1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2014-2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include <linux/device.h> 25 #include <linux/export.h> 26 #include <linux/err.h> 27 #include <linux/fs.h> 28 #include <linux/file.h> 29 #include <linux/sched.h> 30 #include <linux/slab.h> 31 #include <linux/uaccess.h> 32 #include <linux/compat.h> 33 #include <uapi/linux/kfd_ioctl.h> 34 #include <linux/time.h> 35 #include <linux/mm.h> 36 #include <linux/mman.h> 37 #include <linux/ptrace.h> 38 #include <linux/dma-buf.h> 39 #include <linux/fdtable.h> 40 #include <linux/processor.h> 41 #include "kfd_priv.h" 42 #include "kfd_device_queue_manager.h" 43 #include "kfd_svm.h" 44 #include "amdgpu_amdkfd.h" 45 #include "kfd_smi_events.h" 46 #include "amdgpu_dma_buf.h" 47 #include "kfd_debug.h" 48 49 static long kfd_ioctl(struct file *, unsigned int, unsigned long); 50 static int kfd_open(struct inode *, struct file *); 51 static int kfd_release(struct inode *, struct file *); 52 static int kfd_mmap(struct file *, struct vm_area_struct *); 53 54 static const char kfd_dev_name[] = "kfd"; 55 56 static const struct file_operations kfd_fops = { 57 .owner = THIS_MODULE, 58 .unlocked_ioctl = kfd_ioctl, 59 .compat_ioctl = compat_ptr_ioctl, 60 .open = kfd_open, 61 .release = kfd_release, 62 .mmap = kfd_mmap, 63 }; 64 65 static int kfd_char_dev_major = -1; 66 static struct class *kfd_class; 67 struct device *kfd_device; 68 69 static inline struct kfd_process_device *kfd_lock_pdd_by_id(struct kfd_process *p, __u32 gpu_id) 70 { 71 struct kfd_process_device *pdd; 72 73 mutex_lock(&p->mutex); 74 pdd = kfd_process_device_data_by_id(p, gpu_id); 75 76 if (pdd) 77 return pdd; 78 79 mutex_unlock(&p->mutex); 80 return NULL; 81 } 82 83 static inline void kfd_unlock_pdd(struct kfd_process_device *pdd) 84 { 85 mutex_unlock(&pdd->process->mutex); 86 } 87 88 int kfd_chardev_init(void) 89 { 90 int err = 0; 91 92 kfd_char_dev_major = register_chrdev(0, kfd_dev_name, &kfd_fops); 93 err = kfd_char_dev_major; 94 if (err < 0) 95 goto err_register_chrdev; 96 97 kfd_class = class_create(kfd_dev_name); 98 err = PTR_ERR(kfd_class); 99 if (IS_ERR(kfd_class)) 100 goto err_class_create; 101 102 kfd_device = device_create(kfd_class, NULL, 103 MKDEV(kfd_char_dev_major, 0), 104 NULL, kfd_dev_name); 105 err = PTR_ERR(kfd_device); 106 if (IS_ERR(kfd_device)) 107 goto err_device_create; 108 109 return 0; 110 111 err_device_create: 112 class_destroy(kfd_class); 113 err_class_create: 114 unregister_chrdev(kfd_char_dev_major, kfd_dev_name); 115 err_register_chrdev: 116 return err; 117 } 118 119 void kfd_chardev_exit(void) 120 { 121 device_destroy(kfd_class, MKDEV(kfd_char_dev_major, 0)); 122 class_destroy(kfd_class); 123 unregister_chrdev(kfd_char_dev_major, kfd_dev_name); 124 kfd_device = NULL; 125 } 126 127 128 static int kfd_open(struct inode *inode, struct file *filep) 129 { 130 struct kfd_process *process; 131 bool is_32bit_user_mode; 132 133 if (iminor(inode) != 0) 134 return -ENODEV; 135 136 is_32bit_user_mode = in_compat_syscall(); 137 138 if (is_32bit_user_mode) { 139 dev_warn(kfd_device, 140 "Process %d (32-bit) failed to open /dev/kfd\n" 141 "32-bit processes are not supported by amdkfd\n", 142 current->pid); 143 return -EPERM; 144 } 145 146 process = kfd_create_process(current); 147 if (IS_ERR(process)) 148 return PTR_ERR(process); 149 150 if (kfd_process_init_cwsr_apu(process, filep)) { 151 kfd_unref_process(process); 152 return -EFAULT; 153 } 154 155 /* filep now owns the reference returned by kfd_create_process */ 156 filep->private_data = process; 157 158 dev_dbg(kfd_device, "process %d opened, compat mode (32 bit) - %d\n", 159 process->pasid, process->is_32bit_user_mode); 160 161 return 0; 162 } 163 164 static int kfd_release(struct inode *inode, struct file *filep) 165 { 166 struct kfd_process *process = filep->private_data; 167 168 if (process) 169 kfd_unref_process(process); 170 171 return 0; 172 } 173 174 static int kfd_ioctl_get_version(struct file *filep, struct kfd_process *p, 175 void *data) 176 { 177 struct kfd_ioctl_get_version_args *args = data; 178 179 args->major_version = KFD_IOCTL_MAJOR_VERSION; 180 args->minor_version = KFD_IOCTL_MINOR_VERSION; 181 182 return 0; 183 } 184 185 static int set_queue_properties_from_user(struct queue_properties *q_properties, 186 struct kfd_ioctl_create_queue_args *args) 187 { 188 /* 189 * Repurpose queue percentage to accommodate new features: 190 * bit 0-7: queue percentage 191 * bit 8-15: pm4_target_xcc 192 */ 193 if ((args->queue_percentage & 0xFF) > KFD_MAX_QUEUE_PERCENTAGE) { 194 pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n"); 195 return -EINVAL; 196 } 197 198 if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) { 199 pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n"); 200 return -EINVAL; 201 } 202 203 if ((args->ring_base_address) && 204 (!access_ok((const void __user *) args->ring_base_address, 205 sizeof(uint64_t)))) { 206 pr_err("Can't access ring base address\n"); 207 return -EFAULT; 208 } 209 210 if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) { 211 pr_err("Ring size must be a power of 2 or 0\n"); 212 return -EINVAL; 213 } 214 215 if (!access_ok((const void __user *) args->read_pointer_address, 216 sizeof(uint32_t))) { 217 pr_err("Can't access read pointer\n"); 218 return -EFAULT; 219 } 220 221 if (!access_ok((const void __user *) args->write_pointer_address, 222 sizeof(uint32_t))) { 223 pr_err("Can't access write pointer\n"); 224 return -EFAULT; 225 } 226 227 if (args->eop_buffer_address && 228 !access_ok((const void __user *) args->eop_buffer_address, 229 sizeof(uint32_t))) { 230 pr_debug("Can't access eop buffer"); 231 return -EFAULT; 232 } 233 234 if (args->ctx_save_restore_address && 235 !access_ok((const void __user *) args->ctx_save_restore_address, 236 sizeof(uint32_t))) { 237 pr_debug("Can't access ctx save restore buffer"); 238 return -EFAULT; 239 } 240 241 q_properties->is_interop = false; 242 q_properties->is_gws = false; 243 q_properties->queue_percent = args->queue_percentage & 0xFF; 244 /* bit 8-15 are repurposed to be PM4 target XCC */ 245 q_properties->pm4_target_xcc = (args->queue_percentage >> 8) & 0xFF; 246 q_properties->priority = args->queue_priority; 247 q_properties->queue_address = args->ring_base_address; 248 q_properties->queue_size = args->ring_size; 249 q_properties->read_ptr = (uint32_t *) args->read_pointer_address; 250 q_properties->write_ptr = (uint32_t *) args->write_pointer_address; 251 q_properties->eop_ring_buffer_address = args->eop_buffer_address; 252 q_properties->eop_ring_buffer_size = args->eop_buffer_size; 253 q_properties->ctx_save_restore_area_address = 254 args->ctx_save_restore_address; 255 q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size; 256 q_properties->ctl_stack_size = args->ctl_stack_size; 257 if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE || 258 args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL) 259 q_properties->type = KFD_QUEUE_TYPE_COMPUTE; 260 else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA) 261 q_properties->type = KFD_QUEUE_TYPE_SDMA; 262 else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_XGMI) 263 q_properties->type = KFD_QUEUE_TYPE_SDMA_XGMI; 264 else 265 return -ENOTSUPP; 266 267 if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL) 268 q_properties->format = KFD_QUEUE_FORMAT_AQL; 269 else 270 q_properties->format = KFD_QUEUE_FORMAT_PM4; 271 272 pr_debug("Queue Percentage: %d, %d\n", 273 q_properties->queue_percent, args->queue_percentage); 274 275 pr_debug("Queue Priority: %d, %d\n", 276 q_properties->priority, args->queue_priority); 277 278 pr_debug("Queue Address: 0x%llX, 0x%llX\n", 279 q_properties->queue_address, args->ring_base_address); 280 281 pr_debug("Queue Size: 0x%llX, %u\n", 282 q_properties->queue_size, args->ring_size); 283 284 pr_debug("Queue r/w Pointers: %px, %px\n", 285 q_properties->read_ptr, 286 q_properties->write_ptr); 287 288 pr_debug("Queue Format: %d\n", q_properties->format); 289 290 pr_debug("Queue EOP: 0x%llX\n", q_properties->eop_ring_buffer_address); 291 292 pr_debug("Queue CTX save area: 0x%llX\n", 293 q_properties->ctx_save_restore_area_address); 294 295 return 0; 296 } 297 298 static int kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p, 299 void *data) 300 { 301 struct kfd_ioctl_create_queue_args *args = data; 302 struct kfd_node *dev; 303 int err = 0; 304 unsigned int queue_id; 305 struct kfd_process_device *pdd; 306 struct queue_properties q_properties; 307 uint32_t doorbell_offset_in_process = 0; 308 struct amdgpu_bo *wptr_bo = NULL; 309 310 memset(&q_properties, 0, sizeof(struct queue_properties)); 311 312 pr_debug("Creating queue ioctl\n"); 313 314 err = set_queue_properties_from_user(&q_properties, args); 315 if (err) 316 return err; 317 318 pr_debug("Looking for gpu id 0x%x\n", args->gpu_id); 319 320 mutex_lock(&p->mutex); 321 322 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 323 if (!pdd) { 324 pr_debug("Could not find gpu id 0x%x\n", args->gpu_id); 325 err = -EINVAL; 326 goto err_pdd; 327 } 328 dev = pdd->dev; 329 330 pdd = kfd_bind_process_to_device(dev, p); 331 if (IS_ERR(pdd)) { 332 err = -ESRCH; 333 goto err_bind_process; 334 } 335 336 if (!pdd->qpd.proc_doorbells) { 337 err = kfd_alloc_process_doorbells(dev->kfd, pdd); 338 if (err) { 339 pr_debug("failed to allocate process doorbells\n"); 340 goto err_bind_process; 341 } 342 } 343 344 /* Starting with GFX11, wptr BOs must be mapped to GART for MES to determine work 345 * on unmapped queues for usermode queue oversubscription (no aggregated doorbell) 346 */ 347 if (dev->kfd->shared_resources.enable_mes && 348 ((dev->adev->mes.sched_version & AMDGPU_MES_API_VERSION_MASK) 349 >> AMDGPU_MES_API_VERSION_SHIFT) >= 2) { 350 struct amdgpu_bo_va_mapping *wptr_mapping; 351 struct amdgpu_vm *wptr_vm; 352 353 wptr_vm = drm_priv_to_vm(pdd->drm_priv); 354 err = amdgpu_bo_reserve(wptr_vm->root.bo, false); 355 if (err) 356 goto err_wptr_map_gart; 357 358 wptr_mapping = amdgpu_vm_bo_lookup_mapping( 359 wptr_vm, args->write_pointer_address >> PAGE_SHIFT); 360 amdgpu_bo_unreserve(wptr_vm->root.bo); 361 if (!wptr_mapping) { 362 pr_err("Failed to lookup wptr bo\n"); 363 err = -EINVAL; 364 goto err_wptr_map_gart; 365 } 366 367 wptr_bo = wptr_mapping->bo_va->base.bo; 368 if (wptr_bo->tbo.base.size > PAGE_SIZE) { 369 pr_err("Requested GART mapping for wptr bo larger than one page\n"); 370 err = -EINVAL; 371 goto err_wptr_map_gart; 372 } 373 374 err = amdgpu_amdkfd_map_gtt_bo_to_gart(dev->adev, wptr_bo); 375 if (err) { 376 pr_err("Failed to map wptr bo to GART\n"); 377 goto err_wptr_map_gart; 378 } 379 } 380 381 pr_debug("Creating queue for PASID 0x%x on gpu 0x%x\n", 382 p->pasid, 383 dev->id); 384 385 err = pqm_create_queue(&p->pqm, dev, filep, &q_properties, &queue_id, wptr_bo, 386 NULL, NULL, NULL, &doorbell_offset_in_process); 387 if (err != 0) 388 goto err_create_queue; 389 390 args->queue_id = queue_id; 391 392 393 /* Return gpu_id as doorbell offset for mmap usage */ 394 args->doorbell_offset = KFD_MMAP_TYPE_DOORBELL; 395 args->doorbell_offset |= KFD_MMAP_GPU_ID(args->gpu_id); 396 if (KFD_IS_SOC15(dev)) 397 /* On SOC15 ASICs, include the doorbell offset within the 398 * process doorbell frame, which is 2 pages. 