_ioctl_criu_args *args)
2507 {
2508 	int ret;
2509 
2510 	mutex_lock(&p->mutex);
2511 
2512 	if (!p->queues_paused) {
2513 		mutex_unlock(&p->mutex);
2514 		return -EINVAL;
2515 	}
2516 
2517 	ret = kfd_process_restore_queues(p);
2518 	if (ret)
2519 		pr_err("Failed to unpause queues ret:%d\n", ret);
2520 	else
2521 		p->queues_paused = false;
2522 
2523 	mutex_unlock(&p->mutex);
2524 
2525 	return ret;
2526 }
2527 
2528 static int criu_resume(struct file *filep,
2529 			struct kfd_process *p,
2530 			struct kfd_ioctl_criu_args *args)
2531 {
2532 	struct kfd_process *target = NULL;
2533 	struct pid *pid = NULL;
2534 	int ret = 0;
2535 
2536 	pr_debug("Inside %s, target pid for criu restore: %d\n", __func__,
2537 		 args->pid);
2538 
2539 	pid = find_get_pid(args->pid);
2540 	if (!pid) {
2541 		pr_err("Cannot find pid info for %i\n", args->pid);
2542 		return -ESRCH;
2543 	}
2544 
2545 	pr_debug("calling kfd_lookup_process_by_pid\n");
2546 	target = kfd_lookup_process_by_pid(pid);
2547 
2548 	put_pid(pid);
2549 
2550 	if (!target) {
2551 		pr_debug("Cannot find process info for %i\n", args->pid);
2552 		return -ESRCH;
2553 	}
2554 
2555 	mutex_lock(&target->mutex);
2556 	ret = kfd_criu_resume_svm(target);
2557 	if (ret) {
2558 		pr_err("kfd_criu_resume_svm failed for %i\n", args->pid);
2559 		goto exit;
2560 	}
2561 
2562 	ret =  amdgpu_amdkfd_criu_resume(target->kgd_process_info);
2563 	if (ret)
2564 		pr_err("amdgpu_amdkfd_criu_resume failed for %i\n", args->pid);
2565 
2566 exit:
2567 	mutex_unlock(&target->mutex);
2568 
2569 	kfd_unref_process(target);
2570 	return ret;
2571 }
2572 
2573 static int criu_process_info(struct file *filep,
2574 				struct kfd_process *p,
2575 				struct kfd_ioctl_criu_args *args)
2576 {
2577 	int ret = 0;
2578 
2579 	mutex_lock(&p->mutex);
2580 
2581 	if (!p->n_pdds) {
2582 		pr_err("No pdd for given process\n");
2583 		ret = -ENODEV;
2584 		goto err_unlock;
2585 	}
2586 
2587 	ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_CHECKPOINT);
2588 	if (ret)
2589 		goto err_unlock;
2590 
2591 	p->queues_paused = true;
2592 
2593 	args->pid = task_pid_nr_ns(p->lead_thread,
2594 					task_active_pid_ns(p->lead_thread));
2595 
2596 	ret = criu_get_process_object_info(p, &args->num_devices, &args->num_bos,
2597 					   &args->num_objects, &args->priv_data_size);
2598 	if (ret)
2599 		goto err_unlock;
2600 
2601 	dev_dbg(kfd_device, "Num of devices:%u bos:%u objects:%u priv_data_size:%lld\n",
2602 				args->num_devices, args->num_bos, args->num_objects,
2603 				args->priv_data_size);
2604 
2605 err_unlock:
2606 	if (ret) {
2607 		kfd_process_restore_queues(p);
2608 		p->queues_paused = false;
2609 	}
2610 	mutex_unlock(&p->mutex);
2611 	return ret;
2612 }
2613 
2614 static int kfd_ioctl_criu(struct file *filep, struct kfd_process *p, void *data)
2615 {
2616 	struct kfd_ioctl_criu_args *args = data;
2617 	int ret;
2618 
2619 	dev_dbg(kfd_device, "CRIU operation: %d\n", args->op);
2620 	switch (args->op) {
2621 	case KFD_CRIU_OP_PROCESS_INFO:
2622 		ret = criu_process_info(filep, p, args);
2623 		break;
2624 	case KFD_CRIU_OP_CHECKPOINT:
2625 		ret = criu_checkpoint(filep, p, args);
2626 		break;
2627 	case KFD_CRIU_OP_UNPAUSE:
2628 		ret = criu_unpause(filep, p, args);
2629 		break;
2630 	case KFD_CRIU_OP_RESTORE:
2631 		ret = criu_restore(filep, p, args);
2632 		break;
2633 	case KFD_CRIU_OP_RESUME:
