1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2014-2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include <linux/device.h> 25 #include <linux/export.h> 26 #include <linux/err.h> 27 #include <linux/fs.h> 28 #include <linux/file.h> 29 #include <linux/sched.h> 30 #include <linux/slab.h> 31 #include <linux/uaccess.h> 32 #include <linux/compat.h> 33 #include <uapi/linux/kfd_ioctl.h> 34 #include <linux/time.h> 35 #include <linux/mm.h> 36 #include <linux/mman.h> 37 #include <linux/ptrace.h> 38 #include <linux/dma-buf.h> 39 #include <linux/fdtable.h> 40 #include <linux/processor.h> 41 #include "kfd_priv.h" 42 #include "kfd_device_queue_manager.h" 43 #include "kfd_svm.h" 44 #include "amdgpu_amdkfd.h" 45 #include "kfd_smi_events.h" 46 #include "amdgpu_dma_buf.h" 47 #include "kfd_debug.h" 48 49 static long kfd_ioctl(struct file *, unsigned int, unsigned long); 50 static int kfd_open(struct inode *, struct file *); 51 static int kfd_release(struct inode *, struct file *); 52 static int kfd_mmap(struct file *, struct vm_area_struct *); 53 54 static const char kfd_dev_name[] = "kfd"; 55 56 static const struct file_operations kfd_fops = { 57 .owner = THIS_MODULE, 58 .unlocked_ioctl = kfd_ioctl, 59 .compat_ioctl = compat_ptr_ioctl, 60 .open = kfd_open, 61 .release = kfd_release, 62 .mmap = kfd_mmap, 63 }; 64 65 static int kfd_char_dev_major = -1; 66 struct device *kfd_device; 67 static const struct class kfd_class = { 68 .name = kfd_dev_name, 69 }; 70 71 static inline struct kfd_process_device *kfd_lock_pdd_by_id(struct kfd_process *p, __u32 gpu_id) 72 { 73 struct kfd_process_device *pdd; 74 75 mutex_lock(&p->mutex); 76 pdd = kfd_process_device_data_by_id(p, gpu_id); 77 78 if (pdd) 79 return pdd; 80 81 mutex_unlock(&p->mutex); 82 return NULL; 83 } 84 85 static inline void kfd_unlock_pdd(struct kfd_process_device *pdd) 86 { 87 mutex_unlock(&pdd->process->mutex); 88 } 89 90 int kfd_chardev_init(void) 91 { 92 int err = 0; 93 94 kfd_char_dev_major = register_chrdev(0, kfd_dev_name, &kfd_fops); 95 err = kfd_char_dev_major; 96 if (err < 0) 97 goto err_register_chrdev; 98 99 err = class_register(&kfd_class); 100 if (err) 101 goto err_class_create; 102 103 kfd_device = device_create(&kfd_class, NULL, 104 MKDEV(kfd_char_dev_major, 0), 105 NULL, kfd_dev_name); 106 err = PTR_ERR(kfd_device); 107 if (IS_ERR(kfd_device)) 108 goto err_device_create; 109 110 return 0; 111 112 err_device_create: 113 class_unregister(&kfd_class); 114 err_class_create: 115 unregister_chrdev(kfd_char_dev_major, kfd_dev_name); 116 err_register_chrdev: 117 return err; 118 } 119 120 void kfd_chardev_exit(void) 121 { 122 device_destroy(&kfd_class, MKDEV(kfd_char_dev_major, 0)); 123 class_unregister(&kfd_class); 124 unregister_chrdev(kfd_char_dev_major, kfd_dev_name); 125 kfd_device = NULL; 126 } 127 128 129 static int kfd_open(struct inode *inode, struct file *filep) 130 { 131 struct kfd_process *process; 132 bool is_32bit_user_mode; 133 134 if (iminor(inode) != 0) 135 return -ENODEV; 136 137 is_32bit_user_mode = in_compat_syscall(); 138 139 if (is_32bit_user_mode) { 140 dev_warn(kfd_device, 141 "Process %d (32-bit) failed to open /dev/kfd\n" 142 "32-bit processes are not supported by amdkfd\n", 143 current->pid); 144 return -EPERM; 145 } 146 147 process = kfd_create_process(current); 148 if (IS_ERR(process)) 149 return PTR_ERR(process); 150 151 if (kfd_process_init_cwsr_apu(process, filep)) { 152 kfd_unref_process(process); 153 return -EFAULT; 154 } 155 156 /* filep now owns the reference returned by kfd_create_process */ 157 filep->private_data = process; 158 159 dev_dbg(kfd_device, "process %d opened, compat mode (32 bit) - %d\n", 160 process->pasid, process->is_32bit_user_mode); 161 162 return 0; 163 } 164 165 static int kfd_release(struct inode *inode, struct file *filep) 166 { 167 struct kfd_process *process = filep->private_data; 168 169 if (process) 170 kfd_unref_process(process); 171 172 return 0; 173 } 174 175 static int kfd_ioctl_get_version(struct file *filep, struct kfd_process *p, 176 void *data) 177 { 178 struct kfd_ioctl_get_version_args *args = data; 179 180 args->major_version = KFD_IOCTL_MAJOR_VERSION; 181 args->minor_version = KFD_IOCTL_MINOR_VERSION; 182 183 return 0; 184 } 185 186 static int set_queue_properties_from_user(struct queue_properties *q_properties, 187 struct kfd_ioctl_create_queue_args *args) 188 { 189 /* 190 * Repurpose queue percentage to accommodate new features: 191 * bit 0-7: queue percentage 192 * bit 8-15: pm4_target_xcc 193 */ 194 if ((args->queue_percentage & 0xFF) > KFD_MAX_QUEUE_PERCENTAGE) { 195 pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n"); 196 return -EINVAL; 197 } 198 199 if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) { 200 pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n"); 201 return -EINVAL; 202 } 203 204 if ((args->ring_base_address) && 205 (!access_ok((const void __user *) args->ring_base_address, 206 sizeof(uint64_t)))) { 207 pr_err("Can't access ring base address\n"); 208 return -EFAULT; 209 } 210 211 if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) { 212 pr_err("Ring size must be a power of 2 or 0\n"); 213 return -EINVAL; 214 } 215 216 if (!access_ok((const void __user *) args->read_pointer_address, 217 sizeof(uint32_t))) { 218 pr_err("Can't access read pointer\n"); 219 return -EFAULT; 220 } 221 222 if (!access_ok((const void __user *) args->write_pointer_address, 223 sizeof(uint32_t))) { 224 pr_err("Can't access write pointer\n"); 225 return -EFAULT; 226 } 227 228 if (args->eop_buffer_address && 229 !access_ok((const void __user *) args->eop_buffer_address, 230 sizeof(uint32_t))) { 231 pr_debug("Can't access eop buffer"); 232 return -EFAULT; 233 } 234 235 if (args->ctx_save_restore_address && 236 !access_ok((const void __user *) args->ctx_save_restore_address, 237 sizeof(uint32_t))) { 238 pr_debug("Can't access ctx save restore buffer"); 239 return -EFAULT; 240 } 241 242 q_properties->is_interop = false; 243 q_properties->is_gws = false; 244 q_properties->queue_percent = args->queue_percentage & 0xFF; 245 /* bit 8-15 are repurposed to be PM4 target XCC */ 246 q_properties->pm4_target_xcc = (args->queue_percentage >> 8) & 0xFF; 247 q_properties->priority = args->queue_priority; 248 q_properties->queue_address = args->ring_base_address; 249 q_properties->queue_size = args->ring_size; 250 q_properties->read_ptr = (uint32_t *) args->read_pointer_address; 251 q_properties->write_ptr = (uint32_t *) args->write_pointer_address; 252 q_properties->eop_ring_buffer_address = args->eop_buffer_address; 253 q_properties->eop_ring_buffer_size = args->eop_buffer_size; 254 q_properties->ctx_save_restore_area_address = 255 args->ctx_save_restore_address; 256 q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size; 257 q_properties->ctl_stack_size = args->ctl_stack_size; 258 if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE || 259 args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL) 260 q_properties->type = KFD_QUEUE_TYPE_COMPUTE; 261 else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA) 262 q_properties->type = KFD_QUEUE_TYPE_SDMA; 263 else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_XGMI) 264 q_properties->type = KFD_QUEUE_TYPE_SDMA_XGMI; 265 else 266 return -ENOTSUPP; 267 268 if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL) 269 q_properties->format = KFD_QUEUE_FORMAT_AQL; 270 else 271 q_properties->format = KFD_QUEUE_FORMAT_PM4; 272 273 pr_debug("Queue Percentage: %d, %d\n", 274 q_properties->queue_percent, args->queue_percentage); 275 276 pr_debug("Queue Priority: %d, %d\n", 277 q_properties->priority, args->queue_priority); 278 279 pr_debug("Queue Address: 0x%llX, 0x%llX\n", 280 q_properties->queue_address, args->ring_base_address); 281 282 pr_debug("Queue Size: 0x%llX, %u\n", 283 q_properties->queue_size, args->ring_size); 284 285 pr_debug("Queue r/w Pointers: %px, %px\n", 286 q_properties->read_ptr, 287 q_properties->write_ptr); 288 289 pr_debug("Queue Format: %d\n", q_properties->format); 290 291 pr_debug("Queue EOP: 0x%llX\n", q_properties->eop_ring_buffer_address); 292 293 pr_debug("Queue CTX save area: 0x%llX\n", 294 q_properties->ctx_save_restore_area_address); 295 296 return 0; 297 } 298 299 static int kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p, 300 void *data) 301 { 302 struct kfd_ioctl_create_queue_args *args = data; 303 struct kfd_node *dev; 304 int err = 0; 305 unsigned int queue_id; 306 struct kfd_process_device *pdd; 307 struct queue_properties q_properties; 308 uint32_t doorbell_offset_in_process = 0; 309 struct amdgpu_bo *wptr_bo = NULL; 310 311 memset(&q_properties, 0, sizeof(struct queue_properties)); 312 313 pr_debug("Creating queue ioctl\n"); 314 315 err = set_queue_properties_from_user(&q_properties, args); 316 if (err) 317 return err; 318 319 pr_debug("Looking for gpu id 0x%x\n", args->gpu_id); 320 321 mutex_lock(&p->mutex); 322 323 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 324 if (!pdd) { 325 pr_debug("Could not find gpu id 0x%x\n", args->gpu_id); 326 err = -EINVAL; 327 goto err_pdd; 328 } 329 dev = pdd->dev; 330 331 pdd = kfd_bind_process_to_device(dev, p); 332 if (IS_ERR(pdd)) { 333 err = -ESRCH; 334 goto err_bind_process; 335 } 336 337 if (!pdd->qpd.proc_doorbells) { 338 err = kfd_alloc_process_doorbells(dev->kfd, pdd); 339 if (err) { 340 pr_debug("failed to allocate process doorbells\n"); 341 goto err_bind_process; 342 } 343 } 344 345 /* Starting with GFX11, wptr BOs must be mapped to GART for MES to determine work 346 * on unmapped queues for usermode queue oversubscription (no aggregated doorbell) 347 */ 348 if (dev->kfd->shared_resources.enable_mes && 349 ((dev->adev->mes.sched_version & AMDGPU_MES_API_VERSION_MASK) 350 >> AMDGPU_MES_API_VERSION_SHIFT) >= 2) { 351 struct amdgpu_bo_va_mapping *wptr_mapping; 352 struct amdgpu_vm *wptr_vm; 353 354 wptr_vm = drm_priv_to_vm(pdd->drm_priv); 355 err = amdgpu_bo_reserve(wptr_vm->root.bo, false); 356 if (err) 357 goto err_wptr_map_gart; 358 359 wptr_mapping = amdgpu_vm_bo_lookup_mapping( 360 wptr_vm, args->write_pointer_address >> PAGE_SHIFT); 361 amdgpu_bo_unreserve(wptr_vm->root.bo); 362 if (!wptr_mapping) { 363 pr_err("Failed to lookup wptr bo\n"); 364 err = -EINVAL; 365 goto err_wptr_map_gart; 366 } 367 368 wptr_bo = wptr_mapping->bo_va->base.bo; 369 if (wptr_bo->tbo.base.size > PAGE_SIZE) { 370 pr_err("Requested GART mapping for wptr bo larger than one page\n"); 371 err = -EINVAL; 372 goto err_wptr_map_gart; 373 } 374 375 err = amdgpu_amdkfd_map_gtt_bo_to_gart(wptr_bo); 376 if (err) { 377 pr_err("Failed to map wptr bo to GART\n"); 378 goto err_wptr_map_gart; 379 } 380 } 381 382 pr_debug("Creating queue for PASID 0x%x on gpu 0x%x\n", 383 p->pasid, 384 dev->id); 385 386 err = pqm_create_queue(&p->pqm, dev, filep, &q_properties, &queue_id, wptr_bo, 387 NULL, NULL, NULL, &doorbell_offset_in_process); 388 if (err != 0) 389 goto err_create_queue; 390 391 args->queue_id = queue_id; 392 393 394 /* Return gpu_id as doorbell offset for mmap usage */ 395 args->doorbell_offset = KFD_MMAP_TYPE_DOORBELL; 396 args->doorbell_offset |= KFD_MMAP_GPU_ID(args->gpu_id); 397 if (KFD_IS_SOC15(dev)) 398 /* On SOC15 ASICs, include the doorbell offset within the 399 * process doorbell frame, which is 2 pages. 