1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2014-2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include <linux/device.h> 25 #include <linux/export.h> 26 #include <linux/err.h> 27 #include <linux/fs.h> 28 #include <linux/file.h> 29 #include <linux/sched.h> 30 #include <linux/slab.h> 31 #include <linux/uaccess.h> 32 #include <linux/compat.h> 33 #include <uapi/linux/kfd_ioctl.h> 34 #include <linux/time.h> 35 #include <linux/mm.h> 36 #include <linux/mman.h> 37 #include <linux/ptrace.h> 38 #include <linux/dma-buf.h> 39 #include <linux/processor.h> 40 #include "kfd_priv.h" 41 #include "kfd_device_queue_manager.h" 42 #include "kfd_svm.h" 43 #include "amdgpu_amdkfd.h" 44 #include "kfd_smi_events.h" 45 #include "amdgpu_dma_buf.h" 46 #include "kfd_debug.h" 47 48 static long kfd_ioctl(struct file *, unsigned int, unsigned long); 49 static int kfd_open(struct inode *, struct file *); 50 static int kfd_release(struct inode *, struct file *); 51 static int kfd_mmap(struct file *, struct vm_area_struct *); 52 53 static const char kfd_dev_name[] = "kfd"; 54 55 static const struct file_operations kfd_fops = { 56 .owner = THIS_MODULE, 57 .unlocked_ioctl = kfd_ioctl, 58 .compat_ioctl = compat_ptr_ioctl, 59 .open = kfd_open, 60 .release = kfd_release, 61 .mmap = kfd_mmap, 62 }; 63 64 static int kfd_char_dev_major = -1; 65 struct device *kfd_device; 66 static const struct class kfd_class = { 67 .name = kfd_dev_name, 68 }; 69 70 static inline struct kfd_process_device *kfd_lock_pdd_by_id(struct kfd_process *p, __u32 gpu_id) 71 { 72 struct kfd_process_device *pdd; 73 74 mutex_lock(&p->mutex); 75 pdd = kfd_process_device_data_by_id(p, gpu_id); 76 77 if (pdd) 78 return pdd; 79 80 mutex_unlock(&p->mutex); 81 return NULL; 82 } 83 84 static inline void kfd_unlock_pdd(struct kfd_process_device *pdd) 85 { 86 mutex_unlock(&pdd->process->mutex); 87 } 88 89 int kfd_chardev_init(void) 90 { 91 int err = 0; 92 93 kfd_char_dev_major = register_chrdev(0, kfd_dev_name, &kfd_fops); 94 err = kfd_char_dev_major; 95 if (err < 0) 96 goto err_register_chrdev; 97 98 err = class_register(&kfd_class); 99 if (err) 100 goto err_class_create; 101 102 kfd_device = device_create(&kfd_class, NULL, 103 MKDEV(kfd_char_dev_major, 0), 104 NULL, kfd_dev_name); 105 err = PTR_ERR(kfd_device); 106 if (IS_ERR(kfd_device)) 107 goto err_device_create; 108 109 return 0; 110 111 err_device_create: 112 class_unregister(&kfd_class); 113 err_class_create: 114 unregister_chrdev(kfd_char_dev_major, kfd_dev_name); 115 err_register_chrdev: 116 return err; 117 } 118 119 void kfd_chardev_exit(void) 120 { 121 device_destroy(&kfd_class, MKDEV(kfd_char_dev_major, 0)); 122 class_unregister(&kfd_class); 123 unregister_chrdev(kfd_char_dev_major, kfd_dev_name); 124 kfd_device = NULL; 125 } 126 127 128 static int kfd_open(struct inode *inode, struct file *filep) 129 { 130 struct kfd_process *process; 131 bool is_32bit_user_mode; 132 133 if (iminor(inode) != 0) 134 return -ENODEV; 135 136 is_32bit_user_mode = in_compat_syscall(); 137 138 if (is_32bit_user_mode) { 139 dev_warn(kfd_device, 140 "Process %d (32-bit) failed to open /dev/kfd\n" 141 "32-bit processes are not supported by amdkfd\n", 142 current->pid); 143 return -EPERM; 144 } 145 146 process = kfd_create_process(current); 147 if (IS_ERR(process)) 148 return PTR_ERR(process); 149 150 if (kfd_process_init_cwsr_apu(process, filep)) { 151 kfd_unref_process(process); 152 return -EFAULT; 153 } 154 155 /* filep now owns the reference returned by kfd_create_process */ 156 filep->private_data = process; 157 158 dev_dbg(kfd_device, "process %d opened, compat mode (32 bit) - %d\n", 159 process->pasid, process->is_32bit_user_mode); 160 161 return 0; 162 } 163 164 static int kfd_release(struct inode *inode, struct file *filep) 165 { 166 struct kfd_process *process = filep->private_data; 167 168 if (process) 169 kfd_unref_process(process); 170 171 return 0; 172 } 173 174 static int kfd_ioctl_get_version(struct file *filep, struct kfd_process *p, 175 void *data) 176 { 177 struct kfd_ioctl_get_version_args *args = data; 178 179 args->major_version = KFD_IOCTL_MAJOR_VERSION; 180 args->minor_version = KFD_IOCTL_MINOR_VERSION; 181 182 return 0; 183 } 184 185 static int set_queue_properties_from_user(struct queue_properties *q_properties, 186 struct kfd_ioctl_create_queue_args *args) 187 { 188 /* 189 * Repurpose queue percentage to accommodate new features: 190 * bit 0-7: queue percentage 191 * bit 8-15: pm4_target_xcc 192 */ 193 if ((args->queue_percentage & 0xFF) > KFD_MAX_QUEUE_PERCENTAGE) { 194 pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n"); 195 return -EINVAL; 196 } 197 198 if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) { 199 pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n"); 200 return -EINVAL; 201 } 202 203 if ((args->ring_base_address) && 204 (!access_ok((const void __user *) args->ring_base_address, 205 sizeof(uint64_t)))) { 206 pr_err("Can't access ring base address\n"); 207 return -EFAULT; 208 } 209 210 if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) { 211 pr_err("Ring size must be a power of 2 or 0\n"); 212 return -EINVAL; 213 } 214 215 if (!access_ok((const void __user *) args->read_pointer_address, 216 sizeof(uint32_t))) { 217 pr_err("Can't access read pointer\n"); 218 return -EFAULT; 219 } 220 221 if (!access_ok((const void __user *) args->write_pointer_address, 222 sizeof(uint32_t))) { 223 pr_err("Can't access write pointer\n"); 224 return -EFAULT; 225 } 226 227 if (args->eop_buffer_address && 228 !access_ok((const void __user *) args->eop_buffer_address, 229 sizeof(uint32_t))) { 230 pr_debug("Can't access eop buffer"); 231 return -EFAULT; 232 } 233 234 if (args->ctx_save_restore_address && 235 !access_ok((const void __user *) args->ctx_save_restore_address, 236 sizeof(uint32_t))) { 237 pr_debug("Can't access ctx save restore buffer"); 238 return -EFAULT; 239 } 240 241 q_properties->is_interop = false; 242 q_properties->is_gws = false; 243 q_properties->queue_percent = args->queue_percentage & 0xFF; 244 /* bit 8-15 are repurposed to be PM4 target XCC */ 245 q_properties->pm4_target_xcc = (args->queue_percentage >> 8) & 0xFF; 246 q_properties->priority = args->queue_priority; 247 q_properties->queue_address = args->ring_base_address; 248 q_properties->queue_size = args->ring_size; 249 q_properties->read_ptr = (void __user *)args->read_pointer_address; 250 q_properties->write_ptr = (void __user *)args->write_pointer_address; 251 q_properties->eop_ring_buffer_address = args->eop_buffer_address; 252 q_properties->eop_ring_buffer_size = args->eop_buffer_size; 253 q_properties->ctx_save_restore_area_address = 254 args->ctx_save_restore_address; 255 q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size; 256 q_properties->ctl_stack_size = args->ctl_stack_size; 257 q_properties->sdma_engine_id = args->sdma_engine_id; 258 if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE || 259 args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL) 260 q_properties->type = KFD_QUEUE_TYPE_COMPUTE; 261 else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA) 262 q_properties->type = KFD_QUEUE_TYPE_SDMA; 263 else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_XGMI) 264 q_properties->type = KFD_QUEUE_TYPE_SDMA_XGMI; 265 else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_BY_ENG_ID) 266 q_properties->type = KFD_QUEUE_TYPE_SDMA_BY_ENG_ID; 267 else 268 return -ENOTSUPP; 269 270 if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL) 271 q_properties->format = KFD_QUEUE_FORMAT_AQL; 272 else 273 q_properties->format = KFD_QUEUE_FORMAT_PM4; 274 275 pr_debug("Queue Percentage: %d, %d\n", 276 q_properties->queue_percent, args->queue_percentage); 277 278 pr_debug("Queue Priority: %d, %d\n", 279 q_properties->priority, args->queue_priority); 280 281 pr_debug("Queue Address: 0x%llX, 0x%llX\n", 282 q_properties->queue_address, args->ring_base_address); 283 284 pr_debug("Queue Size: 0x%llX, %u\n", 285 q_properties->queue_size, args->ring_size); 286 287 pr_debug("Queue r/w Pointers: %px, %px\n", 288 q_properties->read_ptr, 289 q_properties->write_ptr); 290 291 pr_debug("Queue Format: %d\n", q_properties->format); 292 293 pr_debug("Queue EOP: 0x%llX\n", q_properties->eop_ring_buffer_address); 294 295 pr_debug("Queue CTX save area: 0x%llX\n", 296 q_properties->ctx_save_restore_area_address); 297 298 return 0; 299 } 300 301 static int kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p, 302 void *data) 303 { 304 struct kfd_ioctl_create_queue_args *args = data; 305 struct kfd_node *dev; 306 int err = 0; 307 unsigned int queue_id; 308 struct kfd_process_device *pdd; 309 struct queue_properties q_properties; 310 uint32_t doorbell_offset_in_process = 0; 311 312 memset(&q_properties, 0, sizeof(struct queue_properties)); 313 314 pr_debug("Creating queue ioctl\n"); 315 316 err = set_queue_properties_from_user(&q_properties, args); 317 if (err) 318 return err; 319 320 pr_debug("Looking for gpu id 0x%x\n", args->gpu_id); 321 322 mutex_lock(&p->mutex); 323 324 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 325 if (!pdd) { 326 pr_debug("Could not find gpu id 0x%x\n", args->gpu_id); 327 err = -EINVAL; 328 goto err_pdd; 329 } 330 dev = pdd->dev; 331 332 pdd = kfd_bind_process_to_device(dev, p); 333 if (IS_ERR(pdd)) { 334 err = -ESRCH; 335 goto err_bind_process; 336 } 337 338 if (q_properties.type == KFD_QUEUE_TYPE_SDMA_BY_ENG_ID) { 339 int max_sdma_eng_id = kfd_get_num_sdma_engines(dev) + 340 kfd_get_num_xgmi_sdma_engines(dev) - 1; 341 342 if (q_properties.sdma_engine_id > max_sdma_eng_id) { 343 err = -EINVAL; 344 pr_err("sdma_engine_id %i exceeds maximum id of %i\n", 345 q_properties.sdma_engine_id, max_sdma_eng_id); 346 goto err_sdma_engine_id; 347 } 348 } 349 350 if (!pdd->qpd.proc_doorbells) { 351 err = kfd_alloc_process_doorbells(dev->kfd, pdd); 352 if (err) { 353 pr_debug("failed to allocate process doorbells\n"); 354 goto err_bind_process; 355 } 356 } 357 358 err = kfd_queue_acquire_buffers(pdd, &q_properties); 359 if (err) { 360 pr_debug("failed to acquire user queue buffers\n"); 361 goto err_acquire_queue_buf; 362 } 363 364 pr_debug("Creating queue for PASID 0x%x on gpu 0x%x\n", 365 p->pasid, 366 dev->id); 367 368 err = pqm_create_queue(&p->pqm, dev, &q_properties, &queue_id, 369 NULL, NULL, NULL, &doorbell_offset_in_process); 370 if (err != 0) 371 goto err_create_queue; 372 373 args->queue_id = queue_id; 374 375 376 /* Return gpu_id as doorbell offset for mmap usage */ 377 args->doorbell_offset = KFD_MMAP_TYPE_DOORBELL; 378 args->doorbell_offset |= KFD_MMAP_GPU_ID(args->gpu_id); 379 if (KFD_IS_SOC15(dev)) 380 /* On SOC15 ASICs, include the doorbell offset within the 381 * process doorbell frame, which is 2 pages. 