xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_chardev.c (revision b8265621f4888af9494e1d685620871ec81bc33d)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/device.h>
24 #include <linux/export.h>
25 #include <linux/err.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/sched.h>
29 #include <linux/slab.h>
30 #include <linux/uaccess.h>
31 #include <linux/compat.h>
32 #include <uapi/linux/kfd_ioctl.h>
33 #include <linux/time.h>
34 #include <linux/mm.h>
35 #include <linux/mman.h>
36 #include <linux/dma-buf.h>
37 #include <asm/processor.h>
38 #include "kfd_priv.h"
39 #include "kfd_device_queue_manager.h"
40 #include "kfd_dbgmgr.h"
41 #include "amdgpu_amdkfd.h"
42 
43 static long kfd_ioctl(struct file *, unsigned int, unsigned long);
44 static int kfd_open(struct inode *, struct file *);
45 static int kfd_release(struct inode *, struct file *);
46 static int kfd_mmap(struct file *, struct vm_area_struct *);
47 
48 static const char kfd_dev_name[] = "kfd";
49 
50 static const struct file_operations kfd_fops = {
51 	.owner = THIS_MODULE,
52 	.unlocked_ioctl = kfd_ioctl,
53 	.compat_ioctl = compat_ptr_ioctl,
54 	.open = kfd_open,
55 	.release = kfd_release,
56 	.mmap = kfd_mmap,
57 };
58 
59 static int kfd_char_dev_major = -1;
60 static struct class *kfd_class;
61 struct device *kfd_device;
62 
63 int kfd_chardev_init(void)
64 {
65 	int err = 0;
66 
67 	kfd_char_dev_major = register_chrdev(0, kfd_dev_name, &kfd_fops);
68 	err = kfd_char_dev_major;
69 	if (err < 0)
70 		goto err_register_chrdev;
71 
72 	kfd_class = class_create(THIS_MODULE, kfd_dev_name);
73 	err = PTR_ERR(kfd_class);
74 	if (IS_ERR(kfd_class))
75 		goto err_class_create;
76 
77 	kfd_device = device_create(kfd_class, NULL,
78 					MKDEV(kfd_char_dev_major, 0),
79 					NULL, kfd_dev_name);
80 	err = PTR_ERR(kfd_device);
81 	if (IS_ERR(kfd_device))
82 		goto err_device_create;
83 
84 	return 0;
85 
86 err_device_create:
87 	class_destroy(kfd_class);
88 err_class_create:
89 	unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
90 err_register_chrdev:
91 	return err;
92 }
93 
94 void kfd_chardev_exit(void)
95 {
96 	device_destroy(kfd_class, MKDEV(kfd_char_dev_major, 0));
97 	class_destroy(kfd_class);
98 	unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
99 }
100 
101 struct device *kfd_chardev(void)
102 {
103 	return kfd_device;
104 }
105 
106 
107 static int kfd_open(struct inode *inode, struct file *filep)
108 {
109 	struct kfd_process *process;
110 	bool is_32bit_user_mode;
111 
112 	if (iminor(inode) != 0)
113 		return -ENODEV;
114 
115 	is_32bit_user_mode = in_compat_syscall();
116 
117 	if (is_32bit_user_mode) {
118 		dev_warn(kfd_device,
119 			"Process %d (32-bit) failed to open /dev/kfd\n"
120 			"32-bit processes are not supported by amdkfd\n",
121 			current->pid);
122 		return -EPERM;
123 	}
124 
125 	process = kfd_create_process(filep);
126 	if (IS_ERR(process))
127 		return PTR_ERR(process);
128 
129 	if (kfd_is_locked()) {
130 		dev_dbg(kfd_device, "kfd is locked!\n"
131 				"process %d unreferenced", process->pasid);
132 		kfd_unref_process(process);
133 		return -EAGAIN;
134 	}
135 
136 	/* filep now owns the reference returned by kfd_create_process */
137 	filep->private_data = process;
138 
139 	dev_dbg(kfd_device, "process %d opened, compat mode (32 bit) - %d\n",
140 		process->pasid, process->is_32bit_user_mode);
141 
142 	return 0;
143 }
144 
145 static int kfd_release(struct inode *inode, struct file *filep)
146 {
147 	struct kfd_process *process = filep->private_data;
148 
149 	if (process)
150 		kfd_unref_process(process);
151 
152 	return 0;
153 }
154 
155 static int kfd_ioctl_get_version(struct file *filep, struct kfd_process *p,
156 					void *data)
157 {
158 	struct kfd_ioctl_get_version_args *args = data;
159 
160 	args->major_version = KFD_IOCTL_MAJOR_VERSION;
161 	args->minor_version = KFD_IOCTL_MINOR_VERSION;
162 
163 	return 0;
164 }
165 
166 static int set_queue_properties_from_user(struct queue_properties *q_properties,
167 				struct kfd_ioctl_create_queue_args *args)
168 {
169 	if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) {
170 		pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
171 		return -EINVAL;
172 	}
173 
174 	if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
175 		pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
176 		return -EINVAL;
177 	}
178 
179 	if ((args->ring_base_address) &&
180 		(!access_ok((const void __user *) args->ring_base_address,
181 			sizeof(uint64_t)))) {
182 		pr_err("Can't access ring base address\n");
183 		return -EFAULT;
184 	}
185 
186 	if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
187 		pr_err("Ring size must be a power of 2 or 0\n");
188 		return -EINVAL;
189 	}
190 
191 	if (!access_ok((const void __user *) args->read_pointer_address,
192 			sizeof(uint32_t))) {
193 		pr_err("Can't access read pointer\n");
194 		return -EFAULT;
195 	}
196 
197 	if (!access_ok((const void __user *) args->write_pointer_address,
198 			sizeof(uint32_t))) {
199 		pr_err("Can't access write pointer\n");
200 		return -EFAULT;
201 	}
202 
203 	if (args->eop_buffer_address &&
204 		!access_ok((const void __user *) args->eop_buffer_address,
205 			sizeof(uint32_t))) {
206 		pr_debug("Can't access eop buffer");
207 		return -EFAULT;
208 	}
209 
210 	if (args->ctx_save_restore_address &&
211 		!access_ok((const void __user *) args->ctx_save_restore_address,
212 			sizeof(uint32_t))) {
213 		pr_debug("Can't access ctx save restore buffer");
214 		return -EFAULT;
215 	}
216 
217 	q_properties->is_interop = false;
218 	q_properties->is_gws = false;
219 	q_properties->queue_percent = args->queue_percentage;
220 	q_properties->priority = args->queue_priority;
221 	q_properties->queue_address = args->ring_base_address;
222 	q_properties->queue_size = args->ring_size;
223 	q_properties->read_ptr = (uint32_t *) args->read_pointer_address;
224 	q_properties->write_ptr = (uint32_t *) args->write_pointer_address;
225 	q_properties->eop_ring_buffer_address = args->eop_buffer_address;
226 	q_properties->eop_ring_buffer_size = args->eop_buffer_size;
227 	q_properties->ctx_save_restore_area_address =
228 			args->ctx_save_restore_address;
229 	q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size;
230 	q_properties->ctl_stack_size = args->ctl_stack_size;
231 	if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE ||
232 		args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
233 		q_properties->type = KFD_QUEUE_TYPE_COMPUTE;
234 	else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA)
235 		q_properties->type = KFD_QUEUE_TYPE_SDMA;
236 	else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_XGMI)
237 		q_properties->type = KFD_QUEUE_TYPE_SDMA_XGMI;
238 	else
239 		return -ENOTSUPP;
240 
241 	if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
242 		q_properties->format = KFD_QUEUE_FORMAT_AQL;
243 	else
244 		q_properties->format = KFD_QUEUE_FORMAT_PM4;
245 
246 	pr_debug("Queue Percentage: %d, %d\n",
247 			q_properties->queue_percent, args->queue_percentage);
248 
249 	pr_debug("Queue Priority: %d, %d\n",
250 			q_properties->priority, args->queue_priority);
251 
252 	pr_debug("Queue Address: 0x%llX, 0x%llX\n",
253 			q_properties->queue_address, args->ring_base_address);
254 
255 	pr_debug("Queue Size: 0x%llX, %u\n",
256 			q_properties->queue_size, args->ring_size);
257 
258 	pr_debug("Queue r/w Pointers: %px, %px\n",
259 			q_properties->read_ptr,
260 			q_properties->write_ptr);
261 
262 	pr_debug("Queue Format: %d\n", q_properties->format);
263 
264 	pr_debug("Queue EOP: 0x%llX\n", q_properties->eop_ring_buffer_address);
265 
266 	pr_debug("Queue CTX save area: 0x%llX\n",
267 			q_properties->ctx_save_restore_area_address);
268 
269 	return 0;
270 }
271 
272 static int kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p,
273 					void *data)
274 {
275 	struct kfd_ioctl_create_queue_args *args = data;
276 	struct kfd_dev *dev;
277 	int err = 0;
278 	unsigned int queue_id;
279 	struct kfd_process_device *pdd;
280 	struct queue_properties q_properties;
281 	uint32_t doorbell_offset_in_process = 0;
282 
283 	memset(&q_properties, 0, sizeof(struct queue_properties));
284 
285 	pr_debug("Creating queue ioctl\n");
286 
287 	err = set_queue_properties_from_user(&q_properties, args);
288 	if (err)
289 		return err;
290 
291 	pr_debug("Looking for gpu id 0x%x\n", args->gpu_id);
292 	dev = kfd_device_by_id(args->gpu_id);
293 	if (!dev) {
294 		pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
295 		return -EINVAL;
296 	}
297 
298 	mutex_lock(&p->mutex);
299 
300 	pdd = kfd_bind_process_to_device(dev, p);
301 	if (IS_ERR(pdd)) {
302 		err = -ESRCH;
303 		goto err_bind_process;
304 	}
305 
306 	pr_debug("Creating queue for PASID 0x%x on gpu 0x%x\n",
307 			p->pasid,
308 			dev->id);
309 
310 	err = pqm_create_queue(&p->pqm, dev, filep, &q_properties, &queue_id,
311 			&doorbell_offset_in_process);
312 	if (err != 0)
313 		goto err_create_queue;
314 
315 	args->queue_id = queue_id;
316 
317 
318 	/* Return gpu_id as doorbell offset for mmap usage */
319 	args->doorbell_offset = KFD_MMAP_TYPE_DOORBELL;
320 	args->doorbell_offset |= KFD_MMAP_GPU_ID(args->gpu_id);
321 	if (KFD_IS_SOC15(dev->device_info->asic_family))
322 		/* On SOC15 ASICs, include the doorbell offset within the
323 		 * process doorbell frame, which is 2 pages.