400 */ 401 args->doorbell_offset |= doorbell_offset_in_process; 402 403 mutex_unlock(&p->mutex); 404 405 pr_debug("Queue id %d was created successfully\n", args->queue_id); 406 407 pr_debug("Ring buffer address == 0x%016llX\n", 408 args->ring_base_address); 409 410 pr_debug("Read ptr address == 0x%016llX\n", 411 args->read_pointer_address); 412 413 pr_debug("Write ptr address == 0x%016llX\n", 414 args->write_pointer_address); 415 416 kfd_dbg_ev_raise(KFD_EC_MASK(EC_QUEUE_NEW), p, dev, queue_id, false, NULL, 0); 417 return 0; 418 419 err_create_queue: 420 if (wptr_bo) 421 amdgpu_amdkfd_free_gtt_mem(dev->adev, wptr_bo); 422 err_wptr_map_gart: 423 err_bind_process: 424 err_pdd: 425 mutex_unlock(&p->mutex); 426 return err; 427 } 428 429 static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p, 430 void *data) 431 { 432 int retval; 433 struct kfd_ioctl_destroy_queue_args *args = data; 434 435 pr_debug("Destroying queue id %d for pasid 0x%x\n", 436 args->queue_id, 437 p->pasid); 438 439 mutex_lock(&p->mutex); 440 441 retval = pqm_destroy_queue(&p->pqm, args->queue_id); 442 443 mutex_unlock(&p->mutex); 444 return retval; 445 } 446 447 static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p, 448 void *data) 449 { 450 int retval; 451 struct kfd_ioctl_update_queue_args *args = data; 452 struct queue_properties properties; 453 454 /* 455 * Repurpose queue percentage to accommodate new features: 456 * bit 0-7: queue percentage 457 * bit 8-15: pm4_target_xcc 458 */ 459 if ((args->queue_percentage & 0xFF) > KFD_MAX_QUEUE_PERCENTAGE) { 460 pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n"); 461 return -EINVAL; 462 } 463 464 if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) { 465 pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n"); 466 return -EINVAL; 467 } 468 469 if ((args->ring_base_address) && 470 (!access_ok((const void __user *) args->ring_base_address, 471 sizeof(uint64_t)))) { 472 pr_err("Can't access ring base address\n"); 473 return -EFAULT; 474 } 475 476 if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) { 477 pr_err("Ring size must be a power of 2 or 0\n"); 478 return -EINVAL; 479 } 480 481 properties.queue_address = args->ring_base_address; 482 properties.queue_size = args->ring_size; 483 properties.queue_percent = args->queue_percentage & 0xFF; 484 /* bit 8-15 are repurposed to be PM4 target XCC */ 485 properties.pm4_target_xcc = (args->queue_percentage >> 8) & 0xFF; 486 properties.priority = args->queue_priority; 487 488 pr_debug("Updating queue id %d for pasid 0x%x\n", 489 args->queue_id, p->pasid); 490 491 mutex_lock(&p->mutex); 492 493 retval = pqm_update_queue_properties(&p->pqm, args->queue_id, &properties); 494 495 mutex_unlock(&p->mutex); 496 497 return retval; 498 } 499 500 static int kfd_ioctl_set_cu_mask(struct file *filp, struct kfd_process *p, 501 void *data) 502 { 503 int retval; 504 const int max_num_cus = 1024; 505 struct kfd_ioctl_set_cu_mask_args *args = data; 506 struct mqd_update_info minfo = {0}; 507 uint32_t __user *cu_mask_ptr = (uint32_t __user *)args->cu_mask_ptr; 508 size_t cu_mask_size = sizeof(uint32_t) * (args->num_cu_mask / 32); 509 510 if ((args->num_cu_mask % 32) != 0) { 511 pr_debug("num_cu_mask 0x%x must be a multiple of 32", 512 args->num_cu_mask); 513 return -EINVAL; 514 } 515 516 minfo.cu_mask.count = args->num_cu_mask; 517 if (minfo.cu_mask.count == 0) { 518 pr_debug("CU mask cannot be 0"); 519 return -EINVAL; 520 } 521 522 /* To prevent an unreasonably large CU mask size, set an arbitrary 523 * limit of max_num_cus bits. We can then just drop any CU mask bits 524 * past max_num_cus bits and just use the first max_num_cus bits. 525 */ 526 if (minfo.cu_mask.count > max_num_cus) { 527 pr_debug("CU mask cannot be greater than 1024 bits"); 528 minfo.cu_mask.count = max_num_cus; 529 cu_mask_size = sizeof(uint32_t) * (max_num_cus/32); 530 } 531 532 minfo.cu_mask.ptr = kzalloc(cu_mask_size, GFP_KERNEL); 533 if (!minfo.cu_mask.ptr) 534 return -ENOMEM; 535 536 retval = copy_from_user(minfo.cu_mask.ptr, cu_mask_ptr, cu_mask_size); 537 if (retval) { 538 pr_debug("Could not copy CU mask from userspace"); 539 retval = -EFAULT; 540 goto out; 541 } 542 543 mutex_lock(&p->mutex); 544 545 retval = pqm_update_mqd(&p->pqm, args->queue_id, &minfo); 546 547 mutex_unlock(&p->mutex); 548 549 out: 550 kfree(minfo.cu_mask.ptr); 551 return retval; 552 } 553 554 static int kfd_ioctl_get_queue_wave_state(struct file *filep, 555 struct kfd_process *p, void *data) 556 { 557 struct kfd_ioctl_get_queue_wave_state_args *args = data; 558 int r; 559 560 mutex_lock(&p->mutex); 561 562 r = pqm_get_wave_state(&p->pqm, args->queue_id, 563 (void __user *)args->ctl_stack_address, 564 &args->ctl_stack_used_size, 565 &args->save_area_used_size); 566 567 mutex_unlock(&p->mutex); 568 569 return r; 570 } 571 572 static int kfd_ioctl_set_memory_policy(struct file *filep, 573 struct kfd_process *p, void *data) 574 { 575 struct kfd_ioctl_set_memory_policy_args *args = data; 576 int err = 0; 577 struct kfd_process_device *pdd; 578 enum cache_policy default_policy, alternate_policy; 579 580 if (args->default_policy != KFD_IOC_CACHE_POLICY_COHERENT 581 && args->default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) { 582 return -EINVAL; 583 } 584 585 if (args->alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT 586 && args->alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) { 587 return -EINVAL; 588 } 589 590 mutex_lock(&p->mutex); 591 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 592 if (!pdd) { 593 pr_debug("Could not find gpu id 0x%x\n", args->gpu_id); 594 err = -EINVAL; 595 goto err_pdd; 596 } 597 598 pdd = kfd_bind_process_to_device(pdd->dev, p); 599 if (IS_ERR(pdd)) { 600 err = -ESRCH; 601 goto out; 602 } 603 604 default_policy = (args->default_policy == KFD_IOC_CACHE_POLICY_COHERENT) 605 ? cache_policy_coherent : cache_policy_noncoherent; 606 607 alternate_policy = 608 (args->alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT) 609 ? cache_policy_coherent : cache_policy_noncoherent; 610 611 if (!pdd->dev->dqm->ops.set_cache_memory_policy(pdd->dev->dqm, 612 &pdd->qpd, 613 default_policy, 614 alternate_policy, 615 (void __user *)args->alternate_aperture_base, 616 args->alternate_aperture_size)) 617 err = -EINVAL; 618 619 out: 620 err_pdd: 621 mutex_unlock(&p->mutex); 622 623 return err; 624 } 625 626 static int kfd_ioctl_set_trap_handler(struct file *filep, 627 struct kfd_process *p, void *data) 628 { 629 struct kfd_ioctl_set_trap_handler_args *args = data; 630 int err = 0; 631 struct kfd_process_device *pdd; 632 633 mutex_lock(&p->mutex); 634 635 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 636 if (!pdd) { 637 err = -EINVAL; 638 goto err_pdd; 639 } 640 641 pdd = kfd_bind_process_to_device(pdd->dev, p); 642 if (IS_ERR(pdd)) { 643 err = -ESRCH; 644 goto out; 645 } 646 647 kfd_process_set_trap_handler(&pdd->qpd, args->tba_addr, args->tma_addr); 648 649 out: 650 err_pdd: 651 mutex_unlock(&p->mutex); 652 653 return err; 654 } 655 656 static int kfd_ioctl_dbg_register(struct file *filep, 657 struct kfd_process *p, void *data) 658 { 659 return -EPERM; 660 } 661 662 static int kfd_ioctl_dbg_unregister(struct file *filep, 663 struct kfd_process *p, void *data) 664 { 665 return -EPERM; 666 } 667 668 static int kfd_ioctl_dbg_address_watch(struct file *filep, 669 struct kfd_process *p, void *data) 670 { 671 return -EPERM; 672 } 673 674 /* Parse and generate fixed size data structure for wave control */ 675 static int kfd_ioctl_dbg_wave_control(struct file *filep, 676 struct kfd_process *p, void *data) 677 { 678 return -EPERM; 679 } 680 681 static int kfd_ioctl_get_clock_counters(struct file *filep, 682 struct kfd_process *p, void *data) 683 { 684 struct kfd_ioctl_get_clock_counters_args *args = data; 685 struct kfd_process_device *pdd; 686 687 mutex_lock(&p->mutex); 688 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 689 mutex_unlock(&p->mutex); 690 if (pdd) 691 /* Reading GPU clock counter from KGD */ 692 args->gpu_clock_counter = amdgpu_amdkfd_get_gpu_clock_counter(pdd->dev->adev); 693 else 694 /* Node without GPU resource */ 695 args->gpu_clock_counter = 0; 696 697 /* No access to rdtsc. Using raw monotonic time */ 698 args->cpu_clock_counter = ktime_get_raw_ns(); 699 args->system_clock_counter = ktime_get_boottime_ns(); 700 701 /* Since the counter is in nano-seconds we use 1GHz frequency */ 702 args->system_clock_freq = 1000000000; 703 704 return 0; 705 } 706 707 708 static int kfd_ioctl_get_process_apertures(struct file *filp, 709 struct kfd_process *p, void *data) 710 { 711 struct kfd_ioctl_get_process_apertures_args *args = data; 712 struct kfd_process_device_apertures *pAperture; 713 int i; 714 715 dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid); 716 717 args->num_of_nodes = 0; 718 719 mutex_lock(&p->mutex); 720 /* Run over all pdd of the process */ 721 for (i = 0; i < p->n_pdds; i++) { 722 struct kfd_process_device *pdd = p->pdds[i]; 723 724 pAperture = 725 &args->process_apertures[args->num_of_nodes]; 726 pAperture->gpu_id = pdd->dev->id; 727 pAperture->lds_base = pdd->lds_base; 728 pAperture->lds_limit = pdd->lds_limit; 729 pAperture->gpuvm_base = pdd->gpuvm_base; 730 pAperture->gpuvm_limit = pdd->gpuvm_limit; 731 pAperture->scratch_base = pdd->scratch_base; 732 pAperture->scratch_limit = pdd->scratch_limit; 733 734 dev_dbg(kfd_device, 735 "node id %u\n", args->num_of_nodes); 736 dev_dbg(kfd_device, 737 "gpu id %u\n", pdd->dev->id); 738 dev_dbg(kfd_device, 739 "lds_base %llX\n", pdd->lds_base); 740 dev_dbg(kfd_device, 741 "lds_limit %llX\n", pdd->lds_limit); 742 dev_dbg(kfd_device, 743 "gpuvm_base %llX\n", pdd->gpuvm_base); 744 dev_dbg(kfd_device, 745 "gpuvm_limit %llX\n", pdd->gpuvm_limit); 746 dev_dbg(kfd_device, 747 "scratch_base %llX\n", pdd->scratch_base); 748 dev_dbg(kfd_device, 749 "scratch_limit %llX\n", pdd->scratch_limit); 750 751 if (++args->num_of_nodes >= NUM_OF_SUPPORTED_GPUS) 752 break; 753 } 754 mutex_unlock(&p->mutex); 755 756 return 0; 757 } 758 759 static int kfd_ioctl_get_process_apertures_new(struct file *filp, 760 struct kfd_process *p, void *data) 761 { 762 struct kfd_ioctl_get_process_apertures_new_args *args = data; 763 struct kfd_process_device_apertures *pa; 764 int ret; 765 int i; 766 767 dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid); 768 769 if (args->num_of_nodes == 0) { 770 /* Return number of nodes, so that user space can alloacate 771 * sufficient memory 772 */ 773 mutex_lock(&p->mutex); 774 args->num_of_nodes = p->n_pdds; 775 goto out_unlock; 776 } 777 778 /* Fill in process-aperture information for all available 779 * nodes, but not more than args->num_of_nodes as that is 780 * the amount of memory allocated by user 781 */ 782 pa = kcalloc(args->num_of_nodes, sizeof(struct kfd_process_device_apertures), 783 GFP_KERNEL); 784 if (!pa) 785 return -ENOMEM; 786 787 mutex_lock(&p->mutex); 788 789 if (!p->n_pdds) { 790 args->num_of_nodes = 0; 791 kfree(pa); 792 goto out_unlock; 793 } 794 795 /* Run over all pdd of the process */ 796 for (i = 0; i < min(p->n_pdds, args->num_of_nodes); i++) { 797 struct kfd_process_device *pdd = p->pdds[i]; 798 799 pa[i].gpu_id = pdd->dev->id; 800 pa[i].lds_base = pdd->lds_base; 801 pa[i].lds_limit = pdd->lds_limit; 802 pa[i].gpuvm_base = pdd->gpuvm_base; 803 pa[i].gpuvm_limit = pdd->gpuvm_limit; 804 pa[i].scratch_base = pdd->scratch_base; 805 pa[i].scratch_limit = pdd->scratch_limit; 806 807 dev_dbg(kfd_device, 808 "gpu id %u\n", pdd->dev->id); 809 dev_dbg(kfd_device, 810 "lds_base %llX\n", pdd->lds_base); 811 dev_dbg(kfd_device, 812 "lds_limit %llX\n", pdd->lds_limit); 813 dev_dbg(kfd_device, 814 "gpuvm_base %llX\n", pdd->gpuvm_base); 815 dev_dbg(kfd_device, 816 "gpuvm_limit %llX\n", pdd->gpuvm_limit); 817 dev_dbg(kfd_device, 818 "scratch_base %llX\n", pdd->scratch_base); 819 dev_dbg(kfd_device, 820 "scratch_limit %llX\n", pdd->scratch_limit); 821 } 822 mutex_unlock(&p->mutex); 823 824 args->num_of_nodes = i; 825 ret = copy_to_user( 826 (void __user *)args->kfd_process_device_apertures_ptr, 827 pa, 828 (i * sizeof(struct kfd_process_device_apertures))); 829 kfree(pa); 830 return ret ? -EFAULT : 0; 831 832 out_unlock: 833 mutex_unlock(&p->mutex); 834 return 0; 835 } 836 837 static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p, 838 void *data) 839 { 840 struct kfd_ioctl_create_event_args *args = data; 841 int err; 842 843 /* For dGPUs the event page is allocated in user mode. The 844 * handle is passed to KFD with the first call to this IOCTL 845 * through the event_page_offset field. 