382 */ 383 args->doorbell_offset |= doorbell_offset_in_process; 384 385 mutex_unlock(&p->mutex); 386 387 pr_debug("Queue id %d was created successfully\n", args->queue_id); 388 389 pr_debug("Ring buffer address == 0x%016llX\n", 390 args->ring_base_address); 391 392 pr_debug("Read ptr address == 0x%016llX\n", 393 args->read_pointer_address); 394 395 pr_debug("Write ptr address == 0x%016llX\n", 396 args->write_pointer_address); 397 398 kfd_dbg_ev_raise(KFD_EC_MASK(EC_QUEUE_NEW), p, dev, queue_id, false, NULL, 0); 399 return 0; 400 401 err_create_queue: 402 kfd_queue_unref_bo_vas(pdd, &q_properties); 403 kfd_queue_release_buffers(pdd, &q_properties); 404 err_acquire_queue_buf: 405 err_sdma_engine_id: 406 err_bind_process: 407 err_pdd: 408 mutex_unlock(&p->mutex); 409 return err; 410 } 411 412 static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p, 413 void *data) 414 { 415 int retval; 416 struct kfd_ioctl_destroy_queue_args *args = data; 417 418 pr_debug("Destroying queue id %d for pasid 0x%x\n", 419 args->queue_id, 420 p->pasid); 421 422 mutex_lock(&p->mutex); 423 424 retval = pqm_destroy_queue(&p->pqm, args->queue_id); 425 426 mutex_unlock(&p->mutex); 427 return retval; 428 } 429 430 static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p, 431 void *data) 432 { 433 int retval; 434 struct kfd_ioctl_update_queue_args *args = data; 435 struct queue_properties properties; 436 437 /* 438 * Repurpose queue percentage to accommodate new features: 439 * bit 0-7: queue percentage 440 * bit 8-15: pm4_target_xcc 441 */ 442 if ((args->queue_percentage & 0xFF) > KFD_MAX_QUEUE_PERCENTAGE) { 443 pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n"); 444 return -EINVAL; 445 } 446 447 if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) { 448 pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n"); 449 return -EINVAL; 450 } 451 452 if ((args->ring_base_address) && 453 (!access_ok((const void __user *) args->ring_base_address, 454 sizeof(uint64_t)))) { 455 pr_err("Can't access ring base address\n"); 456 return -EFAULT; 457 } 458 459 if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) { 460 pr_err("Ring size must be a power of 2 or 0\n"); 461 return -EINVAL; 462 } 463 464 properties.queue_address = args->ring_base_address; 465 properties.queue_size = args->ring_size; 466 properties.queue_percent = args->queue_percentage & 0xFF; 467 /* bit 8-15 are repurposed to be PM4 target XCC */ 468 properties.pm4_target_xcc = (args->queue_percentage >> 8) & 0xFF; 469 properties.priority = args->queue_priority; 470 471 pr_debug("Updating queue id %d for pasid 0x%x\n", 472 args->queue_id, p->pasid); 473 474 mutex_lock(&p->mutex); 475 476 retval = pqm_update_queue_properties(&p->pqm, args->queue_id, &properties); 477 478 mutex_unlock(&p->mutex); 479 480 return retval; 481 } 482 483 static int kfd_ioctl_set_cu_mask(struct file *filp, struct kfd_process *p, 484 void *data) 485 { 486 int retval; 487 const int max_num_cus = 1024; 488 struct kfd_ioctl_set_cu_mask_args *args = data; 489 struct mqd_update_info minfo = {0}; 490 uint32_t __user *cu_mask_ptr = (uint32_t __user *)args->cu_mask_ptr; 491 size_t cu_mask_size = sizeof(uint32_t) * (args->num_cu_mask / 32); 492 493 if ((args->num_cu_mask % 32) != 0) { 494 pr_debug("num_cu_mask 0x%x must be a multiple of 32", 495 args->num_cu_mask); 496 return -EINVAL; 497 } 498 499 minfo.cu_mask.count = args->num_cu_mask; 500 if (minfo.cu_mask.count == 0) { 501 pr_debug("CU mask cannot be 0"); 502 return -EINVAL; 503 } 504 505 /* To prevent an unreasonably large CU mask size, set an arbitrary 506 * limit of max_num_cus bits. We can then just drop any CU mask bits 507 * past max_num_cus bits and just use the first max_num_cus bits. 508 */ 509 if (minfo.cu_mask.count > max_num_cus) { 510 pr_debug("CU mask cannot be greater than 1024 bits"); 511 minfo.cu_mask.count = max_num_cus; 512 cu_mask_size = sizeof(uint32_t) * (max_num_cus/32); 513 } 514 515 minfo.cu_mask.ptr = kzalloc(cu_mask_size, GFP_KERNEL); 516 if (!minfo.cu_mask.ptr) 517 return -ENOMEM; 518 519 retval = copy_from_user(minfo.cu_mask.ptr, cu_mask_ptr, cu_mask_size); 520 if (retval) { 521 pr_debug("Could not copy CU mask from userspace"); 522 retval = -EFAULT; 523 goto out; 524 } 525 526 mutex_lock(&p->mutex); 527 528 retval = pqm_update_mqd(&p->pqm, args->queue_id, &minfo); 529 530 mutex_unlock(&p->mutex); 531 532 out: 533 kfree(minfo.cu_mask.ptr); 534 return retval; 535 } 536 537 static int kfd_ioctl_get_queue_wave_state(struct file *filep, 538 struct kfd_process *p, void *data) 539 { 540 struct kfd_ioctl_get_queue_wave_state_args *args = data; 541 int r; 542 543 mutex_lock(&p->mutex); 544 545 r = pqm_get_wave_state(&p->pqm, args->queue_id, 546 (void __user *)args->ctl_stack_address, 547 &args->ctl_stack_used_size, 548 &args->save_area_used_size); 549 550 mutex_unlock(&p->mutex); 551 552 return r; 553 } 554 555 static int kfd_ioctl_set_memory_policy(struct file *filep, 556 struct kfd_process *p, void *data) 557 { 558 struct kfd_ioctl_set_memory_policy_args *args = data; 559 int err = 0; 560 struct kfd_process_device *pdd; 561 enum cache_policy default_policy, alternate_policy; 562 563 if (args->default_policy != KFD_IOC_CACHE_POLICY_COHERENT 564 && args->default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) { 565 return -EINVAL; 566 } 567 568 if (args->alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT 569 && args->alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) { 570 return -EINVAL; 571 } 572 573 mutex_lock(&p->mutex); 574 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 575 if (!pdd) { 576 pr_debug("Could not find gpu id 0x%x\n", args->gpu_id); 577 err = -EINVAL; 578 goto err_pdd; 579 } 580 581 pdd = kfd_bind_process_to_device(pdd->dev, p); 582 if (IS_ERR(pdd)) { 583 err = -ESRCH; 584 goto out; 585 } 586 587 default_policy = (args->default_policy == KFD_IOC_CACHE_POLICY_COHERENT) 588 ? cache_policy_coherent : cache_policy_noncoherent; 589 590 alternate_policy = 591 (args->alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT) 592 ? cache_policy_coherent : cache_policy_noncoherent; 593 594 if (!pdd->dev->dqm->ops.set_cache_memory_policy(pdd->dev->dqm, 595 &pdd->qpd, 596 default_policy, 597 alternate_policy, 598 (void __user *)args->alternate_aperture_base, 599 args->alternate_aperture_size)) 600 err = -EINVAL; 601 602 out: 603 err_pdd: 604 mutex_unlock(&p->mutex); 605 606 return err; 607 } 608 609 static int kfd_ioctl_set_trap_handler(struct file *filep, 610 struct kfd_process *p, void *data) 611 { 612 struct kfd_ioctl_set_trap_handler_args *args = data; 613 int err = 0; 614 struct kfd_process_device *pdd; 615 616 mutex_lock(&p->mutex); 617 618 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 619 if (!pdd) { 620 err = -EINVAL; 621 goto err_pdd; 622 } 623 624 pdd = kfd_bind_process_to_device(pdd->dev, p); 625 if (IS_ERR(pdd)) { 626 err = -ESRCH; 627 goto out; 628 } 629 630 kfd_process_set_trap_handler(&pdd->qpd, args->tba_addr, args->tma_addr); 631 632 out: 633 err_pdd: 634 mutex_unlock(&p->mutex); 635 636 return err; 637 } 638 639 static int kfd_ioctl_dbg_register(struct file *filep, 640 struct kfd_process *p, void *data) 641 { 642 return -EPERM; 643 } 644 645 static int kfd_ioctl_dbg_unregister(struct file *filep, 646 struct kfd_process *p, void *data) 647 { 648 return -EPERM; 649 } 650 651 static int kfd_ioctl_dbg_address_watch(struct file *filep, 652 struct kfd_process *p, void *data) 653 { 654 return -EPERM; 655 } 656 657 /* Parse and generate fixed size data structure for wave control */ 658 static int kfd_ioctl_dbg_wave_control(struct file *filep, 659 struct kfd_process *p, void *data) 660 { 661 return -EPERM; 662 } 663 664 static int kfd_ioctl_get_clock_counters(struct file *filep, 665 struct kfd_process *p, void *data) 666 { 667 struct kfd_ioctl_get_clock_counters_args *args = data; 668 struct kfd_process_device *pdd; 669 670 mutex_lock(&p->mutex); 671 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 672 mutex_unlock(&p->mutex); 673 if (pdd) 674 /* Reading GPU clock counter from KGD */ 675 args->gpu_clock_counter = amdgpu_amdkfd_get_gpu_clock_counter(pdd->dev->adev); 676 else 677 /* Node without GPU resource */ 678 args->gpu_clock_counter = 0; 679 680 /* No access to rdtsc. Using raw monotonic time */ 681 args->cpu_clock_counter = ktime_get_raw_ns(); 682 args->system_clock_counter = ktime_get_boottime_ns(); 683 684 /* Since the counter is in nano-seconds we use 1GHz frequency */ 685 args->system_clock_freq = 1000000000; 686 687 return 0; 688 } 689 690 691 static int kfd_ioctl_get_process_apertures(struct file *filp, 692 struct kfd_process *p, void *data) 693 { 694 struct kfd_ioctl_get_process_apertures_args *args = data; 695 struct kfd_process_device_apertures *pAperture; 696 int i; 697 698 dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid); 699 700 args->num_of_nodes = 0; 701 702 mutex_lock(&p->mutex); 703 /* Run over all pdd of the process */ 704 for (i = 0; i < p->n_pdds; i++) { 705 struct kfd_process_device *pdd = p->pdds[i]; 706 707 pAperture = 708 &args->process_apertures[args->num_of_nodes]; 709 pAperture->gpu_id = pdd->dev->id; 710 pAperture->lds_base = pdd->lds_base; 711 pAperture->lds_limit = pdd->lds_limit; 712 pAperture->gpuvm_base = pdd->gpuvm_base; 713 pAperture->gpuvm_limit = pdd->gpuvm_limit; 714 pAperture->scratch_base = pdd->scratch_base; 715 pAperture->scratch_limit = pdd->scratch_limit; 716 717 dev_dbg(kfd_device, 718 "node id %u\n", args->num_of_nodes); 719 dev_dbg(kfd_device, 720 "gpu id %u\n", pdd->dev->id); 721 dev_dbg(kfd_device, 722 "lds_base %llX\n", pdd->lds_base); 723 dev_dbg(kfd_device, 724 "lds_limit %llX\n", pdd->lds_limit); 725 dev_dbg(kfd_device, 726 "gpuvm_base %llX\n", pdd->gpuvm_base); 727 dev_dbg(kfd_device, 728 "gpuvm_limit %llX\n", pdd->gpuvm_limit); 729 dev_dbg(kfd_device, 730 "scratch_base %llX\n", pdd->scratch_base); 731 dev_dbg(kfd_device, 732 "scratch_limit %llX\n", pdd->scratch_limit); 733 734 if (++args->num_of_nodes >= NUM_OF_SUPPORTED_GPUS) 735 break; 736 } 737 mutex_unlock(&p->mutex); 738 739 return 0; 740 } 741 742 static int kfd_ioctl_get_process_apertures_new(struct file *filp, 743 struct kfd_process *p, void *data) 744 { 745 struct kfd_ioctl_get_process_apertures_new_args *args = data; 746 struct kfd_process_device_apertures *pa; 747 int ret; 748 int i; 749 750 dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid); 751 752 if (args->num_of_nodes == 0) { 753 /* Return number of nodes, so that user space can alloacate 754 * sufficient memory 755 */ 756 mutex_lock(&p->mutex); 757 args->num_of_nodes = p->n_pdds; 758 goto out_unlock; 759 } 760 761 /* Fill in process-aperture information for all available 762 * nodes, but not more than args->num_of_nodes as that is 763 * the amount of memory allocated by user 764 */ 765 pa = kcalloc(args->num_of_nodes, sizeof(struct kfd_process_device_apertures), 766 GFP_KERNEL); 767 if (!pa) 768 return -ENOMEM; 769 770 mutex_lock(&p->mutex); 771 772 if (!p->n_pdds) { 773 args->num_of_nodes = 0; 774 kfree(pa); 775 goto out_unlock; 776 } 777 778 /* Run over all pdd of the process */ 779 for (i = 0; i < min(p->n_pdds, args->num_of_nodes); i++) { 780 struct kfd_process_device *pdd = p->pdds[i]; 781 782 pa[i].gpu_id = pdd->dev->id; 783 