324 		 */
325 		args->doorbell_offset |= doorbell_offset_in_process;
326 
327 	mutex_unlock(&p->mutex);
328 
329 	pr_debug("Queue id %d was created successfully\n", args->queue_id);
330 
331 	pr_debug("Ring buffer address == 0x%016llX\n",
332 			args->ring_base_address);
333 
334 	pr_debug("Read ptr address    == 0x%016llX\n",
335 			args->read_pointer_address);
336 
337 	pr_debug("Write ptr address   == 0x%016llX\n",
338 			args->write_pointer_address);
339 
340 	return 0;
341 
342 err_create_queue:
343 err_bind_process:
344 	mutex_unlock(&p->mutex);
345 	return err;
346 }
347 
348 static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p,
349 					void *data)
350 {
351 	int retval;
352 	struct kfd_ioctl_destroy_queue_args *args = data;
353 
354 	pr_debug("Destroying queue id %d for pasid 0x%x\n",
355 				args->queue_id,
356 				p->pasid);
357 
358 	mutex_lock(&p->mutex);
359 
360 	retval = pqm_destroy_queue(&p->pqm, args->queue_id);
361 
362 	mutex_unlock(&p->mutex);
363 	return retval;
364 }
365 
366 static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p,
367 					void *data)
368 {
369 	int retval;
370 	struct kfd_ioctl_update_queue_args *args = data;
371 	struct queue_properties properties;
372 
373 	if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) {
374 		pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
375 		return -EINVAL;
376 	}
377 
378 	if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
379 		pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
380 		return -EINVAL;
381 	}
382 
383 	if ((args->ring_base_address) &&
384 		(!access_ok((const void __user *) args->ring_base_address,
385 			sizeof(uint64_t)))) {
386 		pr_err("Can't access ring base address\n");
387 		return -EFAULT;
388 	}
389 
390 	if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
391 		pr_err("Ring size must be a power of 2 or 0\n");
392 		return -EINVAL;
393 	}
394 
395 	properties.queue_address = args->ring_base_address;
396 	properties.queue_size = args->ring_size;
397 	properties.queue_percent = args->queue_percentage;
398 	properties.priority = args->queue_priority;
399 
400 	pr_debug("Updating queue id %d for pasid 0x%x\n",
401 			args->queue_id, p->pasid);
402 
403 	mutex_lock(&p->mutex);
404 
405 	retval = pqm_update_queue(&p->pqm, args->queue_id, &properties);
406 
407 	mutex_unlock(&p->mutex);
408 
409 	return retval;
410 }
411 
412 static int kfd_ioctl_set_cu_mask(struct file *filp, struct kfd_process *p,
413 					void *data)
414 {
415 	int retval;
416 	const int max_num_cus = 1024;
417 	struct kfd_ioctl_set_cu_mask_args *args = data;
418 	struct queue_properties properties;
419 	uint32_t __user *cu_mask_ptr = (uint32_t __user *)args->cu_mask_ptr;
420 	size_t cu_mask_size = sizeof(uint32_t) * (args->num_cu_mask / 32);
421 
422 	if ((args->num_cu_mask % 32) != 0) {
423 		pr_debug("num_cu_mask 0x%x must be a multiple of 32",
424 				args->num_cu_mask);
425 		return -EINVAL;
426 	}
427 
428 	properties.cu_mask_count = args->num_cu_mask;
429 	if (properties.cu_mask_count == 0) {
430 		pr_debug("CU mask cannot be 0");
431 		return -EINVAL;
432 	}
433 
434 	/* To prevent an unreasonably large CU mask size, set an arbitrary
435 	 * limit of max_num_cus bits.  We can then just drop any CU mask bits
436 	 * past max_num_cus bits and just use the first max_num_cus bits.
437 	 */
438 	if (properties.cu_mask_count > max_num_cus) {
439 		pr_debug("CU mask cannot be greater than 1024 bits");
440 		properties.cu_mask_count = max_num_cus;
441 		cu_mask_size = sizeof(uint32_t) * (max_num_cus/32);
442 	}
443 
444 	properties.cu_mask = kzalloc(cu_mask_size, GFP_KERNEL);
445 	if (!properties.cu_mask)
446 		return -ENOMEM;
447 
448 	retval = copy_from_user(properties.cu_mask, cu_mask_ptr, cu_mask_size);
449 	if (retval) {
450 		pr_debug("Could not copy CU mask from userspace");
451 		kfree(properties.cu_mask);
452 		return -EFAULT;
453 	}
454 
455 	mutex_lock(&p->mutex);
456 
457 	retval = pqm_set_cu_mask(&p->pqm, args->queue_id, &properties);
458 
459 	mutex_unlock(&p->mutex);
460 
461 	if (retval)
462 		kfree(properties.cu_mask);
463 
464 	return retval;
465 }
466 
467 static int kfd_ioctl_get_queue_wave_state(struct file *filep,
468 					  struct kfd_process *p, void *data)
469 {
470 	struct kfd_ioctl_get_queue_wave_state_args *args = data;
471 	int r;
472 
473 	mutex_lock(&p->mutex);
474 
475 	r = pqm_get_wave_state(&p->pqm, args->queue_id,
476 			       (void __user *)args->ctl_stack_address,
477 			       &args->ctl_stack_used_size,
478 			       &args->save_area_used_size);
479 
480 	mutex_unlock(&p->mutex);
481 
482 	return r;
483 }
484 
485 static int kfd_ioctl_set_memory_policy(struct file *filep,
486 					struct kfd_process *p, void *data)
487 {
488 	struct kfd_ioctl_set_memory_policy_args *args = data;
489 	struct kfd_dev *dev;
490 	int err = 0;
491 	struct kfd_process_device *pdd;
492 	enum cache_policy default_policy, alternate_policy;
493 
494 	if (args->default_policy != KFD_IOC_CACHE_POLICY_COHERENT
495 	    && args->default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
496 		return -EINVAL;
497 	}
498 
499 	if (args->alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT
500 	    && args->alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
501 		return -EINVAL;
502 	}
503 
504 	dev = kfd_device_by_id(args->gpu_id);
505 	if (!dev)
506 		return -EINVAL;
507 
508 	mutex_lock(&p->mutex);
509 
510 	pdd = kfd_bind_process_to_device(dev, p);
511 	if (IS_ERR(pdd)) {
512 		err = -ESRCH;
513 		goto out;
514 	}
515 
516 	default_policy = (args->default_policy == KFD_IOC_CACHE_POLICY_COHERENT)
517 			 ? cache_policy_coherent : cache_policy_noncoherent;
518 
519 	alternate_policy =
520 		(args->alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT)