846 */ 847 if (args->event_page_offset) { 848 mutex_lock(&p->mutex); 849 err = kfd_kmap_event_page(p, args->event_page_offset); 850 mutex_unlock(&p->mutex); 851 if (err) 852 return err; 853 } 854 855 err = kfd_event_create(filp, p, args->event_type, 856 args->auto_reset != 0, args->node_id, 857 &args->event_id, &args->event_trigger_data, 858 &args->event_page_offset, 859 &args->event_slot_index); 860 861 pr_debug("Created event (id:0x%08x) (%s)\n", args->event_id, __func__); 862 return err; 863 } 864 865 static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p, 866 void *data) 867 { 868 struct kfd_ioctl_destroy_event_args *args = data; 869 870 return kfd_event_destroy(p, args->event_id); 871 } 872 873 static int kfd_ioctl_set_event(struct file *filp, struct kfd_process *p, 874 void *data) 875 { 876 struct kfd_ioctl_set_event_args *args = data; 877 878 return kfd_set_event(p, args->event_id); 879 } 880 881 static int kfd_ioctl_reset_event(struct file *filp, struct kfd_process *p, 882 void *data) 883 { 884 struct kfd_ioctl_reset_event_args *args = data; 885 886 return kfd_reset_event(p, args->event_id); 887 } 888 889 static int kfd_ioctl_wait_events(struct file *filp, struct kfd_process *p, 890 void *data) 891 { 892 struct kfd_ioctl_wait_events_args *args = data; 893 894 return kfd_wait_on_events(p, args->num_events, 895 (void __user *)args->events_ptr, 896 (args->wait_for_all != 0), 897 &args->timeout, &args->wait_result); 898 } 899 static int kfd_ioctl_set_scratch_backing_va(struct file *filep, 900 struct kfd_process *p, void *data) 901 { 902 struct kfd_ioctl_set_scratch_backing_va_args *args = data; 903 struct kfd_process_device *pdd; 904 struct kfd_node *dev; 905 long err; 906 907 mutex_lock(&p->mutex); 908 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 909 if (!pdd) { 910 err = -EINVAL; 911 goto err_pdd; 912 } 913 dev = pdd->dev; 914 915 pdd = kfd_bind_process_to_device(dev, p); 916 if (IS_ERR(pdd)) { 917 err = PTR_ERR(pdd); 918 goto bind_process_to_device_fail; 919 } 920 921 pdd->qpd.sh_hidden_private_base = args->va_addr; 922 923 mutex_unlock(&p->mutex); 924 925 if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS && 926 pdd->qpd.vmid != 0 && dev->kfd2kgd->set_scratch_backing_va) 927 dev->kfd2kgd->set_scratch_backing_va( 928 dev->adev, args->va_addr, pdd->qpd.vmid); 929 930 return 0; 931 932 bind_process_to_device_fail: 933 err_pdd: 934 mutex_unlock(&p->mutex); 935 return err; 936 } 937 938 static int kfd_ioctl_get_tile_config(struct file *filep, 939 struct kfd_process *p, void *data) 940 { 941 struct kfd_ioctl_get_tile_config_args *args = data; 942 struct kfd_process_device *pdd; 943 struct tile_config config; 944 int err = 0; 945 946 mutex_lock(&p->mutex); 947 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 948 mutex_unlock(&p->mutex); 949 if (!pdd) 950 return -EINVAL; 951 952 amdgpu_amdkfd_get_tile_config(pdd->dev->adev, &config); 953 954 args->gb_addr_config = config.gb_addr_config; 955 args->num_banks = config.num_banks; 956 args->num_ranks = config.num_ranks; 957 958 if (args->num_tile_configs > config.num_tile_configs) 959 args->num_tile_configs = config.num_tile_configs; 960 err = copy_to_user((void __user *)args->tile_config_ptr, 961 config.tile_config_ptr, 962 args->num_tile_configs * sizeof(uint32_t)); 963 if (err) { 964 args->num_tile_configs = 0; 965 return -EFAULT; 966 } 967 968 if (args->num_macro_tile_configs > config.num_macro_tile_configs) 969 args->num_macro_tile_configs = 970 config.num_macro_tile_configs; 971 err = copy_to_user((void __user *)args->macro_tile_config_ptr, 972 config.macro_tile_config_ptr, 973 args->num_macro_tile_configs * sizeof(uint32_t)); 974 if (err) { 975 args->num_macro_tile_configs = 0; 976 return -EFAULT; 977 } 978 979 return 0; 980 } 981 982 static int kfd_ioctl_acquire_vm(struct file *filep, struct kfd_process *p, 983 void *data) 984 { 985 struct kfd_ioctl_acquire_vm_args *args = data; 986 struct kfd_process_device *pdd; 987 struct file *drm_file; 988 int ret; 989 990 drm_file = fget(args->drm_fd); 991 if (!drm_file) 992 return -EINVAL; 993 994 mutex_lock(&p->mutex); 995 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 996 if (!pdd) { 997 ret = -EINVAL; 998 goto err_pdd; 999 } 1000 1001 if (pdd->drm_file) { 1002 ret = pdd->drm_file == drm_file ? 0 : -EBUSY; 1003 goto err_drm_file; 1004 } 1005 1006 ret = kfd_process_device_init_vm(pdd, drm_file); 1007 if (ret) 1008 goto err_unlock; 1009 1010 /* On success, the PDD keeps the drm_file reference */ 1011 mutex_unlock(&p->mutex); 1012 1013 return 0; 1014 1015 err_unlock: 1016 err_pdd: 1017 err_drm_file: 1018 mutex_unlock(&p->mutex); 1019 fput(drm_file); 1020 return ret; 1021 } 1022 1023 bool kfd_dev_is_large_bar(struct kfd_node *dev) 1024 { 1025 if (dev->kfd->adev->debug_largebar) { 1026 pr_debug("Simulate large-bar allocation on non large-bar machine\n"); 1027 return true; 1028 } 1029 1030 if (dev->local_mem_info.local_mem_size_private == 0 && 1031 dev->local_mem_info.local_mem_size_public > 0) 1032 return true; 1033 1034 if (dev->local_mem_info.local_mem_size_public == 0 && 1035 dev->kfd->adev->gmc.is_app_apu) { 1036 pr_debug("APP APU, Consider like a large bar system\n"); 1037 return true; 1038 } 1039 1040 return false; 1041 } 1042 1043 static int kfd_ioctl_get_available_memory(struct file *filep, 1044 struct kfd_process *p, void *data) 1045 { 1046 struct kfd_ioctl_get_available_memory_args *args = data; 1047 struct kfd_process_device *pdd = kfd_lock_pdd_by_id(p, args->gpu_id); 1048 1049 if (!pdd) 1050 return -EINVAL; 1051 args->available = amdgpu_amdkfd_get_available_memory(pdd->dev->adev, 1052 pdd->dev->node_id); 1053 kfd_unlock_pdd(pdd); 1054 return 0; 1055 } 1056 1057 static int kfd_ioctl_alloc_memory_of_gpu(struct file *filep, 1058 struct kfd_process *p, void *data) 1059 { 1060 struct kfd_ioctl_alloc_memory_of_gpu_args *args = data; 1061 struct kfd_process_device *pdd; 1062 void *mem; 1063 struct kfd_node *dev; 1064 int idr_handle; 1065 long err; 1066 uint64_t offset = args->mmap_offset; 1067 uint32_t flags = args->flags; 1068 1069 if (args->size == 0) 1070 return -EINVAL; 1071 1072 #if IS_ENABLED(CONFIG_HSA_AMD_SVM) 1073 /* Flush pending deferred work to avoid racing with deferred actions 1074 * from previous memory map changes (e.g. munmap). 1075 */ 1076 svm_range_list_lock_and_flush_work(&p->svms, current->mm); 1077 mutex_lock(&p->svms.lock); 1078 mmap_write_unlock(current->mm); 1079 if (interval_tree_iter_first(&p->svms.objects, 1080 args->va_addr >> PAGE_SHIFT, 1081 (args->va_addr + args->size - 1) >> PAGE_SHIFT)) { 1082 pr_err("Address: 0x%llx already allocated by SVM\n", 1083 args->va_addr); 1084 mutex_unlock(&p->svms.lock); 1085 return -EADDRINUSE; 1086 } 1087 1088 /* When register user buffer check if it has been registered by svm by 1089 * buffer cpu virtual address. 1090 */ 1091 if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) && 1092 interval_tree_iter_first(&p->svms.objects, 1093 args->mmap_offset >> PAGE_SHIFT, 1094 (args->mmap_offset + args->size - 1) >> PAGE_SHIFT)) { 1095 pr_err("User Buffer Address: 0x%llx already allocated by SVM\n", 1096 args->mmap_offset); 1097 mutex_unlock(&p->svms.lock); 1098 return -EADDRINUSE; 1099 } 1100 1101 mutex_unlock(&p->svms.lock); 1102 #endif 1103 mutex_lock(&p->mutex); 1104 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 1105 if (!pdd) { 1106 err = -EINVAL; 1107 goto err_pdd; 1108 } 1109 1110 dev = pdd->dev; 1111 1112 if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) && 1113 (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) && 1114 !kfd_dev_is_large_bar(dev)) { 1115 pr_err("Alloc host visible vram on small bar is not allowed\n"); 1116 err = -EINVAL; 1117 goto err_large_bar; 1118 } 1119 1120 pdd = kfd_bind_process_to_device(dev, p); 1121 if (IS_ERR(pdd)) { 1122 err = PTR_ERR(pdd); 1123 goto err_unlock; 1124 } 1125 1126 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) { 1127 if (args->size != kfd_doorbell_process_slice(dev->kfd)) { 1128 err = -EINVAL; 1129 goto err_unlock; 1130 } 1131 offset = kfd_get_process_doorbells(pdd); 1132 if (!offset) { 1133 err = -ENOMEM; 1134 goto err_unlock; 1135 } 1136 } else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) { 1137 if (args->size != PAGE_SIZE) { 1138 err = -EINVAL; 1139 goto err_unlock; 1140 } 1141 offset = dev->adev->rmmio_remap.bus_addr; 1142 if (!offset || (PAGE_SIZE > 4096)) { 1143 err = -ENOMEM; 1144 goto err_unlock; 1145 } 1146 } 1147 1148 err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu( 1149 dev->adev, args->va_addr, args->size, 1150 pdd->drm_priv, (struct kgd_mem **) &mem, &offset, 1151 flags, false); 1152 1153 if (err) 1154 goto err_unlock; 1155 1156 idr_handle = kfd_process_device_create_obj_handle(pdd, mem); 1157 if (idr_handle < 0) { 1158 err = -EFAULT; 1159 goto err_free; 1160 } 1161 1162 /* Update the VRAM usage count */ 1163 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 1164 uint64_t size = args->size; 1165 1166 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM) 1167 size >>= 1; 1168 WRITE_ONCE(pdd->vram_usage, pdd->vram_usage + PAGE_ALIGN(size)); 1169 } 1170 1171 mutex_unlock(&p->mutex); 1172 1173 args->handle = MAKE_HANDLE(args->gpu_id, idr_handle); 1174 args->mmap_offset = offset; 1175 1176 /* MMIO is mapped through kfd device 1177 * Generate a kfd mmap offset 1178 */ 1179 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) 1180 args->mmap_offset = KFD_MMAP_TYPE_MMIO 1181 | KFD_MMAP_GPU_ID(args->gpu_id); 1182 1183 return 0; 1184 1185 err_free: 1186 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, (struct kgd_mem *)mem, 1187 pdd->drm_priv, NULL); 1188 err_unlock: 1189 err_pdd: 1190 err_large_bar: 1191 mutex_unlock(&p->mutex); 1192 return err; 1193 } 1194 1195 static int kfd_ioctl_free_memory_of_gpu(struct file *filep, 1196 struct kfd_process *p, void *data) 1197 { 1198 struct kfd_ioctl_free_memory_of_gpu_args *args = data; 1199 struct kfd_process_device *pdd; 1200 void *mem; 1201 int ret; 1202 uint64_t size = 0; 1203 1204 mutex_lock(&p->mutex); 1205 /* 1206 * Safeguard to prevent user space from freeing signal BO. 1207 * It will be freed at process termination. 1208 */ 1209 if (p->signal_handle && (p->signal_handle == args->handle)) { 1210 pr_err("Free signal BO is not allowed\n"); 1211 ret = -EPERM; 1212 goto err_unlock; 1213 } 1214 1215 pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle)); 1216 if (!pdd) { 1217 pr_err("Process device data doesn't exist\n"); 1218 ret = -EINVAL; 1219 goto err_pdd; 1220 } 1221 1222 mem = kfd_process_device_translate_handle( 1223 pdd, GET_IDR_HANDLE(args->handle)); 1224 if (!mem) { 1225 ret = -EINVAL; 1226 goto err_unlock; 1227 } 1228 1229 ret = amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, 1230 (struct kgd_mem *)mem, pdd->drm_priv, &size); 1231 1232 /* If freeing the buffer failed, leave the handle in place for 1233 * clean-up during process tear-down. 1234 */ 1235 if (!ret) 1236 kfd_process_device_remove_obj_handle( 1237 pdd, GET_IDR_HANDLE(args->handle)); 1238 1239 WRITE_ONCE(pdd->vram_usage, pdd->vram_usage - size); 1240 1241 err_unlock: 1242 err_pdd: 1243 mutex_unlock(&p->mutex); 1244 return ret; 1245 } 1246 1247 static int kfd_ioctl_map_memory_to_gpu(struct file *filep, 1248 struct kfd_process *p, void *data) 1249 { 1250 struct kfd_ioctl_map_memory_to_gpu_args *args = data; 1251 struct kfd_process_device *pdd, *peer_pdd; 1252 void *mem; 1253 struct kfd_node *dev; 1254 long err = 0; 1255 int i; 1256 uint32_t *devices_arr = NULL; 1257 1258 if (!args->n_devices) { 1259 pr_debug("Device IDs array empty\n"); 1260 return -EINVAL; 1261 } 1262 if (args->n_success > args->n_devices) { 1263 pr_debug("n_success exceeds n_devices\n"); 1264 return -EINVAL; 1265 } 1266 1267 devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr), 1268 GFP_KERNEL); 1269 if (!devices_arr) 1270 return -ENOMEM; 1271 1272 err = copy_from_user(devices_arr, 1273 (void __user *)args->device_ids_array_ptr, 1274 args->n_devices * sizeof(*devices_arr)); 1275 if (err != 0) { 1276 err = -EFAULT; 1277 goto copy_from_user_failed; 1278 } 1279 1280 mutex_lock(&p->mutex); 1281 pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle)); 1282 if (!pdd) { 1283 err = -EINVAL; 1284 goto get_process_device_data_failed; 1285 } 1286 dev = pdd->dev; 1287 1288 pdd = kfd_bind_process_to_device(dev, p); 1289 if (IS_ERR(pdd)) { 1290 err = PTR_ERR(pdd); 1291 goto bind_process_to_device_failed; 1292 } 1293 1294 mem = kfd_process_device_translate_handle(pdd, 1295 GET_IDR_HANDLE(args->handle)); 1296 if (!mem) { 1297 err = -ENOMEM; 1298 goto get_mem_obj_from_handle_failed; 1299 } 1300 1301 for (i = args->n_success; i < args->n_devices; i++) { 1302 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]); 1303 if (!peer_pdd) { 1304 pr_debug("Getting device by id failed for 0x%x\n", 1305 devices_arr[i]); 1306 err = -EINVAL; 1307 goto get_mem_obj_from_handle_failed; 1308 } 1309 1310 peer_pdd = kfd_bind_process_to_device(peer_pdd->dev, p); 1311 if (IS_ERR(peer_pdd)) { 1312 err = PTR_ERR(peer_pdd); 1313 goto get_mem_obj_from_handle_failed; 1314 } 1315 1316 err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu( 1317 peer_pdd->dev->adev, (struct kgd_mem *)mem, 1318 peer_pdd->drm_priv); 1319 if (err) { 1320 struct pci_dev *pdev = peer_pdd->dev->adev->pdev; 1321 1322 dev_err(dev->adev->dev, 1323 "Failed to map peer:%04x:%02x:%02x.