399 */ 400 args->doorbell_offset |= doorbell_offset_in_process; 401 402 mutex_unlock(&p->mutex); 403 404 pr_debug("Queue id %d was created successfully\n", args->queue_id); 405 406 pr_debug("Ring buffer address == 0x%016llX\n", 407 args->ring_base_address); 408 409 pr_debug("Read ptr address == 0x%016llX\n", 410 args->read_pointer_address); 411 412 pr_debug("Write ptr address == 0x%016llX\n", 413 args->write_pointer_address); 414 415 kfd_dbg_ev_raise(KFD_EC_MASK(EC_QUEUE_NEW), p, dev, queue_id, false, NULL, 0); 416 return 0; 417 418 err_create_queue: 419 if (wptr_bo) 420 amdgpu_amdkfd_free_gtt_mem(dev->adev, wptr_bo); 421 err_wptr_map_gart: 422 err_bind_process: 423 err_pdd: 424 mutex_unlock(&p->mutex); 425 return err; 426 } 427 428 static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p, 429 void *data) 430 { 431 int retval; 432 struct kfd_ioctl_destroy_queue_args *args = data; 433 434 pr_debug("Destroying queue id %d for pasid 0x%x\n", 435 args->queue_id, 436 p->pasid); 437 438 mutex_lock(&p->mutex); 439 440 retval = pqm_destroy_queue(&p->pqm, args->queue_id); 441 442 mutex_unlock(&p->mutex); 443 return retval; 444 } 445 446 static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p, 447 void *data) 448 { 449 int retval; 450 struct kfd_ioctl_update_queue_args *args = data; 451 struct queue_properties properties; 452 453 /* 454 * Repurpose queue percentage to accommodate new features: 455 * bit 0-7: queue percentage 456 * bit 8-15: pm4_target_xcc 457 */ 458 if ((args->queue_percentage & 0xFF) > KFD_MAX_QUEUE_PERCENTAGE) { 459 pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n"); 460 return -EINVAL; 461 } 462 463 if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) { 464 pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n"); 465 return -EINVAL; 466 } 467 468 if ((args->ring_base_address) && 469 (!access_ok((const void __user *) args->ring_base_address, 470 sizeof(uint64_t)))) { 471 pr_err("Can't access ring base address\n"); 472 return -EFAULT; 473 } 474 475 if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) { 476 pr_err("Ring size must be a power of 2 or 0\n"); 477 return -EINVAL; 478 } 479 480 properties.queue_address = args->ring_base_address; 481 properties.queue_size = args->ring_size; 482 properties.queue_percent = args->queue_percentage & 0xFF; 483 /* bit 8-15 are repurposed to be PM4 target XCC */ 484 properties.pm4_target_xcc = (args->queue_percentage >> 8) & 0xFF; 485 properties.priority = args->queue_priority; 486 487 pr_debug("Updating queue id %d for pasid 0x%x\n", 488 args->queue_id, p->pasid); 489 490 mutex_lock(&p->mutex); 491 492 retval = pqm_update_queue_properties(&p->pqm, args->queue_id, &properties); 493 494 mutex_unlock(&p->mutex); 495 496 return retval; 497 } 498 499 static int kfd_ioctl_set_cu_mask(struct file *filp, struct kfd_process *p, 500 void *data) 501 { 502 int retval; 503 const int max_num_cus = 1024; 504 struct kfd_ioctl_set_cu_mask_args *args = data; 505 struct mqd_update_info minfo = {0}; 506 uint32_t __user *cu_mask_ptr = (uint32_t __user *)args->cu_mask_ptr; 507 size_t cu_mask_size = sizeof(uint32_t) * (args->num_cu_mask / 32); 508 509 if ((args->num_cu_mask % 32) != 0) { 510 pr_debug("num_cu_mask 0x%x must be a multiple of 32", 511 args->num_cu_mask); 512 return -EINVAL; 513 } 514 515 minfo.cu_mask.count = args->num_cu_mask; 516 if (minfo.cu_mask.count == 0) { 517 pr_debug("CU mask cannot be 0"); 518 return -EINVAL; 519 } 520 521 /* To prevent an unreasonably large CU mask size, set an arbitrary 522 * limit of max_num_cus bits. We can then just drop any CU mask bits 523 * past max_num_cus bits and just use the first max_num_cus bits. 524 */ 525 if (minfo.cu_mask.count > max_num_cus) { 526 pr_debug("CU mask cannot be greater than 1024 bits"); 527 minfo.cu_mask.count = max_num_cus; 528 cu_mask_size = sizeof(uint32_t) * (max_num_cus/32); 529 } 530 531 minfo.cu_mask.ptr = kzalloc(cu_mask_size, GFP_KERNEL); 532 if (!minfo.cu_mask.ptr) 533 return -ENOMEM; 534 535 retval = copy_from_user(minfo.cu_mask.ptr, cu_mask_ptr, cu_mask_size); 536 if (retval) { 537 pr_debug("Could not copy CU mask from userspace"); 538 retval = -EFAULT; 539 goto out; 540 } 541 542 mutex_lock(&p->mutex); 543 544 retval = pqm_update_mqd(&p->pqm, args->queue_id, &minfo); 545 546 mutex_unlock(&p->mutex); 547 548 out: 549 kfree(minfo.cu_mask.ptr); 550 return retval; 551 } 552 553 static int kfd_ioctl_get_queue_wave_state(struct file *filep, 554 struct kfd_process *p, void *data) 555 { 556 struct kfd_ioctl_get_queue_wave_state_args *args = data; 557 int r; 558 559 mutex_lock(&p->mutex); 560 561 r = pqm_get_wave_state(&p->pqm, args->queue_id, 562 (void __user *)args->ctl_stack_address, 563 &args->ctl_stack_used_size, 564 &args->save_area_used_size); 565 566 mutex_unlock(&p->mutex); 567 568 return r; 569 } 570 571 static int kfd_ioctl_set_memory_policy(struct file *filep, 572 struct kfd_process *p, void *data) 573 { 574 struct kfd_ioctl_set_memory_policy_args *args = data; 575 int err = 0; 576 struct kfd_process_device *pdd; 577 enum cache_policy default_policy, alternate_policy; 578 579 if (args->default_policy != KFD_IOC_CACHE_POLICY_COHERENT 580 && args->default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) { 581 return -EINVAL; 582 } 583 584 if (args->alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT 585 && args->alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) { 586 return -EINVAL; 587 } 588 589 mutex_lock(&p->mutex); 590 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 591 if (!pdd) { 592 pr_debug("Could not find gpu id 0x%x\n", args->gpu_id); 593 err = -EINVAL; 594 goto err_pdd; 595 } 596 597 pdd = kfd_bind_process_to_device(pdd->dev, p); 598 if (IS_ERR(pdd)) { 599 err = -ESRCH; 600 goto out; 601 } 602 603 default_policy = (args->default_policy == KFD_IOC_CACHE_POLICY_COHERENT) 604 ? cache_policy_coherent : cache_policy_noncoherent; 605 606 alternate_policy = 607 (args->alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT) 608 ? cache_policy_coherent : cache_policy_noncoherent; 609 610 if (!pdd->dev->dqm->ops.set_cache_memory_policy(pdd->dev->dqm, 611 &pdd->qpd, 612 default_policy, 613 alternate_policy, 614 (void __user *)args->alternate_aperture_base, 615 args->alternate_aperture_size)) 616 err = -EINVAL; 617 618 out: 619 err_pdd: 620 mutex_unlock(&p->mutex); 621 622 return err; 623 } 624 625 static int kfd_ioctl_set_trap_handler(struct file *filep, 626 struct kfd_process *p, void *data) 627 { 628 struct kfd_ioctl_set_trap_handler_args *args = data; 629 int err = 0; 630 struct kfd_process_device *pdd; 631 632 mutex_lock(&p->mutex); 633 634 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 635 if (!pdd) { 636 err = -EINVAL; 637 goto err_pdd; 638 } 639 640 pdd = kfd_bind_process_to_device(pdd->dev, p); 641 if (IS_ERR(pdd)) { 642 err = -ESRCH; 643 goto out; 644 } 645 646 kfd_process_set_trap_handler(&pdd->qpd, args->tba_addr, args->tma_addr); 647 648 out: 649 err_pdd: 650 mutex_unlock(&p->mutex); 651 652 return err; 653 } 654 655 static int kfd_ioctl_dbg_register(struct file *filep, 656 struct kfd_process *p, void *data) 657 { 658 return -EPERM; 659 } 660 661 static int kfd_ioctl_dbg_unregister(struct file *filep, 662 struct kfd_process *p, void *data) 663 { 664 return -EPERM; 665 } 666 667 static int kfd_ioctl_dbg_address_watch(struct file *filep, 668 struct kfd_process *p, void *data) 669 { 670 return -EPERM; 671 } 672 673 /* Parse and generate fixed size data structure for wave control */ 674 static int kfd_ioctl_dbg_wave_control(struct file *filep, 675 struct kfd_process *p, void *data) 676 { 677 return -EPERM; 678 } 679 680 static int kfd_ioctl_get_clock_counters(struct file *filep, 681 struct kfd_process *p, void *data) 682 { 683 struct kfd_ioctl_get_clock_counters_args *args = data; 684 struct kfd_process_device *pdd; 685 686 mutex_lock(&p->mutex); 687 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 688 mutex_unlock(&p->mutex); 689 if (pdd) 690 /* Reading GPU clock counter from KGD */ 691 args->gpu_clock_counter = amdgpu_amdkfd_get_gpu_clock_counter(pdd->dev->adev); 692 else 693 /* Node without GPU resource */ 694 args->gpu_clock_counter = 0; 695 696 /* No access to rdtsc. Using raw monotonic time */ 697 args->cpu_clock_counter = ktime_get_raw_ns(); 698 args->system_clock_counter = ktime_get_boottime_ns(); 699 700 /* Since the counter is in nano-seconds we use 1GHz frequency */ 701 args->system_clock_freq = 1000000000; 702 703 return 0; 704 } 705 706 707 static int kfd_ioctl_get_process_apertures(struct file *filp, 708 struct kfd_process *p, void *data) 709 { 710 struct kfd_ioctl_get_process_apertures_args *args = data; 711 struct kfd_process_device_apertures *pAperture; 712 int i; 713 714 dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid); 715 716 args->num_of_nodes = 0; 717 718 mutex_lock(&p->mutex); 719 /* Run over all pdd of the process */ 720 for (i = 0; i < p->n_pdds; i++) { 721 struct kfd_process_device *pdd = p->pdds[i]; 722 723 pAperture = 724 &args->process_apertures[args->num_of_nodes]; 725 pAperture->gpu_id = pdd->dev->id; 726 pAperture->lds_base = pdd->lds_base; 727 pAperture->lds_limit = pdd->lds_limit; 728 pAperture->gpuvm_base = pdd->gpuvm_base; 729 pAperture->gpuvm_limit = pdd->gpuvm_limit; 730 pAperture->scratch_base = pdd->scratch_base; 731 pAperture->scratch_limit = pdd->scratch_limit; 732 733 dev_dbg(kfd_device, 734 "node id %u\n", args->num_of_nodes); 735 dev_dbg(kfd_device, 736 "gpu id %u\n", pdd->dev->id); 737 dev_dbg(kfd_device, 738 "lds_base %llX\n", pdd->lds_base); 739 dev_dbg(kfd_device, 740 "lds_limit %llX\n", pdd->lds_limit); 741 dev_dbg(kfd_device, 742 "gpuvm_base %llX\n", pdd->gpuvm_base); 743 dev_dbg(kfd_device, 744 "gpuvm_limit %llX\n", pdd->gpuvm_limit); 745 dev_dbg(kfd_device, 746 "scratch_base %llX\n", pdd->scratch_base); 747 dev_dbg(kfd_device, 748 "scratch_limit %llX\n", pdd->scratch_limit); 749 750 if (++args->num_of_nodes >= NUM_OF_SUPPORTED_GPUS) 751 break; 752 } 753 mutex_unlock(&p->mutex); 754 755 return 0; 756 } 757 758 static int kfd_ioctl_get_process_apertures_new(struct file *filp, 759 struct kfd_process *p, void *data) 760 { 761 struct kfd_ioctl_get_process_apertures_new_args *args = data; 762 struct kfd_process_device_apertures *pa; 763 int ret; 764 int i; 765 766 dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid); 767 768 if (args->num_of_nodes == 0) { 769 /* Return number of nodes, so that user space can alloacate 770 * sufficient memory 771 */ 772 mutex_lock(&p->mutex); 773 args->num_of_nodes = p->n_pdds; 774 goto out_unlock; 775 } 776 777 /* Fill in process-aperture information for all available 778 * nodes, but not more than args->num_of_nodes as that is 779 * the amount of memory allocated by user 780 */ 781 pa = kzalloc((sizeof(struct kfd_process_device_apertures) * 782 args->num_of_nodes), GFP_KERNEL); 783 if (!pa) 784 return -ENOMEM; 785 786 mutex_lock(&p->mutex); 787 788 if (!p->n_pdds) { 789 args->num_of_nodes = 0; 790 kfree(pa); 791 goto out_unlock; 792 } 793 794 /* Run over all pdd of the process */ 795 for (i = 0; i < min(p->n_pdds, args->num_of_nodes); i++) { 796 struct kfd_process_device *pdd = p->pdds[i]; 797 798 pa[i].gpu_id = pdd->dev->id; 799 pa[i].lds_base = pdd->lds_base; 800 pa[i].lds_limit = pdd->lds_limit; 801 pa[i].gpuvm_base = pdd->gpuvm_base; 802 pa[i].gpuvm_limit = pdd->gpuvm_limit; 803 pa[i].scratch_base = pdd->scratch_base; 804 pa[i].scratch_limit = pdd->scratch_limit; 805 806 dev_dbg(kfd_device, 807 "gpu id %u\n", pdd->dev->id); 808 dev_dbg(kfd_device, 809 "lds_base %llX\n", pdd->lds_base); 810 dev_dbg(kfd_device, 811 "lds_limit %llX\n", pdd->lds_limit); 812 dev_dbg(kfd_device, 813 "gpuvm_base %llX\n", pdd->gpuvm_base); 814 dev_dbg(kfd_device, 815 "gpuvm_limit %llX\n", pdd->gpuvm_limit); 816 dev_dbg(kfd_device, 817 "scratch_base %llX\n", pdd->scratch_base); 818 dev_dbg(kfd_device, 819 "scratch_limit %llX\n", pdd->scratch_limit); 820 } 821 mutex_unlock(&p->mutex); 822 823 args->num_of_nodes = i; 824 ret = copy_to_user( 825 (void __user *)args->kfd_process_device_apertures_ptr, 826 pa, 827 (i * sizeof(struct kfd_process_device_apertures))); 828 kfree(pa); 829 return ret ? -EFAULT : 0; 830 831 out_unlock: 832 mutex_unlock(&p->mutex); 833 return 0; 834 } 835 836 static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p, 837 void *data) 838 { 839 struct kfd_ioctl_create_event_args *args = data; 840 int err; 841 842 /* For dGPUs the event page is allocated in user mode. The 843 * handle is passed to KFD with the first call to this IOCTL 844 * through the event_page_offset field. 