521 		   ? cache_policy_coherent : cache_policy_noncoherent;
522 
523 	if (!dev->dqm->ops.set_cache_memory_policy(dev->dqm,
524 				&pdd->qpd,
525 				default_policy,
526 				alternate_policy,
527 				(void __user *)args->alternate_aperture_base,
528 				args->alternate_aperture_size))
529 		err = -EINVAL;
530 
531 out:
532 	mutex_unlock(&p->mutex);
533 
534 	return err;
535 }
536 
537 static int kfd_ioctl_set_trap_handler(struct file *filep,
538 					struct kfd_process *p, void *data)
539 {
540 	struct kfd_ioctl_set_trap_handler_args *args = data;
541 	struct kfd_dev *dev;
542 	int err = 0;
543 	struct kfd_process_device *pdd;
544 
545 	dev = kfd_device_by_id(args->gpu_id);
546 	if (!dev)
547 		return -EINVAL;
548 
549 	mutex_lock(&p->mutex);
550 
551 	pdd = kfd_bind_process_to_device(dev, p);
552 	if (IS_ERR(pdd)) {
553 		err = -ESRCH;
554 		goto out;
555 	}
556 
557 	if (dev->dqm->ops.set_trap_handler(dev->dqm,
558 					&pdd->qpd,
559 					args->tba_addr,
560 					args->tma_addr))
561 		err = -EINVAL;
562 
563 out:
564 	mutex_unlock(&p->mutex);
565 
566 	return err;
567 }
568 
569 static int kfd_ioctl_dbg_register(struct file *filep,
570 				struct kfd_process *p, void *data)
571 {
572 	struct kfd_ioctl_dbg_register_args *args = data;
573 	struct kfd_dev *dev;
574 	struct kfd_dbgmgr *dbgmgr_ptr;
575 	struct kfd_process_device *pdd;
576 	bool create_ok;
577 	long status = 0;
578 
579 	dev = kfd_device_by_id(args->gpu_id);
580 	if (!dev)
581 		return -EINVAL;
582 
583 	if (dev->device_info->asic_family == CHIP_CARRIZO) {
584 		pr_debug("kfd_ioctl_dbg_register not supported on CZ\n");
585 		return -EINVAL;
586 	}
587 
588 	mutex_lock(&p->mutex);
589 	mutex_lock(kfd_get_dbgmgr_mutex());
590 
591 	/*
592 	 * make sure that we have pdd, if this the first queue created for
593 	 * this process
594 	 */
595 	pdd = kfd_bind_process_to_device(dev, p);
596 	if (IS_ERR(pdd)) {
597 		status = PTR_ERR(pdd);
598 		goto out;
599 	}
600 
601 	if (!dev->dbgmgr) {
602 		/* In case of a legal call, we have no dbgmgr yet */
603 		create_ok = kfd_dbgmgr_create(&dbgmgr_ptr, dev);
604 		if (create_ok) {
605 			status = kfd_dbgmgr_register(dbgmgr_ptr, p);
606 			if (status != 0)
607 				kfd_dbgmgr_destroy(dbgmgr_ptr);
608 			else
609 				dev->dbgmgr = dbgmgr_ptr;
610 		}
611 	} else {
612 		pr_debug("debugger already registered\n");
613 		status = -EINVAL;
614 	}
615 
616 out:
617 	mutex_unlock(kfd_get_dbgmgr_mutex());
618 	mutex_unlock(&p->mutex);
619 
620 	return status;
621 }
622 
623 static int kfd_ioctl_dbg_unregister(struct file *filep,
624 				struct kfd_process *p, void *data)
625 {
626 	struct kfd_ioctl_dbg_unregister_args *args = data;
627 	struct kfd_dev *dev;
628 	long status;
629 
630 	dev = kfd_device_by_id(args->gpu_id);
631 	if (!dev || !dev->dbgmgr)
632 		return -EINVAL;
633 
634 	if (dev->device_info->asic_family == CHIP_CARRIZO) {
635 		pr_debug("kfd_ioctl_dbg_unregister not supported on CZ\n");
636 		return -EINVAL;
637 	}
638 
639 	mutex_lock(kfd_get_dbgmgr_mutex());
640 
641 	status = kfd_dbgmgr_unregister(dev->dbgmgr, p);
642 	if (!status) {
643 		kfd_dbgmgr_destroy(dev->dbgmgr);
644 		dev->dbgmgr = NULL;
645 	}
646 
647 	mutex_unlock(kfd_get_dbgmgr_mutex());
648 
649 	return status;
650 }
651 
652 /*
653  * Parse and generate variable size data structure for address watch.
654  * Total size of the buffer and # watch points is limited in order
655  * to prevent kernel abuse. (no bearing to the much smaller HW limitation
656  * which is enforced by dbgdev module)
657  * please also note that the watch address itself are not "copied from user",
658  * since it be set into the HW in user mode values.
659  *
660  */
661 static int kfd_ioctl_dbg_address_watch(struct file *filep,
662 					struct kfd_process *p, void *data)
663 {
664 	struct kfd_ioctl_dbg_address_watch_args *args = data;
665 	struct kfd_dev *dev;
666 	struct dbg_address_watch_info aw_info;
667 	unsigned char *args_buff;
668 	long status;
669 	void __user *cmd_from_user;
670 	uint64_t watch_mask_value = 0;
671 	unsigned int args_idx = 0;
672 
673 	memset((void *) &aw_info, 0, sizeof(struct dbg_address_watch_info));
674 
675 	dev = kfd_device_by_id(args->gpu_id);
676 	if (!dev)
677 		return -EINVAL;
678 
679 	if (dev->device_info->asic_family == CHIP_CARRIZO) {
680 		pr_debug("kfd_ioctl_dbg_wave_control not supported on CZ\n");
681 		return -EINVAL;
682 	}
683 
684 	cmd_from_user = (void __user *) args->content_ptr;
685 
686 	/* Validate arguments */
687 
688 	if ((args->buf_size_in_bytes > MAX_ALLOWED_AW_BUFF_SIZE) ||
689 		(args->buf_size_in_bytes <= sizeof(*args) + sizeof(int) * 2) ||
690 		(cmd_from_user == NULL))
691 		return -EINVAL;
692 
693 	/* this is the actual buffer to work with */
694 	args_buff = memdup_user(cmd_from_user,
695 				args->buf_size_in_bytes - sizeof(*args));
696 	if (IS_ERR(args_buff))
697 		return PTR_ERR(args_buff);
698 
699 	aw_info.process = p;
700 
701 	aw_info.num_watch_points = *((uint32_t *)(&args_buff[args_idx]));
702 	args_idx += sizeof(aw_info.num_watch_points);
703 
704 	aw_info.watch_mode = (enum HSA_DBG_WATCH_MODE *) &args_buff[args_idx];
705 	args_idx += sizeof(enum HSA_DBG_WATCH_MODE) * aw_info.num_watch_points;
706 
707 	/*
708 	 * set watch address base pointer to point on the array base
709 	 * within args_buff
710 	 */
711 	aw_info.watch_address = (uint64_t *) &args_buff[args_idx];
712 
713 	/* skip over the addresses buffer */
714 	args_idx += sizeof(aw_info.watch_address) * aw_info.num_watch_points;
715 
716 	if (args_idx >= args->buf_size_in_bytes - sizeof(*args)) {
717 		status = -EINVAL;
718 		goto out;
719 	}
720 
721 	watch_mask_value = (uint64_t) args_buff[args_idx];
722 
723 	if (watch_mask_value > 0) {
724 		/*
725 		 * There is an array of masks.