%d mem_domain:%d\n", 1324 pci_domain_nr(pdev->bus), 1325 pdev->bus->number, 1326 PCI_SLOT(pdev->devfn), 1327 PCI_FUNC(pdev->devfn), 1328 ((struct kgd_mem *)mem)->domain); 1329 goto map_memory_to_gpu_failed; 1330 } 1331 args->n_success = i+1; 1332 } 1333 1334 err = amdgpu_amdkfd_gpuvm_sync_memory(dev->adev, (struct kgd_mem *) mem, true); 1335 if (err) { 1336 pr_debug("Sync memory failed, wait interrupted by user signal\n"); 1337 goto sync_memory_failed; 1338 } 1339 1340 mutex_unlock(&p->mutex); 1341 1342 /* Flush TLBs after waiting for the page table updates to complete */ 1343 for (i = 0; i < args->n_devices; i++) { 1344 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]); 1345 if (WARN_ON_ONCE(!peer_pdd)) 1346 continue; 1347 kfd_flush_tlb(peer_pdd, TLB_FLUSH_LEGACY); 1348 } 1349 kfree(devices_arr); 1350 1351 return err; 1352 1353 get_process_device_data_failed: 1354 bind_process_to_device_failed: 1355 get_mem_obj_from_handle_failed: 1356 map_memory_to_gpu_failed: 1357 sync_memory_failed: 1358 mutex_unlock(&p->mutex); 1359 copy_from_user_failed: 1360 kfree(devices_arr); 1361 1362 return err; 1363 } 1364 1365 static int kfd_ioctl_unmap_memory_from_gpu(struct file *filep, 1366 struct kfd_process *p, void *data) 1367 { 1368 struct kfd_ioctl_unmap_memory_from_gpu_args *args = data; 1369 struct kfd_process_device *pdd, *peer_pdd; 1370 void *mem; 1371 long err = 0; 1372 uint32_t *devices_arr = NULL, i; 1373 bool flush_tlb; 1374 1375 if (!args->n_devices) { 1376 pr_debug("Device IDs array empty\n"); 1377 return -EINVAL; 1378 } 1379 if (args->n_success > args->n_devices) { 1380 pr_debug("n_success exceeds n_devices\n"); 1381 return -EINVAL; 1382 } 1383 1384 devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr), 1385 GFP_KERNEL); 1386 if (!devices_arr) 1387 return -ENOMEM; 1388 1389 err = copy_from_user(devices_arr, 1390 (void __user *)args->device_ids_array_ptr, 1391 args->n_devices * sizeof(*devices_arr)); 1392 if (err != 0) { 1393 err = -EFAULT; 1394 goto copy_from_user_failed; 1395 } 1396 1397 mutex_lock(&p->mutex); 1398 pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle)); 1399 if (!pdd) { 1400 err = -EINVAL; 1401 goto bind_process_to_device_failed; 1402 } 1403 1404 mem = kfd_process_device_translate_handle(pdd, 1405 GET_IDR_HANDLE(args->handle)); 1406 if (!mem) { 1407 err = -ENOMEM; 1408 goto get_mem_obj_from_handle_failed; 1409 } 1410 1411 for (i = args->n_success; i < args->n_devices; i++) { 1412 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]); 1413 if (!peer_pdd) { 1414 err = -EINVAL; 1415 goto get_mem_obj_from_handle_failed; 1416 } 1417 err = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu( 1418 peer_pdd->dev->adev, (struct kgd_mem *)mem, peer_pdd->drm_priv); 1419 if (err) { 1420 pr_err("Failed to unmap from gpu %d/%d\n", 1421 i, args->n_devices); 1422 goto unmap_memory_from_gpu_failed; 1423 } 1424 args->n_success = i+1; 1425 } 1426 1427 flush_tlb = kfd_flush_tlb_after_unmap(pdd->dev->kfd); 1428 if (flush_tlb) { 1429 err = amdgpu_amdkfd_gpuvm_sync_memory(pdd->dev->adev, 1430 (struct kgd_mem *) mem, true); 1431 if (err) { 1432 pr_debug("Sync memory failed, wait interrupted by user signal\n"); 1433 goto sync_memory_failed; 1434 } 1435 } 1436 1437 /* Flush TLBs after waiting for the page table updates to complete */ 1438 for (i = 0; i < args->n_devices; i++) { 1439 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]); 1440 if (WARN_ON_ONCE(!peer_pdd)) 1441 continue; 1442 if (flush_tlb) 1443 kfd_flush_tlb(peer_pdd, TLB_FLUSH_HEAVYWEIGHT); 1444 1445 /* Remove dma mapping after tlb flush to avoid IO_PAGE_FAULT */ 1446 err = amdgpu_amdkfd_gpuvm_dmaunmap_mem(mem, peer_pdd->drm_priv); 1447 if (err) 1448 goto sync_memory_failed; 1449 } 1450 1451 mutex_unlock(&p->mutex); 1452 1453 kfree(devices_arr); 1454 1455 return 0; 1456 1457 bind_process_to_device_failed: 1458 get_mem_obj_from_handle_failed: 1459 unmap_memory_from_gpu_failed: 1460 sync_memory_failed: 1461 mutex_unlock(&p->mutex); 1462 copy_from_user_failed: 1463 kfree(devices_arr); 1464 return err; 1465 } 1466 1467 static int kfd_ioctl_alloc_queue_gws(struct file *filep, 1468 struct kfd_process *p, void *data) 1469 { 1470 int retval; 1471 struct kfd_ioctl_alloc_queue_gws_args *args = data; 1472 struct queue *q; 1473 struct kfd_node *dev; 1474 1475 mutex_lock(&p->mutex); 1476 q = pqm_get_user_queue(&p->pqm, args->queue_id); 1477 1478 if (q) { 1479 dev = q->device; 1480 } else { 1481 retval = -EINVAL; 1482 goto out_unlock; 1483 } 1484 1485 if (!dev->gws) { 1486 retval = -ENODEV; 1487 goto out_unlock; 1488 } 1489 1490 if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) { 1491 retval = -ENODEV; 1492 goto out_unlock; 1493 } 1494 1495 if (p->debug_trap_enabled && (!kfd_dbg_has_gws_support(dev) || 1496 kfd_dbg_has_cwsr_workaround(dev))) { 1497 retval = -EBUSY; 1498 goto out_unlock; 1499 } 1500 1501 retval = pqm_set_gws(&p->pqm, args->queue_id, args->num_gws ? dev->gws : NULL); 1502 mutex_unlock(&p->mutex); 1503 1504 args->first_gws = 0; 1505 return retval; 1506 1507 out_unlock: 1508 mutex_unlock(&p->mutex); 1509 return retval; 1510 } 1511 1512 static int kfd_ioctl_get_dmabuf_info(struct file *filep, 1513 struct kfd_process *p, void *data) 1514 { 1515 struct kfd_ioctl_get_dmabuf_info_args *args = data; 1516 struct kfd_node *dev = NULL; 1517 struct amdgpu_device *dmabuf_adev; 1518 void *metadata_buffer = NULL; 1519 uint32_t flags; 1520 int8_t xcp_id; 1521 unsigned int i; 1522 int r; 1523 1524 /* Find a KFD GPU device that supports the get_dmabuf_info query */ 1525 for (i = 0; kfd_topology_enum_kfd_devices(i, &dev) == 0; i++) 1526 if (dev && !kfd_devcgroup_check_permission(dev)) 1527 break; 1528 if (!dev) 1529 return -EINVAL; 1530 1531 if (args->metadata_ptr) { 1532 metadata_buffer = kzalloc(args->metadata_size, GFP_KERNEL); 1533 if (!metadata_buffer) 1534 return -ENOMEM; 1535 } 1536 1537 /* Get dmabuf info from KGD */ 1538 r = amdgpu_amdkfd_get_dmabuf_info(dev->adev, args->dmabuf_fd, 1539 &dmabuf_adev, &args->size, 1540 metadata_buffer, args->metadata_size, 1541 &args->metadata_size, &flags, &xcp_id); 1542 if (r) 1543 goto exit; 1544 1545 if (xcp_id >= 0) 1546 args->gpu_id = dmabuf_adev->kfd.dev->nodes[xcp_id]->id; 1547 else 1548 args->gpu_id = dev->id; 1549 args->flags = flags; 1550 1551 /* Copy metadata buffer to user mode */ 1552 if (metadata_buffer) { 1553 r = copy_to_user((void __user *)args->metadata_ptr, 1554 metadata_buffer, args->metadata_size); 1555 if (r != 0) 1556 r = -EFAULT; 1557 } 1558 1559 exit: 1560 kfree(metadata_buffer); 1561 1562 return r; 1563 } 1564 1565 static int kfd_ioctl_import_dmabuf(struct file *filep, 1566 struct kfd_process *p, void *data) 1567 { 1568 struct kfd_ioctl_import_dmabuf_args *args = data; 1569 struct kfd_process_device *pdd; 1570 int idr_handle; 1571 uint64_t size; 1572 void *mem; 1573 int r; 1574 1575 mutex_lock(&p->mutex); 1576 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 1577 if (!pdd) { 1578 r = -EINVAL; 1579 goto err_unlock; 1580 } 1581 1582 pdd = kfd_bind_process_to_device(pdd->dev, p); 1583 if (IS_ERR(pdd)) { 1584 r = PTR_ERR(pdd); 1585 goto err_unlock; 1586 } 1587 1588 r = amdgpu_amdkfd_gpuvm_import_dmabuf_fd(pdd->dev->adev, args->dmabuf_fd, 1589 args->va_addr, pdd->drm_priv, 1590 (struct kgd_mem **)&mem, &size, 1591 NULL); 1592 if (r) 1593 goto err_unlock; 1594 1595 idr_handle = kfd_process_device_create_obj_handle(pdd, mem); 1596 if (idr_handle < 0) { 1597 r = -EFAULT; 1598 goto err_free; 1599 } 1600 1601 mutex_unlock(&p->mutex); 1602 1603 args->handle = MAKE_HANDLE(args->gpu_id, idr_handle); 1604 1605 return 0; 1606 1607 err_free: 1608 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, (struct kgd_mem *)mem, 1609 pdd->drm_priv, NULL); 1610 err_unlock: 1611 mutex_unlock(&p->mutex); 1612 return r; 1613 } 1614 1615 static int kfd_ioctl_export_dmabuf(struct file *filep, 1616 struct kfd_process *p, void *data) 1617 { 1618 struct kfd_ioctl_export_dmabuf_args *args = data; 1619 struct kfd_process_device *pdd; 1620 struct dma_buf *dmabuf; 1621 struct kfd_node *dev; 1622 void *mem; 1623 int ret = 0; 1624 1625 dev = kfd_device_by_id(GET_GPU_ID(args->handle)); 1626 if (!dev) 1627 return -EINVAL; 1628 1629 mutex_lock(&p->mutex); 1630 1631 pdd = kfd_get_process_device_data(dev, p); 1632 if (!pdd) { 1633 ret = -EINVAL; 1634 goto err_unlock; 1635 } 1636 1637 mem = kfd_process_device_translate_handle(pdd, 1638 GET_IDR_HANDLE(args->handle)); 1639 if (!mem) { 1640 ret = -EINVAL; 1641 goto err_unlock; 1642 } 1643 1644 ret = amdgpu_amdkfd_gpuvm_export_dmabuf(mem, &dmabuf); 1645 mutex_unlock(&p->mutex); 1646 if (ret) 1647 goto err_out; 1648 1649 ret = dma_buf_fd(dmabuf, args->flags); 1650 if (ret < 0) { 1651 dma_buf_put(dmabuf); 1652 goto err_out; 1653 } 1654 /* dma_buf_fd assigns the reference count to the fd, no need to 1655 * put the reference here. 1656 */ 1657 args->dmabuf_fd = ret; 1658 1659 return 0; 1660 1661 err_unlock: 1662 mutex_unlock(&p->mutex); 1663 err_out: 1664 return ret; 1665 } 1666 1667 /* Handle requests for watching SMI events */ 1668 static int kfd_ioctl_smi_events(struct file *filep, 1669 struct kfd_process *p, void *data) 1670 { 1671 struct kfd_ioctl_smi_events_args *args = data; 1672 struct kfd_process_device *pdd; 1673 1674 mutex_lock(&p->mutex); 1675 1676 pdd = kfd_process_device_data_by_id(p, args->gpuid); 1677 mutex_unlock(&p->mutex); 1678 if (!pdd) 1679 return -EINVAL; 1680 1681 return kfd_smi_event_open(pdd->dev, &args->anon_fd); 1682 } 1683 1684 #if IS_ENABLED(CONFIG_HSA_AMD_SVM) 1685 1686 static int kfd_ioctl_set_xnack_mode(struct file *filep, 1687 struct kfd_process *p, void *data) 1688 { 1689 struct kfd_ioctl_set_xnack_mode_args *args = data; 1690 int r = 0; 1691 1692 mutex_lock(&p->mutex); 1693 if (args->xnack_enabled >= 0) { 1694 if (!list_empty(&p->pqm.queues)) { 1695 pr_debug("Process has user queues running\n"); 1696 r = -EBUSY; 1697 goto out_unlock; 1698 } 1699 1700 if (p->xnack_enabled == args->xnack_enabled) 1701 goto out_unlock; 1702 1703 if (args->xnack_enabled && !kfd_process_xnack_mode(p, true)) { 1704 r = -EPERM; 1705 goto out_unlock; 1706 } 1707 1708 r = svm_range_switch_xnack_reserve_mem(p, args->xnack_enabled); 1709 } else { 1710 args->xnack_enabled = p->xnack_enabled; 1711 } 1712 1713 out_unlock: 1714 mutex_unlock(&p->mutex); 1715 1716 return r; 1717 } 1718 1719 static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data) 1720 { 1721 struct kfd_ioctl_svm_args *args = data; 1722 int r = 0; 1723 1724 pr_debug("start 0x%llx size 0x%llx op 0x%x nattr 0x%x\n", 1725 args->start_addr, args->size, args->op, args->nattr); 1726 1727 if ((args->start_addr & ~PAGE_MASK) || (args->size & ~PAGE_MASK)) 1728 return -EINVAL; 1729 if (!args->start_addr || !args->size) 1730 return -EINVAL; 1731 1732 r = svm_ioctl(p, args->op, args->start_addr, args->size, args->nattr, 1733 args->attrs); 1734 1735 return r; 1736 } 1737 #else 1738 static int kfd_ioctl_set_xnack_mode(struct file *filep, 1739 struct kfd_process *p, void *data) 1740 { 1741 return -EPERM; 1742 } 1743 static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data) 1744 { 1745 return -EPERM; 1746 } 1747 #endif 1748 1749 static int criu_checkpoint_process(struct kfd_process *p, 1750 uint8_t __user *user_priv_data, 1751 uint64_t *priv_offset) 1752 { 1753 struct kfd_criu_process_priv_data process_priv; 1754 int ret; 1755 1756 memset(&process_priv, 0, sizeof(process_priv)); 1757 1758 process_priv.version = KFD_CRIU_PRIV_VERSION; 1759 /* For CR, we don't consider negative xnack mode which is used for 1760 * querying without changing it, here 0 simply means disabled and 1 1761 * means enabled so retry for finding a valid PTE. 1762 */ 1763 process_priv.xnack_mode = p->xnack_enabled ? 