2634 		ret = criu_resume(filep, p, args);
2635 		break;
2636 	default:
2637 		dev_dbg(kfd_device, "Unsupported CRIU operation:%d\n", args->op);
2638 		ret = -EINVAL;
2639 		break;
2640 	}
2641 
2642 	if (ret)
2643 		dev_dbg(kfd_device, "CRIU operation:%d err:%d\n", args->op, ret);
2644 
2645 	return ret;
2646 }
2647 
2648 #define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \
2649 	[_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, \
2650 			    .cmd_drv = 0, .name = #ioctl}
2651 
2652 /** Ioctl table */
2653 static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = {
2654 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_VERSION,
2655 			kfd_ioctl_get_version, 0),
2656 
2657 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_QUEUE,
2658 			kfd_ioctl_create_queue, 0),
2659 
2660 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_QUEUE,
2661 			kfd_ioctl_destroy_queue, 0),
2662 
2663 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_MEMORY_POLICY,
2664 			kfd_ioctl_set_memory_policy, 0),
2665 
2666 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_CLOCK_COUNTERS,
2667 			kfd_ioctl_get_clock_counters, 0),
2668 
2669 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES,
2670 			kfd_ioctl_get_process_apertures, 0),
2671 
2672 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_UPDATE_QUEUE,
2673 			kfd_ioctl_update_queue, 0),
2674 
2675 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_EVENT,
2676 			kfd_ioctl_create_event, 0),
2677 
2678 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_EVENT,
2679 			kfd_ioctl_destroy_event, 0),
2680 
2681 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_EVENT,
2682 			kfd_ioctl_set_event, 0),
2683 
2684 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_RESET_EVENT,
2685 			kfd_ioctl_reset_event, 0),
2686 
2687 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_WAIT_EVENTS,
2688 			kfd_ioctl_wait_events, 0),
2689 
2690 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_REGISTER_DEPRECATED,
2691 			kfd_ioctl_dbg_register, 0),
2692 
2693 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_UNREGISTER_DEPRECATED,
2694 			kfd_ioctl_dbg_unregister, 0),
2695 
2696 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_ADDRESS_WATCH_DEPRECATED,
2697 			kfd_ioctl_dbg_address_watch, 0),
2698 
2699 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_WAVE_CONTROL_DEPRECATED,
2700 			kfd_ioctl_dbg_wave_control, 0),
2701 
2702 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_SCRATCH_BACKING_VA,
2703 			kfd_ioctl_set_scratch_backing_va, 0),
2704 
2705 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG,
2706 			kfd_ioctl_get_tile_config, 0),
2707 
2708 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_TRAP_HANDLER,
2709 			kfd_ioctl_set_trap_handler, 0),
2710 
2711 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES_NEW,
2712 			kfd_ioctl_get_process_apertures_new, 0),
2713 
2714 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ACQUIRE_VM,
2715 			kfd_ioctl_acquire_vm, 0),
2716 
2717 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_MEMORY_OF_GPU,
2718 			kfd_ioctl_alloc_memory_of_gpu, 0),
2719 
2720 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_FREE_MEMORY_OF_GPU,
2721 			kfd_ioctl_free_memory_of_gpu, 0),
2722 
2723 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_MAP_MEMORY_TO_GPU,