845 */ 846 if (args->event_page_offset) { 847 mutex_lock(&p->mutex); 848 err = kfd_kmap_event_page(p, args->event_page_offset); 849 mutex_unlock(&p->mutex); 850 if (err) 851 return err; 852 } 853 854 err = kfd_event_create(filp, p, args->event_type, 855 args->auto_reset != 0, args->node_id, 856 &args->event_id, &args->event_trigger_data, 857 &args->event_page_offset, 858 &args->event_slot_index); 859 860 pr_debug("Created event (id:0x%08x) (%s)\n", args->event_id, __func__); 861 return err; 862 } 863 864 static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p, 865 void *data) 866 { 867 struct kfd_ioctl_destroy_event_args *args = data; 868 869 return kfd_event_destroy(p, args->event_id); 870 } 871 872 static int kfd_ioctl_set_event(struct file *filp, struct kfd_process *p, 873 void *data) 874 { 875 struct kfd_ioctl_set_event_args *args = data; 876 877 return kfd_set_event(p, args->event_id); 878 } 879 880 static int kfd_ioctl_reset_event(struct file *filp, struct kfd_process *p, 881 void *data) 882 { 883 struct kfd_ioctl_reset_event_args *args = data; 884 885 return kfd_reset_event(p, args->event_id); 886 } 887 888 static int kfd_ioctl_wait_events(struct file *filp, struct kfd_process *p, 889 void *data) 890 { 891 struct kfd_ioctl_wait_events_args *args = data; 892 893 return kfd_wait_on_events(p, args->num_events, 894 (void __user *)args->events_ptr, 895 (args->wait_for_all != 0), 896 &args->timeout, &args->wait_result); 897 } 898 static int kfd_ioctl_set_scratch_backing_va(struct file *filep, 899 struct kfd_process *p, void *data) 900 { 901 struct kfd_ioctl_set_scratch_backing_va_args *args = data; 902 struct kfd_process_device *pdd; 903 struct kfd_node *dev; 904 long err; 905 906 mutex_lock(&p->mutex); 907 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 908 if (!pdd) { 909 err = -EINVAL; 910 goto err_pdd; 911 } 912 dev = pdd->dev; 913 914 pdd = kfd_bind_process_to_device(dev, p); 915 if (IS_ERR(pdd)) { 916 err = PTR_ERR(pdd); 917 goto bind_process_to_device_fail; 918 } 919 920 pdd->qpd.sh_hidden_private_base = args->va_addr; 921 922 mutex_unlock(&p->mutex); 923 924 if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS && 925 pdd->qpd.vmid != 0 && dev->kfd2kgd->set_scratch_backing_va) 926 dev->kfd2kgd->set_scratch_backing_va( 927 dev->adev, args->va_addr, pdd->qpd.vmid); 928 929 return 0; 930 931 bind_process_to_device_fail: 932 err_pdd: 933 mutex_unlock(&p->mutex); 934 return err; 935 } 936 937 static int kfd_ioctl_get_tile_config(struct file *filep, 938 struct kfd_process *p, void *data) 939 { 940 struct kfd_ioctl_get_tile_config_args *args = data; 941 struct kfd_process_device *pdd; 942 struct tile_config config; 943 int err = 0; 944 945 mutex_lock(&p->mutex); 946 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 947 mutex_unlock(&p->mutex); 948 if (!pdd) 949 return -EINVAL; 950 951 amdgpu_amdkfd_get_tile_config(pdd->dev->adev, &config); 952 953 args->gb_addr_config = config.gb_addr_config; 954 args->num_banks = config.num_banks; 955 args->num_ranks = config.num_ranks; 956 957 if (args->num_tile_configs > config.num_tile_configs) 958 args->num_tile_configs = config.num_tile_configs; 959 err = copy_to_user((void __user *)args->tile_config_ptr, 960 config.tile_config_ptr, 961 args->num_tile_configs * sizeof(uint32_t)); 962 if (err) { 963 args->num_tile_configs = 0; 964 return -EFAULT; 965 } 966 967 if (args->num_macro_tile_configs > config.num_macro_tile_configs) 968 args->num_macro_tile_configs = 969 config.num_macro_tile_configs; 970 err = copy_to_user((void __user *)args->macro_tile_config_ptr, 971 config.macro_tile_config_ptr, 972 args->num_macro_tile_configs * sizeof(uint32_t)); 973 if (err) { 974 args->num_macro_tile_configs = 0; 975 return -EFAULT; 976 } 977 978 return 0; 979 } 980 981 static int kfd_ioctl_acquire_vm(struct file *filep, struct kfd_process *p, 982 void *data) 983 { 984 struct kfd_ioctl_acquire_vm_args *args = data; 985 struct kfd_process_device *pdd; 986 struct file *drm_file; 987 int ret; 988 989 drm_file = fget(args->drm_fd); 990 if (!drm_file) 991 return -EINVAL; 992 993 mutex_lock(&p->mutex); 994 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 995 if (!pdd) { 996 ret = -EINVAL; 997 goto err_pdd; 998 } 999 1000 if (pdd->drm_file) { 1001 ret = pdd->drm_file == drm_file ? 0 : -EBUSY; 1002 goto err_drm_file; 1003 } 1004 1005 ret = kfd_process_device_init_vm(pdd, drm_file); 1006 if (ret) 1007 goto err_unlock; 1008 1009 /* On success, the PDD keeps the drm_file reference */ 1010 mutex_unlock(&p->mutex); 1011 1012 return 0; 1013 1014 err_unlock: 1015 err_pdd: 1016 err_drm_file: 1017 mutex_unlock(&p->mutex); 1018 fput(drm_file); 1019 return ret; 1020 } 1021 1022 bool kfd_dev_is_large_bar(struct kfd_node *dev) 1023 { 1024 if (dev->kfd->adev->debug_largebar) { 1025 pr_debug("Simulate large-bar allocation on non large-bar machine\n"); 1026 return true; 1027 } 1028 1029 if (dev->local_mem_info.local_mem_size_private == 0 && 1030 dev->local_mem_info.local_mem_size_public > 0) 1031 return true; 1032 1033 if (dev->local_mem_info.local_mem_size_public == 0 && 1034 dev->kfd->adev->gmc.is_app_apu) { 1035 pr_debug("APP APU, Consider like a large bar system\n"); 1036 return true; 1037 } 1038 1039 return false; 1040 } 1041 1042 static int kfd_ioctl_get_available_memory(struct file *filep, 1043 struct kfd_process *p, void *data) 1044 { 1045 struct kfd_ioctl_get_available_memory_args *args = data; 1046 struct kfd_process_device *pdd = kfd_lock_pdd_by_id(p, args->gpu_id); 1047 1048 if (!pdd) 1049 return -EINVAL; 1050 args->available = amdgpu_amdkfd_get_available_memory(pdd->dev->adev, 1051 pdd->dev->node_id); 1052 kfd_unlock_pdd(pdd); 1053 return 0; 1054 } 1055 1056 static int kfd_ioctl_alloc_memory_of_gpu(struct file *filep, 1057 struct kfd_process *p, void *data) 1058 { 1059 struct kfd_ioctl_alloc_memory_of_gpu_args *args = data; 1060 struct kfd_process_device *pdd; 1061 void *mem; 1062 struct kfd_node *dev; 1063 int idr_handle; 1064 long err; 1065 uint64_t offset = args->mmap_offset; 1066 uint32_t flags = args->flags; 1067 1068 if (args->size == 0) 1069 return -EINVAL; 1070 1071 #if IS_ENABLED(CONFIG_HSA_AMD_SVM) 1072 /* Flush pending deferred work to avoid racing with deferred actions 1073 * from previous memory map changes (e.g. munmap). 1074 */ 1075 svm_range_list_lock_and_flush_work(&p->svms, current->mm); 1076 mutex_lock(&p->svms.lock); 1077 mmap_write_unlock(current->mm); 1078 if (interval_tree_iter_first(&p->svms.objects, 1079 args->va_addr >> PAGE_SHIFT, 1080 (args->va_addr + args->size - 1) >> PAGE_SHIFT)) { 1081 pr_err("Address: 0x%llx already allocated by SVM\n", 1082 args->va_addr); 1083 mutex_unlock(&p->svms.lock); 1084 return -EADDRINUSE; 1085 } 1086 1087 /* When register user buffer check if it has been registered by svm by 1088 * buffer cpu virtual address. 1089 */ 1090 if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) && 1091 interval_tree_iter_first(&p->svms.objects, 1092 args->mmap_offset >> PAGE_SHIFT, 1093 (args->mmap_offset + args->size - 1) >> PAGE_SHIFT)) { 1094 pr_err("User Buffer Address: 0x%llx already allocated by SVM\n", 1095 args->mmap_offset); 1096 mutex_unlock(&p->svms.lock); 1097 return -EADDRINUSE; 1098 } 1099 1100 mutex_unlock(&p->svms.lock); 1101 #endif 1102 mutex_lock(&p->mutex); 1103 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 1104 if (!pdd) { 1105 err = -EINVAL; 1106 goto err_pdd; 1107 } 1108 1109 dev = pdd->dev; 1110 1111 if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) && 1112 (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) && 1113 !kfd_dev_is_large_bar(dev)) { 1114 pr_err("Alloc host visible vram on small bar is not allowed\n"); 1115 err = -EINVAL; 1116 goto err_large_bar; 1117 } 1118 1119 pdd = kfd_bind_process_to_device(dev, p); 1120 if (IS_ERR(pdd)) { 1121 err = PTR_ERR(pdd); 1122 goto err_unlock; 1123 } 1124 1125 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) { 1126 if (args->size != kfd_doorbell_process_slice(dev->kfd)) { 1127 err = -EINVAL; 1128 goto err_unlock; 1129 } 1130 offset = kfd_get_process_doorbells(pdd); 1131 if (!offset) { 1132 err = -ENOMEM; 1133 goto err_unlock; 1134 } 1135 } else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) { 1136 if (args->size != PAGE_SIZE) { 1137 err = -EINVAL; 1138 goto err_unlock; 1139 } 1140 offset = dev->adev->rmmio_remap.bus_addr; 1141 if (!offset) { 1142 err = -ENOMEM; 1143 goto err_unlock; 1144 } 1145 } 1146 1147 err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu( 1148 dev->adev, args->va_addr, args->size, 1149 pdd->drm_priv, (struct kgd_mem **) &mem, &offset, 1150 flags, false); 1151 1152 if (err) 1153 goto err_unlock; 1154 1155 idr_handle = kfd_process_device_create_obj_handle(pdd, mem); 1156 if (idr_handle < 0) { 1157 err = -EFAULT; 1158 goto err_free; 1159 } 1160 1161 /* Update the VRAM usage count */ 1162 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 1163 uint64_t size = args->size; 1164 1165 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM) 1166 size >>= 1; 1167 WRITE_ONCE(pdd->vram_usage, pdd->vram_usage + PAGE_ALIGN(size)); 1168 } 1169 1170 mutex_unlock(&p->mutex); 1171 1172 args->handle = MAKE_HANDLE(args->gpu_id, idr_handle); 1173 args->mmap_offset = offset; 1174 1175 /* MMIO is mapped through kfd device 1176 * Generate a kfd mmap offset 1177 */ 1178 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) 1179 args->mmap_offset = KFD_MMAP_TYPE_MMIO 1180 | KFD_MMAP_GPU_ID(args->gpu_id); 1181 1182 return 0; 1183 1184 err_free: 1185 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, (struct kgd_mem *)mem, 1186 pdd->drm_priv, NULL); 1187 err_unlock: 1188 err_pdd: 1189 err_large_bar: 1190 mutex_unlock(&p->mutex); 1191 return err; 1192 } 1193 1194 static int kfd_ioctl_free_memory_of_gpu(struct file *filep, 1195 struct kfd_process *p, void *data) 1196 { 1197 struct kfd_ioctl_free_memory_of_gpu_args *args = data; 1198 struct kfd_process_device *pdd; 1199 void *mem; 1200 int ret; 1201 uint64_t size = 0; 1202 1203 mutex_lock(&p->mutex); 1204 /* 1205 * Safeguard to prevent user space from freeing signal BO. 1206 * It will be freed at process termination. 1207 */ 1208 if (p->signal_handle && (p->signal_handle == args->handle)) { 1209 pr_err("Free signal BO is not allowed\n"); 1210 ret = -EPERM; 1211 goto err_unlock; 1212 } 1213 1214 pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle)); 1215 if (!pdd) { 1216 pr_err("Process device data doesn't exist\n"); 1217 ret = -EINVAL; 1218 goto err_pdd; 1219 } 1220 1221 mem = kfd_process_device_translate_handle( 1222 pdd, GET_IDR_HANDLE(args->handle)); 1223 if (!mem) { 1224 ret = -EINVAL; 1225 goto err_unlock; 1226 } 1227 1228 ret = amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, 1229 (struct kgd_mem *)mem, pdd->drm_priv, &size); 1230 1231 /* If freeing the buffer failed, leave the handle in place for 1232 * clean-up during process tear-down. 1233 */ 1234 if (!ret) 1235 kfd_process_device_remove_obj_handle( 1236 pdd, GET_IDR_HANDLE(args->handle)); 1237 1238 WRITE_ONCE(pdd->vram_usage, pdd->vram_usage - size); 1239 1240 err_unlock: 1241 err_pdd: 1242 mutex_unlock(&p->mutex); 1243 return ret; 1244 } 1245 1246 static int kfd_ioctl_map_memory_to_gpu(struct file *filep, 1247 struct kfd_process *p, void *data) 1248 { 1249 struct kfd_ioctl_map_memory_to_gpu_args *args = data; 1250 struct kfd_process_device *pdd, *peer_pdd; 1251 void *mem; 1252 struct kfd_node *dev; 1253 long err = 0; 1254 int i; 1255 uint32_t *devices_arr = NULL; 1256 1257 if (!args->n_devices) { 1258 pr_debug("Device IDs array empty\n"); 1259 return -EINVAL; 1260 } 1261 if (args->n_success > args->n_devices) { 1262 pr_debug("n_success exceeds n_devices\n"); 1263 return -EINVAL; 1264 } 1265 1266 devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr), 1267 GFP_KERNEL); 1268 if (!devices_arr) 1269 return -ENOMEM; 1270 1271 err = copy_from_user(devices_arr, 1272 (void __user *)args->device_ids_array_ptr, 1273 args->n_devices * sizeof(*devices_arr)); 1274 if (err != 0) { 1275 err = -EFAULT; 1276 goto copy_from_user_failed; 1277 } 1278 1279 mutex_lock(&p->mutex); 1280 pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle)); 1281 if (!pdd) { 1282 err = -EINVAL; 1283 goto get_process_device_data_failed; 1284 } 1285 dev = pdd->dev; 1286 1287 pdd = kfd_bind_process_to_device(dev, p); 1288 if (IS_ERR(pdd)) { 1289 err = PTR_ERR(pdd); 1290 goto bind_process_to_device_failed; 1291 } 1292 1293 mem = kfd_process_device_translate_handle(pdd, 1294 GET_IDR_HANDLE(args->handle)); 1295 if (!mem) { 1296 err = -ENOMEM; 1297 goto get_mem_obj_from_handle_failed; 1298 } 1299 1300 for (i = args->n_success; i < args->n_devices; i++) { 1301 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]); 1302 if (!peer_pdd) { 1303 pr_debug("Getting device by id failed for 0x%x\n", 1304 devices_arr[i]); 1305 err = -EINVAL; 1306 goto get_mem_obj_from_handle_failed; 1307 } 1308 1309 peer_pdd = kfd_bind_process_to_device(peer_pdd->dev, p); 1310 if (IS_ERR(peer_pdd)) { 1311 err = PTR_ERR(peer_pdd); 1312 goto get_mem_obj_from_handle_failed; 1313 } 1314 1315 err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu( 1316 peer_pdd->dev->adev, (struct kgd_mem *)mem, 1317 peer_pdd->drm_priv); 1318 if (err) { 1319 struct pci_dev *pdev = peer_pdd->dev->adev->pdev; 1320 1321 dev_err(dev->adev->dev, 1322 "Failed to map peer:%04x:%02x:%02x.