726 		 * set watch mask base pointer to point on the array base
727 		 * within args_buff
728 		 */
729 		aw_info.watch_mask = (uint64_t *) &args_buff[args_idx];
730 
731 		/* skip over the masks buffer */
732 		args_idx += sizeof(aw_info.watch_mask) *
733 				aw_info.num_watch_points;
734 	} else {
735 		/* just the NULL mask, set to NULL and skip over it */
736 		aw_info.watch_mask = NULL;
737 		args_idx += sizeof(aw_info.watch_mask);
738 	}
739 
740 	if (args_idx >= args->buf_size_in_bytes - sizeof(args)) {
741 		status = -EINVAL;
742 		goto out;
743 	}
744 
745 	/* Currently HSA Event is not supported for DBG */
746 	aw_info.watch_event = NULL;
747 
748 	mutex_lock(kfd_get_dbgmgr_mutex());
749 
750 	status = kfd_dbgmgr_address_watch(dev->dbgmgr, &aw_info);
751 
752 	mutex_unlock(kfd_get_dbgmgr_mutex());
753 
754 out:
755 	kfree(args_buff);
756 
757 	return status;
758 }
759 
760 /* Parse and generate fixed size data structure for wave control */
761 static int kfd_ioctl_dbg_wave_control(struct file *filep,
762 					struct kfd_process *p, void *data)
763 {
764 	struct kfd_ioctl_dbg_wave_control_args *args = data;
765 	struct kfd_dev *dev;
766 	struct dbg_wave_control_info wac_info;
767 	unsigned char *args_buff;
768 	uint32_t computed_buff_size;
769 	long status;
770 	void __user *cmd_from_user;
771 	unsigned int args_idx = 0;
772 
773 	memset((void *) &wac_info, 0, sizeof(struct dbg_wave_control_info));
774 
775 	/* we use compact form, independent of the packing attribute value */
776 	computed_buff_size = sizeof(*args) +
777 				sizeof(wac_info.mode) +
778 				sizeof(wac_info.operand) +
779 				sizeof(wac_info.dbgWave_msg.DbgWaveMsg) +
780 				sizeof(wac_info.dbgWave_msg.MemoryVA) +
781 				sizeof(wac_info.trapId);
782 
783 	dev = kfd_device_by_id(args->gpu_id);
784 	if (!dev)
785 		return -EINVAL;
786 
787 	if (dev->device_info->asic_family == CHIP_CARRIZO) {
788 		pr_debug("kfd_ioctl_dbg_wave_control not supported on CZ\n");
789 		return -EINVAL;
790 	}
791 
792 	/* input size must match the computed "compact" size */
793 	if (args->buf_size_in_bytes != computed_buff_size) {
794 		pr_debug("size mismatch, computed : actual %u : %u\n",
795 				args->buf_size_in_bytes, computed_buff_size);
796 		return -EINVAL;
797 	}
798 
799 	cmd_from_user = (void __user *) args->content_ptr;
800 
801 	if (cmd_from_user == NULL)
802 		return -EINVAL;
803 
804 	/* copy the entire buffer from user */
805 
806 	args_buff = memdup_user(cmd_from_user,
807 				args->buf_size_in_bytes - sizeof(*args));
808 	if (IS_ERR(args_buff))
809 		return PTR_ERR(args_buff);
810 
811 	/* move ptr to the start of the "pay-load" area */
812 	wac_info.process = p;
813 
814 	wac_info.operand = *((enum HSA_DBG_WAVEOP *)(&args_buff[args_idx]));
815 	args_idx += sizeof(wac_info.operand);
816 
817 	wac_info.mode = *((enum HSA_DBG_WAVEMODE *)(&args_buff[args_idx]));
818 	args_idx += sizeof(wac_info.mode);
819 
820 	wac_info.trapId = *((uint32_t *)(&args_buff[args_idx]));
821 	args_idx += sizeof(wac_info.trapId);
822 
823 	wac_info.dbgWave_msg.DbgWaveMsg.WaveMsgInfoGen2.Value =
824 					*((uint32_t *)(&args_buff[args_idx]));
825 	wac_info.dbgWave_msg.MemoryVA = NULL;
826 
827 	mutex_lock(kfd_get_dbgmgr_mutex());
828 
829 	pr_debug("Calling dbg manager process %p, operand %u, mode %u, trapId %u, message %u\n",
830 			wac_info.process, wac_info.operand,
831 			wac_info.mode, wac_info.trapId,
832 			wac_info.dbgWave_msg.DbgWaveMsg.WaveMsgInfoGen2.Value);
833 
834 	status = kfd_dbgmgr_wave_control(dev->dbgmgr, &wac_info);
835 
836 	pr_debug("Returned status of dbg manager is %ld\n", status);
837 
838 	mutex_unlock(kfd_get_dbgmgr_mutex());
839 
840 	kfree(args_buff);
841 
842 	return status;
843 }
844 
845 static int kfd_ioctl_get_clock_counters(struct file *filep,
846 				struct kfd_process *p, void *data)
847 {
848 	struct kfd_ioctl_get_clock_counters_args *args = data;
849 	struct kfd_dev *dev;
850 
851 	dev = kfd_device_by_id(args->gpu_id);
852 	if (dev)
853 		/* Reading GPU clock counter from KGD */
854 		args->gpu_clock_counter = amdgpu_amdkfd_get_gpu_clock_counter(dev->kgd);
855 	else
856 		/* Node without GPU resource */
857 		args->gpu_clock_counter = 0;
858 
859 	/* No access to rdtsc. Using raw monotonic time */
860 	args->cpu_clock_counter = ktime_get_raw_ns();
861 	args->system_clock_counter = ktime_get_boottime_ns();
862 
863 	/* Since the counter is in nano-seconds we use 1GHz frequency */
864 	args->system_clock_freq = 1000000000;
865 
866 	return 0;
867 }
868 
869 
870 static int kfd_ioctl_get_process_apertures(struct file *filp,
871 				struct kfd_process *p, void *data)
872 {
873 	struct kfd_ioctl_get_process_apertures_args *args = data;
874 	struct kfd_process_device_apertures *pAperture;
875 	struct kfd_process_device *pdd;
876 
877 	dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
878 
879 	args->num_of_nodes = 0;
880 
881 	mutex_lock(&p->mutex);
882 
883 	/*if the process-device list isn't empty*/
884 	if (kfd_has_process_device_data(p)) {
885 		/* Run over all pdd of the process */
886 		pdd = kfd_get_first_process_device_data(p);
887 		do {
888 			pAperture =
889 				&args->process_apertures[args->num_of_nodes];
890 			pAperture->gpu_id = pdd->dev->id;
891 			pAperture->lds_base = pdd->lds_base;
892 			pAperture->lds_limit = pdd->lds_limit;
893 			pAperture->gpuvm_base = pdd->gpuvm_base;
894 			pAperture->gpuvm_limit = pdd->gpuvm_limit;
895 			pAperture->scratch_base = pdd->scratch_base;
896 			pAperture->scratch_limit = pdd->scratch_limit;
897 
898 			dev_dbg(kfd_device,
899 				"node id %u\n", args->num_of_nodes);
900 			dev_dbg(kfd_device,
901 				"gpu id %u\n", pdd->dev->id);
902 			dev_dbg(kfd_device,
903 				"lds_base %llX\n", pdd->lds_base);
904 			dev_dbg(kfd_device,
905 				"lds_limit %llX\n", pdd->lds_limit);
906 			dev_dbg(kfd_device,
907 				"gpuvm_base %llX\n", pdd->gpuvm_base);
908 			dev_dbg(kfd_device,
909 				"gpuvm_limit %llX\n", pdd->gpuvm_limit);
910 			dev_dbg(kfd_device,
911 				"scratch_base %llX\n", pdd->scratch_base);
912 			dev_dbg(kfd_device,
913 				"scratch_limit %llX\n", pdd->scratch_limit);
914 
915 			args->num_of_nodes++;
916 
917 			pdd = kfd_get_next_process_device_data(p, pdd);
918 		} while (pdd && (args->num_of_nodes < NUM_OF_SUPPORTED_GPUS));
919 	}
920 
921 	mutex_unlock(&p->mutex);
922 
923 	return 0;
924 }
925 
926 static int kfd_ioctl_get_process_apertures_new(struct file *filp,
927 				struct kfd_process *p, void *data)
928 {
929 	struct kfd_ioctl_get_process_apertures_new_args *args = data;
930 	struct kfd_process_device_apertures *pa;
931 	struct kfd_process_device *pdd;
932 	uint32_t nodes = 0;
933 	int ret;
934 
935 	dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
936 
937 	if (args->num_of_nodes == 0) {
938 		/* Return number of nodes, so that user space can alloacate
939 		 * sufficient memory
940 		 */
941 		mutex_lock(&p->mutex);
942 
943 		if (!kfd_has_process_device_data(p))
944 			goto out_unlock;
945 
946 		/* Run over all pdd of the process */
947 		pdd = kfd_get_first_process_device_data(p);
948 		do {
949 			args->num_of_nodes++;
950 			pdd = kfd_get_next_process_device_data(p, pdd);
951 		} while (pdd);
952 
953 		goto out_unlock;
954 	}
955 
956 	/* Fill in process-aperture information for all available
957 	 * nodes, but not more than args->num_of_nodes as that is
958 	 * the amount of memory allocated by user
959 	 */
960 	pa = kzalloc((sizeof(struct kfd_process_device_apertures) *
961 				args->num_of_nodes), GFP_KERNEL);
962 	if (!pa)
963 		return -ENOMEM;
964 
965 	mutex_lock(&p->mutex);
966 
967 	if (!kfd_has_process_device_data(p)) {
968 		args->num_of_nodes = 0;
969 		kfree(pa);
970 		goto out_unlock;
971 	}
972 
973 	/* Run over all pdd of the process */
974 	pdd = kfd_get_first_process_device_data(p);
975 	do {
976 		pa[nodes].gpu_id = pdd->dev->id;
977 		pa[nodes].lds_base = pdd->lds_base;
978 		pa[nodes].lds_limit = pdd->lds_limit;
979 		pa[nodes].gpuvm_base = pdd->gpuvm_base;
980 		pa[nodes].gpuvm_limit = pdd->gpuvm_limit;
981 		pa[nodes].scratch_base = pdd->scratch_base;
982 		pa[nodes].scratch_limit = pdd->scratch_limit;
983 
984 		dev_dbg(kfd_device,
985 			"gpu id %u\n", pdd->dev->id);
986 		dev_dbg(kfd_device,
987 			"lds_base %llX\n", pdd->lds_base);
988 		dev_dbg(kfd_device,
989 			"lds_limit %llX\n", pdd->lds_limit);
990 		dev_dbg(kfd_device,
991 			"gpuvm_base %llX\n", pdd->gpuvm_base);
992 		dev_dbg(kfd_device,
993 			"gpuvm_limit %llX\n", pdd->gpuvm_limit);
994 		dev_dbg(kfd_device,
995 			"scratch_base %llX\n", pdd->scratch_base);
996 		dev_dbg(kfd_device,
997 			"scratch_limit %llX\n", pdd->scratch_limit);
998 		nodes++;
999 
1000 		pdd = kfd_get_next_process_device_data(p, pdd);
1001 	} while (pdd && (nodes < args->num_of_nodes));
1002 	mutex_unlock(&p->mutex);
1003 
1004 	args->num_of_nodes = nodes;
1005 	ret = copy_to_user(
1006 			(void __user *)args->kfd_process_device_apertures_ptr,
1007 			pa,
1008 			(nodes * sizeof(struct kfd_process_device_apertures)));
1009 	kfree(pa);
1010 	return ret ? -EFAULT : 0;
1011 
1012 out_unlock:
1013 	mutex_unlock(&p->mutex);
1014 	return 0;
1015 }
1016 
1017 static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p,
1018 					void *data)
1019 {
1020 	struct kfd_ioctl_create_event_args *args = data;
1021 	int err;
1022 
1023 	/* For dGPUs the event page is allocated in user mode. The
1024 	 * handle is passed to KFD with the first call to this IOCTL
1025 	 * through the event_page_offset field.