pa[i].lds_base = pdd->lds_base; 784 pa[i].lds_limit = pdd->lds_limit; 785 pa[i].gpuvm_base = pdd->gpuvm_base; 786 pa[i].gpuvm_limit = pdd->gpuvm_limit; 787 pa[i].scratch_base = pdd->scratch_base; 788 pa[i].scratch_limit = pdd->scratch_limit; 789 790 dev_dbg(kfd_device, 791 "gpu id %u\n", pdd->dev->id); 792 dev_dbg(kfd_device, 793 "lds_base %llX\n", pdd->lds_base); 794 dev_dbg(kfd_device, 795 "lds_limit %llX\n", pdd->lds_limit); 796 dev_dbg(kfd_device, 797 "gpuvm_base %llX\n", pdd->gpuvm_base); 798 dev_dbg(kfd_device, 799 "gpuvm_limit %llX\n", pdd->gpuvm_limit); 800 dev_dbg(kfd_device, 801 "scratch_base %llX\n", pdd->scratch_base); 802 dev_dbg(kfd_device, 803 "scratch_limit %llX\n", pdd->scratch_limit); 804 } 805 mutex_unlock(&p->mutex); 806 807 args->num_of_nodes = i; 808 ret = copy_to_user( 809 (void __user *)args->kfd_process_device_apertures_ptr, 810 pa, 811 (i * sizeof(struct kfd_process_device_apertures))); 812 kfree(pa); 813 return ret ? -EFAULT : 0; 814 815 out_unlock: 816 mutex_unlock(&p->mutex); 817 return 0; 818 } 819 820 static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p, 821 void *data) 822 { 823 struct kfd_ioctl_create_event_args *args = data; 824 int err; 825 826 /* For dGPUs the event page is allocated in user mode. The 827 * handle is passed to KFD with the first call to this IOCTL 828 * through the event_page_offset field. 829 */ 830 if (args->event_page_offset) { 831 mutex_lock(&p->mutex); 832 err = kfd_kmap_event_page(p, args->event_page_offset); 833 mutex_unlock(&p->mutex); 834 if (err) 835 return err; 836 } 837 838 err = kfd_event_create(filp, p, args->event_type, 839 args->auto_reset != 0, args->node_id, 840 &args->event_id, &args->event_trigger_data, 841 &args->event_page_offset, 842 &args->event_slot_index); 843 844 pr_debug("Created event (id:0x%08x) (%s)\n", args->event_id, __func__); 845 return err; 846 } 847 848 static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p, 849 void *data) 850 { 851 struct kfd_ioctl_destroy_event_args *args = data; 852 853 return kfd_event_destroy(p, args->event_id); 854 } 855 856 static int kfd_ioctl_set_event(struct file *filp, struct kfd_process *p, 857 void *data) 858 { 859 struct kfd_ioctl_set_event_args *args = data; 860 861 return kfd_set_event(p, args->event_id); 862 } 863 864 static int kfd_ioctl_reset_event(struct file *filp, struct kfd_process *p, 865 void *data) 866 { 867 struct kfd_ioctl_reset_event_args *args = data; 868 869 return kfd_reset_event(p, args->event_id); 870 } 871 872 static int kfd_ioctl_wait_events(struct file *filp, struct kfd_process *p, 873 void *data) 874 { 875 struct kfd_ioctl_wait_events_args *args = data; 876 877 return kfd_wait_on_events(p, args->num_events, 878 (void __user *)args->events_ptr, 879 (args->wait_for_all != 0), 880 &args->timeout, &args->wait_result); 881 } 882 static int kfd_ioctl_set_scratch_backing_va(struct file *filep, 883 struct kfd_process *p, void *data) 884 { 885 struct kfd_ioctl_set_scratch_backing_va_args *args = data; 886 struct kfd_process_device *pdd; 887 struct kfd_node *dev; 888 long err; 889 890 mutex_lock(&p->mutex); 891 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 892 if (!pdd) { 893 err = -EINVAL; 894 goto err_pdd; 895 } 896 dev = pdd->dev; 897 898 pdd = kfd_bind_process_to_device(dev, p); 899 if (IS_ERR(pdd)) { 900 err = PTR_ERR(pdd); 901 goto bind_process_to_device_fail; 902 } 903 904 pdd->qpd.sh_hidden_private_base = args->va_addr; 905 906 mutex_unlock(&p->mutex); 907 908 if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS && 909 pdd->qpd.vmid != 0 && dev->kfd2kgd->set_scratch_backing_va) 910 dev->kfd2kgd->set_scratch_backing_va( 911 dev->adev, args->va_addr, pdd->qpd.vmid); 912 913 return 0; 914 915 bind_process_to_device_fail: 916 err_pdd: 917 mutex_unlock(&p->mutex); 918 return err; 919 } 920 921 static int kfd_ioctl_get_tile_config(struct file *filep, 922 struct kfd_process *p, void *data) 923 { 924 struct kfd_ioctl_get_tile_config_args *args = data; 925 struct kfd_process_device *pdd; 926 struct tile_config config; 927 int err = 0; 928 929 mutex_lock(&p->mutex); 930 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 931 mutex_unlock(&p->mutex); 932 if (!pdd) 933 return -EINVAL; 934 935 amdgpu_amdkfd_get_tile_config(pdd->dev->adev, &config); 936 937 args->gb_addr_config = config.gb_addr_config; 938 args->num_banks = config.num_banks; 939 args->num_ranks = config.num_ranks; 940 941 if (args->num_tile_configs > config.num_tile_configs) 942 args->num_tile_configs = config.num_tile_configs; 943 err = copy_to_user((void __user *)args->tile_config_ptr, 944 config.tile_config_ptr, 945 args->num_tile_configs * sizeof(uint32_t)); 946 if (err) { 947 args->num_tile_configs = 0; 948 return -EFAULT; 949 } 950 951 if (args->num_macro_tile_configs > config.num_macro_tile_configs) 952 args->num_macro_tile_configs = 953 config.num_macro_tile_configs; 954 err = copy_to_user((void __user *)args->macro_tile_config_ptr, 955 config.macro_tile_config_ptr, 956 args->num_macro_tile_configs * sizeof(uint32_t)); 957 if (err) { 958 args->num_macro_tile_configs = 0; 959 return -EFAULT; 960 } 961 962 return 0; 963 } 964 965 static int kfd_ioctl_acquire_vm(struct file *filep, struct kfd_process *p, 966 void *data) 967 { 968 struct kfd_ioctl_acquire_vm_args *args = data; 969 struct kfd_process_device *pdd; 970 struct file *drm_file; 971 int ret; 972 973 drm_file = fget(args->drm_fd); 974 if (!drm_file) 975 return -EINVAL; 976 977 mutex_lock(&p->mutex); 978 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 979 if (!pdd) { 980 ret = -EINVAL; 981 goto err_pdd; 982 } 983 984 if (pdd->drm_file) { 985 ret = pdd->drm_file == drm_file ? 