%d mem_domain:%d\n", 1323 pci_domain_nr(pdev->bus), 1324 pdev->bus->number, 1325 PCI_SLOT(pdev->devfn), 1326 PCI_FUNC(pdev->devfn), 1327 ((struct kgd_mem *)mem)->domain); 1328 goto map_memory_to_gpu_failed; 1329 } 1330 args->n_success = i+1; 1331 } 1332 1333 err = amdgpu_amdkfd_gpuvm_sync_memory(dev->adev, (struct kgd_mem *) mem, true); 1334 if (err) { 1335 pr_debug("Sync memory failed, wait interrupted by user signal\n"); 1336 goto sync_memory_failed; 1337 } 1338 1339 mutex_unlock(&p->mutex); 1340 1341 /* Flush TLBs after waiting for the page table updates to complete */ 1342 for (i = 0; i < args->n_devices; i++) { 1343 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]); 1344 if (WARN_ON_ONCE(!peer_pdd)) 1345 continue; 1346 kfd_flush_tlb(peer_pdd, TLB_FLUSH_LEGACY); 1347 } 1348 kfree(devices_arr); 1349 1350 return err; 1351 1352 get_process_device_data_failed: 1353 bind_process_to_device_failed: 1354 get_mem_obj_from_handle_failed: 1355 map_memory_to_gpu_failed: 1356 sync_memory_failed: 1357 mutex_unlock(&p->mutex); 1358 copy_from_user_failed: 1359 kfree(devices_arr); 1360 1361 return err; 1362 } 1363 1364 static int kfd_ioctl_unmap_memory_from_gpu(struct file *filep, 1365 struct kfd_process *p, void *data) 1366 { 1367 struct kfd_ioctl_unmap_memory_from_gpu_args *args = data; 1368 struct kfd_process_device *pdd, *peer_pdd; 1369 void *mem; 1370 long err = 0; 1371 uint32_t *devices_arr = NULL, i; 1372 bool flush_tlb; 1373 1374 if (!args->n_devices) { 1375 pr_debug("Device IDs array empty\n"); 1376 return -EINVAL; 1377 } 1378 if (args->n_success > args->n_devices) { 1379 pr_debug("n_success exceeds n_devices\n"); 1380 return -EINVAL; 1381 } 1382 1383 devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr), 1384 GFP_KERNEL); 1385 if (!devices_arr) 1386 return -ENOMEM; 1387 1388 err = copy_from_user(devices_arr, 1389 (void __user *)args->device_ids_array_ptr, 1390 args->n_devices * sizeof(*devices_arr)); 1391 if (err != 0) { 1392 err = -EFAULT; 1393 goto copy_from_user_failed; 1394 } 1395 1396 mutex_lock(&p->mutex); 1397 pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle)); 1398 if (!pdd) { 1399 err = -EINVAL; 1400 goto bind_process_to_device_failed; 1401 } 1402 1403 mem = kfd_process_device_translate_handle(pdd, 1404 GET_IDR_HANDLE(args->handle)); 1405 if (!mem) { 1406 err = -ENOMEM; 1407 goto get_mem_obj_from_handle_failed; 1408 } 1409 1410 for (i = args->n_success; i < args->n_devices; i++) { 1411 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]); 1412 if (!peer_pdd) { 1413 err = -EINVAL; 1414 goto get_mem_obj_from_handle_failed; 1415 } 1416 err = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu( 1417 peer_pdd->dev->adev, (struct kgd_mem *)mem, peer_pdd->drm_priv); 1418 if (err) { 1419 pr_err("Failed to unmap from gpu %d/%d\n", 1420 i, args->n_devices); 1421 goto unmap_memory_from_gpu_failed; 1422 } 1423 args->n_success = i+1; 1424 } 1425 1426 flush_tlb = kfd_flush_tlb_after_unmap(pdd->dev->kfd); 1427 if (flush_tlb) { 1428 err = amdgpu_amdkfd_gpuvm_sync_memory(pdd->dev->adev, 1429 (struct kgd_mem *) mem, true); 1430 if (err) { 1431 pr_debug("Sync memory failed, wait interrupted by user signal\n"); 1432 goto sync_memory_failed; 1433 } 1434 } 1435 1436 /* Flush TLBs after waiting for the page table updates to complete */ 1437 for (i = 0; i < args->n_devices; i++) { 1438 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]); 1439 if (WARN_ON_ONCE(!peer_pdd)) 1440 continue; 1441 if (flush_tlb) 1442 kfd_flush_tlb(peer_pdd, TLB_FLUSH_HEAVYWEIGHT); 1443 1444 /* Remove dma mapping after tlb flush to avoid IO_PAGE_FAULT */ 1445 amdgpu_amdkfd_gpuvm_dmaunmap_mem(mem, peer_pdd->drm_priv); 1446 } 1447 1448 mutex_unlock(&p->mutex); 1449 1450 kfree(devices_arr); 1451 1452 return 0; 1453 1454 bind_process_to_device_failed: 1455 get_mem_obj_from_handle_failed: 1456 unmap_memory_from_gpu_failed: 1457 sync_memory_failed: 1458 mutex_unlock(&p->mutex); 1459 copy_from_user_failed: 1460 kfree(devices_arr); 1461 return err; 1462 } 1463 1464 static int kfd_ioctl_alloc_queue_gws(struct file *filep, 1465 struct kfd_process *p, void *data) 1466 { 1467 int retval; 1468 struct kfd_ioctl_alloc_queue_gws_args *args = data; 1469 struct queue *q; 1470 struct kfd_node *dev; 1471 1472 mutex_lock(&p->mutex); 1473 q = pqm_get_user_queue(&p->pqm, args->queue_id); 1474 1475 if (q) { 1476 dev = q->device; 1477 } else { 1478 retval = -EINVAL; 1479 goto out_unlock; 1480 } 1481 1482 if (!dev->gws) { 1483 retval = -ENODEV; 1484 goto out_unlock; 1485 } 1486 1487 if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) { 1488 retval = -ENODEV; 1489 goto out_unlock; 1490 } 1491 1492 if (p->debug_trap_enabled && (!kfd_dbg_has_gws_support(dev) || 1493 kfd_dbg_has_cwsr_workaround(dev))) { 1494 retval = -EBUSY; 1495 goto out_unlock; 1496 } 1497 1498 retval = pqm_set_gws(&p->pqm, args->queue_id, args->num_gws ? dev->gws : NULL); 1499 mutex_unlock(&p->mutex); 1500 1501 args->first_gws = 0; 1502 return retval; 1503 1504 out_unlock: 1505 mutex_unlock(&p->mutex); 1506 return retval; 1507 } 1508 1509 static int kfd_ioctl_get_dmabuf_info(struct file *filep, 1510 struct kfd_process *p, void *data) 1511 { 1512 struct kfd_ioctl_get_dmabuf_info_args *args = data; 1513 struct kfd_node *dev = NULL; 1514 struct amdgpu_device *dmabuf_adev; 1515 void *metadata_buffer = NULL; 1516 uint32_t flags; 1517 int8_t xcp_id; 1518 unsigned int i; 1519 int r; 1520 1521 /* Find a KFD GPU device that supports the get_dmabuf_info query */ 1522 for (i = 0; kfd_topology_enum_kfd_devices(i, &dev) == 0; i++) 1523 if (dev) 1524 break; 1525 if (!dev) 1526 return -EINVAL; 1527 1528 if (args->metadata_ptr) { 1529 metadata_buffer = kzalloc(args->metadata_size, GFP_KERNEL); 1530 if (!metadata_buffer) 1531 return -ENOMEM; 1532 } 1533 1534 /* Get dmabuf info from KGD */ 1535 r = amdgpu_amdkfd_get_dmabuf_info(dev->adev, args->dmabuf_fd, 1536 &dmabuf_adev, &args->size, 1537 metadata_buffer, args->metadata_size, 1538 &args->metadata_size, &flags, &xcp_id); 1539 if (r) 1540 goto exit; 1541 1542 if (xcp_id >= 0) 1543 args->gpu_id = dmabuf_adev->kfd.dev->nodes[xcp_id]->id; 1544 else 1545 args->gpu_id = dmabuf_adev->kfd.dev->nodes[0]->id; 1546 args->flags = flags; 1547 1548 /* Copy metadata buffer to user mode */ 1549 if (metadata_buffer) { 1550 r = copy_to_user((void __user *)args->metadata_ptr, 1551 metadata_buffer, args->metadata_size); 1552 if (r != 0) 1553 r = -EFAULT; 1554 } 1555 1556 exit: 1557 kfree(metadata_buffer); 1558 1559 return r; 1560 } 1561 1562 static int kfd_ioctl_import_dmabuf(struct file *filep, 1563 struct kfd_process *p, void *data) 1564 { 1565 struct kfd_ioctl_import_dmabuf_args *args = data; 1566 struct kfd_process_device *pdd; 1567 struct dma_buf *dmabuf; 1568 int idr_handle; 1569 uint64_t size; 1570 void *mem; 1571 int r; 1572 1573 dmabuf = dma_buf_get(args->dmabuf_fd); 1574 if (IS_ERR(dmabuf)) 1575 return PTR_ERR(dmabuf); 1576 1577 mutex_lock(&p->mutex); 1578 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 1579 if (!pdd) { 1580 r = -EINVAL; 1581 goto err_unlock; 1582 } 1583 1584 pdd = kfd_bind_process_to_device(pdd->dev, p); 1585 if (IS_ERR(pdd)) { 1586 r = PTR_ERR(pdd); 1587 goto err_unlock; 1588 } 1589 1590 r = amdgpu_amdkfd_gpuvm_import_dmabuf(pdd->dev->adev, dmabuf, 1591 args->va_addr, pdd->drm_priv, 1592 (struct kgd_mem **)&mem, &size, 1593 NULL); 1594 if (r) 1595 goto err_unlock; 1596 1597 idr_handle = kfd_process_device_create_obj_handle(pdd, mem); 1598 if (idr_handle < 0) { 1599 r = -EFAULT; 1600 goto err_free; 1601 } 1602 1603 mutex_unlock(&p->mutex); 1604 dma_buf_put(dmabuf); 1605 1606 args->handle = MAKE_HANDLE(args->gpu_id, idr_handle); 1607 1608 return 0; 1609 1610 err_free: 1611 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, (struct kgd_mem *)mem, 1612 pdd->drm_priv, NULL); 1613 err_unlock: 1614 mutex_unlock(&p->mutex); 1615 dma_buf_put(dmabuf); 1616 return r; 1617 } 1618 1619 static int kfd_ioctl_export_dmabuf(struct file *filep, 1620 struct kfd_process *p, void *data) 1621 { 1622 struct kfd_ioctl_export_dmabuf_args *args = data; 1623 struct kfd_process_device *pdd; 1624 struct dma_buf *dmabuf; 1625 struct kfd_node *dev; 1626 void *mem; 1627 int ret = 0; 1628 1629 dev = kfd_device_by_id(GET_GPU_ID(args->handle)); 1630 if (!dev) 1631 return -EINVAL; 1632 1633 mutex_lock(&p->mutex); 1634 1635 pdd = kfd_get_process_device_data(dev, p); 1636 if (!pdd) { 1637 ret = -EINVAL; 1638 goto err_unlock; 1639 } 1640 1641 mem = kfd_process_device_translate_handle(pdd, 1642 GET_IDR_HANDLE(args->handle)); 1643 if (!mem) { 1644 ret = -EINVAL; 1645 goto err_unlock; 1646 } 1647 1648 ret = amdgpu_amdkfd_gpuvm_export_dmabuf(mem, &dmabuf); 1649 mutex_unlock(&p->mutex); 1650 if (ret) 1651 goto err_out; 1652 1653 ret = dma_buf_fd(dmabuf, args->flags); 1654 if (ret < 0) { 1655 dma_buf_put(dmabuf); 1656 goto err_out; 1657 } 1658 /* dma_buf_fd assigns the reference count to the fd, no need to 1659 * put the reference here. 1660 */ 1661 args->dmabuf_fd = ret; 1662 1663 return 0; 1664 1665 err_unlock: 1666 mutex_unlock(&p->mutex); 1667 err_out: 1668 return ret; 1669 } 1670 1671 /* Handle requests for watching SMI events */ 1672 static int kfd_ioctl_smi_events(struct file *filep, 1673 struct kfd_process *p, void *data) 1674 { 1675 struct kfd_ioctl_smi_events_args *args = data; 1676 struct kfd_process_device *pdd; 1677 1678 mutex_lock(&p->mutex); 1679 1680 pdd = kfd_process_device_data_by_id(p, args->gpuid); 1681 mutex_unlock(&p->mutex); 1682 if (!pdd) 1683 return -EINVAL; 1684 1685 return kfd_smi_event_open(pdd->dev, &args->anon_fd); 1686 } 1687 1688 #if IS_ENABLED(CONFIG_HSA_AMD_SVM) 1689 1690 static int kfd_ioctl_set_xnack_mode(struct file *filep, 1691 struct kfd_process *p, void *data) 1692 { 1693 struct kfd_ioctl_set_xnack_mode_args *args = data; 1694 int r = 0; 1695 1696 mutex_lock(&p->mutex); 1697 if (args->xnack_enabled >= 0) { 1698 if (!list_empty(&p->pqm.queues)) { 1699 pr_debug("Process has user queues running\n"); 1700 r = -EBUSY; 1701 goto out_unlock; 1702 } 1703 1704 if (p->xnack_enabled == args->xnack_enabled) 1705 goto out_unlock; 1706 1707 if (args->xnack_enabled && !kfd_process_xnack_mode(p, true)) { 1708 r = -EPERM; 1709 goto out_unlock; 1710 } 1711 1712 r = svm_range_switch_xnack_reserve_mem(p, args->xnack_enabled); 1713 } else { 1714 args->xnack_enabled = p->xnack_enabled; 1715 } 1716 1717 out_unlock: 1718 mutex_unlock(&p->mutex); 1719 1720 return r; 1721 } 1722 1723 static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data) 1724 { 1725 struct kfd_ioctl_svm_args *args = data; 1726 int r = 0; 1727 1728 pr_debug("start 0x%llx size 0x%llx op 0x%x nattr 0x%x\n", 1729 args->start_addr, args->size, args->op, args->nattr); 1730 1731 if ((args->start_addr & ~PAGE_MASK) || (args->size & ~PAGE_MASK)) 1732 return -EINVAL; 1733 if (!args->start_addr || !args->size) 1734 return -EINVAL; 1735 1736 r = svm_ioctl(p, args->op, args->start_addr, args->size, args->nattr, 1737 args->attrs); 1738 1739 return r; 1740 } 1741 #else 1742 static int kfd_ioctl_set_xnack_mode(struct file *filep, 1743 struct kfd_process *p, void *data) 1744 { 1745 return -EPERM; 1746 } 1747 static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data) 1748 { 1749 return -EPERM; 1750 } 1751 #endif 1752 1753 static int criu_checkpoint_process(struct kfd_process *p, 1754 uint8_t __user *user_priv_data, 1755 uint64_t *priv_offset) 1756 { 1757 struct kfd_criu_process_priv_data process_priv; 1758 int ret; 1759 1760 memset(&process_priv, 0, sizeof(process_priv)); 1761 1762 process_priv.version = KFD_CRIU_PRIV_VERSION; 1763 /* For CR, we don't consider negative xnack mode which is used for 1764 * querying without changing it, here 0 simply means disabled and 1 1765 * means enabled so retry for finding a valid PTE. 1766 */ 1767 process_priv.xnack_mode = p->xnack_enabled ? 