1026 	 */
1027 	if (args->event_page_offset) {
1028 		struct kfd_dev *kfd;
1029 		struct kfd_process_device *pdd;
1030 		void *mem, *kern_addr;
1031 		uint64_t size;
1032 
1033 		if (p->signal_page) {
1034 			pr_err("Event page is already set\n");
1035 			return -EINVAL;
1036 		}
1037 
1038 		kfd = kfd_device_by_id(GET_GPU_ID(args->event_page_offset));
1039 		if (!kfd) {
1040 			pr_err("Getting device by id failed in %s\n", __func__);
1041 			return -EINVAL;
1042 		}
1043 
1044 		mutex_lock(&p->mutex);
1045 		pdd = kfd_bind_process_to_device(kfd, p);
1046 		if (IS_ERR(pdd)) {
1047 			err = PTR_ERR(pdd);
1048 			goto out_unlock;
1049 		}
1050 
1051 		mem = kfd_process_device_translate_handle(pdd,
1052 				GET_IDR_HANDLE(args->event_page_offset));
1053 		if (!mem) {
1054 			pr_err("Can't find BO, offset is 0x%llx\n",
1055 			       args->event_page_offset);
1056 			err = -EINVAL;
1057 			goto out_unlock;
1058 		}
1059 		mutex_unlock(&p->mutex);
1060 
1061 		err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(kfd->kgd,
1062 						mem, &kern_addr, &size);
1063 		if (err) {
1064 			pr_err("Failed to map event page to kernel\n");
1065 			return err;
1066 		}
1067 
1068 		err = kfd_event_page_set(p, kern_addr, size);
1069 		if (err) {
1070 			pr_err("Failed to set event page\n");
1071 			return err;
1072 		}
1073 	}
1074 
1075 	err = kfd_event_create(filp, p, args->event_type,
1076 				args->auto_reset != 0, args->node_id,
1077 				&args->event_id, &args->event_trigger_data,
1078 				&args->event_page_offset,
1079 				&args->event_slot_index);
1080 
1081 	return err;
1082 
1083 out_unlock:
1084 	mutex_unlock(&p->mutex);
1085 	return err;
1086 }
1087 
1088 static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p,
1089 					void *data)
1090 {
1091 	struct kfd_ioctl_destroy_event_args *args = data;
1092 
1093 	return kfd_event_destroy(p, args->event_id);
1094 }
1095 
1096 static int kfd_ioctl_set_event(struct file *filp, struct kfd_process *p,
1097 				void *data)
1098 {
1099 	struct kfd_ioctl_set_event_args *args = data;
1100 
1101 	return kfd_set_event(p, args->event_id);
1102 }
1103 
1104 static int kfd_ioctl_reset_event(struct file *filp, struct kfd_process *p,
1105 				void *data)
1106 {
1107 	struct kfd_ioctl_reset_event_args *args = data;
1108 
1109 	return kfd_reset_event(p, args->event_id);
1110 }
1111 
1112 static int kfd_ioctl_wait_events(struct file *filp, struct kfd_process *p,
1113 				void *data)
1114 {
1115 	struct kfd_ioctl_wait_events_args *args = data;
1116 	int err;
1117 
1118 	err = kfd_wait_on_events(p, args->num_events,
1119 			(void __user *)args->events_ptr,
1120 			(args->wait_for_all != 0),
1121 			args->timeout, &args->wait_result);
1122 
1123 	return err;
1124 }
1125 static int kfd_ioctl_set_scratch_backing_va(struct file *filep,
1126 					struct kfd_process *p, void *data)
1127 {
1128 	struct kfd_ioctl_set_scratch_backing_va_args *args = data;
1129 	struct kfd_process_device *pdd;
1130 	struct kfd_dev *dev;
1131 	long err;
1132 
1133 	dev = kfd_device_by_id(args->gpu_id);
1134 	if (!dev)
1135 		return -EINVAL;
1136 
1137 	mutex_lock(&p->mutex);
1138 
1139 	pdd = kfd_bind_process_to_device(dev, p);
1140 	if (IS_ERR(pdd)) {
1141 		err = PTR_ERR(pdd);
1142 		goto bind_process_to_device_fail;
1143 	}
1144 
1145 	pdd->qpd.sh_hidden_private_base = args->va_addr;
1146 
1147 	mutex_unlock(&p->mutex);
1148 
1149 	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS &&
1150 	    pdd->qpd.vmid != 0 && dev->kfd2kgd->set_scratch_backing_va)
1151 		dev->kfd2kgd->set_scratch_backing_va(
1152 			dev->kgd, args->va_addr, pdd->qpd.vmid);
1153 
1154 	return 0;
1155 
1156 bind_process_to_device_fail:
1157 	mutex_unlock(&p->mutex);
1158 	return err;
1159 }
1160 
1161 static int kfd_ioctl_get_tile_config(struct file *filep,
1162 		struct kfd_process *p, void *data)
1163 {
1164 	struct kfd_ioctl_get_tile_config_args *args = data;
1165 	struct kfd_dev *dev;
1166 	struct tile_config config;
1167 	int err = 0;
1168 
1169 	dev = kfd_device_by_id(args->gpu_id);
1170 	if (!dev)
1171 		return -EINVAL;
1172 
1173 	amdgpu_amdkfd_get_tile_config(dev->kgd, &config);
1174 
1175 	args->gb_addr_config = config.gb_addr_config;
1176 	args->num_banks = config.num_banks;
1177 	args->num_ranks = config.num_ranks;
1178 
1179 	if (args->num_tile_configs > config.num_tile_configs)
1180 		args->num_tile_configs = config.num_tile_configs;
1181 	err = copy_to_user((void __user *)args->tile_config_ptr,
1182 			config.tile_config_ptr,
1183 			args->num_tile_configs * sizeof(uint32_t));
1184 	if (err) {
1185 		args->num_tile_configs = 0;
1186 		return -EFAULT;
1187 	}
1188 
1189 	if (args->num_macro_tile_configs > config.num_macro_tile_configs)
1190 		args->num_macro_tile_configs =
1191 				config.num_macro_tile_configs;
1192 	err = copy_to_user((void __user *)args->macro_tile_config_ptr,
1193 			config.macro_tile_config_ptr,
1194 			args->num_macro_tile_configs * sizeof(uint32_t));
1195 	if (err) {
1196 		args->num_macro_tile_configs = 0;
1197 		return -EFAULT;
1198 	}
1199 
1200 	return 0;
1201 }
1202 
1203 static int kfd_ioctl_acquire_vm(struct file *filep, struct kfd_process *p,
1204 				void *data)
1205 {
1206 	struct kfd_ioctl_acquire_vm_args *args = data;
1207 	struct kfd_process_device *pdd;
1208 	struct kfd_dev *dev;
1209 	struct file *drm_file;
1210 	int ret;
1211 
1212 	dev = kfd_device_by_id(args->gpu_id);
1213 	if (!dev)
1214 		return -EINVAL;
1215 
1216 	drm_file = fget(args->drm_fd);
1217 	if (!drm_file)
1218 		return -EINVAL;
1219 
1220 	mutex_lock(&p->mutex);
1221 
1222 	pdd = kfd_get_process_device_data(dev, p);
1223 	if (!pdd) {
1224 		ret = -EINVAL;
1225 		goto err_unlock;
1226 	}
1227 
1228 	if (pdd->drm_file) {
1229 		ret = pdd->drm_file == drm_file ? 0 : -EBUSY;
1230 		goto err_unlock;
1231 	}
1232 
1233 	ret = kfd_process_device_init_vm(pdd, drm_file);
1234 	if (ret)
1235 		goto err_unlock;
1236 	/* On success, the PDD keeps the drm_file reference */
1237 	mutex_unlock(&p->mutex);
1238 
1239 	return 0;
1240 
1241 err_unlock:
1242 	mutex_unlock(&p->mutex);
1243 	fput(drm_file);
1244 	return ret;
1245 }
1246 
1247 bool kfd_dev_is_large_bar(struct kfd_dev *dev)
1248 {
1249 	struct kfd_local_mem_info mem_info;
1250 
1251 	if (debug_largebar) {
1252 		pr_debug("Simulate large-bar allocation on non large-bar machine\n");
1253 		return true;
1254 	}
1255 
1256 	if (dev->device_info->needs_iommu_device)
1257 		return false;
1258 
1259 	amdgpu_amdkfd_get_local_mem_info(dev->kgd, &mem_info);
1260 	if (mem_info.local_mem_size_private == 0 &&
1261 			mem_info.local_mem_size_public > 0)
1262 		return true;
1263 	return false;
1264 }
1265 
1266 static int kfd_ioctl_alloc_memory_of_gpu(struct file *filep,
1267 					struct kfd_process *p, void *data)
1268 {
1269 	struct kfd_ioctl_alloc_memory_of_gpu_args *args = data;
1270 	struct kfd_process_device *pdd;
1271 	void *mem;
1272 	struct kfd_dev *dev;
1273 	int idr_handle;
1274 	long err;
1275 	uint64_t offset = args->mmap_offset;
1276 	uint32_t flags = args->flags;
1277 
1278 	if (args->size == 0)
1279 		return -EINVAL;
1280 
1281 	dev = kfd_device_by_id(args->gpu_id);