1 : 0; 1764 1765 ret = copy_to_user(user_priv_data + *priv_offset, 1766 &process_priv, sizeof(process_priv)); 1767 1768 if (ret) { 1769 pr_err("Failed to copy process information to user\n"); 1770 ret = -EFAULT; 1771 } 1772 1773 *priv_offset += sizeof(process_priv); 1774 return ret; 1775 } 1776 1777 static int criu_checkpoint_devices(struct kfd_process *p, 1778 uint32_t num_devices, 1779 uint8_t __user *user_addr, 1780 uint8_t __user *user_priv_data, 1781 uint64_t *priv_offset) 1782 { 1783 struct kfd_criu_device_priv_data *device_priv = NULL; 1784 struct kfd_criu_device_bucket *device_buckets = NULL; 1785 int ret = 0, i; 1786 1787 device_buckets = kvzalloc(num_devices * sizeof(*device_buckets), GFP_KERNEL); 1788 if (!device_buckets) { 1789 ret = -ENOMEM; 1790 goto exit; 1791 } 1792 1793 device_priv = kvzalloc(num_devices * sizeof(*device_priv), GFP_KERNEL); 1794 if (!device_priv) { 1795 ret = -ENOMEM; 1796 goto exit; 1797 } 1798 1799 for (i = 0; i < num_devices; i++) { 1800 struct kfd_process_device *pdd = p->pdds[i]; 1801 1802 device_buckets[i].user_gpu_id = pdd->user_gpu_id; 1803 device_buckets[i].actual_gpu_id = pdd->dev->id; 1804 1805 /* 1806 * priv_data does not contain useful information for now and is reserved for 1807 * future use, so we do not set its contents. 1808 */ 1809 } 1810 1811 ret = copy_to_user(user_addr, device_buckets, num_devices * sizeof(*device_buckets)); 1812 if (ret) { 1813 pr_err("Failed to copy device information to user\n"); 1814 ret = -EFAULT; 1815 goto exit; 1816 } 1817 1818 ret = copy_to_user(user_priv_data + *priv_offset, 1819 device_priv, 1820 num_devices * sizeof(*device_priv)); 1821 if (ret) { 1822 pr_err("Failed to copy device information to user\n"); 1823 ret = -EFAULT; 1824 } 1825 *priv_offset += num_devices * sizeof(*device_priv); 1826 1827 exit: 1828 kvfree(device_buckets); 1829 kvfree(device_priv); 1830 return ret; 1831 } 1832 1833 static uint32_t get_process_num_bos(struct kfd_process *p) 1834 { 1835 uint32_t num_of_bos = 0; 1836 int i; 1837 1838 /* Run over all PDDs of the process */ 1839 for (i = 0; i < p->n_pdds; i++) { 1840 struct kfd_process_device *pdd = p->pdds[i]; 1841 void *mem; 1842 int id; 1843 1844 idr_for_each_entry(&pdd->alloc_idr, mem, id) { 1845 struct kgd_mem *kgd_mem = (struct kgd_mem *)mem; 1846 1847 if (!kgd_mem->va || kgd_mem->va > pdd->gpuvm_base) 1848 num_of_bos++; 1849 } 1850 } 1851 return num_of_bos; 1852 } 1853 1854 static int criu_get_prime_handle(struct kgd_mem *mem, 1855 int flags, u32 *shared_fd) 1856 { 1857 struct dma_buf *dmabuf; 1858 int ret; 1859 1860 ret = amdgpu_amdkfd_gpuvm_export_dmabuf(mem, &dmabuf); 1861 if (ret) { 1862 pr_err("dmabuf export failed for the BO\n"); 1863 return ret; 1864 } 1865 1866 ret = dma_buf_fd(dmabuf, flags); 1867 if (ret < 0) { 1868 pr_err("dmabuf create fd failed, ret:%d\n", ret); 1869 goto out_free_dmabuf; 1870 } 1871 1872 *shared_fd = ret; 1873 return 0; 1874 1875 out_free_dmabuf: 1876 dma_buf_put(dmabuf); 1877 return ret; 1878 } 1879 1880 static int criu_checkpoint_bos(struct kfd_process *p, 1881 uint32_t num_bos, 1882 uint8_t __user *user_bos, 1883 uint8_t __user *user_priv_data, 1884 uint64_t *priv_offset) 1885 { 1886 struct kfd_criu_bo_bucket *bo_buckets; 1887 struct kfd_criu_bo_priv_data *bo_privs; 1888 int ret = 0, pdd_index, bo_index = 0, id; 1889 void *mem; 1890 1891 bo_buckets = kvzalloc(num_bos * sizeof(*bo_buckets), GFP_KERNEL); 1892 if (!bo_buckets) 1893 return -ENOMEM; 1894 1895 bo_privs = kvzalloc(num_bos * sizeof(*bo_privs), GFP_KERNEL); 1896 if (!bo_privs) { 1897 ret = -ENOMEM; 1898 goto exit; 1899 } 1900 1901 for (pdd_index = 0; pdd_index < p->n_pdds; pdd_index++) { 1902 struct kfd_process_device *pdd = p->pdds[pdd_index]; 1903 struct amdgpu_bo *dumper_bo; 1904 struct kgd_mem *kgd_mem; 1905 1906 idr_for_each_entry(&pdd->alloc_idr, mem, id) { 1907 struct kfd_criu_bo_bucket *bo_bucket; 1908 struct kfd_criu_bo_priv_data *bo_priv; 1909 int i, dev_idx = 0; 1910 1911 if (!mem) { 1912 ret = -ENOMEM; 1913 goto exit; 1914 } 1915 1916 kgd_mem = (struct kgd_mem *)mem; 1917 dumper_bo = kgd_mem->bo; 1918 1919 /* Skip checkpointing BOs that are used for Trap handler 1920 * code and state. Currently, these BOs have a VA that 1921 * is less GPUVM Base 1922 */ 1923 if (kgd_mem->va && kgd_mem->va <= pdd->gpuvm_base) 1924 continue; 1925 1926 bo_bucket = &bo_buckets[bo_index]; 1927 bo_priv = &bo_privs[bo_index]; 1928 1929 bo_bucket->gpu_id = pdd->user_gpu_id; 1930 bo_bucket->addr = (uint64_t)kgd_mem->va; 1931 bo_bucket->size = amdgpu_bo_size(dumper_bo); 1932 bo_bucket->alloc_flags = (uint32_t)kgd_mem->alloc_flags; 1933 bo_priv->idr_handle = id; 1934 1935 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 1936 ret = amdgpu_ttm_tt_get_userptr(&dumper_bo->tbo, 1937 &bo_priv->user_addr); 1938 if (ret) { 1939 pr_err("Failed to obtain user address for user-pointer bo\n"); 1940 goto exit; 1941 } 1942 } 1943 if (bo_bucket->alloc_flags 1944 & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) { 1945 ret = criu_get_prime_handle(kgd_mem, 1946 bo_bucket->alloc_flags & 1947 KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? DRM_RDWR : 0, 1948 &bo_bucket->dmabuf_fd); 1949 if (ret) 1950 goto exit; 1951 } else { 1952 bo_bucket->dmabuf_fd = KFD_INVALID_FD; 1953 } 1954 1955 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) 1956 bo_bucket->offset = KFD_MMAP_TYPE_DOORBELL | 1957 KFD_MMAP_GPU_ID(pdd->dev->id); 1958 else if (bo_bucket->alloc_flags & 1959 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) 1960 bo_bucket->offset = KFD_MMAP_TYPE_MMIO | 1961 KFD_MMAP_GPU_ID(pdd->dev->id); 1962 else 1963 bo_bucket->offset = amdgpu_bo_mmap_offset(dumper_bo); 1964 1965 for (i = 0; i < p->n_pdds; i++) { 1966 if (amdgpu_amdkfd_bo_mapped_to_dev(p->pdds[i]->dev->adev, kgd_mem)) 1967 bo_priv->mapped_gpuids[dev_idx++] = p->pdds[i]->user_gpu_id; 1968 } 1969 1970 pr_debug("bo_size = 0x%llx, bo_addr = 0x%llx bo_offset = 0x%llx\n" 1971 "gpu_id = 0x%x alloc_flags = 0x%x idr_handle = 0x%x", 1972 bo_bucket->size, 1973 bo_bucket->addr, 1974 bo_bucket->offset, 1975 bo_bucket->gpu_id, 1976 bo_bucket->alloc_flags, 1977 bo_priv->idr_handle); 1978 bo_index++; 1979 } 1980 } 1981 1982 ret = copy_to_user(user_bos, bo_buckets, num_bos * sizeof(*bo_buckets)); 1983 if (ret) { 1984 pr_err("Failed to copy BO information to user\n"); 1985 ret = -EFAULT; 1986 goto exit; 1987 } 1988 1989 ret = copy_to_user(user_priv_data + *priv_offset, bo_privs, num_bos * sizeof(*bo_privs)); 1990 if (ret) { 1991 pr_err("Failed to copy BO priv information to user\n"); 1992 ret = -EFAULT; 1993 goto exit; 1994 } 1995 1996 *priv_offset += num_bos * sizeof(*bo_privs); 1997 1998 exit: 1999 while (ret && bo_index--) { 2000 if (bo_buckets[bo_index].alloc_flags 2001 & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) 2002 close_fd(bo_buckets[bo_index].dmabuf_fd); 2003 } 2004 2005 kvfree(bo_buckets); 2006 kvfree(bo_privs); 2007 return ret; 2008 } 2009 2010 static int criu_get_process_object_info(struct kfd_process *p, 2011 uint32_t *num_devices, 2012 uint32_t *num_bos, 2013 uint32_t *num_objects, 2014 uint64_t *objs_priv_size) 2015 { 2016 uint64_t queues_priv_data_size, svm_priv_data_size, priv_size; 2017 uint32_t num_queues, num_events, num_svm_ranges; 2018 int ret; 2019 2020 *num_devices = p->n_pdds; 2021 *num_bos = get_process_num_bos(p); 2022 2023 ret = kfd_process_get_queue_info(p, &num_queues, &queues_priv_data_size); 2024 if (ret) 2025 return ret; 2026 2027 num_events = kfd_get_num_events(p); 2028 2029 ret = svm_range_get_info(p, &num_svm_ranges, &svm_priv_data_size); 2030 if (ret) 2031 return ret; 2032 2033 *num_objects = num_queues + num_events + num_svm_ranges; 2034 2035 if (objs_priv_size) { 2036 priv_size = sizeof(struct kfd_criu_process_priv_data); 2037 priv_size += *num_devices * sizeof(struct kfd_criu_device_priv_data); 2038 priv_size += *num_bos * sizeof(struct kfd_criu_bo_priv_data); 2039 priv_size += queues_priv_data_size; 2040 priv_size += num_events * sizeof(struct kfd_criu_event_priv_data); 2041 priv_size += svm_priv_data_size; 2042 *objs_priv_size = priv_size; 2043 } 2044 return 0; 2045 } 2046 2047 static int criu_checkpoint(struct file *filep, 2048 struct kfd_process *p, 2049 struct kfd_ioctl_criu_args *args) 2050 { 2051 int ret; 2052 uint32_t num_devices, num_bos, num_objects; 2053 uint64_t priv_size, priv_offset = 0, bo_priv_offset; 2054 2055 if (!args->devices || !args->bos || !args->priv_data) 2056 return -EINVAL; 2057 2058 mutex_lock(&p->mutex); 2059 2060 if (!p->n_pdds) { 2061 pr_err("No pdd for given process\n"); 2062 ret = -ENODEV; 2063 goto exit_unlock; 2064 } 2065 2066 /* Confirm all process queues are evicted */ 2067 if (!p->queues_paused) { 2068 pr_err("Cannot dump process when queues are not in evicted state\n"); 2069 /* CRIU plugin did not call op PROCESS_INFO before checkpointing */ 2070 ret = -EINVAL; 2071 goto exit_unlock; 2072 } 2073 2074 ret = criu_get_process_object_info(p, &num_devices, &num_bos, &num_objects, &priv_size); 2075 if (ret) 2076 goto exit_unlock; 2077 2078 if (num_devices != args->num_devices || 2079 num_bos != args->num_bos || 2080 num_objects != args->num_objects || 2081 priv_size != args->priv_data_size) { 2082 2083 ret = -EINVAL; 2084 goto exit_unlock; 2085 } 2086 2087 /* each function will store private data inside priv_data and adjust priv_offset */ 2088 ret = criu_checkpoint_process(p, (uint8_t __user *)args->priv_data, &priv_offset); 2089 if (ret) 2090 goto exit_unlock; 2091 2092 ret = criu_checkpoint_devices(p, num_devices, (uint8_t __user *)args->devices, 2093 (uint8_t __user *)args->priv_data, &priv_offset); 2094 if (ret) 2095 goto exit_unlock; 2096 2097 /* Leave room for BOs in the private data. They need to be restored 2098 * before events, but we checkpoint them last to simplify the error 2099 * handling. 2100 */ 2101 bo_priv_offset = priv_offset; 2102 priv_offset += num_bos * sizeof(struct kfd_criu_bo_priv_data); 2103 2104 if (num_objects) { 2105 ret = kfd_criu_checkpoint_queues(p, (uint8_t __user *)args->priv_data, 2106 &priv_offset); 2107 if (ret) 2108 goto exit_unlock; 2109 2110 ret = kfd_criu_checkpoint_events(p, (uint8_t __user *)args->priv_data, 2111 &priv_offset); 2112 if (ret) 2113 goto exit_unlock; 2114 2115 ret = kfd_criu_checkpoint_svm(p, (uint8_t __user *)args->priv_data, &priv_offset); 2116 if (ret) 2117 goto exit_unlock; 2118 } 2119 2120 /* This must be the last thing in this function that can fail. 2121 * Otherwise we leak dmabuf file descriptors. 2122 */ 2123 ret = criu_checkpoint_bos(p, num_bos, (uint8_t __user *)args->bos, 2124 (uint8_t __user *)args->priv_data, &bo_priv_offset); 2125 2126 exit_unlock: 2127 mutex_unlock(&p->mutex); 2128 if (ret) 2129 pr_err("Failed to dump CRIU ret:%d\n", ret); 2130 else 2131 pr_debug("CRIU dump ret:%d\n", ret); 2132 2133 return ret; 2134 } 2135 2136 static int criu_restore_process(struct kfd_process *p, 2137 struct kfd_ioctl_criu_args *args, 2138 uint64_t *priv_offset, 2139 uint64_t max_priv_data_size) 2140 { 2141 int ret = 0; 2142 struct kfd_criu_process_priv_data process_priv; 2143 2144 if (*priv_offset + sizeof(process_priv) > max_priv_data_size) 2145 return -EINVAL; 2146 2147 ret = copy_from_user(&process_priv, 2148 (void __user *)(args->priv_data + *priv_offset), 2149 sizeof(process_priv)); 2150 if (ret) { 2151 pr_err("Failed to copy process private information from user\n"); 2152 ret = -EFAULT; 2153 goto exit; 2154 } 2155 *priv_offset += sizeof(process_priv); 2156 2157 if (process_priv.version != KFD_CRIU_PRIV_VERSION) { 2158 pr_err("Invalid CRIU API version (checkpointed:%d current:%d)\n", 2159 process_priv.version, KFD_CRIU_PRIV_VERSION); 2160 return -EINVAL; 2161 } 2162 2163 pr_debug("Setting XNACK mode\n"); 2164 if (process_priv.xnack_mode && !kfd_process_xnack_mode(p, true)) { 2165 pr_err("xnack mode cannot be set\n"); 2166 ret = -EPERM; 2167 goto exit; 2168 } else { 2169 pr_debug("set xnack mode: %d\n", process_priv.xnack_mode); 2170 p->xnack_enabled = process_priv.xnack_mode; 2171 } 2172 2173 exit: 2174 return ret; 2175 } 2176 2177 static int criu_restore_devices(struct kfd_process *p, 2178 struct kfd_ioctl_criu_args *args, 2179 uint64_t *priv_offset, 2180 uint64_t max_priv_data_size) 2181 { 2182 struct kfd_criu_device_bucket *device_buckets; 2183 struct kfd_criu_device_priv_data *device_privs; 2184 int ret = 0; 2185 uint32_t i; 2186 2187 if (args->num_devices != p->n_pdds) 2188 return -EINVAL; 2189 2190 if (*priv_offset + (args->num_devices * sizeof(*device_privs)) > max_priv_data_size) 2191 return -EINVAL; 2192 2193 device_buckets = kmalloc_array(args->num_devices, sizeof(*device_buckets), GFP_KERNEL); 2194 if (!device_buckets) 2195 return -ENOMEM; 2196 2197 ret = copy_from_user(device_buckets, (void __user *)args->devices, 2198 args->num_devices * sizeof(*device_buckets)); 2199 if (ret) { 2200 pr_err("Failed to copy devices buckets from user\n"); 2201 ret = -EFAULT; 2202 goto exit; 2203 } 2204 2205 for (i = 0; i < args->num_devices; i++) { 2206 struct kfd_node *dev; 2207 struct kfd_process_device *pdd; 2208 struct file *drm_file; 2209 2210 /* device private data is not currently used */ 2211 2212 if (!device_buckets[i].user_gpu_id) { 2213 pr_err("Invalid user gpu_id\n"); 2214 ret = -EINVAL; 2215 goto exit; 2216 } 2217 2218 dev = kfd_device_by_id(device_buckets[i].actual_gpu_id); 2219 if (!dev) { 2220 pr_err("Failed to find device with gpu_id = %x\n", 2221 device_buckets[i].actual_gpu_id); 2222 ret = -EINVAL; 2223 goto exit; 2224 } 2225 2226 pdd = kfd_get_process_device_data(dev, p); 2227 if (!pdd) { 2228 pr_err("Failed to get pdd for gpu_id = %x\n", 2229 device_buckets[i].actual_gpu_id); 2230 ret = -EINVAL; 2231 goto exit; 2232 } 2233 pdd->user_gpu_id = device_buckets[i].user_gpu_id; 2234 2235 drm_file = fget(device_buckets[i].drm_fd); 2236 if (!drm_file) { 2237 pr_err("Invalid render node file descriptor sent from plugin (%d)\n", 2238 device_buckets[i].drm_fd); 2239 ret = -EINVAL; 2240 goto exit; 2241 } 2242 2243 if (pdd->drm_file) { 2244 ret = -EINVAL; 2245 goto exit; 2246 } 2247 2248 /* create the vm using render nodes for kfd pdd */ 2249 if (kfd_process_device_init_vm(pdd, drm_file)) { 2250 pr_err("could not init vm for given pdd\n"); 2251 /* On success, the PDD keeps the drm_file reference */ 2252 fput(drm_file); 2253 ret = -EINVAL; 2254 goto exit; 2255 } 2256 /* 2257 * pdd now already has the vm bound to render node so below api won't create a new 2258 * exclusive kfd mapping but use existing one with renderDXXX but is still needed 2259 * for iommu v2 binding and runtime pm. 2260 */ 2261 pdd = kfd_bind_process_to_device(dev, p); 2262 if (IS_ERR(pdd)) { 2263 ret = PTR_ERR(pdd); 2264 goto exit; 2265 } 2266 2267 if (!pdd->qpd.proc_doorbells) { 2268 ret = kfd_alloc_process_doorbells(dev->kfd, pdd); 2269 if (ret) 2270 goto exit; 2271 } 2272 } 2273 2274 /* 2275 * We are not copying device private data from user as we are not using the data for now, 2276 * but we still adjust for its private data. 2277 */ 2278 *priv_offset += args->num_devices * sizeof(*device_privs); 2279 2280 exit: 2281 kfree(device_buckets); 2282 return ret; 2283 } 2284 2285 static int criu_restore_memory_of_gpu(struct kfd_process_device *pdd, 2286 struct kfd_criu_bo_bucket *bo_bucket, 2287 struct kfd_criu_bo_priv_data *bo_priv, 2288 struct kgd_mem **kgd_mem) 2289 { 2290 int idr_handle; 2291 int ret; 2292 const bool criu_resume = true; 2293 u64 offset; 2294 2295 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) { 2296 if (bo_bucket->size != 2297 kfd_doorbell_process_slice(pdd->dev->kfd)) 2298 return -EINVAL; 2299 2300 offset = kfd_get_process_doorbells(pdd); 2301 if (!offset) 2302 return -ENOMEM; 2303 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) { 2304 /* MMIO BOs need remapped bus address */ 2305 if (bo_bucket->size != PAGE_SIZE) { 2306 pr_err("Invalid page size\n"); 2307 return -EINVAL; 2308 } 2309 offset = pdd->dev->adev->rmmio_remap.bus_addr; 2310 if (!offset || (PAGE_SIZE > 4096)) { 2311 pr_err("amdgpu_amdkfd_get_mmio_remap_phys_addr failed\n"); 2312 return -ENOMEM; 2313 } 2314 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 2315 offset = bo_priv->user_addr; 2316 } 2317 /* Create the BO */ 2318 ret = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(pdd->dev->adev, bo_bucket->addr, 2319 bo_bucket->size, pdd->drm_priv, kgd_mem, 2320 &offset, bo_bucket->alloc_flags, criu_resume); 2321 if (ret) { 2322 pr_err("Could not create the BO\n"); 2323 return ret; 2324 } 2325 pr_debug("New BO created: size:0x%llx addr:0x%llx offset:0x%llx\n", 2326 bo_bucket->size, bo_bucket->addr, offset); 2327 2328 /* Restore previous IDR handle */ 2329 pr_debug("Restoring old IDR handle for the BO"); 2330 idr_handle = idr_alloc(&pdd->alloc_idr, *kgd_mem, bo_priv->idr_handle, 2331 bo_priv->idr_handle + 1, GFP_KERNEL); 2332 2333 if (idr_handle < 0) { 2334 pr_err("Could not allocate idr\n"); 2335 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, *kgd_mem, pdd->drm_priv, 2336 NULL); 2337 return -ENOMEM; 2338 } 2339 2340 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) 2341 bo_bucket->restored_offset = KFD_MMAP_TYPE_DOORBELL | KFD_MMAP_GPU_ID(pdd->dev->id); 2342 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) { 2343 bo_bucket->restored_offset = KFD_MMAP_TYPE_MMIO | KFD_MMAP_GPU_ID(pdd->dev->id); 2344 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { 2345 bo_bucket->restored_offset = offset; 2346 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 2347 bo_bucket->restored_offset = offset; 2348 /* Update the VRAM usage count */ 2349 WRITE_ONCE(pdd->vram_usage, pdd->vram_usage + bo_bucket->size); 2350 } 2351 return 0; 2352 } 2353 2354 static int criu_restore_bo(struct kfd_process *p, 2355 struct kfd_criu_bo_bucket *bo_bucket, 2356 struct kfd_criu_bo_priv_data *bo_priv) 2357 { 2358 struct kfd_process_device *pdd; 2359 struct kgd_mem *kgd_mem; 2360 int ret; 2361 int j; 2362 2363 pr_debug("Restoring BO size:0x%llx addr:0x%llx gpu_id:0x%x flags:0x%x idr_handle:0x%x\n", 2364 bo_bucket->size, bo_bucket->addr, bo_bucket->gpu_id, bo_bucket->alloc_flags, 2365 bo_priv->idr_handle); 2366 2367 pdd = kfd_process_device_data_by_id(p, bo_bucket->gpu_id); 2368 if (!pdd) { 2369 pr_err("Failed to get pdd\n"); 2370 return -ENODEV; 2371 } 2372 2373 ret = criu_restore_memory_of_gpu(pdd, bo_bucket, bo_priv, &kgd_mem); 2374 if (ret) 2375 return ret; 2376 2377 /* now map these BOs to GPU/s */ 2378 for (j = 0; j < p->n_pdds; j++) { 2379 struct kfd_node *peer; 2380 struct kfd_process_device *peer_pdd; 2381 2382 if (!bo_priv->mapped_gpuids[j]) 2383 break; 2384 2385 peer_pdd = kfd_process_device_data_by_id(p, bo_priv->mapped_gpuids[j]); 2386 if (!peer_pdd) 2387 return -EINVAL; 2388 2389 peer = peer_pdd->dev; 2390 2391 peer_pdd = kfd_bind_process_to_device(peer, p); 2392 if (IS_ERR(peer_pdd)) 2393 return PTR_ERR(peer_pdd); 2394 2395 ret = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(peer->adev, kgd_mem, 2396 peer_pdd->drm_priv); 2397 if (ret) { 2398 pr_err("Failed to map to gpu %d/%d\n", j, p->n_pdds); 2399 return ret; 2400 } 2401 } 2402 2403 pr_debug("map memory was successful for the BO\n"); 2404 /* create the dmabuf object and export the bo */ 2405 if (bo_bucket->alloc_flags 2406 & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) { 2407 ret = criu_get_prime_handle(kgd_mem, DRM_RDWR, 2408 &bo_bucket->dmabuf_fd); 2409 if (ret) 2410 return ret; 2411 } else { 2412 bo_bucket->dmabuf_fd = KFD_INVALID_FD; 2413 } 2414 2415 return 0; 2416 } 2417 2418 static int criu_restore_bos(struct kfd_process *p, 2419 struct kfd_ioctl_criu_args *args, 2420 uint64_t *priv_offset, 2421 uint64_t max_priv_data_size) 2422 { 2423 struct kfd_criu_bo_bucket *bo_buckets = NULL; 2424 struct kfd_criu_bo_priv_data *bo_privs = NULL; 2425 int ret = 0; 2426 uint32_t i = 0; 2427 2428 if (*priv_offset + (args->num_bos * sizeof(*bo_privs)) > max_priv_data_size) 2429 return -EINVAL; 2430 2431 /* Prevent MMU notifications until stage-4 IOCTL (CRIU_RESUME) is received */ 2432 amdgpu_amdkfd_block_mmu_notifications(p->kgd_process_info); 2433 2434 bo_buckets = kvmalloc_array(args->num_bos, sizeof(*bo_buckets), GFP_KERNEL); 2435 if (!bo_buckets) 2436 return -ENOMEM; 2437 2438 ret = copy_from_user(bo_buckets, (void __user *)args->bos, 2439 args->num_bos * sizeof(*bo_buckets)); 2440 if (ret) { 2441 pr_err("Failed to copy BOs information from user\n"); 2442 ret = -EFAULT; 2443 goto exit; 2444 } 2445 2446 bo_privs = kvmalloc_array(args->num_bos, sizeof(*bo_privs), GFP_KERNEL); 2447 if (!bo_privs) { 2448 ret = -ENOMEM; 2449 goto exit; 2450 } 2451 2452 ret = copy_from_user(bo_privs, (void __user *)args->priv_data + *priv_offset, 2453 args->num_bos * sizeof(*bo_privs)); 2454 if (ret) { 2455 pr_err("Failed to copy BOs information from user\n"); 2456 ret = -EFAULT; 2457 goto exit; 2458 } 2459 *priv_offset += args->num_bos * sizeof(*bo_privs); 2460 2461 /* Create and map new BOs */ 2462 for (; i < args->num_bos; i++) { 2463 ret = criu_restore_bo(p, &bo_buckets[i], &bo_privs[i]); 2464 if (ret) { 2465 pr_debug("Failed to restore BO[%d] ret%d\n", i, ret); 2466 goto exit; 2467 } 2468 } /* done */ 2469 2470 /* Copy only the buckets back so user can read bo_buckets[N].restored_offset */ 2471 ret = copy_to_user((void __user *)args->bos, 2472 bo_buckets, 2473 (args->num_bos * sizeof(*bo_buckets))); 2474 if (ret) 2475 ret = -EFAULT; 2476 2477 exit: 2478 while (ret && i--) { 2479 if (bo_buckets[i].alloc_flags 2480 & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) 2481 close_fd(bo_buckets[i].dmabuf_fd); 2482 } 2483 kvfree(bo_buckets); 2484 kvfree(bo_privs); 2485 return ret; 2486 } 2487 2488 static int criu_restore_objects(struct file *filep, 2489 struct kfd_process *p, 2490 struct kfd_ioctl_criu_args *args, 2491 uint64_t *priv_offset, 2492 uint64_t max_priv_data_size) 2493 { 2494 int ret = 0; 2495 uint32_t i; 2496 2497 BUILD_BUG_ON(offsetof(struct kfd_criu_queue_priv_data, object_type)); 2498 BUILD_BUG_ON(offsetof(struct kfd_criu_event_priv_data, object_type)); 2499 BUILD_BUG_ON(offsetof(struct kfd_criu_svm_range_priv_data, object_type)); 2500 2501 for (i = 0; i < args->num_objects; i++) { 2502 uint32_t object_type; 2503 2504 if (*priv_offset + sizeof(object_type) > max_priv_data_size) { 2505 pr_err("Invalid private data size\n"); 2506 return -EINVAL; 2507 } 2508 2509 ret = get_user(object_type, (uint32_t __user *)(args->priv_data + *priv_offset)); 2510 if (ret) { 2511 pr_err("Failed to copy private information from user\n"); 2512 goto exit; 2513 } 2514 2515 switch (object_type) { 2516 case KFD_CRIU_OBJECT_TYPE_QUEUE: 2517 ret = kfd_criu_restore_queue(p, (uint8_t __user *)args->priv_data, 2518 priv_offset, max_priv_data_size); 2519 if (ret) 2520 goto exit; 2521 break; 2522 case KFD_CRIU_OBJECT_TYPE_EVENT: 2523 ret = kfd_criu_restore_event(filep, p, (uint8_t __user *)args->priv_data, 2524 priv_offset, max_priv_data_size); 2525 if (ret) 2526 goto exit; 2527 break; 2528 case KFD_CRIU_OBJECT_TYPE_SVM_RANGE: 2529 ret = kfd_criu_restore_svm(p, (uint8_t __user *)args->priv_data, 2530 priv_offset, max_priv_data_size); 2531 if (ret) 2532 goto exit; 2533 break; 2534 default: 2535 pr_err("Invalid object type:%u at index:%d\n", object_type, i); 2536 ret = -EINVAL; 2537 goto exit; 2538 } 2539 } 2540 exit: 2541 return ret; 2542 } 2543 2544 static int criu_restore(struct file *filep, 2545 struct kfd_process *p, 2546 struct kfd_ioctl_criu_args *args) 2547 { 2548 uint64_t priv_offset = 0; 2549 int ret = 0; 2550 2551 pr_debug("CRIU restore (num_devices:%u num_bos:%u num_objects:%u priv_data_size:%llu)\n", 2552 args->num_devices, args->num_bos, args->num_objects, args->priv_data_size); 2553 2554 if (!args->bos || !args->devices || !args->priv_data || !args->priv_data_size || 2555 !args->num_devices || !args->num_bos) 2556 return -EINVAL; 2557 2558 mutex_lock(&p->mutex); 2559 2560 /* 2561 * Set the process to evicted state to avoid running any new queues before all the memory 2562 * mappings are ready. 