1 : 0; 1768 1769 ret = copy_to_user(user_priv_data + *priv_offset, 1770 &process_priv, sizeof(process_priv)); 1771 1772 if (ret) { 1773 pr_err("Failed to copy process information to user\n"); 1774 ret = -EFAULT; 1775 } 1776 1777 *priv_offset += sizeof(process_priv); 1778 return ret; 1779 } 1780 1781 static int criu_checkpoint_devices(struct kfd_process *p, 1782 uint32_t num_devices, 1783 uint8_t __user *user_addr, 1784 uint8_t __user *user_priv_data, 1785 uint64_t *priv_offset) 1786 { 1787 struct kfd_criu_device_priv_data *device_priv = NULL; 1788 struct kfd_criu_device_bucket *device_buckets = NULL; 1789 int ret = 0, i; 1790 1791 device_buckets = kvzalloc(num_devices * sizeof(*device_buckets), GFP_KERNEL); 1792 if (!device_buckets) { 1793 ret = -ENOMEM; 1794 goto exit; 1795 } 1796 1797 device_priv = kvzalloc(num_devices * sizeof(*device_priv), GFP_KERNEL); 1798 if (!device_priv) { 1799 ret = -ENOMEM; 1800 goto exit; 1801 } 1802 1803 for (i = 0; i < num_devices; i++) { 1804 struct kfd_process_device *pdd = p->pdds[i]; 1805 1806 device_buckets[i].user_gpu_id = pdd->user_gpu_id; 1807 device_buckets[i].actual_gpu_id = pdd->dev->id; 1808 1809 /* 1810 * priv_data does not contain useful information for now and is reserved for 1811 * future use, so we do not set its contents. 1812 */ 1813 } 1814 1815 ret = copy_to_user(user_addr, device_buckets, num_devices * sizeof(*device_buckets)); 1816 if (ret) { 1817 pr_err("Failed to copy device information to user\n"); 1818 ret = -EFAULT; 1819 goto exit; 1820 } 1821 1822 ret = copy_to_user(user_priv_data + *priv_offset, 1823 device_priv, 1824 num_devices * sizeof(*device_priv)); 1825 if (ret) { 1826 pr_err("Failed to copy device information to user\n"); 1827 ret = -EFAULT; 1828 } 1829 *priv_offset += num_devices * sizeof(*device_priv); 1830 1831 exit: 1832 kvfree(device_buckets); 1833 kvfree(device_priv); 1834 return ret; 1835 } 1836 1837 static uint32_t get_process_num_bos(struct kfd_process *p) 1838 { 1839 uint32_t num_of_bos = 0; 1840 int i; 1841 1842 /* Run over all PDDs of the process */ 1843 for (i = 0; i < p->n_pdds; i++) { 1844 struct kfd_process_device *pdd = p->pdds[i]; 1845 void *mem; 1846 int id; 1847 1848 idr_for_each_entry(&pdd->alloc_idr, mem, id) { 1849 struct kgd_mem *kgd_mem = (struct kgd_mem *)mem; 1850 1851 if (!kgd_mem->va || kgd_mem->va > pdd->gpuvm_base) 1852 num_of_bos++; 1853 } 1854 } 1855 return num_of_bos; 1856 } 1857 1858 static int criu_get_prime_handle(struct kgd_mem *mem, int flags, 1859 u32 *shared_fd) 1860 { 1861 struct dma_buf *dmabuf; 1862 int ret; 1863 1864 ret = amdgpu_amdkfd_gpuvm_export_dmabuf(mem, &dmabuf); 1865 if (ret) { 1866 pr_err("dmabuf export failed for the BO\n"); 1867 return ret; 1868 } 1869 1870 ret = dma_buf_fd(dmabuf, flags); 1871 if (ret < 0) { 1872 pr_err("dmabuf create fd failed, ret:%d\n", ret); 1873 goto out_free_dmabuf; 1874 } 1875 1876 *shared_fd = ret; 1877 return 0; 1878 1879 out_free_dmabuf: 1880 dma_buf_put(dmabuf); 1881 return ret; 1882 } 1883 1884 static int criu_checkpoint_bos(struct kfd_process *p, 1885 uint32_t num_bos, 1886 uint8_t __user *user_bos, 1887 uint8_t __user *user_priv_data, 1888 uint64_t *priv_offset) 1889 { 1890 struct kfd_criu_bo_bucket *bo_buckets; 1891 struct kfd_criu_bo_priv_data *bo_privs; 1892 int ret = 0, pdd_index, bo_index = 0, id; 1893 void *mem; 1894 1895 bo_buckets = kvzalloc(num_bos * sizeof(*bo_buckets), GFP_KERNEL); 1896 if (!bo_buckets) 1897 return -ENOMEM; 1898 1899 bo_privs = kvzalloc(num_bos * sizeof(*bo_privs), GFP_KERNEL); 1900 if (!bo_privs) { 1901 ret = -ENOMEM; 1902 goto exit; 1903 } 1904 1905 for (pdd_index = 0; pdd_index < p->n_pdds; pdd_index++) { 1906 struct kfd_process_device *pdd = p->pdds[pdd_index]; 1907 struct amdgpu_bo *dumper_bo; 1908 struct kgd_mem *kgd_mem; 1909 1910 idr_for_each_entry(&pdd->alloc_idr, mem, id) { 1911 struct kfd_criu_bo_bucket *bo_bucket; 1912 struct kfd_criu_bo_priv_data *bo_priv; 1913 int i, dev_idx = 0; 1914 1915 if (!mem) { 1916 ret = -ENOMEM; 1917 goto exit; 1918 } 1919 1920 kgd_mem = (struct kgd_mem *)mem; 1921 dumper_bo = kgd_mem->bo; 1922 1923 /* Skip checkpointing BOs that are used for Trap handler 1924 * code and state. Currently, these BOs have a VA that 1925 * is less GPUVM Base 1926 */ 1927 if (kgd_mem->va && kgd_mem->va <= pdd->gpuvm_base) 1928 continue; 1929 1930 bo_bucket = &bo_buckets[bo_index]; 1931 bo_priv = &bo_privs[bo_index]; 1932 1933 bo_bucket->gpu_id = pdd->user_gpu_id; 1934 bo_bucket->addr = (uint64_t)kgd_mem->va; 1935 bo_bucket->size = amdgpu_bo_size(dumper_bo); 1936 bo_bucket->alloc_flags = (uint32_t)kgd_mem->alloc_flags; 1937 bo_priv->idr_handle = id; 1938 1939 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 1940 ret = amdgpu_ttm_tt_get_userptr(&dumper_bo->tbo, 1941 &bo_priv->user_addr); 1942 if (ret) { 1943 pr_err("Failed to obtain user address for user-pointer bo\n"); 1944 goto exit; 1945 } 1946 } 1947 if (bo_bucket->alloc_flags 1948 & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) { 1949 ret = criu_get_prime_handle(kgd_mem, 1950 bo_bucket->alloc_flags & 1951 KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? DRM_RDWR : 0, 1952 &bo_bucket->dmabuf_fd); 1953 if (ret) 1954 goto exit; 1955 } else { 1956 bo_bucket->dmabuf_fd = KFD_INVALID_FD; 1957 } 1958 1959 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) 1960 bo_bucket->offset = KFD_MMAP_TYPE_DOORBELL | 1961 KFD_MMAP_GPU_ID(pdd->dev->id); 1962 else if (bo_bucket->alloc_flags & 1963 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) 1964 bo_bucket->offset = KFD_MMAP_TYPE_MMIO | 1965 KFD_MMAP_GPU_ID(pdd->dev->id); 1966 else 1967 bo_bucket->offset = amdgpu_bo_mmap_offset(dumper_bo); 1968 1969 for (i = 0; i < p->n_pdds; i++) { 1970 if (amdgpu_amdkfd_bo_mapped_to_dev(p->pdds[i]->dev->adev, kgd_mem)) 1971 bo_priv->mapped_gpuids[dev_idx++] = p->pdds[i]->user_gpu_id; 1972 } 1973 1974 pr_debug("bo_size = 0x%llx, bo_addr = 0x%llx bo_offset = 0x%llx\n" 1975 "gpu_id = 0x%x alloc_flags = 0x%x idr_handle = 0x%x", 1976 bo_bucket->size, 1977 bo_bucket->addr, 1978 bo_bucket->offset, 1979 bo_bucket->gpu_id, 1980 bo_bucket->alloc_flags, 1981 bo_priv->idr_handle); 1982 bo_index++; 1983 } 1984 } 1985 1986 ret = copy_to_user(user_bos, bo_buckets, num_bos * sizeof(*bo_buckets)); 1987 if (ret) { 1988 pr_err("Failed to copy BO information to user\n"); 1989 ret = -EFAULT; 1990 goto exit; 1991 } 1992 1993 ret = copy_to_user(user_priv_data + *priv_offset, bo_privs, num_bos * sizeof(*bo_privs)); 1994 if (ret) { 1995 pr_err("Failed to copy BO priv information to user\n"); 1996 ret = -EFAULT; 1997 goto exit; 1998 } 1999 2000 *priv_offset += num_bos * sizeof(*bo_privs); 2001 2002 exit: 2003 while (ret && bo_index--) { 2004 if (bo_buckets[bo_index].alloc_flags 2005 & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) 2006 close_fd(bo_buckets[bo_index].dmabuf_fd); 2007 } 2008 2009 kvfree(bo_buckets); 2010 kvfree(bo_privs); 2011 return ret; 2012 } 2013 2014 static int criu_get_process_object_info(struct kfd_process *p, 2015 uint32_t *num_devices, 2016 uint32_t *num_bos, 2017 uint32_t *num_objects, 2018 uint64_t *objs_priv_size) 2019 { 2020 uint64_t queues_priv_data_size, svm_priv_data_size, priv_size; 2021 uint32_t num_queues, num_events, num_svm_ranges; 2022 int ret; 2023 2024 *num_devices = p->n_pdds; 2025 *num_bos = get_process_num_bos(p); 2026 2027 ret = kfd_process_get_queue_info(p, &num_queues, &queues_priv_data_size); 2028 if (ret) 2029 return ret; 2030 2031 num_events = kfd_get_num_events(p); 2032 2033 ret = svm_range_get_info(p, &num_svm_ranges, &svm_priv_data_size); 2034 if (ret) 2035 return ret; 2036 2037 *num_objects = num_queues + num_events + num_svm_ranges; 2038 2039 if (objs_priv_size) { 2040 priv_size = sizeof(struct kfd_criu_process_priv_data); 2041 priv_size += *num_devices * sizeof(struct kfd_criu_device_priv_data); 2042 priv_size += *num_bos * sizeof(struct kfd_criu_bo_priv_data); 2043 priv_size += queues_priv_data_size; 2044 priv_size += num_events * sizeof(struct kfd_criu_event_priv_data); 2045 priv_size += svm_priv_data_size; 2046 *objs_priv_size = priv_size; 2047 } 2048 return 0; 2049 } 2050 2051 static int criu_checkpoint(struct file *filep, 2052 struct kfd_process *p, 2053 struct kfd_ioctl_criu_args *args) 2054 { 2055 int ret; 2056 uint32_t num_devices, num_bos, num_objects; 2057 uint64_t priv_size, priv_offset = 0, bo_priv_offset; 2058 2059 if (!args->devices || !args->bos || !args->priv_data) 2060 return -EINVAL; 2061 2062 mutex_lock(&p->mutex); 2063 2064 if (!p->n_pdds) { 2065 pr_err("No pdd for given process\n"); 2066 ret = -ENODEV; 2067 goto exit_unlock; 2068 } 2069 2070 /* Confirm all process queues are evicted */ 2071 if (!p->queues_paused) { 2072 pr_err("Cannot dump process when queues are not in evicted state\n"); 2073 /* CRIU plugin did not call op PROCESS_INFO before checkpointing */ 2074 ret = -EINVAL; 2075 goto exit_unlock; 2076 } 2077 2078 ret = criu_get_process_object_info(p, &num_devices, &num_bos, &num_objects, &priv_size); 2079 if (ret) 2080 goto exit_unlock; 2081 2082 if (num_devices != args->num_devices || 2083 num_bos != args->num_bos || 2084 num_objects != args->num_objects || 2085 priv_size != args->priv_data_size) { 2086 2087 ret = -EINVAL; 2088 goto exit_unlock; 2089 } 2090 2091 /* each function will store private data inside priv_data and adjust priv_offset */ 2092 ret = criu_checkpoint_process(p, (uint8_t __user *)args->priv_data, &priv_offset); 2093 if (ret) 2094 goto exit_unlock; 2095 2096 ret = criu_checkpoint_devices(p, num_devices, (uint8_t __user *)args->devices, 2097 (uint8_t __user *)args->priv_data, &priv_offset); 2098 if (ret) 2099 goto exit_unlock; 2100 2101 /* Leave room for BOs in the private data. They need to be restored 2102 * before events, but we checkpoint them last to simplify the error 2103 * handling. 2104 */ 2105 bo_priv_offset = priv_offset; 2106 priv_offset += num_bos * sizeof(struct kfd_criu_bo_priv_data); 2107 2108 if (num_objects) { 2109 ret = kfd_criu_checkpoint_queues(p, (uint8_t __user *)args->priv_data, 2110 &priv_offset); 2111 if (ret) 2112 goto exit_unlock; 2113 2114 ret = kfd_criu_checkpoint_events(p, (uint8_t __user *)args->priv_data, 2115 &priv_offset); 2116 if (ret) 2117 goto exit_unlock; 2118 2119 ret = kfd_criu_checkpoint_svm(p, (uint8_t __user *)args->priv_data, &priv_offset); 2120 if (ret) 2121 goto exit_unlock; 2122 } 2123 2124 /* This must be the last thing in this function that can fail. 2125 * Otherwise we leak dmabuf file descriptors. 