0 : -EBUSY; 986 goto err_drm_file; 987 } 988 989 ret = kfd_process_device_init_vm(pdd, drm_file); 990 if (ret) 991 goto err_unlock; 992 993 /* On success, the PDD keeps the drm_file reference */ 994 mutex_unlock(&p->mutex); 995 996 return 0; 997 998 err_unlock: 999 err_pdd: 1000 err_drm_file: 1001 mutex_unlock(&p->mutex); 1002 fput(drm_file); 1003 return ret; 1004 } 1005 1006 bool kfd_dev_is_large_bar(struct kfd_node *dev) 1007 { 1008 if (dev->kfd->adev->debug_largebar) { 1009 pr_debug("Simulate large-bar allocation on non large-bar machine\n"); 1010 return true; 1011 } 1012 1013 if (dev->local_mem_info.local_mem_size_private == 0 && 1014 dev->local_mem_info.local_mem_size_public > 0) 1015 return true; 1016 1017 if (dev->local_mem_info.local_mem_size_public == 0 && 1018 dev->kfd->adev->gmc.is_app_apu) { 1019 pr_debug("APP APU, Consider like a large bar system\n"); 1020 return true; 1021 } 1022 1023 return false; 1024 } 1025 1026 static int kfd_ioctl_get_available_memory(struct file *filep, 1027 struct kfd_process *p, void *data) 1028 { 1029 struct kfd_ioctl_get_available_memory_args *args = data; 1030 struct kfd_process_device *pdd = kfd_lock_pdd_by_id(p, args->gpu_id); 1031 1032 if (!pdd) 1033 return -EINVAL; 1034 args->available = amdgpu_amdkfd_get_available_memory(pdd->dev->adev, 1035 pdd->dev->node_id); 1036 kfd_unlock_pdd(pdd); 1037 return 0; 1038 } 1039 1040 static int kfd_ioctl_alloc_memory_of_gpu(struct file *filep, 1041 struct kfd_process *p, void *data) 1042 { 1043 struct kfd_ioctl_alloc_memory_of_gpu_args *args = data; 1044 struct kfd_process_device *pdd; 1045 void *mem; 1046 struct kfd_node *dev; 1047 int idr_handle; 1048 long err; 1049 uint64_t offset = args->mmap_offset; 1050 uint32_t flags = args->flags; 1051 1052 if (args->size == 0) 1053 return -EINVAL; 1054 1055 #if IS_ENABLED(CONFIG_HSA_AMD_SVM) 1056 /* Flush pending deferred work to avoid racing with deferred actions 1057 * from previous memory map changes (e.g. munmap). 1058 */ 1059 svm_range_list_lock_and_flush_work(&p->svms, current->mm); 1060 mutex_lock(&p->svms.lock); 1061 mmap_write_unlock(current->mm); 1062 if (interval_tree_iter_first(&p->svms.objects, 1063 args->va_addr >> PAGE_SHIFT, 1064 (args->va_addr + args->size - 1) >> PAGE_SHIFT)) { 1065 pr_err("Address: 0x%llx already allocated by SVM\n", 1066 args->va_addr); 1067 mutex_unlock(&p->svms.lock); 1068 return -EADDRINUSE; 1069 } 1070 1071 /* When register user buffer check if it has been registered by svm by 1072 * buffer cpu virtual address. 1073 */ 1074 if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) && 1075 interval_tree_iter_first(&p->svms.objects, 1076 args->mmap_offset >> PAGE_SHIFT, 1077 (args->mmap_offset + args->size - 1) >> PAGE_SHIFT)) { 1078 pr_err("User Buffer Address: 0x%llx already allocated by SVM\n", 1079 args->mmap_offset); 1080 mutex_unlock(&p->svms.lock); 1081 return -EADDRINUSE; 1082 } 1083 1084 mutex_unlock(&p->svms.lock); 1085 #endif 1086 mutex_lock(&p->mutex); 1087 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 1088 if (!pdd) { 1089 err = -EINVAL; 1090 goto err_pdd; 1091 } 1092 1093 dev = pdd->dev; 1094 1095 if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) && 1096 (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) && 1097 !kfd_dev_is_large_bar(dev)) { 1098 pr_err("Alloc host visible vram on small bar is not allowed\n"); 1099 err = -EINVAL; 1100 goto err_large_bar; 1101 } 1102 1103 pdd = kfd_bind_process_to_device(dev, p); 1104 if (IS_ERR(pdd)) { 1105 err = PTR_ERR(pdd); 1106 goto err_unlock; 1107 } 1108 1109 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) { 1110 if (args->size != kfd_doorbell_process_slice(dev->kfd)) { 1111 err = -EINVAL; 1112 goto err_unlock; 1113 } 1114 offset = kfd_get_process_doorbells(pdd); 1115 if (!offset) { 1116 err = -ENOMEM; 1117 goto err_unlock; 1118 } 1119 } else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) { 1120 if (args->size != PAGE_SIZE) { 1121 err = -EINVAL; 1122 goto err_unlock; 1123 } 1124 offset = dev->adev->rmmio_remap.bus_addr; 1125 if (!offset || (PAGE_SIZE > 4096)) { 1126 err = -ENOMEM; 1127 goto err_unlock; 1128 } 1129 } 1130 1131 err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu( 1132 dev->adev, args->va_addr, args->size, 1133 pdd->drm_priv, (struct kgd_mem **) &mem, &offset, 1134 flags, false); 1135 1136 if (err) 1137 goto err_unlock; 1138 1139 idr_handle = kfd_process_device_create_obj_handle(pdd, mem); 1140 if (idr_handle < 0) { 1141 err = -EFAULT; 1142 goto err_free; 1143 } 1144 1145 /* Update the VRAM usage count */ 1146 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 1147 uint64_t size = args->size; 1148 1149 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM) 1150 size >>= 1; 1151 atomic64_add(PAGE_ALIGN(size), &pdd->vram_usage); 1152 } 1153 1154 mutex_unlock(&p->mutex); 1155 1156 args->handle = MAKE_HANDLE(args->gpu_id, idr_handle); 1157 args->mmap_offset = offset; 1158 1159 /* MMIO is mapped through kfd device 1160 * Generate a kfd mmap offset 1161 */ 1162 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) 1163 args->mmap_offset = KFD_MMAP_TYPE_MMIO 1164 | KFD_MMAP_GPU_ID(args->gpu_id); 1165 1166 return 0; 1167 1168 err_free: 1169 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, (struct kgd_mem *)mem, 1170 pdd->drm_priv, NULL); 1171 err_unlock: 1172 err_pdd: 1173 err_large_bar: 1174 mutex_unlock(&p->mutex); 1175 return err; 1176 } 1177 1178 static int kfd_ioctl_free_memory_of_gpu(struct file *filep, 1179 struct kfd_process *p, void *data) 1180 { 1181 struct kfd_ioctl_free_memory_of_gpu_args *args = data; 1182 struct kfd_process_device *pdd; 1183 void *mem; 1184 int ret; 1185 uint64_t size = 0; 1186 1187 mutex_lock(&p->mutex); 1188 /* 1189 * Safeguard to prevent user space from freeing signal BO. 1190 * It will be freed at process termination. 