2724 			kfd_ioctl_map_memory_to_gpu, 0),
2725 
2726 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU,
2727 			kfd_ioctl_unmap_memory_from_gpu, 0),
2728 
2729 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_CU_MASK,
2730 			kfd_ioctl_set_cu_mask, 0),
2731 
2732 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_QUEUE_WAVE_STATE,
2733 			kfd_ioctl_get_queue_wave_state, 0),
2734 
2735 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_DMABUF_INFO,
2736 				kfd_ioctl_get_dmabuf_info, 0),
2737 
2738 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_IMPORT_DMABUF,
2739 				kfd_ioctl_import_dmabuf, 0),
2740 
2741 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_QUEUE_GWS,
2742 			kfd_ioctl_alloc_queue_gws, 0),
2743 
2744 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SMI_EVENTS,
2745 			kfd_ioctl_smi_events, 0),
2746 
2747 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SVM, kfd_ioctl_svm, 0),
2748 
2749 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_XNACK_MODE,
2750 			kfd_ioctl_set_xnack_mode, 0),
2751 
2752 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CRIU_OP,
2753 			kfd_ioctl_criu, KFD_IOC_FLAG_CHECKPOINT_RESTORE),
2754 
2755 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_AVAILABLE_MEMORY,
2756 			kfd_ioctl_get_available_memory, 0),
2757 };
2758 
2759 #define AMDKFD_CORE_IOCTL_COUNT	ARRAY_SIZE(amdkfd_ioctls)
2760 
2761 static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
2762 {
2763 	struct kfd_process *process;
2764 	amdkfd_ioctl_t *func;
2765 	const struct amdkfd_ioctl_desc *ioctl = NULL;
2766 	unsigned int nr = _IOC_NR(cmd);
2767 	char stack_kdata[128];
2768 	char *kdata = NULL;
2769 	unsigned int usize, asize;
2770 	int retcode = -EINVAL;
2771 	bool ptrace_attached = false;
2772 
2773 	if (nr >= AMDKFD_CORE_IOCTL_COUNT)
2774 		goto err_i1;
2775 
2776 	if ((nr >= AMDKFD_COMMAND_START) && (nr < AMDKFD_COMMAND_END)) {
2777 		u32 amdkfd_size;
2778 
2779 		ioctl = &amdkfd_ioctls[nr];
2780 
2781 		amdkfd_size = _IOC_SIZE(ioctl->cmd);
2782 		usize = asize = _IOC_SIZE(cmd);
2783 		if (amdkfd_size > asize)
2784 			asize = amdkfd_size;
2785 
2786 		cmd = ioctl->cmd;
2787 	} else
2788 		goto err_i1;
2789 
2790 	dev_dbg(kfd_device, "ioctl cmd 0x%x (#0x%x), arg 0x%lx\n", cmd, nr, arg);
2791 
2792 	/* Get the process struct from the filep. Only the process
2793 	 * that opened /dev/kfd can use the file descriptor. Child
2794 	 * processes need to create their own KFD device context.
2795 	 */
2796 	process = filep->private_data;
2797 
2798 	rcu_read_lock();
2799 	if ((ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE) &&
2800 	    ptrace_parent(process->lead_thread) == current)
2801 		ptrace_attached = true;
2802 	rcu_read_unlock();
2803 
2804 	if (process->lead_thread != current->group_leader
2805 	    && !ptrace_attached) {
2806 		dev_dbg(kfd_device, "Using KFD FD in wrong process\n");
2807 		retcode = -EBADF;
2808 		goto err_i1;
2809 	}
2810 
2811 	/* Do not trust userspace, use our own definition */
2812 	func = ioctl->func;
2813 
2814 	if (unlikely(!func)) {
2815 		dev_dbg(kfd_device, "no function\n");
2816 		retcode = -EINVAL;
2817 		goto err_i1;
2818 	}
2819 
2820 	/*
2821 	 * Versions of docker shipped in Ubuntu 18.xx and 20.xx do not support
2822 	 * CAP_CHECKPOINT_RESTORE, so we also allow access if CAP_SYS_ADMIN as CAP_SYS_ADMIN is a
2823 	 * more priviledged access.