2126 */ 2127 ret = criu_checkpoint_bos(p, num_bos, (uint8_t __user *)args->bos, 2128 (uint8_t __user *)args->priv_data, &bo_priv_offset); 2129 2130 exit_unlock: 2131 mutex_unlock(&p->mutex); 2132 if (ret) 2133 pr_err("Failed to dump CRIU ret:%d\n", ret); 2134 else 2135 pr_debug("CRIU dump ret:%d\n", ret); 2136 2137 return ret; 2138 } 2139 2140 static int criu_restore_process(struct kfd_process *p, 2141 struct kfd_ioctl_criu_args *args, 2142 uint64_t *priv_offset, 2143 uint64_t max_priv_data_size) 2144 { 2145 int ret = 0; 2146 struct kfd_criu_process_priv_data process_priv; 2147 2148 if (*priv_offset + sizeof(process_priv) > max_priv_data_size) 2149 return -EINVAL; 2150 2151 ret = copy_from_user(&process_priv, 2152 (void __user *)(args->priv_data + *priv_offset), 2153 sizeof(process_priv)); 2154 if (ret) { 2155 pr_err("Failed to copy process private information from user\n"); 2156 ret = -EFAULT; 2157 goto exit; 2158 } 2159 *priv_offset += sizeof(process_priv); 2160 2161 if (process_priv.version != KFD_CRIU_PRIV_VERSION) { 2162 pr_err("Invalid CRIU API version (checkpointed:%d current:%d)\n", 2163 process_priv.version, KFD_CRIU_PRIV_VERSION); 2164 return -EINVAL; 2165 } 2166 2167 pr_debug("Setting XNACK mode\n"); 2168 if (process_priv.xnack_mode && !kfd_process_xnack_mode(p, true)) { 2169 pr_err("xnack mode cannot be set\n"); 2170 ret = -EPERM; 2171 goto exit; 2172 } else { 2173 pr_debug("set xnack mode: %d\n", process_priv.xnack_mode); 2174 p->xnack_enabled = process_priv.xnack_mode; 2175 } 2176 2177 exit: 2178 return ret; 2179 } 2180 2181 static int criu_restore_devices(struct kfd_process *p, 2182 struct kfd_ioctl_criu_args *args, 2183 uint64_t *priv_offset, 2184 uint64_t max_priv_data_size) 2185 { 2186 struct kfd_criu_device_bucket *device_buckets; 2187 struct kfd_criu_device_priv_data *device_privs; 2188 int ret = 0; 2189 uint32_t i; 2190 2191 if (args->num_devices != p->n_pdds) 2192 return -EINVAL; 2193 2194 if (*priv_offset + (args->num_devices * sizeof(*device_privs)) > max_priv_data_size) 2195 return -EINVAL; 2196 2197 device_buckets = kmalloc_array(args->num_devices, sizeof(*device_buckets), GFP_KERNEL); 2198 if (!device_buckets) 2199 return -ENOMEM; 2200 2201 ret = copy_from_user(device_buckets, (void __user *)args->devices, 2202 args->num_devices * sizeof(*device_buckets)); 2203 if (ret) { 2204 pr_err("Failed to copy devices buckets from user\n"); 2205 ret = -EFAULT; 2206 goto exit; 2207 } 2208 2209 for (i = 0; i < args->num_devices; i++) { 2210 struct kfd_node *dev; 2211 struct kfd_process_device *pdd; 2212 struct file *drm_file; 2213 2214 /* device private data is not currently used */ 2215 2216 if (!device_buckets[i].user_gpu_id) { 2217 pr_err("Invalid user gpu_id\n"); 2218 ret = -EINVAL; 2219 goto exit; 2220 } 2221 2222 dev = kfd_device_by_id(device_buckets[i].actual_gpu_id); 2223 if (!dev) { 2224 pr_err("Failed to find device with gpu_id = %x\n", 2225 device_buckets[i].actual_gpu_id); 2226 ret = -EINVAL; 2227 goto exit; 2228 } 2229 2230 pdd = kfd_get_process_device_data(dev, p); 2231 if (!pdd) { 2232 pr_err("Failed to get pdd for gpu_id = %x\n", 2233 device_buckets[i].actual_gpu_id); 2234 ret = -EINVAL; 2235 goto exit; 2236 } 2237 pdd->user_gpu_id = device_buckets[i].user_gpu_id; 2238 2239 drm_file = fget(device_buckets[i].drm_fd); 2240 if (!drm_file) { 2241 pr_err("Invalid render node file descriptor sent from plugin (%d)\n", 2242 device_buckets[i].drm_fd); 2243 ret = -EINVAL; 2244 goto exit; 2245 } 2246 2247 if (pdd->drm_file) { 2248 ret = -EINVAL; 2249 goto exit; 2250 } 2251 2252 /* create the vm using render nodes for kfd pdd */ 2253 if (kfd_process_device_init_vm(pdd, drm_file)) { 2254 pr_err("could not init vm for given pdd\n"); 2255 /* On success, the PDD keeps the drm_file reference */ 2256 fput(drm_file); 2257 ret = -EINVAL; 2258 goto exit; 2259 } 2260 /* 2261 * pdd now already has the vm bound to render node so below api won't create a new 2262 * exclusive kfd mapping but use existing one with renderDXXX but is still needed 2263 * for iommu v2 binding and runtime pm. 2264 */ 2265 pdd = kfd_bind_process_to_device(dev, p); 2266 if (IS_ERR(pdd)) { 2267 ret = PTR_ERR(pdd); 2268 goto exit; 2269 } 2270 2271 if (!pdd->qpd.proc_doorbells) { 2272 ret = kfd_alloc_process_doorbells(dev->kfd, pdd); 2273 if (ret) 2274 goto exit; 2275 } 2276 } 2277 2278 /* 2279 * We are not copying device private data from user as we are not using the data for now, 2280 * but we still adjust for its private data. 2281 */ 2282 *priv_offset += args->num_devices * sizeof(*device_privs); 2283 2284 exit: 2285 kfree(device_buckets); 2286 return ret; 2287 } 2288 2289 static int criu_restore_memory_of_gpu(struct kfd_process_device *pdd, 2290 struct kfd_criu_bo_bucket *bo_bucket, 2291 struct kfd_criu_bo_priv_data *bo_priv, 2292 struct kgd_mem **kgd_mem) 2293 { 2294 int idr_handle; 2295 int ret; 2296 const bool criu_resume = true; 2297 u64 offset; 2298 2299 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) { 2300 if (bo_bucket->size != 2301 kfd_doorbell_process_slice(pdd->dev->kfd)) 2302 return -EINVAL; 2303 2304 offset = kfd_get_process_doorbells(pdd); 2305 if (!offset) 2306 return -ENOMEM; 2307 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) { 2308 /* MMIO BOs need remapped bus address */ 2309 if (bo_bucket->size != PAGE_SIZE) { 2310 pr_err("Invalid page size\n"); 2311 return -EINVAL; 2312 } 2313 offset = pdd->dev->adev->rmmio_remap.bus_addr; 2314 if (!offset) { 2315 pr_err("amdgpu_amdkfd_get_mmio_remap_phys_addr failed\n"); 2316 return -ENOMEM; 2317 } 2318 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 2319 offset = bo_priv->user_addr; 2320 } 2321 /* Create the BO */ 2322 ret = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(pdd->dev->adev, bo_bucket->addr, 2323 bo_bucket->size, pdd->drm_priv, kgd_mem, 2324 &offset, bo_bucket->alloc_flags, criu_resume); 2325 if (ret) { 2326 pr_err("Could not create the BO\n"); 2327 return ret; 2328 } 2329 pr_debug("New BO created: size:0x%llx addr:0x%llx offset:0x%llx\n", 2330 bo_bucket->size, bo_bucket->addr, offset); 2331 2332 /* Restore previous IDR handle */ 2333 pr_debug("Restoring old IDR handle for the BO"); 2334 idr_handle = idr_alloc(&pdd->alloc_idr, *kgd_mem, bo_priv->idr_handle, 2335 bo_priv->idr_handle + 1, GFP_KERNEL); 2336 2337 if (idr_handle < 0) { 2338 pr_err("Could not allocate idr\n"); 2339 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, *kgd_mem, pdd->drm_priv, 2340 NULL); 2341 return -ENOMEM; 2342 } 2343 2344 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) 2345 bo_bucket->restored_offset = KFD_MMAP_TYPE_DOORBELL | KFD_MMAP_GPU_ID(pdd->dev->id); 2346 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) { 2347 bo_bucket->restored_offset = KFD_MMAP_TYPE_MMIO | KFD_MMAP_GPU_ID(pdd->dev->id); 2348 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { 2349 bo_bucket->restored_offset = offset; 2350 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 2351 bo_bucket->restored_offset = offset; 2352 /* Update the VRAM usage count */ 2353 WRITE_ONCE(pdd->vram_usage, pdd->vram_usage + bo_bucket->size); 2354 } 2355 return 0; 2356 } 2357 2358 static int criu_restore_bo(struct kfd_process *p, 2359 struct kfd_criu_bo_bucket *bo_bucket, 2360 struct kfd_criu_bo_priv_data *bo_priv) 2361 { 2362 struct kfd_process_device *pdd; 2363 struct kgd_mem *kgd_mem; 2364 int ret; 2365 int j; 2366 2367 pr_debug("Restoring BO size:0x%llx addr:0x%llx gpu_id:0x%x flags:0x%x idr_handle:0x%x\n", 2368 bo_bucket->size, bo_bucket->addr, bo_bucket->gpu_id, bo_bucket->alloc_flags, 2369 bo_priv->idr_handle); 2370 2371 pdd = kfd_process_device_data_by_id(p, bo_bucket->gpu_id); 2372 if (!pdd) { 2373 pr_err("Failed to get pdd\n"); 2374 return -ENODEV; 2375 } 2376 2377 ret = criu_restore_memory_of_gpu(pdd, bo_bucket, bo_priv, &kgd_mem); 2378 if (ret) 2379 return ret; 2380 2381 /* now map these BOs to GPU/s */ 2382 for (j = 0; j < p->n_pdds; j++) { 2383 struct kfd_node *peer; 2384 struct kfd_process_device *peer_pdd; 2385 2386 if (!bo_priv->mapped_gpuids[j]) 2387 break; 2388 2389 peer_pdd = kfd_process_device_data_by_id(p, bo_priv->mapped_gpuids[j]); 2390 if (!peer_pdd) 2391 return -EINVAL; 2392 2393 peer = peer_pdd->dev; 2394 2395 peer_pdd = kfd_bind_process_to_device(peer, p); 2396 if (IS_ERR(peer_pdd)) 2397 return PTR_ERR(peer_pdd); 2398 2399 ret = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(peer->adev, kgd_mem, 2400 peer_pdd->drm_priv); 2401 if (ret) { 2402 pr_err("Failed to map to gpu %d/%d\n", j, p->n_pdds); 2403 return ret; 2404 } 2405 } 2406 2407 pr_debug("map memory was successful for the BO\n"); 2408 /* create the dmabuf object and export the bo */ 2409 if (bo_bucket->alloc_flags 2410 & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) { 2411 ret = criu_get_prime_handle(kgd_mem, DRM_RDWR, 2412 &bo_bucket->dmabuf_fd); 2413 if (ret) 2414 return ret; 2415 } else { 2416 bo_bucket->dmabuf_fd = KFD_INVALID_FD; 2417 } 2418 2419 return 0; 2420 } 2421 2422 static int criu_restore_bos(struct kfd_process *p, 2423 struct kfd_ioctl_criu_args *args, 2424 uint64_t *priv_offset, 2425 uint64_t max_priv_data_size) 2426 { 2427 struct kfd_criu_bo_bucket *bo_buckets = NULL; 2428 struct kfd_criu_bo_priv_data *bo_privs = NULL; 2429 int ret = 0; 2430 uint32_t i = 0; 2431 2432 if (*priv_offset + (args->num_bos * sizeof(*bo_privs)) > max_priv_data_size) 2433 return -EINVAL; 2434 2435 /* Prevent MMU notifications until stage-4 IOCTL (CRIU_RESUME) is received */ 2436 amdgpu_amdkfd_block_mmu_notifications(p->kgd_process_info); 2437 2438 bo_buckets = kvmalloc_array(args->num_bos, sizeof(*bo_buckets), GFP_KERNEL); 2439 if (!bo_buckets) 2440 return -ENOMEM; 2441 2442 ret = copy_from_user(bo_buckets, (void __user *)args->bos, 2443 args->num_bos * sizeof(*bo_buckets)); 2444 if (ret) { 2445 pr_err("Failed to copy BOs information from user\n"); 2446 ret = -EFAULT; 2447 goto exit; 2448 } 2449 2450 bo_privs = kvmalloc_array(args->num_bos, sizeof(*bo_privs), GFP_KERNEL); 2451 if (!bo_privs) { 2452 ret = -ENOMEM; 2453 goto exit; 2454 } 2455 2456 ret = copy_from_user(bo_privs, (void __user *)args->priv_data + *priv_offset, 2457 args->num_bos * sizeof(*bo_privs)); 2458 if (ret) { 2459 pr_err("Failed to copy BOs information from user\n"); 2460 ret = -EFAULT; 2461 goto exit; 2462 } 2463 *priv_offset += args->num_bos * sizeof(*bo_privs); 2464 2465 /* Create and map new BOs */ 2466 for (; i < args->num_bos; i++) { 2467 ret = criu_restore_bo(p, &bo_buckets[i], &bo_privs[i]); 2468 if (ret) { 2469 pr_debug("Failed to restore BO[%d] ret%d\n", i, ret); 2470 goto exit; 2471 } 2472 } /* done */ 2473 2474 /* Copy only the buckets back so user can read bo_buckets[N].restored_offset */ 2475 ret = copy_to_user((void __user *)args->bos, 2476 bo_buckets, 2477 (args->num_bos * sizeof(*bo_buckets))); 2478 if (ret) 2479 ret = -EFAULT; 2480 2481 exit: 2482 while (ret && i--) { 2483 if (bo_buckets[i].alloc_flags 2484 & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) 2485 close_fd(bo_buckets[i].dmabuf_fd); 2486 } 2487 kvfree(bo_buckets); 2488 kvfree(bo_privs); 2489 return ret; 2490 } 2491 2492 static int criu_restore_objects(struct file *filep, 2493 struct kfd_process *p, 2494 struct kfd_ioctl_criu_args *args, 2495 uint64_t *priv_offset, 2496 uint64_t max_priv_data_size) 2497 { 2498 int ret = 0; 2499 uint32_t i; 2500 2501 BUILD_BUG_ON(offsetof(struct kfd_criu_queue_priv_data, object_type)); 2502 BUILD_BUG_ON(offsetof(struct kfd_criu_event_priv_data, object_type)); 2503 BUILD_BUG_ON(offsetof(struct kfd_criu_svm_range_priv_data, object_type)); 2504 2505 for (i = 0; i < args->num_objects; i++) { 2506 uint32_t object_type; 2507 2508 if (*priv_offset + sizeof(object_type) > max_priv_data_size) { 2509 pr_err("Invalid private data size\n"); 2510 return -EINVAL; 2511 } 2512 2513 ret = get_user(object_type, (uint32_t __user *)(args->priv_data + *priv_offset)); 2514 if (ret) { 2515 pr_err("Failed to copy private information from user\n"); 2516 goto exit; 2517 } 2518 2519 switch (object_type) { 2520 case KFD_CRIU_OBJECT_TYPE_QUEUE: 2521 ret = kfd_criu_restore_queue(p, (uint8_t __user *)args->priv_data, 2522 priv_offset, max_priv_data_size); 2523 if (ret) 2524 goto exit; 2525 break; 2526 case KFD_CRIU_OBJECT_TYPE_EVENT: 2527 ret = kfd_criu_restore_event(filep, p, (uint8_t __user *)args->priv_data, 2528 priv_offset, max_priv_data_size); 2529 if (ret) 2530 goto exit; 2531 break; 2532 case KFD_CRIU_OBJECT_TYPE_SVM_RANGE: 2533 ret = kfd_criu_restore_svm(p, (uint8_t __user *)args->priv_data, 2534 priv_offset, max_priv_data_size); 2535 if (ret) 2536 goto exit; 2537 break; 2538 default: 2539 pr_err("Invalid object type:%u at index:%d\n", object_type, i); 2540 ret = -EINVAL; 2541 goto exit; 2542 } 2543 } 2544 exit: 2545 return ret; 2546 } 2547 2548 static int criu_restore(struct file *filep, 2549 struct kfd_process *p, 2550 struct kfd_ioctl_criu_args *args) 2551 { 2552 uint64_t priv_offset = 0; 2553 int ret = 0; 2554 2555 pr_debug("CRIU restore (num_devices:%u num_bos:%u num_objects:%u priv_data_size:%llu)\n", 2556 args->num_devices, args->num_bos, args->num_objects, args->priv_data_size); 2557 2558 if (!args->bos || !args->devices || !args->priv_data || !args->priv_data_size || 2559 !args->num_devices || !args->num_bos) 2560 return -EINVAL; 2561 2562 mutex_lock(&p->mutex); 2563 2564 /* 2565 * Set the process to evicted state to avoid running any new queues before all the memory 2566 * mappings are ready. 