1191 */ 1192 if (p->signal_handle && (p->signal_handle == args->handle)) { 1193 pr_err("Free signal BO is not allowed\n"); 1194 ret = -EPERM; 1195 goto err_unlock; 1196 } 1197 1198 pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle)); 1199 if (!pdd) { 1200 pr_err("Process device data doesn't exist\n"); 1201 ret = -EINVAL; 1202 goto err_pdd; 1203 } 1204 1205 mem = kfd_process_device_translate_handle( 1206 pdd, GET_IDR_HANDLE(args->handle)); 1207 if (!mem) { 1208 ret = -EINVAL; 1209 goto err_unlock; 1210 } 1211 1212 ret = amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, 1213 (struct kgd_mem *)mem, pdd->drm_priv, &size); 1214 1215 /* If freeing the buffer failed, leave the handle in place for 1216 * clean-up during process tear-down. 1217 */ 1218 if (!ret) 1219 kfd_process_device_remove_obj_handle( 1220 pdd, GET_IDR_HANDLE(args->handle)); 1221 1222 atomic64_sub(size, &pdd->vram_usage); 1223 1224 err_unlock: 1225 err_pdd: 1226 mutex_unlock(&p->mutex); 1227 return ret; 1228 } 1229 1230 static int kfd_ioctl_map_memory_to_gpu(struct file *filep, 1231 struct kfd_process *p, void *data) 1232 { 1233 struct kfd_ioctl_map_memory_to_gpu_args *args = data; 1234 struct kfd_process_device *pdd, *peer_pdd; 1235 void *mem; 1236 struct kfd_node *dev; 1237 long err = 0; 1238 int i; 1239 uint32_t *devices_arr = NULL; 1240 1241 if (!args->n_devices) { 1242 pr_debug("Device IDs array empty\n"); 1243 return -EINVAL; 1244 } 1245 if (args->n_success > args->n_devices) { 1246 pr_debug("n_success exceeds n_devices\n"); 1247 return -EINVAL; 1248 } 1249 1250 devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr), 1251 GFP_KERNEL); 1252 if (!devices_arr) 1253 return -ENOMEM; 1254 1255 err = copy_from_user(devices_arr, 1256 (void __user *)args->device_ids_array_ptr, 1257 args->n_devices * sizeof(*devices_arr)); 1258 if (err != 0) { 1259 err = -EFAULT; 1260 goto copy_from_user_failed; 1261 } 1262 1263 mutex_lock(&p->mutex); 1264 pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle)); 1265 if (!pdd) { 1266 err = -EINVAL; 1267 goto get_process_device_data_failed; 1268 } 1269 dev = pdd->dev; 1270 1271 pdd = kfd_bind_process_to_device(dev, p); 1272 if (IS_ERR(pdd)) { 1273 err = PTR_ERR(pdd); 1274 goto bind_process_to_device_failed; 1275 } 1276 1277 mem = kfd_process_device_translate_handle(pdd, 1278 GET_IDR_HANDLE(args->handle)); 1279 if (!mem) { 1280 err = -ENOMEM; 1281 goto get_mem_obj_from_handle_failed; 1282 } 1283 1284 for (i = args->n_success; i < args->n_devices; i++) { 1285 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]); 1286 if (!peer_pdd) { 1287 pr_debug("Getting device by id failed for 0x%x\n", 1288 devices_arr[i]); 1289 err = -EINVAL; 1290 goto get_mem_obj_from_handle_failed; 1291 } 1292 1293 peer_pdd = kfd_bind_process_to_device(peer_pdd->dev, p); 1294 if (IS_ERR(peer_pdd)) { 1295 err = PTR_ERR(peer_pdd); 1296 goto get_mem_obj_from_handle_failed; 1297 } 1298 1299 err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu( 1300 peer_pdd->dev->adev, (struct kgd_mem *)mem, 1301 peer_pdd->drm_priv); 1302 if (err) { 1303 struct pci_dev *pdev = peer_pdd->dev->adev->pdev; 1304 1305 dev_err(dev->adev->dev, 1306 "Failed to map peer:%04x:%02x:%02x.%d mem_domain:%d\n", 1307 pci_domain_nr(pdev->bus), 1308 pdev->bus->number, 1309 PCI_SLOT(pdev->devfn), 1310 PCI_FUNC(pdev->devfn), 1311 ((struct kgd_mem *)mem)->domain); 1312 goto map_memory_to_gpu_failed; 1313 } 1314 args->n_success = i+1; 1315 } 1316 1317 err = amdgpu_amdkfd_gpuvm_sync_memory(dev->adev, (struct kgd_mem *) mem, true); 1318 if (err) { 1319 pr_debug("Sync memory failed, wait interrupted by user signal\n"); 1320 goto sync_memory_failed; 1321 } 1322 1323 mutex_unlock(&p->mutex); 1324 1325 /* Flush TLBs after waiting for the page table updates to complete */ 1326 for (i = 0; i < args->n_devices; i++) { 1327 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]); 1328 if (WARN_ON_ONCE(!peer_pdd)) 1329 continue; 1330 kfd_flush_tlb(peer_pdd, TLB_FLUSH_LEGACY); 1331 } 1332 kfree(devices_arr); 1333 1334 return err; 1335 1336 get_process_device_data_failed: 1337 bind_process_to_device_failed: 1338 get_mem_obj_from_handle_failed: 1339 map_memory_to_gpu_failed: 1340 sync_memory_failed: 1341 mutex_unlock(&p->mutex); 1342 copy_from_user_failed: 1343 kfree(devices_arr); 1344 1345 return err; 1346 } 1347 1348 static int kfd_ioctl_unmap_memory_from_gpu(struct file *filep, 1349 struct kfd_process *p, void *data) 1350 { 1351 struct kfd_ioctl_unmap_memory_from_gpu_args *args = data; 1352 struct kfd_process_device *pdd, *peer_pdd; 1353 void *mem; 1354 long err = 0; 1355 uint32_t *devices_arr = NULL, i; 1356 bool flush_tlb; 1357 1358 if (!args->n_devices) { 1359 pr_debug("Device IDs array empty\n"); 1360 return -EINVAL; 1361 } 1362 if (args->n_success > args->n_devices) { 1363 pr_debug("n_success exceeds n_devices\n"); 1364 return -EINVAL; 1365 } 1366 1367 devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr), 1368 GFP_KERNEL); 1369 if (!devices_arr) 1370 return -ENOMEM; 1371 1372 