1282 	if (!dev)
1283 		return -EINVAL;
1284 
1285 	if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) &&
1286 		(flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) &&
1287 		!kfd_dev_is_large_bar(dev)) {
1288 		pr_err("Alloc host visible vram on small bar is not allowed\n");
1289 		return -EINVAL;
1290 	}
1291 
1292 	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
1293 		if (args->size != kfd_doorbell_process_slice(dev))
1294 			return -EINVAL;
1295 		offset = kfd_get_process_doorbells(dev, p);
1296 	} else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
1297 		if (args->size != PAGE_SIZE)
1298 			return -EINVAL;
1299 		offset = amdgpu_amdkfd_get_mmio_remap_phys_addr(dev->kgd);
1300 		if (!offset)
1301 			return -ENOMEM;
1302 	}
1303 
1304 	mutex_lock(&p->mutex);
1305 
1306 	pdd = kfd_bind_process_to_device(dev, p);
1307 	if (IS_ERR(pdd)) {
1308 		err = PTR_ERR(pdd);
1309 		goto err_unlock;
1310 	}
1311 
1312 	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(
1313 		dev->kgd, args->va_addr, args->size,
1314 		pdd->vm, (struct kgd_mem **) &mem, &offset,
1315 		flags);
1316 
1317 	if (err)
1318 		goto err_unlock;
1319 
1320 	idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1321 	if (idr_handle < 0) {
1322 		err = -EFAULT;
1323 		goto err_free;
1324 	}
1325 
1326 	/* Update the VRAM usage count */
1327 	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM)
1328 		WRITE_ONCE(pdd->vram_usage, pdd->vram_usage + args->size);
1329 
1330 	mutex_unlock(&p->mutex);
1331 
1332 	args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1333 	args->mmap_offset = offset;
1334 
1335 	/* MMIO is mapped through kfd device
1336 	 * Generate a kfd mmap offset
1337 	 */
1338 	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1339 		args->mmap_offset = KFD_MMAP_TYPE_MMIO
1340 					| KFD_MMAP_GPU_ID(args->gpu_id);
1341 
1342 	return 0;
1343 
1344 err_free:
1345 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, (struct kgd_mem *)mem, NULL);
1346 err_unlock:
1347 	mutex_unlock(&p->mutex);
1348 	return err;
1349 }
1350 
1351 static int kfd_ioctl_free_memory_of_gpu(struct file *filep,
1352 					struct kfd_process *p, void *data)
1353 {
1354 	struct kfd_ioctl_free_memory_of_gpu_args *args = data;
1355 	struct kfd_process_device *pdd;
1356 	void *mem;
1357 	struct kfd_dev *dev;
1358 	int ret;
1359 	uint64_t size = 0;
1360 
1361 	dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1362 	if (!dev)
1363 		return -EINVAL;
1364 
1365 	mutex_lock(&p->mutex);
1366 
1367 	pdd = kfd_get_process_device_data(dev, p);
1368 	if (!pdd) {
1369 		pr_err("Process device data doesn't exist\n");
1370 		ret = -EINVAL;
1371 		goto err_unlock;
1372 	}
1373 
1374 	mem = kfd_process_device_translate_handle(
1375 		pdd, GET_IDR_HANDLE(args->handle));
1376 	if (!mem) {
1377 		ret = -EINVAL;
1378 		goto err_unlock;
1379 	}
1380 
1381 	ret = amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd,
1382 						(struct kgd_mem *)mem, &size);
1383 
1384 	/* If freeing the buffer failed, leave the handle in place for
1385 	 * clean-up during process tear-down.
1386 	 */
1387 	if (!ret)
1388 		kfd_process_device_remove_obj_handle(
1389 			pdd, GET_IDR_HANDLE(args->handle));
1390 
1391 	WRITE_ONCE(pdd->vram_usage, pdd->vram_usage - size);
1392 
1393 err_unlock:
1394 	mutex_unlock(&p->mutex);
1395 	return ret;
1396 }
1397 
1398 static int kfd_ioctl_map_memory_to_gpu(struct file *filep,
1399 					struct kfd_process *p, void *data)
1400 {
1401 	struct kfd_ioctl_map_memory_to_gpu_args *args = data;
1402 	struct kfd_process_device *pdd, *peer_pdd;
1403 	void *mem;
1404 	struct kfd_dev *dev, *peer;
1405 	long err = 0;
1406 	int i;
1407 	uint32_t *devices_arr = NULL;
1408 
1409 	dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1410 	if (!dev)
1411 		return -EINVAL;
1412 
1413 	if (!args->n_devices) {
1414 		pr_debug("Device IDs array empty\n");
1415 		return -EINVAL;
1416 	}
1417 	if (args->n_success > args->n_devices) {
1418 		pr_debug("n_success exceeds n_devices\n");
1419 		return -EINVAL;
1420 	}
1421 
1422 	devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1423 				    GFP_KERNEL);
1424 	if (!devices_arr)
1425 		return -ENOMEM;
1426 
1427 	err = copy_from_user(devices_arr,
1428 			     (void __user *)args->device_ids_array_ptr,
1429 			     args->n_devices * sizeof(*devices_arr));
1430 	if (err != 0) {
1431 		err = -EFAULT;
1432 		goto copy_from_user_failed;
1433 	}
1434 
1435 	mutex_lock(&p->mutex);
1436 
1437 	pdd = kfd_bind_process_to_device(dev, p);
1438 	if (IS_ERR(pdd)) {
1439 		err = PTR_ERR(pdd);
1440 		goto bind_process_to_device_failed;
1441 	}
1442 
1443 	mem = kfd_process_device_translate_handle(pdd,
1444 						GET_IDR_HANDLE(args->handle));
1445 	if (!mem) {
1446 		err = -ENOMEM;
1447 		goto get_mem_obj_from_handle_failed;
1448 	}
1449 
1450 	for (i = args->n_success; i < args->n_devices; i++) {
1451 		peer = kfd_device_by_id(devices_arr[i]);
1452 		if (!peer) {
1453 			pr_debug("Getting device by id failed for 0x%x\n",
1454 				 devices_arr[i]);
1455 			err = -EINVAL;
1456 			goto get_mem_obj_from_handle_failed;
1457 		}
1458 
1459 		peer_pdd = kfd_bind_process_to_device(peer, p);
1460 		if (IS_ERR(peer_pdd)) {
1461 			err = PTR_ERR(peer_pdd);
1462 			goto get_mem_obj_from_handle_failed;
1463 		}
1464 		err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(
1465 			peer->kgd, (struct kgd_mem *)mem, peer_pdd->vm);
1466 		if (err) {
1467 			pr_err("Failed to map to gpu %d/%d\n",
1468 			       i, args->n_devices);
1469 			goto map_memory_to_gpu_failed;
1470 		}
1471 		args->n_success = i+1;
1472 	}
1473 
1474 	mutex_unlock(&p->mutex);
1475 
1476 	err = amdgpu_amdkfd_gpuvm_sync_memory(dev->kgd, (struct kgd_mem *) mem, true);
1477 	if (err) {
1478 		pr_debug("Sync memory failed, wait interrupted by user signal\n");
1479 		goto sync_memory_failed;
1480 	}
1481 
1482 	/* Flush TLBs after waiting for the page table updates to complete */
1483 	for (i = 0; i < args->n_devices; i++) {
1484 		peer = kfd_device_by_id(devices_arr[i]);
1485 		if (WARN_ON_ONCE(!peer))
1486 			continue;
1487 		peer_pdd = kfd_get_process_device_data(peer, p);
1488 		if (WARN_ON_ONCE(!peer_pdd))
1489 			continue;
1490 		kfd_flush_tlb(peer_pdd);
1491 	}
1492 
1493 	kfree(devices_arr);
1494 
1495 	return err;
1496 
1497 bind_process_to_device_failed:
1498 get_mem_obj_from_handle_failed:
1499 map_memory_to_gpu_failed:
1500 	mutex_unlock(&p->mutex);
1501 copy_from_user_failed:
1502 sync_memory_failed:
1503 	kfree(devices_arr);
1504 
1505 	return err;
1506 }
1507 
1508 static int kfd_ioctl_unmap_memory_from_gpu(struct file *filep,
1509 					struct kfd_process *p, void *data)
1510 {
1511 	struct kfd_ioctl_unmap_memory_from_gpu_args *args = data;
1512 	struct kfd_process_device *pdd, *peer_pdd;
1513 	void *mem;
1514 	struct kfd_dev *dev, *peer;
1515 	long err = 0;
1516 	uint32_t *devices_arr = NULL, i;
1517 
1518 	dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1519 	if (!dev)
1520 		return -EINVAL;
1521 
1522 	if (!args->n_devices) {
1523 		pr_debug("Device IDs array empty\n");
1524 		return -EINVAL;
1525 	}