2567 */ 2568 ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_RESTORE); 2569 if (ret) 2570 goto exit_unlock; 2571 2572 /* Each function will adjust priv_offset based on how many bytes they consumed */ 2573 ret = criu_restore_process(p, args, &priv_offset, args->priv_data_size); 2574 if (ret) 2575 goto exit_unlock; 2576 2577 ret = criu_restore_devices(p, args, &priv_offset, args->priv_data_size); 2578 if (ret) 2579 goto exit_unlock; 2580 2581 ret = criu_restore_bos(p, args, &priv_offset, args->priv_data_size); 2582 if (ret) 2583 goto exit_unlock; 2584 2585 ret = criu_restore_objects(filep, p, args, &priv_offset, args->priv_data_size); 2586 if (ret) 2587 goto exit_unlock; 2588 2589 if (priv_offset != args->priv_data_size) { 2590 pr_err("Invalid private data size\n"); 2591 ret = -EINVAL; 2592 } 2593 2594 exit_unlock: 2595 mutex_unlock(&p->mutex); 2596 if (ret) 2597 pr_err("Failed to restore CRIU ret:%d\n", ret); 2598 else 2599 pr_debug("CRIU restore successful\n"); 2600 2601 return ret; 2602 } 2603 2604 static int criu_unpause(struct file *filep, 2605 struct kfd_process *p, 2606 struct kfd_ioctl_criu_args *args) 2607 { 2608 int ret; 2609 2610 mutex_lock(&p->mutex); 2611 2612 if (!p->queues_paused) { 2613 mutex_unlock(&p->mutex); 2614 return -EINVAL; 2615 } 2616 2617 ret = kfd_process_restore_queues(p); 2618 if (ret) 2619 pr_err("Failed to unpause queues ret:%d\n", ret); 2620 else 2621 p->queues_paused = false; 2622 2623 mutex_unlock(&p->mutex); 2624 2625 return ret; 2626 } 2627 2628 static int criu_resume(struct file *filep, 2629 struct kfd_process *p, 2630 struct kfd_ioctl_criu_args *args) 2631 { 2632 struct kfd_process *target = NULL; 2633 struct pid *pid = NULL; 2634 int ret = 0; 2635 2636 pr_debug("Inside %s, target pid for criu restore: %d\n", __func__, 2637 args->pid); 2638 2639 pid = find_get_pid(args->pid); 2640 if (!pid) { 2641 pr_err("Cannot find pid info for %i\n", args->pid); 2642 return -ESRCH; 2643 } 2644 2645 pr_debug("calling kfd_lookup_process_by_pid\n"); 2646 target = kfd_lookup_process_by_pid(pid); 2647 2648 put_pid(pid); 2649 2650 if (!target) { 2651 pr_debug("Cannot find process info for %i\n", args->pid); 2652 return -ESRCH; 2653 } 2654 2655 mutex_lock(&target->mutex); 2656 ret = kfd_criu_resume_svm(target); 2657 if (ret) { 2658 pr_err("kfd_criu_resume_svm failed for %i\n", args->pid); 2659 goto exit; 2660 } 2661 2662 ret = amdgpu_amdkfd_criu_resume(target->kgd_process_info); 2663 if (ret) 2664 pr_err("amdgpu_amdkfd_criu_resume failed for %i\n", args->pid); 2665 2666 exit: 2667 mutex_unlock(&target->mutex); 2668 2669 kfd_unref_process(target); 2670 return ret; 2671 } 2672 2673 static int criu_process_info(struct file *filep, 2674 struct kfd_process *p, 2675 struct kfd_ioctl_criu_args *args) 2676 { 2677 int ret = 0; 2678 2679 mutex_lock(&p->mutex); 2680 2681 if (!p->n_pdds) { 2682 pr_err("No pdd for given process\n"); 2683 ret = -ENODEV; 2684 goto err_unlock; 2685 } 2686 2687 ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_CHECKPOINT); 2688 if (ret) 2689 goto err_unlock; 2690 2691 p->queues_paused = true; 2692 2693 args->pid = task_pid_nr_ns(p->lead_thread, 2694 task_active_pid_ns(p->lead_thread)); 2695 2696 ret = criu_get_process_object_info(p, &args->num_devices, &args->num_bos, 2697 &args->num_objects, &args->priv_data_size); 2698 if (ret) 2699 goto err_unlock; 2700 2701 dev_dbg(kfd_device, "Num of devices:%u bos:%u objects:%u priv_data_size:%lld\n", 2702 args->num_devices, args->num_bos, args->num_objects, 2703 args->priv_data_size); 2704 2705 err_unlock: 2706 if (ret) { 2707 kfd_process_restore_queues(p); 2708 p->queues_paused = false; 2709 } 2710 mutex_unlock(&p->mutex); 2711 return ret; 2712 } 2713 2714 static int kfd_ioctl_criu(struct file *filep, struct kfd_process *p, void *data) 2715 { 2716 struct kfd_ioctl_criu_args *args = data; 2717 int ret; 2718 2719 dev_dbg(kfd_device, "CRIU operation: %d\n", args->op); 2720 switch (args->op) { 2721 case KFD_CRIU_OP_PROCESS_INFO: 2722 ret = criu_process_info(filep, p, args); 2723 break; 2724 case KFD_CRIU_OP_CHECKPOINT: 2725 ret = criu_checkpoint(filep, p, args); 2726 break; 2727 case KFD_CRIU_OP_UNPAUSE: 2728 ret = criu_unpause(filep, p, args); 2729 break; 2730 case KFD_CRIU_OP_RESTORE: 2731 ret = criu_restore(filep, p, args); 2732 break; 2733 case KFD_CRIU_OP_RESUME: 2734 ret = criu_resume(filep, p, args); 2735 break; 2736 default: 2737 dev_dbg(kfd_device, "Unsupported CRIU operation:%d\n", args->op); 2738 ret = -EINVAL; 2739 break; 2740 } 2741 2742 if (ret) 2743 dev_dbg(kfd_device, "CRIU operation:%d err:%d\n", args->op, ret); 2744 2745 return ret; 2746 } 2747 2748 static int runtime_enable(struct kfd_process *p, uint64_t r_debug, 2749 bool enable_ttmp_setup) 2750 { 2751 int i = 0, ret = 0; 2752 2753 if (p->is_runtime_retry) 2754 goto retry; 2755 2756 if (p->runtime_info.runtime_state != DEBUG_RUNTIME_STATE_DISABLED) 2757 return -EBUSY; 2758 2759 for (i = 0; i < p->n_pdds; i++) { 2760 struct kfd_process_device *pdd = p->pdds[i]; 2761 2762 if (pdd->qpd.queue_count) 2763 return -EEXIST; 2764 2765 /* 2766 * Setup TTMPs by default. 2767 * Note that this call must remain here for MES ADD QUEUE to 2768 * skip_process_ctx_clear unconditionally as the first call to 2769 * SET_SHADER_DEBUGGER clears any stale process context data 2770 * saved in MES. 2771 */ 2772 if (pdd->dev->kfd->shared_resources.enable_mes) 2773 kfd_dbg_set_mes_debug_mode(pdd, !kfd_dbg_has_cwsr_workaround(pdd->dev)); 2774 } 2775 2776 p->runtime_info.runtime_state = DEBUG_RUNTIME_STATE_ENABLED; 2777 p->runtime_info.r_debug = r_debug; 2778 p->runtime_info.ttmp_setup = enable_ttmp_setup; 2779 2780 if (p->runtime_info.ttmp_setup) { 2781 for (i = 0; i < p->n_pdds; i++) { 2782 struct kfd_process_device *pdd = p->pdds[i]; 2783 2784 if (!kfd_dbg_is_rlc_restore_supported(pdd->dev)) { 2785 amdgpu_gfx_off_ctrl(pdd->dev->adev, false); 2786 pdd->dev->kfd2kgd->enable_debug_trap( 2787 pdd->dev->adev, 2788 true, 2789 pdd->dev->vm_info.last_vmid_kfd); 2790 } else if (kfd_dbg_is_per_vmid_supported(pdd->dev)) { 2791 pdd->spi_dbg_override = pdd->dev->kfd2kgd->enable_debug_trap( 2792 pdd->dev->adev, 2793 false, 2794 0); 2795 } 2796 } 2797 } 2798 2799 retry: 2800 if (p->debug_trap_enabled) { 2801 if (!p->is_runtime_retry) { 2802 kfd_dbg_trap_activate(p); 2803 kfd_dbg_ev_raise(KFD_EC_MASK(EC_PROCESS_RUNTIME), 2804 p, NULL, 0, false, NULL, 0); 2805 } 2806 2807 mutex_unlock(&p->mutex); 2808 ret = down_interruptible(&p->runtime_enable_sema); 2809 mutex_lock(&p->mutex); 2810 2811 p->is_runtime_retry = !!ret; 2812 } 2813 2814 return ret; 2815 } 2816 2817 static int runtime_disable(struct kfd_process *p) 2818 { 2819 int i = 0, ret; 2820 bool was_enabled = p->runtime_info.runtime_state == DEBUG_RUNTIME_STATE_ENABLED; 2821 2822 p->runtime_info.runtime_state = DEBUG_RUNTIME_STATE_DISABLED; 2823 p->runtime_info.r_debug = 0; 2824 2825 if (p->debug_trap_enabled) { 2826 if (was_enabled) 2827 kfd_dbg_trap_deactivate(p, false, 0); 2828 2829 if (!p->is_runtime_retry) 2830 kfd_dbg_ev_raise(KFD_EC_MASK(EC_PROCESS_RUNTIME), 2831 p, NULL, 0, false, NULL, 0); 2832 2833 mutex_unlock(&p->mutex); 2834 ret = down_interruptible(&p->runtime_enable_sema); 2835 mutex_lock(&p->mutex); 2836 2837 p->is_runtime_retry = !!ret; 2838 if (ret) 2839 return ret; 2840 } 2841 2842 if (was_enabled && p->runtime_info.ttmp_setup) { 2843 for (i = 0; i < p->n_pdds; i++) { 2844 struct kfd_process_device *pdd = p->pdds[i]; 2845 2846 if (!kfd_dbg_is_rlc_restore_supported(pdd->dev)) 2847 amdgpu_gfx_off_ctrl(pdd->dev->adev, true); 2848 } 2849 } 2850 2851 p->runtime_info.ttmp_setup = false; 2852 2853 /* disable ttmp setup */ 2854 for (i = 0; i < p->n_pdds; i++) { 2855 struct kfd_process_device *pdd = p->pdds[i]; 2856 2857 if (kfd_dbg_is_per_vmid_supported(pdd->dev)) { 2858 pdd->spi_dbg_override = 2859 pdd->dev->kfd2kgd->disable_debug_trap( 2860 pdd->dev->adev, 2861 false, 2862 pdd->dev->vm_info.last_vmid_kfd); 2863 2864 if (!pdd->dev->kfd->shared_resources.enable_mes) 2865 debug_refresh_runlist(pdd->dev->dqm); 2866 else 2867 kfd_dbg_set_mes_debug_mode(pdd, 2868 !kfd_dbg_has_cwsr_workaround(pdd->dev)); 2869 } 2870 } 2871 2872 return 0; 2873 } 2874 2875 static int kfd_ioctl_runtime_enable(struct file *filep, struct kfd_process *p, void *data) 2876 { 2877 struct kfd_ioctl_runtime_enable_args *args = data; 2878 int r; 2879 2880 mutex_lock(&p->mutex); 2881 2882 if (args->mode_mask & KFD_RUNTIME_ENABLE_MODE_ENABLE_MASK) 2883 r = runtime_enable(p, args->r_debug, 2884 !!(args->mode_mask & KFD_RUNTIME_ENABLE_MODE_TTMP_SAVE_MASK)); 2885 else 2886 r = runtime_disable(p); 2887 2888 mutex_unlock(&p->mutex); 2889 2890 return r; 2891 } 2892 2893 static int kfd_ioctl_set_debug_trap(struct file *filep, struct kfd_process *p, void *data) 2894 { 2895 struct kfd_ioctl_dbg_trap_args *args = data; 2896 struct task_struct *thread = NULL; 2897 struct mm_struct *mm = NULL; 2898 struct pid *pid = NULL; 2899 struct kfd_process *target = NULL; 2900 struct kfd_process_device *pdd = NULL; 2901 int r = 0; 2902 2903 if (sched_policy == KFD_SCHED_POLICY_NO_HWS) { 2904 pr_err("Debugging does not support sched_policy %i", sched_policy); 2905 return -EINVAL; 2906 } 2907 2908 pid = find_get_pid(args->pid); 2909 if (!pid) { 2910 pr_debug("Cannot find pid info for %i\n", args->pid); 2911 r = -ESRCH; 2912 goto out; 2913 } 2914 2915 thread = get_pid_task(pid, PIDTYPE_PID); 2916 if (!thread) { 2917 r = -ESRCH; 2918 goto out; 2919 } 2920 2921 mm = get_task_mm(thread); 2922 if (!mm) { 2923 r = -ESRCH; 2924 goto out; 2925 } 2926 2927 if (args->op == KFD_IOC_DBG_TRAP_ENABLE) { 2928 bool create_process; 2929 2930 rcu_read_lock(); 2931 create_process = thread && thread != current && ptrace_parent(thread) == current; 2932 rcu_read_unlock(); 2933 2934 target = create_process ? kfd_create_process(thread) : 2935 kfd_lookup_process_by_pid(pid); 2936 } else { 2937 target = kfd_lookup_process_by_pid(pid); 2938 } 2939 2940 if (IS_ERR_OR_NULL(target)) { 2941 pr_debug("Cannot find process PID %i to debug\n", args->pid); 2942 r = target ? PTR_ERR(target) : -ESRCH; 2943 goto out; 2944 } 2945 2946 /* Check if target is still PTRACED. */ 2947 rcu_read_lock(); 2948 if (target != p && args->op != KFD_IOC_DBG_TRAP_DISABLE 2949 && ptrace_parent(target->lead_thread) != current) { 2950 pr_err("PID %i is not PTRACED and cannot be debugged\n", args->pid); 2951 r = -EPERM; 2952 } 2953 rcu_read_unlock(); 2954 2955 if (r) 2956 goto out; 2957 2958 mutex_lock(&target->mutex); 2959 2960 if (args->op != KFD_IOC_DBG_TRAP_ENABLE && !target->debug_trap_enabled) { 2961 pr_err("PID %i not debug enabled for op %i\n", args->pid, args->op); 2962 r = -EINVAL; 2963 goto unlock_out; 2964 } 2965 2966 if (target->runtime_info.runtime_state != DEBUG_RUNTIME_STATE_ENABLED && 2967 (args->op == KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_OVERRIDE || 2968 args->op == KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_MODE || 2969 args->op == KFD_IOC_DBG_TRAP_SUSPEND_QUEUES || 2970 args->op == KFD_IOC_DBG_TRAP_RESUME_QUEUES || 2971 args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH || 2972 args->op == KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH || 2973 args->op == KFD_IOC_DBG_TRAP_SET_FLAGS)) { 2974 r = -EPERM; 2975 goto unlock_out; 2976 } 2977 2978 if (args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH || 2979 args->op == KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH) { 2980 int user_gpu_id = kfd_process_get_user_gpu_id(target, 2981 args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ? 