2563 */ 2564 ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_RESTORE); 2565 if (ret) 2566 goto exit_unlock; 2567 2568 /* Each function will adjust priv_offset based on how many bytes they consumed */ 2569 ret = criu_restore_process(p, args, &priv_offset, args->priv_data_size); 2570 if (ret) 2571 goto exit_unlock; 2572 2573 ret = criu_restore_devices(p, args, &priv_offset, args->priv_data_size); 2574 if (ret) 2575 goto exit_unlock; 2576 2577 ret = criu_restore_bos(p, args, &priv_offset, args->priv_data_size); 2578 if (ret) 2579 goto exit_unlock; 2580 2581 ret = criu_restore_objects(filep, p, args, &priv_offset, args->priv_data_size); 2582 if (ret) 2583 goto exit_unlock; 2584 2585 if (priv_offset != args->priv_data_size) { 2586 pr_err("Invalid private data size\n"); 2587 ret = -EINVAL; 2588 } 2589 2590 exit_unlock: 2591 mutex_unlock(&p->mutex); 2592 if (ret) 2593 pr_err("Failed to restore CRIU ret:%d\n", ret); 2594 else 2595 pr_debug("CRIU restore successful\n"); 2596 2597 return ret; 2598 } 2599 2600 static int criu_unpause(struct file *filep, 2601 struct kfd_process *p, 2602 struct kfd_ioctl_criu_args *args) 2603 { 2604 int ret; 2605 2606 mutex_lock(&p->mutex); 2607 2608 if (!p->queues_paused) { 2609 mutex_unlock(&p->mutex); 2610 return -EINVAL; 2611 } 2612 2613 ret = kfd_process_restore_queues(p); 2614 if (ret) 2615 pr_err("Failed to unpause queues ret:%d\n", ret); 2616 else 2617 p->queues_paused = false; 2618 2619 mutex_unlock(&p->mutex); 2620 2621 return ret; 2622 } 2623 2624 static int criu_resume(struct file *filep, 2625 struct kfd_process *p, 2626 struct kfd_ioctl_criu_args *args) 2627 { 2628 struct kfd_process *target = NULL; 2629 struct pid *pid = NULL; 2630 int ret = 0; 2631 2632 pr_debug("Inside %s, target pid for criu restore: %d\n", __func__, 2633 args->pid); 2634 2635 pid = find_get_pid(args->pid); 2636 if (!pid) { 2637 pr_err("Cannot find pid info for %i\n", args->pid); 2638 return -ESRCH; 2639 } 2640 2641 pr_debug("calling kfd_lookup_process_by_pid\n"); 2642 target = kfd_lookup_process_by_pid(pid); 2643 2644 put_pid(pid); 2645 2646 if (!target) { 2647 pr_debug("Cannot find process info for %i\n", args->pid); 2648 return -ESRCH; 2649 } 2650 2651 mutex_lock(&target->mutex); 2652 ret = kfd_criu_resume_svm(target); 2653 if (ret) { 2654 pr_err("kfd_criu_resume_svm failed for %i\n", args->pid); 2655 goto exit; 2656 } 2657 2658 ret = amdgpu_amdkfd_criu_resume(target->kgd_process_info); 2659 if (ret) 2660 pr_err("amdgpu_amdkfd_criu_resume failed for %i\n", args->pid); 2661 2662 exit: 2663 mutex_unlock(&target->mutex); 2664 2665 kfd_unref_process(target); 2666 return ret; 2667 } 2668 2669 static int criu_process_info(struct file *filep, 2670 struct kfd_process *p, 2671 struct kfd_ioctl_criu_args *args) 2672 { 2673 int ret = 0; 2674 2675 mutex_lock(&p->mutex); 2676 2677 if (!p->n_pdds) { 2678 pr_err("No pdd for given process\n"); 2679 ret = -ENODEV; 2680 goto err_unlock; 2681 } 2682 2683 ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_CHECKPOINT); 2684 if (ret) 2685 goto err_unlock; 2686 2687 p->queues_paused = true; 2688 2689 args->pid = task_pid_nr_ns(p->lead_thread, 2690 task_active_pid_ns(p->lead_thread)); 2691 2692 ret = criu_get_process_object_info(p, &args->num_devices, &args->num_bos, 2693 &args->num_objects, &args->priv_data_size); 2694 if (ret) 2695 goto err_unlock; 2696 2697 dev_dbg(kfd_device, "Num of devices:%u bos:%u objects:%u priv_data_size:%lld\n", 2698 args->num_devices, args->num_bos, args->num_objects, 2699 args->priv_data_size); 2700 2701 err_unlock: 2702 if (ret) { 2703 kfd_process_restore_queues(p); 2704 p->queues_paused = false; 2705 } 2706 mutex_unlock(&p->mutex); 2707 return ret; 2708 } 2709 2710 static int kfd_ioctl_criu(struct file *filep, struct kfd_process *p, void *data) 2711 { 2712 struct kfd_ioctl_criu_args *args = data; 2713 int ret; 2714 2715 dev_dbg(kfd_device, "CRIU operation: %d\n", args->op); 2716 switch (args->op) { 2717 case KFD_CRIU_OP_PROCESS_INFO: 2718 ret = criu_process_info(filep, p, args); 2719 break; 2720 case KFD_CRIU_OP_CHECKPOINT: 2721 ret = criu_checkpoint(filep, p, args); 2722 break; 2723 case KFD_CRIU_OP_UNPAUSE: 2724 ret = criu_unpause(filep, p, args); 2725 break; 2726 case KFD_CRIU_OP_RESTORE: 2727 ret = criu_restore(filep, p, args); 2728 break; 2729 case KFD_CRIU_OP_RESUME: 2730 ret = criu_resume(filep, p, args); 2731 break; 2732 default: 2733 dev_dbg(kfd_device, "Unsupported CRIU operation:%d\n", args->op); 2734 ret = -EINVAL; 2735 break; 2736 } 2737 2738 if (ret) 2739 dev_dbg(kfd_device, "CRIU operation:%d err:%d\n", args->op, ret); 2740 2741 return ret; 2742 } 2743 2744 static int runtime_enable(struct kfd_process *p, uint64_t r_debug, 2745 bool enable_ttmp_setup) 2746 { 2747 int i = 0, ret = 0; 2748 2749 if (p->is_runtime_retry) 2750 goto retry; 2751 2752 if (p->runtime_info.runtime_state != DEBUG_RUNTIME_STATE_DISABLED) 2753 return -EBUSY; 2754 2755 for (i = 0; i < p->n_pdds; i++) { 2756 struct kfd_process_device *pdd = p->pdds[i]; 2757 2758 if (pdd->qpd.queue_count) 2759 return -EEXIST; 2760 2761 /* 2762 * Setup TTMPs by default. 2763 * Note that this call must remain here for MES ADD QUEUE to 2764 * skip_process_ctx_clear unconditionally as the first call to 2765 * SET_SHADER_DEBUGGER clears any stale process context data 2766 * saved in MES. 2767 */ 2768 if (pdd->dev->kfd->shared_resources.enable_mes) 2769 kfd_dbg_set_mes_debug_mode(pdd, !kfd_dbg_has_cwsr_workaround(pdd->dev)); 2770 } 2771 2772 p->runtime_info.runtime_state = DEBUG_RUNTIME_STATE_ENABLED; 2773 p->runtime_info.r_debug = r_debug; 2774 p->runtime_info.ttmp_setup = enable_ttmp_setup; 2775 2776 if (p->runtime_info.ttmp_setup) { 2777 for (i = 0; i < p->n_pdds; i++) { 2778 struct kfd_process_device *pdd = p->pdds[i]; 2779 2780 if (!kfd_dbg_is_rlc_restore_supported(pdd->dev)) { 2781 amdgpu_gfx_off_ctrl(pdd->dev->adev, false); 2782 pdd->dev->kfd2kgd->enable_debug_trap( 2783 pdd->dev->adev, 2784 true, 2785 pdd->dev->vm_info.last_vmid_kfd); 2786 } else if (kfd_dbg_is_per_vmid_supported(pdd->dev)) { 2787 pdd->spi_dbg_override = pdd->dev->kfd2kgd->enable_debug_trap( 2788 pdd->dev->adev, 2789 false, 2790 0); 2791 } 2792 } 2793 } 2794 2795 retry: 2796 if (p->debug_trap_enabled) { 2797 if (!p->is_runtime_retry) { 2798 kfd_dbg_trap_activate(p); 2799 kfd_dbg_ev_raise(KFD_EC_MASK(EC_PROCESS_RUNTIME), 2800 p, NULL, 0, false, NULL, 0); 2801 } 2802 2803 mutex_unlock(&p->mutex); 2804 ret = down_interruptible(&p->runtime_enable_sema); 2805 mutex_lock(&p->mutex); 2806 2807 p->is_runtime_retry = !!ret; 2808 } 2809 2810 return ret; 2811 } 2812 2813 static int runtime_disable(struct kfd_process *p) 2814 { 2815 int i = 0, ret; 2816 bool was_enabled = p->runtime_info.runtime_state == DEBUG_RUNTIME_STATE_ENABLED; 2817 2818 p->runtime_info.runtime_state = DEBUG_RUNTIME_STATE_DISABLED; 2819 p->runtime_info.r_debug = 0; 2820 2821 if (p->debug_trap_enabled) { 2822 if (was_enabled) 2823 kfd_dbg_trap_deactivate(p, false, 0); 2824 2825 if (!p->is_runtime_retry) 2826 kfd_dbg_ev_raise(KFD_EC_MASK(EC_PROCESS_RUNTIME), 2827 p, NULL, 0, false, NULL, 0); 2828 2829 mutex_unlock(&p->mutex); 2830 ret = down_interruptible(&p->runtime_enable_sema); 2831 mutex_lock(&p->mutex); 2832 2833 p->is_runtime_retry = !!ret; 2834 if (ret) 2835 return ret; 2836 } 2837 2838 if (was_enabled && p->runtime_info.ttmp_setup) { 2839 for (i = 0; i < p->n_pdds; i++) { 2840 struct kfd_process_device *pdd = p->pdds[i]; 2841 2842 if (!kfd_dbg_is_rlc_restore_supported(pdd->dev)) 2843 amdgpu_gfx_off_ctrl(pdd->dev->adev, true); 2844 } 2845 } 2846 2847 p->runtime_info.ttmp_setup = false; 2848 2849 /* disable ttmp setup */ 2850 for (i = 0; i < p->n_pdds; i++) { 2851 struct kfd_process_device *pdd = p->pdds[i]; 2852 2853 if (kfd_dbg_is_per_vmid_supported(pdd->dev)) { 2854 pdd->spi_dbg_override = 2855 pdd->dev->kfd2kgd->disable_debug_trap( 2856 pdd->dev->adev, 2857 false, 2858 pdd->dev->vm_info.last_vmid_kfd); 2859 2860 if (!pdd->dev->kfd->shared_resources.enable_mes) 2861 debug_refresh_runlist(pdd->dev->dqm); 2862 else 2863 kfd_dbg_set_mes_debug_mode(pdd, 2864 !kfd_dbg_has_cwsr_workaround(pdd->dev)); 2865 } 2866 } 2867 2868 return 0; 2869 } 2870 2871 static int kfd_ioctl_runtime_enable(struct file *filep, struct kfd_process *p, void *data) 2872 { 2873 struct kfd_ioctl_runtime_enable_args *args = data; 2874 int r; 2875 2876 mutex_lock(&p->mutex); 2877 2878 if (args->mode_mask & KFD_RUNTIME_ENABLE_MODE_ENABLE_MASK) 2879 r = runtime_enable(p, args->r_debug, 2880 !!(args->mode_mask & KFD_RUNTIME_ENABLE_MODE_TTMP_SAVE_MASK)); 2881 else 2882 r = runtime_disable(p); 2883 2884 mutex_unlock(&p->mutex); 2885 2886 return r; 2887 } 2888 2889 static int kfd_ioctl_set_debug_trap(struct file *filep, struct kfd_process *p, void *data) 2890 { 2891 struct kfd_ioctl_dbg_trap_args *args = data; 2892 struct task_struct *thread = NULL; 2893 struct mm_struct *mm = NULL; 2894 struct pid *pid = NULL; 2895 struct kfd_process *target = NULL; 2896 struct kfd_process_device *pdd = NULL; 2897 int r = 0; 2898 2899 if (sched_policy == KFD_SCHED_POLICY_NO_HWS) { 2900 pr_err("Debugging does not support sched_policy %i", sched_policy); 2901 return -EINVAL; 2902 } 2903 2904 pid = find_get_pid(args->pid); 2905 if (!pid) { 2906 pr_debug("Cannot find pid info for %i\n", args->pid); 2907 r = -ESRCH; 2908 goto out; 2909 } 2910 2911 thread = get_pid_task(pid, PIDTYPE_PID); 2912 if (!thread) { 2913 r = -ESRCH; 2914 goto out; 2915 } 2916 2917 mm = get_task_mm(thread); 2918 if (!mm) { 2919 r = -ESRCH; 2920 goto out; 2921 } 2922 2923 if (args->op == KFD_IOC_DBG_TRAP_ENABLE) { 2924 bool create_process; 2925 2926 rcu_read_lock(); 2927 create_process = thread && thread != current && ptrace_parent(thread) == current; 2928 rcu_read_unlock(); 2929 2930 target = create_process ? kfd_create_process(thread) : 2931 kfd_lookup_process_by_pid(pid); 2932 } else { 2933 target = kfd_lookup_process_by_pid(pid); 2934 } 2935 2936 if (IS_ERR_OR_NULL(target)) { 2937 pr_debug("Cannot find process PID %i to debug\n", args->pid); 2938 r = target ? PTR_ERR(target) : -ESRCH; 2939 target = NULL; 2940 goto out; 2941 } 2942 2943 /* Check if target is still PTRACED. */ 2944 rcu_read_lock(); 2945 if (target != p && args->op != KFD_IOC_DBG_TRAP_DISABLE 2946 && ptrace_parent(target->lead_thread) != current) { 2947 pr_err("PID %i is not PTRACED and cannot be debugged\n", args->pid); 2948 r = -EPERM; 2949 } 2950 rcu_read_unlock(); 2951 2952 if (r) 2953 goto out; 2954 2955 mutex_lock(&target->mutex); 2956 2957 if (args->op != KFD_IOC_DBG_TRAP_ENABLE && !target->debug_trap_enabled) { 2958 pr_err("PID %i not debug enabled for op %i\n", args->pid, args->op); 2959 r = -EINVAL; 2960 goto unlock_out; 2961 } 2962 2963 if (target->runtime_info.runtime_state != DEBUG_RUNTIME_STATE_ENABLED && 2964 (args->op == KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_OVERRIDE || 2965 args->op == KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_MODE || 2966 args->op == KFD_IOC_DBG_TRAP_SUSPEND_QUEUES || 2967 args->op == KFD_IOC_DBG_TRAP_RESUME_QUEUES || 2968 args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH || 2969 args->op == KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH || 2970 args->op == KFD_IOC_DBG_TRAP_SET_FLAGS)) { 2971 r = -EPERM; 2972 goto unlock_out; 2973 } 2974 2975 if (args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH || 2976 args->op == KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH) { 2977 int user_gpu_id = kfd_process_get_user_gpu_id(target, 2978 args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ? 