1526 	if (args->n_success > args->n_devices) {
1527 		pr_debug("n_success exceeds n_devices\n");
1528 		return -EINVAL;
1529 	}
1530 
1531 	devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1532 				    GFP_KERNEL);
1533 	if (!devices_arr)
1534 		return -ENOMEM;
1535 
1536 	err = copy_from_user(devices_arr,
1537 			     (void __user *)args->device_ids_array_ptr,
1538 			     args->n_devices * sizeof(*devices_arr));
1539 	if (err != 0) {
1540 		err = -EFAULT;
1541 		goto copy_from_user_failed;
1542 	}
1543 
1544 	mutex_lock(&p->mutex);
1545 
1546 	pdd = kfd_get_process_device_data(dev, p);
1547 	if (!pdd) {
1548 		err = -EINVAL;
1549 		goto bind_process_to_device_failed;
1550 	}
1551 
1552 	mem = kfd_process_device_translate_handle(pdd,
1553 						GET_IDR_HANDLE(args->handle));
1554 	if (!mem) {
1555 		err = -ENOMEM;
1556 		goto get_mem_obj_from_handle_failed;
1557 	}
1558 
1559 	for (i = args->n_success; i < args->n_devices; i++) {
1560 		peer = kfd_device_by_id(devices_arr[i]);
1561 		if (!peer) {
1562 			err = -EINVAL;
1563 			goto get_mem_obj_from_handle_failed;
1564 		}
1565 
1566 		peer_pdd = kfd_get_process_device_data(peer, p);
1567 		if (!peer_pdd) {
1568 			err = -ENODEV;
1569 			goto get_mem_obj_from_handle_failed;
1570 		}
1571 		err = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
1572 			peer->kgd, (struct kgd_mem *)mem, peer_pdd->vm);
1573 		if (err) {
1574 			pr_err("Failed to unmap from gpu %d/%d\n",
1575 			       i, args->n_devices);
1576 			goto unmap_memory_from_gpu_failed;
1577 		}
1578 		args->n_success = i+1;
1579 	}
1580 	kfree(devices_arr);
1581 
1582 	mutex_unlock(&p->mutex);
1583 
1584 	return 0;
1585 
1586 bind_process_to_device_failed:
1587 get_mem_obj_from_handle_failed:
1588 unmap_memory_from_gpu_failed:
1589 	mutex_unlock(&p->mutex);
1590 copy_from_user_failed:
1591 	kfree(devices_arr);
1592 	return err;
1593 }
1594 
1595 static int kfd_ioctl_alloc_queue_gws(struct file *filep,
1596 		struct kfd_process *p, void *data)
1597 {
1598 	int retval;
1599 	struct kfd_ioctl_alloc_queue_gws_args *args = data;
1600 	struct queue *q;
1601 	struct kfd_dev *dev;
1602 
1603 	mutex_lock(&p->mutex);
1604 	q = pqm_get_user_queue(&p->pqm, args->queue_id);
1605 
1606 	if (q) {
1607 		dev = q->device;
1608 	} else {
1609 		retval = -EINVAL;
1610 		goto out_unlock;
1611 	}
1612 
1613 	if (!dev->gws) {
1614 		retval = -ENODEV;
1615 		goto out_unlock;
1616 	}
1617 
1618 	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
1619 		retval = -ENODEV;
1620 		goto out_unlock;
1621 	}
1622 
1623 	retval = pqm_set_gws(&p->pqm, args->queue_id, args->num_gws ? dev->gws : NULL);
1624 	mutex_unlock(&p->mutex);
1625 
1626 	args->first_gws = 0;
1627 	return retval;
1628 
1629 out_unlock:
1630 	mutex_unlock(&p->mutex);
1631 	return retval;
1632 }
1633 
1634 static int kfd_ioctl_get_dmabuf_info(struct file *filep,
1635 		struct kfd_process *p, void *data)
1636 {
1637 	struct kfd_ioctl_get_dmabuf_info_args *args = data;
1638 	struct kfd_dev *dev = NULL;
1639 	struct kgd_dev *dma_buf_kgd;
1640 	void *metadata_buffer = NULL;
1641 	uint32_t flags;
1642 	unsigned int i;
1643 	int r;
1644 
1645 	/* Find a KFD GPU device that supports the get_dmabuf_info query */
1646 	for (i = 0; kfd_topology_enum_kfd_devices(i, &dev) == 0; i++)
1647 		if (dev)
1648 			break;
1649 	if (!dev)
1650 		return -EINVAL;
1651 
1652 	if (args->metadata_ptr) {
1653 		metadata_buffer = kzalloc(args->metadata_size, GFP_KERNEL);
1654 		if (!metadata_buffer)
1655 			return -ENOMEM;
1656 	}
1657 
1658 	/* Get dmabuf info from KGD */
1659 	r = amdgpu_amdkfd_get_dmabuf_info(dev->kgd, args->dmabuf_fd,
1660 					  &dma_buf_kgd, &args->size,
1661 					  metadata_buffer, args->metadata_size,
1662 					  &args->metadata_size, &flags);
1663 	if (r)
1664 		goto exit;
1665 
1666 	/* Reverse-lookup gpu_id from kgd pointer */
1667 	dev = kfd_device_by_kgd(dma_buf_kgd);
1668 	if (!dev) {
1669 		r = -EINVAL;
1670 		goto exit;
1671 	}
1672 	args->gpu_id = dev->id;
1673 	args->flags = flags;
1674 
1675 	/* Copy metadata buffer to user mode */
1676 	if (metadata_buffer) {
1677 		r = copy_to_user((void __user *)args->metadata_ptr,
1678 				 metadata_buffer, args->metadata_size);
1679 		if (r != 0)
1680 			r = -EFAULT;
1681 	}
1682 
1683 exit:
1684 	kfree(metadata_buffer);
1685 
1686 	return r;
1687 }
1688 
1689 static int kfd_ioctl_import_dmabuf(struct file *filep,
1690 				   struct kfd_process *p, void *data)
1691 {
1692 	struct kfd_ioctl_import_dmabuf_args *args = data;
1693 	struct kfd_process_device *pdd;
1694 	struct dma_buf *dmabuf;
1695 	struct kfd_dev *dev;
1696 	int idr_handle;
1697 	uint64_t size;
1698 	void *mem;
1699 	int r;
1700 
1701 	dev = kfd_device_by_id(args->gpu_id);
1702 	if (!dev)
1703 		return -EINVAL;
1704 
1705 	dmabuf = dma_buf_get(args->dmabuf_fd);
1706 	if (IS_ERR(dmabuf))
1707 		return PTR_ERR(dmabuf);
1708 
1709 	mutex_lock(&p->mutex);
1710 
1711 	pdd = kfd_bind_process_to_device(dev, p);
1712 	if (IS_ERR(pdd)) {
1713 		r = PTR_ERR(pdd);
1714 		goto err_unlock;
1715 	}
1716 
1717 	r = amdgpu_amdkfd_gpuvm_import_dmabuf(dev->kgd, dmabuf,
1718 					      args->va_addr, pdd->vm,
1719 					      (struct kgd_mem **)&mem, &size,
1720 					      NULL);
1721 	if (r)
1722 		goto err_unlock;
1723 
1724 	idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1725 	if (idr_handle < 0) {
1726 		r = -EFAULT;
1727 		goto err_free;
1728 	}
1729 
1730 	mutex_unlock(&p->mutex);
1731 
1732 	args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1733 
1734 	return 0;
1735 
1736 err_free:
1737 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, (struct kgd_mem *)mem, NULL);
1738 err_unlock:
1739 	mutex_unlock(&p->mutex);
1740 	return r;
1741 }
1742 
1743 #define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \
1744 	[_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, \
1745 			    .cmd_drv = 0, .name = #ioctl}
1746 
1747 /** Ioctl table */
1748 static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = {
1749 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_VERSION,
1750 			kfd_ioctl_get_version, 0),
1751 
1752 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_QUEUE,
1753 			kfd_ioctl_create_queue, 0),
1754 
1755 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_QUEUE,
1756 			kfd_ioctl_destroy_queue, 0),
1757 
1758 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_MEMORY_POLICY,
1759 			kfd_ioctl_set_memory_policy, 0),
1760 
1761 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_CLOCK_COUNTERS,
1762 			kfd_ioctl_get_clock_counters, 0),
1763 
1764 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES,
1765 			kfd_ioctl_get_process_apertures, 0),
1766 
1767 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_UPDATE_QUEUE,
1768 			kfd_ioctl_update_queue, 0),
1769 
1770 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_EVENT,
1771 			kfd_ioctl_create_event, 0),
1772 
1773 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_EVENT,
1774 			kfd_ioctl_destroy_event, 0),
1775 
1776 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_EVENT,
1777 			kfd_ioctl_set_event, 0),
1778 