2982 args->set_node_address_watch.gpu_id : 2983 args->clear_node_address_watch.gpu_id); 2984 2985 pdd = kfd_process_device_data_by_id(target, user_gpu_id); 2986 if (user_gpu_id == -EINVAL || !pdd) { 2987 r = -ENODEV; 2988 goto unlock_out; 2989 } 2990 } 2991 2992 switch (args->op) { 2993 case KFD_IOC_DBG_TRAP_ENABLE: 2994 if (target != p) 2995 target->debugger_process = p; 2996 2997 r = kfd_dbg_trap_enable(target, 2998 args->enable.dbg_fd, 2999 (void __user *)args->enable.rinfo_ptr, 3000 &args->enable.rinfo_size); 3001 if (!r) 3002 target->exception_enable_mask = args->enable.exception_mask; 3003 3004 break; 3005 case KFD_IOC_DBG_TRAP_DISABLE: 3006 r = kfd_dbg_trap_disable(target); 3007 break; 3008 case KFD_IOC_DBG_TRAP_SEND_RUNTIME_EVENT: 3009 r = kfd_dbg_send_exception_to_runtime(target, 3010 args->send_runtime_event.gpu_id, 3011 args->send_runtime_event.queue_id, 3012 args->send_runtime_event.exception_mask); 3013 break; 3014 case KFD_IOC_DBG_TRAP_SET_EXCEPTIONS_ENABLED: 3015 kfd_dbg_set_enabled_debug_exception_mask(target, 3016 args->set_exceptions_enabled.exception_mask); 3017 break; 3018 case KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_OVERRIDE: 3019 r = kfd_dbg_trap_set_wave_launch_override(target, 3020 args->launch_override.override_mode, 3021 args->launch_override.enable_mask, 3022 args->launch_override.support_request_mask, 3023 &args->launch_override.enable_mask, 3024 &args->launch_override.support_request_mask); 3025 break; 3026 case KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_MODE: 3027 r = kfd_dbg_trap_set_wave_launch_mode(target, 3028 args->launch_mode.launch_mode); 3029 break; 3030 case KFD_IOC_DBG_TRAP_SUSPEND_QUEUES: 3031 r = suspend_queues(target, 3032 args->suspend_queues.num_queues, 3033 args->suspend_queues.grace_period, 3034 args->suspend_queues.exception_mask, 3035 (uint32_t *)args->suspend_queues.queue_array_ptr); 3036 3037 break; 3038 case KFD_IOC_DBG_TRAP_RESUME_QUEUES: 3039 r = resume_queues(target, args->resume_queues.num_queues, 3040 (uint32_t *)args->resume_queues.queue_array_ptr); 3041 break; 3042 case KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH: 3043 r = kfd_dbg_trap_set_dev_address_watch(pdd, 3044 args->set_node_address_watch.address, 3045 args->set_node_address_watch.mask, 3046 &args->set_node_address_watch.id, 3047 args->set_node_address_watch.mode); 3048 break; 3049 case KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH: 3050 r = kfd_dbg_trap_clear_dev_address_watch(pdd, 3051 args->clear_node_address_watch.id); 3052 break; 3053 case KFD_IOC_DBG_TRAP_SET_FLAGS: 3054 r = kfd_dbg_trap_set_flags(target, &args->set_flags.flags); 3055 break; 3056 case KFD_IOC_DBG_TRAP_QUERY_DEBUG_EVENT: 3057 r = kfd_dbg_ev_query_debug_event(target, 3058 &args->query_debug_event.queue_id, 3059 &args->query_debug_event.gpu_id, 3060 args->query_debug_event.exception_mask, 3061 &args->query_debug_event.exception_mask); 3062 break; 3063 case KFD_IOC_DBG_TRAP_QUERY_EXCEPTION_INFO: 3064 r = kfd_dbg_trap_query_exception_info(target, 3065 args->query_exception_info.source_id, 3066 args->query_exception_info.exception_code, 3067 args->query_exception_info.clear_exception, 3068 (void __user *)args->query_exception_info.info_ptr, 3069 &args->query_exception_info.info_size); 3070 break; 3071 case KFD_IOC_DBG_TRAP_GET_QUEUE_SNAPSHOT: 3072 r = pqm_get_queue_snapshot(&target->pqm, 3073 args->queue_snapshot.exception_mask, 3074 (void __user *)args->queue_snapshot.snapshot_buf_ptr, 3075 &args->queue_snapshot.num_queues, 3076 &args->queue_snapshot.entry_size); 3077 break; 3078 case KFD_IOC_DBG_TRAP_GET_DEVICE_SNAPSHOT: 3079 r = kfd_dbg_trap_device_snapshot(target, 3080 args->device_snapshot.exception_mask, 3081 (void __user *)args->device_snapshot.snapshot_buf_ptr, 3082 &args->device_snapshot.num_devices, 3083 &args->device_snapshot.entry_size); 3084 break; 3085 default: 3086 pr_err("Invalid option: %i\n", args->op); 3087 r = -EINVAL; 3088 } 3089 3090 unlock_out: 3091 mutex_unlock(&target->mutex); 3092 3093 out: 3094 if (thread) 3095 put_task_struct(thread); 3096 3097 if (mm) 3098 mmput(mm); 3099 3100 if (pid) 3101 put_pid(pid); 3102 3103 if (target) 3104 kfd_unref_process(target); 3105 3106 return r; 3107 } 3108 3109 #define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \ 3110 [_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, \ 3111 .cmd_drv = 0, .name = #ioctl} 3112 3113 /** Ioctl table */ 3114 static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = { 3115 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_VERSION, 3116 kfd_ioctl_get_version, 0), 3117 3118 AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_QUEUE, 3119 kfd_ioctl_create_queue, 0), 3120 3121 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_QUEUE, 3122 kfd_ioctl_destroy_queue, 0), 3123 3124 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_MEMORY_POLICY, 3125 kfd_ioctl_set_memory_policy, 0), 3126 3127 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_CLOCK_COUNTERS, 3128 kfd_ioctl_get_clock_counters, 0), 3129 3130 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES, 3131 kfd_ioctl_get_process_apertures, 0), 3132 3133 AMDKFD_IOCTL_DEF(AMDKFD_IOC_UPDATE_QUEUE, 3134 kfd_ioctl_update_queue, 0), 3135 3136 AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_EVENT, 3137 kfd_ioctl_create_event, 0), 3138 3139 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_EVENT, 3140 kfd_ioctl_destroy_event, 0), 3141 3142 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_EVENT, 3143 kfd_ioctl_set_event, 0), 3144 3145 AMDKFD_IOCTL_DEF(AMDKFD_IOC_RESET_EVENT, 3146 kfd_ioctl_reset_event, 0), 3147 3148 AMDKFD_IOCTL_DEF(AMDKFD_IOC_WAIT_EVENTS, 3149 kfd_ioctl_wait_events, 0), 3150 3151 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_REGISTER_DEPRECATED, 3152 kfd_ioctl_dbg_register, 0), 3153 3154 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_UNREGISTER_DEPRECATED, 3155 kfd_ioctl_dbg_unregister, 0), 3156 3157 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_ADDRESS_WATCH_DEPRECATED, 3158 kfd_ioctl_dbg_address_watch, 0), 3159 3160 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_WAVE_CONTROL_DEPRECATED, 3161 kfd_ioctl_dbg_wave_control, 0), 3162 3163 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_SCRATCH_BACKING_VA, 3164 kfd_ioctl_set_scratch_backing_va, 0), 3165 3166 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG, 3167 kfd_ioctl_get_tile_config, 0), 3168 3169 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_TRAP_HANDLER, 3170 kfd_ioctl_set_trap_handler, 0), 3171 3172 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES_NEW, 3173 kfd_ioctl_get_process_apertures_new, 0), 3174 3175 AMDKFD_IOCTL_DEF(AMDKFD_IOC_ACQUIRE_VM, 3176 kfd_ioctl_acquire_vm, 0), 3177 3178 AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_MEMORY_OF_GPU, 3179 kfd_ioctl_alloc_memory_of_gpu, 0), 3180 3181 AMDKFD_IOCTL_DEF(AMDKFD_IOC_FREE_MEMORY_OF_GPU, 3182 kfd_ioctl_free_memory_of_gpu, 0), 3183 3184 AMDKFD_IOCTL_DEF(AMDKFD_IOC_MAP_MEMORY_TO_GPU, 3185 kfd_ioctl_map_memory_to_gpu, 0), 3186 3187 AMDKFD_IOCTL_DEF(AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU, 3188 kfd_ioctl_unmap_memory_from_gpu, 0), 3189 3190 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_CU_MASK, 3191 kfd_ioctl_set_cu_mask, 0), 3192 3193 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_QUEUE_WAVE_STATE, 3194 kfd_ioctl_get_queue_wave_state, 0), 3195 3196 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_DMABUF_INFO, 3197 kfd_ioctl_get_dmabuf_info, 0), 3198 3199 AMDKFD_IOCTL_DEF(AMDKFD_IOC_IMPORT_DMABUF, 3200 kfd_ioctl_import_dmabuf, 0), 3201 3202 AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_QUEUE_GWS, 3203 kfd_ioctl_alloc_queue_gws, 0), 3204 3205 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SMI_EVENTS, 3206 kfd_ioctl_smi_events, 0), 3207 3208 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SVM, kfd_ioctl_svm, 0), 3209 3210 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_XNACK_MODE, 3211 kfd_ioctl_set_xnack_mode, 0), 3212 3213 AMDKFD_IOCTL_DEF(AMDKFD_IOC_CRIU_OP, 3214 kfd_ioctl_criu, KFD_IOC_FLAG_CHECKPOINT_RESTORE), 3215 3216 AMDKFD_IOCTL_DEF(AMDKFD_IOC_AVAILABLE_MEMORY, 3217 kfd_ioctl_get_available_memory, 0), 3218 3219 AMDKFD_IOCTL_DEF(AMDKFD_IOC_EXPORT_DMABUF, 3220 kfd_ioctl_export_dmabuf, 0), 3221 3222 AMDKFD_IOCTL_DEF(AMDKFD_IOC_RUNTIME_ENABLE, 3223 kfd_ioctl_runtime_enable, 0), 3224 3225 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_TRAP, 3226 kfd_ioctl_set_debug_trap, 0), 3227 }; 3228 3229 #define AMDKFD_CORE_IOCTL_COUNT ARRAY_SIZE(amdkfd_ioctls) 3230 3231 static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg) 3232 { 3233 struct kfd_process *process; 3234 amdkfd_ioctl_t *func; 3235 const struct amdkfd_ioctl_desc *ioctl = NULL; 3236 unsigned int nr = _IOC_NR(cmd); 3237 char stack_kdata[128]; 3238 char *kdata = NULL; 3239 unsigned int usize, asize; 3240 int retcode = -EINVAL; 3241 bool ptrace_attached = false; 3242 3243 if (nr >= AMDKFD_CORE_IOCTL_COUNT) 3244 goto err_i1; 3245 3246 if ((nr >= AMDKFD_COMMAND_START) && (nr < AMDKFD_COMMAND_END)) { 3247 u32 amdkfd_size; 3248 3249 ioctl = &amdkfd_ioctls[nr]; 3250 3251 amdkfd_size = _IOC_SIZE(ioctl->cmd); 3252 usize = asize = _IOC_SIZE(cmd); 3253 if (amdkfd_size > asize) 3254 asize = amdkfd_size; 3255 3256 cmd = ioctl->cmd; 3257 } else 3258 goto err_i1; 3259 3260 dev_dbg(kfd_device, "ioctl cmd 0x%x (#0x%x), arg 0x%lx\n", cmd, nr, arg); 3261 3262 /* Get the process struct from the filep. Only the process 3263 * that opened /dev/kfd can use the file descriptor. Child 3264 * processes need to create their own KFD device context. 3265 */ 3266 process = filep->private_data; 3267 3268 rcu_read_lock(); 3269 if ((ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE) && 3270 ptrace_parent(process->lead_thread) == current) 3271 ptrace_attached = true; 3272 rcu_read_unlock(); 3273 3274 if (process->lead_thread != current->group_leader 3275 && !ptrace_attached) { 3276 dev_dbg(kfd_device, "Using KFD FD in wrong process\n"); 3277 retcode = -EBADF; 3278 goto err_i1; 3279 } 3280 3281 /* Do not trust userspace, use our own definition */ 3282 func = ioctl->func; 3283 3284 if (unlikely(!func)) { 3285 dev_dbg(kfd_device, "no function\n"); 3286 retcode = -EINVAL; 3287 goto err_i1; 3288 } 3289 3290 /* 3291 * Versions of docker shipped in Ubuntu 18.xx and 20.xx do not support 3292 * CAP_CHECKPOINT_RESTORE, so we also allow access if CAP_SYS_ADMIN as CAP_SYS_ADMIN is a 3293 * more priviledged access. 3294 */ 3295 if (unlikely(ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE)) { 3296 if (!capable(CAP_CHECKPOINT_RESTORE) && 3297 !capable(CAP_SYS_ADMIN)) { 3298 retcode = -EACCES; 3299 goto err_i1; 3300 } 3301 } 3302 3303 if (cmd & (IOC_IN | IOC_OUT)) { 3304 if (asize <= sizeof(stack_kdata)) { 3305 kdata = stack_kdata; 3306 } else { 3307 kdata = kmalloc(asize, GFP_KERNEL); 3308 if (!kdata) { 3309 retcode = -ENOMEM; 3310 goto err_i1; 3311 } 3312 } 3313 if (asize > usize) 3314 memset(kdata + usize, 0, asize - usize); 3315 } 3316 3317 if (cmd & IOC_IN) { 3318 if (copy_from_user(kdata, (void __user *)arg, usize) != 0) { 3319 retcode = -EFAULT; 3320 goto err_i1; 3321 } 3322 } else if (cmd & IOC_OUT) { 3323 memset(kdata, 0, usize); 3324 } 3325 3326 retcode = func(filep, process, kdata); 3327 3328 if (cmd & IOC_OUT) 3329 if (copy_to_user((void __user *)arg, kdata, usize) != 0) 3330 retcode = -EFAULT; 3331 3332 err_i1: 3333 if (!ioctl) 3334 dev_dbg(kfd_device, "invalid ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n", 3335 task_pid_nr(current), cmd, nr); 3336 3337 if (kdata != stack_kdata) 3338 kfree(kdata); 3339 3340 if (retcode) 3341 dev_dbg(kfd_device, "ioctl cmd (#0x%x), arg 0x%lx, ret = %d\n", 3342 nr, arg, retcode); 3343 3344 return retcode; 3345 } 3346 3347 static int kfd_mmio_mmap(struct kfd_node *dev, struct kfd_process *process, 3348 struct vm_area_struct *vma) 3349 { 3350 phys_addr_t address; 3351 3352 if (vma->vm_end - vma->vm_start != PAGE_SIZE) 3353 return -EINVAL; 3354 3355 address = dev->adev->rmmio_remap.bus_addr; 3356 3357 vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE | 3358 VM_DONTDUMP | VM_PFNMAP); 3359 3360 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 3361 3362 pr_debug("pasid 0x%x mapping mmio page\n" 3363 " target user address == 0x%08llX\n" 3364 " physical address == 0x%08llX\n" 3365 " vm_flags == 0x%04lX\n" 3366 " size == 0x%04lX\n", 3367 process->pasid, (unsigned long long) vma->vm_start, 3368 address, vma->vm_flags, PAGE_SIZE); 3369 3370 return io_remap_pfn_range(vma, 3371 vma->vm_start, 3372 address >> PAGE_SHIFT, 3373 PAGE_SIZE, 3374 vma->vm_page_prot); 3375 } 3376 3377 3378 static int kfd_mmap(struct file *filp, struct vm_area_struct *vma) 3379 { 3380 struct kfd_process *process; 3381 struct kfd_node *dev = NULL; 3382 unsigned long mmap_offset; 3383 unsigned int gpu_id; 3384 3385 process = kfd_get_process(current); 3386 if (IS_ERR(process)) 3387 return PTR_ERR(process); 3388 3389 mmap_offset = vma->vm_pgoff << PAGE_SHIFT; 3390 gpu_id = KFD_MMAP_GET_GPU_ID(mmap_offset); 3391 if (gpu_id) 3392 dev = kfd_device_by_id(gpu_id); 3393 3394 switch (mmap_offset & KFD_MMAP_TYPE_MASK) { 3395 case KFD_MMAP_TYPE_DOORBELL: 3396 if (!dev) 3397 return -ENODEV; 3398 return kfd_doorbell_mmap(dev, process, vma); 3399 3400 case KFD_MMAP_TYPE_EVENTS: 3401 return kfd_event_mmap(process, vma); 3402 3403 case KFD_MMAP_TYPE_RESERVED_MEM: 3404 if (!dev) 3405 return -ENODEV; 3406 return kfd_reserved_mem_mmap(dev, process, vma); 3407 case KFD_MMAP_TYPE_MMIO: 3408 if (!dev) 3409 return -ENODEV; 3410 return kfd_mmio_mmap(dev, process, vma); 3411 } 3412 3413 return -EFAULT; 3414 } 3415