2979 args->set_node_address_watch.gpu_id : 2980 args->clear_node_address_watch.gpu_id); 2981 2982 pdd = kfd_process_device_data_by_id(target, user_gpu_id); 2983 if (user_gpu_id == -EINVAL || !pdd) { 2984 r = -ENODEV; 2985 goto unlock_out; 2986 } 2987 } 2988 2989 switch (args->op) { 2990 case KFD_IOC_DBG_TRAP_ENABLE: 2991 if (target != p) 2992 target->debugger_process = p; 2993 2994 r = kfd_dbg_trap_enable(target, 2995 args->enable.dbg_fd, 2996 (void __user *)args->enable.rinfo_ptr, 2997 &args->enable.rinfo_size); 2998 if (!r) 2999 target->exception_enable_mask = args->enable.exception_mask; 3000 3001 break; 3002 case KFD_IOC_DBG_TRAP_DISABLE: 3003 r = kfd_dbg_trap_disable(target); 3004 break; 3005 case KFD_IOC_DBG_TRAP_SEND_RUNTIME_EVENT: 3006 r = kfd_dbg_send_exception_to_runtime(target, 3007 args->send_runtime_event.gpu_id, 3008 args->send_runtime_event.queue_id, 3009 args->send_runtime_event.exception_mask); 3010 break; 3011 case KFD_IOC_DBG_TRAP_SET_EXCEPTIONS_ENABLED: 3012 kfd_dbg_set_enabled_debug_exception_mask(target, 3013 args->set_exceptions_enabled.exception_mask); 3014 break; 3015 case KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_OVERRIDE: 3016 r = kfd_dbg_trap_set_wave_launch_override(target, 3017 args->launch_override.override_mode, 3018 args->launch_override.enable_mask, 3019 args->launch_override.support_request_mask, 3020 &args->launch_override.enable_mask, 3021 &args->launch_override.support_request_mask); 3022 break; 3023 case KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_MODE: 3024 r = kfd_dbg_trap_set_wave_launch_mode(target, 3025 args->launch_mode.launch_mode); 3026 break; 3027 case KFD_IOC_DBG_TRAP_SUSPEND_QUEUES: 3028 r = suspend_queues(target, 3029 args->suspend_queues.num_queues, 3030 args->suspend_queues.grace_period, 3031 args->suspend_queues.exception_mask, 3032 (uint32_t *)args->suspend_queues.queue_array_ptr); 3033 3034 break; 3035 case KFD_IOC_DBG_TRAP_RESUME_QUEUES: 3036 r = resume_queues(target, args->resume_queues.num_queues, 3037 (uint32_t *)args->resume_queues.queue_array_ptr); 3038 break; 3039 case KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH: 3040 r = kfd_dbg_trap_set_dev_address_watch(pdd, 3041 args->set_node_address_watch.address, 3042 args->set_node_address_watch.mask, 3043 &args->set_node_address_watch.id, 3044 args->set_node_address_watch.mode); 3045 break; 3046 case KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH: 3047 r = kfd_dbg_trap_clear_dev_address_watch(pdd, 3048 args->clear_node_address_watch.id); 3049 break; 3050 case KFD_IOC_DBG_TRAP_SET_FLAGS: 3051 r = kfd_dbg_trap_set_flags(target, &args->set_flags.flags); 3052 break; 3053 case KFD_IOC_DBG_TRAP_QUERY_DEBUG_EVENT: 3054 r = kfd_dbg_ev_query_debug_event(target, 3055 &args->query_debug_event.queue_id, 3056 &args->query_debug_event.gpu_id, 3057 args->query_debug_event.exception_mask, 3058 &args->query_debug_event.exception_mask); 3059 break; 3060 case KFD_IOC_DBG_TRAP_QUERY_EXCEPTION_INFO: 3061 r = kfd_dbg_trap_query_exception_info(target, 3062 args->query_exception_info.source_id, 3063 args->query_exception_info.exception_code, 3064 args->query_exception_info.clear_exception, 3065 (void __user *)args->query_exception_info.info_ptr, 3066 &args->query_exception_info.info_size); 3067 break; 3068 case KFD_IOC_DBG_TRAP_GET_QUEUE_SNAPSHOT: 3069 r = pqm_get_queue_snapshot(&target->pqm, 3070 args->queue_snapshot.exception_mask, 3071 (void __user *)args->queue_snapshot.snapshot_buf_ptr, 3072 &args->queue_snapshot.num_queues, 3073 &args->queue_snapshot.entry_size); 3074 break; 3075 case KFD_IOC_DBG_TRAP_GET_DEVICE_SNAPSHOT: 3076 r = kfd_dbg_trap_device_snapshot(target, 3077 args->device_snapshot.exception_mask, 3078 (void __user *)args->device_snapshot.snapshot_buf_ptr, 3079 &args->device_snapshot.num_devices, 3080 &args->device_snapshot.entry_size); 3081 break; 3082 default: 3083 pr_err("Invalid option: %i\n", args->op); 3084 r = -EINVAL; 3085 } 3086 3087 unlock_out: 3088 mutex_unlock(&target->mutex); 3089 3090 out: 3091 if (thread) 3092 put_task_struct(thread); 3093 3094 if (mm) 3095 mmput(mm); 3096 3097 if (pid) 3098 put_pid(pid); 3099 3100 if (target) 3101 kfd_unref_process(target); 3102 3103 return r; 3104 } 3105 3106 #define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \ 3107 [_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, \ 3108 .cmd_drv = 0, .name = #ioctl} 3109 3110 /** Ioctl table */ 3111 static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = { 3112 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_VERSION, 3113 kfd_ioctl_get_version, 0), 3114 3115 AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_QUEUE, 3116 kfd_ioctl_create_queue, 0), 3117 3118 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_QUEUE, 3119 kfd_ioctl_destroy_queue, 0), 3120 3121 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_MEMORY_POLICY, 3122 kfd_ioctl_set_memory_policy, 0), 3123 3124 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_CLOCK_COUNTERS, 3125 kfd_ioctl_get_clock_counters, 0), 3126 3127 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES, 3128 kfd_ioctl_get_process_apertures, 0), 3129 3130 AMDKFD_IOCTL_DEF(AMDKFD_IOC_UPDATE_QUEUE, 3131 kfd_ioctl_update_queue, 0), 3132 3133 AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_EVENT, 3134 kfd_ioctl_create_event, 0), 3135 3136 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_EVENT, 3137 kfd_ioctl_destroy_event, 0), 3138 3139 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_EVENT, 3140 kfd_ioctl_set_event, 0), 3141 3142 AMDKFD_IOCTL_DEF(AMDKFD_IOC_RESET_EVENT, 3143 kfd_ioctl_reset_event, 0), 3144 3145 AMDKFD_IOCTL_DEF(AMDKFD_IOC_WAIT_EVENTS, 3146 kfd_ioctl_wait_events, 0), 3147 3148 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_REGISTER_DEPRECATED, 3149 kfd_ioctl_dbg_register, 0), 3150 3151 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_UNREGISTER_DEPRECATED, 3152 kfd_ioctl_dbg_unregister, 0), 3153 3154 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_ADDRESS_WATCH_DEPRECATED, 3155 kfd_ioctl_dbg_address_watch, 0), 3156 3157 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_WAVE_CONTROL_DEPRECATED, 3158 kfd_ioctl_dbg_wave_control, 0), 3159 3160 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_SCRATCH_BACKING_VA, 3161 kfd_ioctl_set_scratch_backing_va, 0), 3162 3163 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG, 3164 kfd_ioctl_get_tile_config, 0), 3165 3166 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_TRAP_HANDLER, 3167 kfd_ioctl_set_trap_handler, 0), 3168 3169 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES_NEW, 3170 kfd_ioctl_get_process_apertures_new, 0), 3171 3172 AMDKFD_IOCTL_DEF(AMDKFD_IOC_ACQUIRE_VM, 3173 kfd_ioctl_acquire_vm, 0), 3174 3175 AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_MEMORY_OF_GPU, 3176 kfd_ioctl_alloc_memory_of_gpu, 0), 3177 3178 AMDKFD_IOCTL_DEF(AMDKFD_IOC_FREE_MEMORY_OF_GPU, 3179 kfd_ioctl_free_memory_of_gpu, 0), 3180 3181 AMDKFD_IOCTL_DEF(AMDKFD_IOC_MAP_MEMORY_TO_GPU, 3182 kfd_ioctl_map_memory_to_gpu, 0), 3183 3184 AMDKFD_IOCTL_DEF(AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU, 3185 kfd_ioctl_unmap_memory_from_gpu, 0), 3186 3187 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_CU_MASK, 3188 kfd_ioctl_set_cu_mask, 0), 3189 3190 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_QUEUE_WAVE_STATE, 3191 kfd_ioctl_get_queue_wave_state, 0), 3192 3193 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_DMABUF_INFO, 3194 kfd_ioctl_get_dmabuf_info, 0), 3195 3196 AMDKFD_IOCTL_DEF(AMDKFD_IOC_IMPORT_DMABUF, 3197 kfd_ioctl_import_dmabuf, 0), 3198 3199 AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_QUEUE_GWS, 3200 kfd_ioctl_alloc_queue_gws, 0), 3201 3202 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SMI_EVENTS, 3203 kfd_ioctl_smi_events, 0), 3204 3205 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SVM, kfd_ioctl_svm, 0), 3206 3207 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_XNACK_MODE, 3208 kfd_ioctl_set_xnack_mode, 0), 3209 3210 AMDKFD_IOCTL_DEF(AMDKFD_IOC_CRIU_OP, 3211 kfd_ioctl_criu, KFD_IOC_FLAG_CHECKPOINT_RESTORE), 3212 3213 AMDKFD_IOCTL_DEF(AMDKFD_IOC_AVAILABLE_MEMORY, 3214 kfd_ioctl_get_available_memory, 0), 3215 3216 AMDKFD_IOCTL_DEF(AMDKFD_IOC_EXPORT_DMABUF, 3217 kfd_ioctl_export_dmabuf, 0), 3218 3219 AMDKFD_IOCTL_DEF(AMDKFD_IOC_RUNTIME_ENABLE, 3220 kfd_ioctl_runtime_enable, 0), 3221 3222 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_TRAP, 3223 kfd_ioctl_set_debug_trap, 0), 3224 }; 3225 3226 #define AMDKFD_CORE_IOCTL_COUNT ARRAY_SIZE(amdkfd_ioctls) 3227 3228 static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg) 3229 { 3230 struct kfd_process *process; 3231 amdkfd_ioctl_t *func; 3232 const struct amdkfd_ioctl_desc *ioctl = NULL; 3233 unsigned int nr = _IOC_NR(cmd); 3234 char stack_kdata[128]; 3235 char *kdata = NULL; 3236 unsigned int usize, asize; 3237 int retcode = -EINVAL; 3238 bool ptrace_attached = false; 3239 3240 if (nr >= AMDKFD_CORE_IOCTL_COUNT) 3241 goto err_i1; 3242 3243 if ((nr >= AMDKFD_COMMAND_START) && (nr < AMDKFD_COMMAND_END)) { 3244 u32 amdkfd_size; 3245 3246 ioctl = &amdkfd_ioctls[nr]; 3247 3248 amdkfd_size = _IOC_SIZE(ioctl->cmd); 3249 usize = asize = _IOC_SIZE(cmd); 3250 if (amdkfd_size > asize) 3251 asize = amdkfd_size; 3252 3253 cmd = ioctl->cmd; 3254 } else 3255 goto err_i1; 3256 3257 dev_dbg(kfd_device, "ioctl cmd 0x%x (#0x%x), arg 0x%lx\n", cmd, nr, arg); 3258 3259 /* Get the process struct from the filep. Only the process 3260 * that opened /dev/kfd can use the file descriptor. Child 3261 * processes need to create their own KFD device context. 3262 */ 3263 process = filep->private_data; 3264 3265 rcu_read_lock(); 3266 if ((ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE) && 3267 ptrace_parent(process->lead_thread) == current) 3268 ptrace_attached = true; 3269 rcu_read_unlock(); 3270 3271 if (process->lead_thread != current->group_leader 3272 && !ptrace_attached) { 3273 dev_dbg(kfd_device, "Using KFD FD in wrong process\n"); 3274 retcode = -EBADF; 3275 goto err_i1; 3276 } 3277 3278 /* Do not trust userspace, use our own definition */ 3279 func = ioctl->func; 3280 3281 if (unlikely(!func)) { 3282 dev_dbg(kfd_device, "no function\n"); 3283 retcode = -EINVAL; 3284 goto err_i1; 3285 } 3286 3287 /* 3288 * Versions of docker shipped in Ubuntu 18.xx and 20.xx do not support 3289 * CAP_CHECKPOINT_RESTORE, so we also allow access if CAP_SYS_ADMIN as CAP_SYS_ADMIN is a 3290 * more priviledged access. 3291 */ 3292 if (unlikely(ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE)) { 3293 if (!capable(CAP_CHECKPOINT_RESTORE) && 3294 !capable(CAP_SYS_ADMIN)) { 3295 retcode = -EACCES; 3296 goto err_i1; 3297 } 3298 } 3299 3300 if (cmd & (IOC_IN | IOC_OUT)) { 3301 if (asize <= sizeof(stack_kdata)) { 3302 kdata = stack_kdata; 3303 } else { 3304 kdata = kmalloc(asize, GFP_KERNEL); 3305 if (!kdata) { 3306 retcode = -ENOMEM; 3307 goto err_i1; 3308 } 3309 } 3310 if (asize > usize) 3311 memset(kdata + usize, 0, asize - usize); 3312 } 3313 3314 if (cmd & IOC_IN) { 3315 if (copy_from_user(kdata, (void __user *)arg, usize) != 0) { 3316 retcode = -EFAULT; 3317 goto err_i1; 3318 } 3319 } else if (cmd & IOC_OUT) { 3320 memset(kdata, 0, usize); 3321 } 3322 3323 retcode = func(filep, process, kdata); 3324 3325 if (cmd & IOC_OUT) 3326 if (copy_to_user((void __user *)arg, kdata, usize) != 0) 3327 retcode = -EFAULT; 3328 3329 err_i1: 3330 if (!ioctl) 3331 dev_dbg(kfd_device, "invalid ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n", 3332 task_pid_nr(current), cmd, nr); 3333 3334 if (kdata != stack_kdata) 3335 kfree(kdata); 3336 3337 if (retcode) 3338 dev_dbg(kfd_device, "ioctl cmd (#0x%x), arg 0x%lx, ret = %d\n", 3339 nr, arg, retcode); 3340 3341 return retcode; 3342 } 3343 3344 static int kfd_mmio_mmap(struct kfd_node *dev, struct kfd_process *process, 3345 struct vm_area_struct *vma) 3346 { 3347 phys_addr_t address; 3348 3349 if (vma->vm_end - vma->vm_start != PAGE_SIZE) 3350 return -EINVAL; 3351 3352 if (PAGE_SIZE > 4096) 3353 return -EINVAL; 3354 3355 address = dev->adev->rmmio_remap.bus_addr; 3356 3357 vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE | 3358 VM_DONTDUMP | VM_PFNMAP); 3359 3360 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 3361 3362 pr_debug("pasid 0x%x mapping mmio page\n" 3363 " target user address == 0x%08llX\n" 3364 " physical address == 0x%08llX\n" 3365 " vm_flags == 0x%04lX\n" 3366 " size == 0x%04lX\n", 3367 process->pasid, (unsigned long long) vma->vm_start, 3368 address, vma->vm_flags, PAGE_SIZE); 3369 3370 return io_remap_pfn_range(vma, 3371 vma->vm_start, 3372 address >> PAGE_SHIFT, 3373 PAGE_SIZE, 3374 vma->vm_page_prot); 3375 } 3376 3377 3378 static int kfd_mmap(struct file *filp, struct vm_area_struct *vma) 3379 { 3380 struct kfd_process *process; 3381 struct kfd_node *dev = NULL; 3382 unsigned long mmap_offset; 3383 unsigned int gpu_id; 3384 3385 process = kfd_get_process(current); 3386 if (IS_ERR(process)) 3387 return PTR_ERR(process); 3388 3389 mmap_offset = vma->vm_pgoff << PAGE_SHIFT; 3390 gpu_id = KFD_MMAP_GET_GPU_ID(mmap_offset); 3391 if (gpu_id) 3392 dev = kfd_device_by_id(gpu_id); 3393 3394 switch (mmap_offset & KFD_MMAP_TYPE_MASK) { 3395 case KFD_MMAP_TYPE_DOORBELL: 3396 if (!dev) 3397 return -ENODEV; 3398 return kfd_doorbell_mmap(dev, process, vma); 3399 3400 case KFD_MMAP_TYPE_EVENTS: 3401 return kfd_event_mmap(process, vma); 3402 3403 case KFD_MMAP_TYPE_RESERVED_MEM: 3404 if (!dev) 3405 return -ENODEV; 3406 return kfd_reserved_mem_mmap(dev, process, vma); 3407 case KFD_MMAP_TYPE_MMIO: 3408 if (!dev) 3409 return -ENODEV; 3410 return kfd_mmio_mmap(dev, process, vma); 3411 } 3412 3413 return -EFAULT; 3414 } 3415