1779 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_RESET_EVENT,
1780 			kfd_ioctl_reset_event, 0),
1781 
1782 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_WAIT_EVENTS,
1783 			kfd_ioctl_wait_events, 0),
1784 
1785 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_REGISTER,
1786 			kfd_ioctl_dbg_register, 0),
1787 
1788 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_UNREGISTER,
1789 			kfd_ioctl_dbg_unregister, 0),
1790 
1791 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_ADDRESS_WATCH,
1792 			kfd_ioctl_dbg_address_watch, 0),
1793 
1794 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_WAVE_CONTROL,
1795 			kfd_ioctl_dbg_wave_control, 0),
1796 
1797 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_SCRATCH_BACKING_VA,
1798 			kfd_ioctl_set_scratch_backing_va, 0),
1799 
1800 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG,
1801 			kfd_ioctl_get_tile_config, 0),
1802 
1803 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_TRAP_HANDLER,
1804 			kfd_ioctl_set_trap_handler, 0),
1805 
1806 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES_NEW,
1807 			kfd_ioctl_get_process_apertures_new, 0),
1808 
1809 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ACQUIRE_VM,
1810 			kfd_ioctl_acquire_vm, 0),
1811 
1812 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_MEMORY_OF_GPU,
1813 			kfd_ioctl_alloc_memory_of_gpu, 0),
1814 
1815 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_FREE_MEMORY_OF_GPU,
1816 			kfd_ioctl_free_memory_of_gpu, 0),
1817 
1818 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_MAP_MEMORY_TO_GPU,
1819 			kfd_ioctl_map_memory_to_gpu, 0),
1820 
1821 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU,
1822 			kfd_ioctl_unmap_memory_from_gpu, 0),
1823 
1824 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_CU_MASK,
1825 			kfd_ioctl_set_cu_mask, 0),
1826 
1827 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_QUEUE_WAVE_STATE,
1828 			kfd_ioctl_get_queue_wave_state, 0),
1829 
1830 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_DMABUF_INFO,
1831 				kfd_ioctl_get_dmabuf_info, 0),
1832 
1833 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_IMPORT_DMABUF,
1834 				kfd_ioctl_import_dmabuf, 0),
1835 
1836 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_QUEUE_GWS,
1837 			kfd_ioctl_alloc_queue_gws, 0),
1838 };
1839 
1840 #define AMDKFD_CORE_IOCTL_COUNT	ARRAY_SIZE(amdkfd_ioctls)
1841 
1842 static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
1843 {
1844 	struct kfd_process *process;
1845 	amdkfd_ioctl_t *func;
1846 	const struct amdkfd_ioctl_desc *ioctl = NULL;
1847 	unsigned int nr = _IOC_NR(cmd);
1848 	char stack_kdata[128];
1849 	char *kdata = NULL;
1850 	unsigned int usize, asize;
1851 	int retcode = -EINVAL;
1852 
1853 	if (nr >= AMDKFD_CORE_IOCTL_COUNT)
1854 		goto err_i1;
1855 
1856 	if ((nr >= AMDKFD_COMMAND_START) && (nr < AMDKFD_COMMAND_END)) {
1857 		u32 amdkfd_size;
1858 
1859 		ioctl = &amdkfd_ioctls[nr];
1860 
1861 		amdkfd_size = _IOC_SIZE(ioctl->cmd);
1862 		usize = asize = _IOC_SIZE(cmd);
1863 		if (amdkfd_size > asize)
1864 			asize = amdkfd_size;
1865 
1866 		cmd = ioctl->cmd;
1867 	} else
1868 		goto err_i1;
1869 
1870 	dev_dbg(kfd_device, "ioctl cmd 0x%x (#0x%x), arg 0x%lx\n", cmd, nr, arg);
1871 
1872 	/* Get the process struct from the filep. Only the process
1873 	 * that opened /dev/kfd can use the file descriptor. Child
1874 	 * processes need to create their own KFD device context.
1875 	 */
1876 	process = filep->private_data;
1877 	if (process->lead_thread != current->group_leader) {
1878 		dev_dbg(kfd_device, "Using KFD FD in wrong process\n");
1879 		retcode = -EBADF;
1880 		goto err_i1;
1881 	}
1882 
1883 	/* Do not trust userspace, use our own definition */
1884 	func = ioctl->func;
1885 
1886 	if (unlikely(!func)) {
1887 		dev_dbg(kfd_device, "no function\n");
1888 		retcode = -EINVAL;
1889 		goto err_i1;
1890 	}
1891 
1892 	if (cmd & (IOC_IN | IOC_OUT)) {
1893 		if (asize <= sizeof(stack_kdata)) {
1894 			kdata = stack_kdata;
1895 		} else {
1896 			kdata = kmalloc(asize, GFP_KERNEL);
1897 			if (!kdata) {
1898 				retcode = -ENOMEM;
1899 				goto err_i1;
1900 			}
1901 		}
1902 		if (asize > usize)
1903 			memset(kdata + usize, 0, asize - usize);
1904 	}
1905 
1906 	if (cmd & IOC_IN) {
1907 		if (copy_from_user(kdata, (void __user *)arg, usize) != 0) {
1908 			retcode = -EFAULT;
1909 			goto err_i1;
1910 		}
1911 	} else if (cmd & IOC_OUT) {
1912 		memset(kdata, 0, usize);
1913 	}
1914 
1915 	retcode = func(filep, process, kdata);
1916 
1917 	if (cmd & IOC_OUT)
1918 		if (copy_to_user((void __user *)arg, kdata, usize) != 0)
1919 			retcode = -EFAULT;
1920 
1921 err_i1:
1922 	if (!ioctl)
1923 		dev_dbg(kfd_device, "invalid ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n",
1924 			  task_pid_nr(current), cmd, nr);
1925 
1926 	if (kdata != stack_kdata)
1927 		kfree(kdata);
1928 
1929 	if (retcode)
1930 		dev_dbg(kfd_device, "ioctl cmd (#0x%x), arg 0x%lx, ret = %d\n",
1931 				nr, arg, retcode);
1932 
1933 	return retcode;
1934 }
1935 
1936 static int kfd_mmio_mmap(struct kfd_dev *dev, struct kfd_process *process,
1937 		      struct vm_area_struct *vma)
1938 {
1939 	phys_addr_t address;
1940 	int ret;
1941 
1942 	if (vma->vm_end - vma->vm_start != PAGE_SIZE)
1943 		return -EINVAL;
1944 
1945 	address = amdgpu_amdkfd_get_mmio_remap_phys_addr(dev->kgd);
1946 
1947 	vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE |
1948 				VM_DONTDUMP | VM_PFNMAP;
1949 
1950 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1951 
1952 	pr_debug("pasid 0x%x mapping mmio page\n"
1953 		 "     target user address == 0x%08llX\n"
1954 		 "     physical address    == 0x%08llX\n"
1955 		 "     vm_flags            == 0x%04lX\n"
1956 		 "     size                == 0x%04lX\n",
1957 		 process->pasid, (unsigned long long) vma->vm_start,
1958 		 address, vma->vm_flags, PAGE_SIZE);
1959 
1960 	ret = io_remap_pfn_range(vma,
1961 				vma->vm_start,
1962 				address >> PAGE_SHIFT,
1963 				PAGE_SIZE,
1964 				vma->vm_page_prot);
1965 	return ret;
1966 }
1967 
1968 
1969 static int kfd_mmap(struct file *filp, struct vm_area_struct *vma)
1970 {
1971 	struct kfd_process *process;
1972 	struct kfd_dev *dev = NULL;
1973 	unsigned long mmap_offset;
1974 	unsigned int gpu_id;
1975 
1976 	process = kfd_get_process(current);
1977 	if (IS_ERR(process))
1978 		return PTR_ERR(process);
1979 
1980 	mmap_offset = vma->vm_pgoff << PAGE_SHIFT;
1981 	gpu_id = KFD_MMAP_GET_GPU_ID(mmap_offset);
1982 	if (gpu_id)
1983 		dev = kfd_device_by_id(gpu_id);
1984 
1985 	switch (mmap_offset & KFD_MMAP_TYPE_MASK) {
1986 	case KFD_MMAP_TYPE_DOORBELL:
1987 		if (!dev)
1988 			return -ENODEV;
1989 		return kfd_doorbell_mmap(dev, process, vma);
1990 
1991 	case KFD_MMAP_TYPE_EVENTS:
1992 		return kfd_event_mmap(process, vma);
1993 
1994 	case KFD_MMAP_TYPE_RESERVED_MEM:
1995 		if (!dev)
1996 			return -ENODEV;
1997 		return kfd_reserved_mem_mmap(dev, process, vma);
1998 	case KFD_MMAP_TYPE_MMIO:
1999 		if (!dev)
2000 			return -ENODEV;
2001 		return kfd_mmio_mmap(dev, process, vma);
2002 	}
2003 
2004 	return -EFAULT;
2005 }
2006