2824 	 */
2825 	if (unlikely(ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE)) {
2826 		if (!capable(CAP_CHECKPOINT_RESTORE) &&
2827 						!capable(CAP_SYS_ADMIN)) {
2828 			retcode = -EACCES;
2829 			goto err_i1;
2830 		}
2831 	}
2832 
2833 	if (cmd & (IOC_IN | IOC_OUT)) {
2834 		if (asize <= sizeof(stack_kdata)) {
2835 			kdata = stack_kdata;
2836 		} else {
2837 			kdata = kmalloc(asize, GFP_KERNEL);
2838 			if (!kdata) {
2839 				retcode = -ENOMEM;
2840 				goto err_i1;
2841 			}
2842 		}
2843 		if (asize > usize)
2844 			memset(kdata + usize, 0, asize - usize);
2845 	}
2846 
2847 	if (cmd & IOC_IN) {
2848 		if (copy_from_user(kdata, (void __user *)arg, usize) != 0) {
2849 			retcode = -EFAULT;
2850 			goto err_i1;
2851 		}
2852 	} else if (cmd & IOC_OUT) {
2853 		memset(kdata, 0, usize);
2854 	}
2855 
2856 	retcode = func(filep, process, kdata);
2857 
2858 	if (cmd & IOC_OUT)
2859 		if (copy_to_user((void __user *)arg, kdata, usize) != 0)
2860 			retcode = -EFAULT;
2861 
2862 err_i1:
2863 	if (!ioctl)
2864 		dev_dbg(kfd_device, "invalid ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n",
2865 			  task_pid_nr(current), cmd, nr);
2866 
2867 	if (kdata != stack_kdata)
2868 		kfree(kdata);
2869 
2870 	if (retcode)
2871 		dev_dbg(kfd_device, "ioctl cmd (#0x%x), arg 0x%lx, ret = %d\n",
2872 				nr, arg, retcode);
2873 
2874 	return retcode;
2875 }
2876 
2877 static int kfd_mmio_mmap(struct kfd_dev *dev, struct kfd_process *process,
2878 		      struct vm_area_struct *vma)
2879 {
2880 	phys_addr_t address;
2881 
2882 	if (vma->vm_end - vma->vm_start != PAGE_SIZE)
2883 		return -EINVAL;
2884 
2885 	address = dev->adev->rmmio_remap.bus_addr;
2886 
2887 	vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE |
2888 				VM_DONTDUMP | VM_PFNMAP;
2889 
2890 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
2891 
2892 	pr_debug("pasid 0x%x mapping mmio page\n"
2893 		 "     target user address == 0x%08llX\n"
2894 		 "     physical address    == 0x%08llX\n"
2895 		 "     vm_flags            == 0x%04lX\n"
2896 		 "     size                == 0x%04lX\n",
2897 		 process->pasid, (unsigned long long) vma->vm_start,
2898 		 address, vma->vm_flags, PAGE_SIZE);
2899 
2900 	return io_remap_pfn_range(vma,
2901 				vma->vm_start,
2902 				address >> PAGE_SHIFT,
2903 				PAGE_SIZE,
2904 				vma->vm_page_prot);
2905 }
2906 
2907 
2908 static int kfd_mmap(struct file *filp, struct vm_area_struct *vma)
2909 {
2910 	struct kfd_process *process;
2911 	struct kfd_dev *dev = NULL;
2912 	unsigned long mmap_offset;
2913 	unsigned int gpu_id;
2914 
2915 	process = kfd_get_process(current);
2916 	if (IS_ERR(process))
2917 		return PTR_ERR(process);
2918 
2919 	mmap_offset = vma->vm_pgoff << PAGE_SHIFT;
2920 	gpu_id = KFD_MMAP_GET_GPU_ID(mmap_offset);
2921 	if (gpu_id)
2922 		dev = kfd_device_by_id(gpu_id);
2923 
2924 	switch (mmap_offset & KFD_MMAP_TYPE_MASK) {
2925 	case KFD_MMAP_TYPE_DOORBELL:
2926 		if (!dev)
2927 			return -ENODEV;
2928 		return kfd_doorbell_mmap(dev, process, vma);
2929 
2930 	case KFD_MMAP_TYPE_EVENTS:
2931 		return kfd_event_mmap(process, vma);
2932 
2933 	case KFD_MMAP_TYPE_RESERVED_MEM:
2934 		if (!dev)
2935 			return -ENODEV;
2936 		return kfd_reserved_mem_mmap(dev, process, vma);
2937 	case KFD_MMAP_TYPE_MMIO:
2938 		if (!dev)
2939 			return -ENODEV;
2940 		return kfd_mmio_mmap(dev, process, vma);
2941 	}
2942 
2943 	return -EFAULT;
2944 }
2945