err = copy_from_user(devices_arr, 1373 (void __user *)args->device_ids_array_ptr, 1374 args->n_devices * sizeof(*devices_arr)); 1375 if (err != 0) { 1376 err = -EFAULT; 1377 goto copy_from_user_failed; 1378 } 1379 1380 mutex_lock(&p->mutex); 1381 pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle)); 1382 if (!pdd) { 1383 err = -EINVAL; 1384 goto bind_process_to_device_failed; 1385 } 1386 1387 mem = kfd_process_device_translate_handle(pdd, 1388 GET_IDR_HANDLE(args->handle)); 1389 if (!mem) { 1390 err = -ENOMEM; 1391 goto get_mem_obj_from_handle_failed; 1392 } 1393 1394 for (i = args->n_success; i < args->n_devices; i++) { 1395 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]); 1396 if (!peer_pdd) { 1397 err = -EINVAL; 1398 goto get_mem_obj_from_handle_failed; 1399 } 1400 err = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu( 1401 peer_pdd->dev->adev, (struct kgd_mem *)mem, peer_pdd->drm_priv); 1402 if (err) { 1403 pr_debug("Failed to unmap from gpu %d/%d\n", i, args->n_devices); 1404 goto unmap_memory_from_gpu_failed; 1405 } 1406 args->n_success = i+1; 1407 } 1408 1409 flush_tlb = kfd_flush_tlb_after_unmap(pdd->dev->kfd); 1410 if (flush_tlb) { 1411 err = amdgpu_amdkfd_gpuvm_sync_memory(pdd->dev->adev, 1412 (struct kgd_mem *) mem, true); 1413 if (err) { 1414 pr_debug("Sync memory failed, wait interrupted by user signal\n"); 1415 goto sync_memory_failed; 1416 } 1417 } 1418 1419 /* Flush TLBs after waiting for the page table updates to complete */ 1420 for (i = 0; i < args->n_devices; i++) { 1421 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]); 1422 if (WARN_ON_ONCE(!peer_pdd)) 1423 continue; 1424 if (flush_tlb) 1425 kfd_flush_tlb(peer_pdd, TLB_FLUSH_HEAVYWEIGHT); 1426 1427 /* Remove dma mapping after tlb flush to avoid IO_PAGE_FAULT */ 1428 err = amdgpu_amdkfd_gpuvm_dmaunmap_mem(mem, peer_pdd->drm_priv); 1429 if (err) 1430 goto sync_memory_failed; 1431 } 1432 1433 mutex_unlock(&p->mutex); 1434 1435 kfree(devices_arr); 1436 1437 return 0; 1438 1439 bind_process_to_device_failed: 1440 get_mem_obj_from_handle_failed: 1441 unmap_memory_from_gpu_failed: 1442 sync_memory_failed: 1443 mutex_unlock(&p->mutex); 1444 copy_from_user_failed: 1445 kfree(devices_arr); 1446 return err; 1447 } 1448 1449 static int kfd_ioctl_alloc_queue_gws(struct file *filep, 1450 struct kfd_process *p, void *data) 1451 { 1452 int retval; 1453 struct kfd_ioctl_alloc_queue_gws_args *args = data; 1454 struct queue *q; 1455 struct kfd_node *dev; 1456 1457 mutex_lock(&p->mutex); 1458 q = pqm_get_user_queue(&p->pqm, args->queue_id); 1459 1460 if (q) { 1461 dev = q->device; 1462 } else { 1463 retval = -EINVAL; 1464 goto out_unlock; 1465 } 1466 1467 if (!dev->gws) { 1468 retval = -ENODEV; 1469 goto out_unlock; 1470 } 1471 1472 if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) { 1473 retval = -ENODEV; 1474 goto out_unlock; 1475 } 1476 1477 if (p->debug_trap_enabled && (!kfd_dbg_has_gws_support(dev) || 1478 kfd_dbg_has_cwsr_workaround(dev))) { 1479 retval = -EBUSY; 1480 goto out_unlock; 1481 } 1482 1483 retval = pqm_set_gws(&p->pqm, args->queue_id, args->num_gws ? dev->gws : NULL); 1484 mutex_unlock(&p->mutex); 1485 1486 args->first_gws = 0; 1487 return retval; 1488 1489 out_unlock: 1490 mutex_unlock(&p->mutex); 1491 return retval; 1492 } 1493 1494 static int kfd_ioctl_get_dmabuf_info(struct file *filep, 1495 struct kfd_process *p, void *data) 1496 { 1497 struct kfd_ioctl_get_dmabuf_info_args *args = data; 1498 struct kfd_node *dev = NULL; 1499 struct amdgpu_device *dmabuf_adev; 1500 void *metadata_buffer = NULL; 1501 uint32_t flags; 1502 int8_t xcp_id; 1503 unsigned int i; 1504 int r; 1505 1506 /* Find a KFD GPU device that supports the get_dmabuf_info query */ 1507 for (i = 0; kfd_topology_enum_kfd_devices(i, &dev) == 0; i++) 1508 if (dev && !kfd_devcgroup_check_permission(dev)) 1509 break; 1510 if (!dev) 1511 return -EINVAL; 1512 1513 if (args->metadata_ptr) { 1514 metadata_buffer = kzalloc(args->metadata_size, GFP_KERNEL); 1515 if (!metadata_buffer) 1516 return -ENOMEM; 1517 } 1518 1519 /* Get dmabuf info from KGD */ 1520 r = amdgpu_amdkfd_get_dmabuf_info(dev->adev, args->dmabuf_fd, 1521 &dmabuf_adev, &args->size, 1522 metadata_buffer, args->metadata_size, 1523 &args->metadata_size, &flags, &xcp_id); 1524 if (r) 1525 goto exit; 1526 1527 if (xcp_id >= 0) 1528 args->gpu_id = dmabuf_adev->kfd.dev->nodes[xcp_id]->id; 1529 else 1530 args->gpu_id = dev->id; 1531 args->flags = flags; 1532 1533 /* Copy metadata buffer to user mode */ 1534 if (metadata_buffer) { 1535 r = copy_to_user((void __user *)args->metadata_ptr, 1536 metadata_buffer, args->metadata_size); 1537 if (r != 0) 1538 r = -EFAULT; 1539 } 1540 1541 exit: 1542 kfree(metadata_buffer); 1543 1544 return r; 1545 } 1546 1547 static int kfd_ioctl_import_dmabuf(struct file *filep, 1548 struct kfd_process *p, void *data) 1549 { 1550 struct kfd_ioctl_import_dmabuf_args *args = data; 1551 struct kfd_process_device *pdd; 1552 int idr_handle; 1553 uint64_t size; 1554 void *mem; 1555 int r; 1556 1557 mutex_lock(&p->mutex); 1558 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 1559 if (!pdd) { 1560 r = -EINVAL; 1561 goto err_unlock; 1562 } 1563 1564 pdd = kfd_bind_process_to_device(pdd->dev, p); 1565 if (IS_ERR(pdd)) { 1566 r = PTR_ERR(pdd); 1567 goto err_unlock; 1568 } 1569 1570 r = amdgpu_amdkfd_gpuvm_import_dmabuf_fd(pdd->dev->adev, args->dmabuf_fd, 1571 args->va_addr, pdd->drm_priv, 1572 (struct kgd_mem **)&mem, &size, 1573 NULL); 1574 if (r) 1575 goto err_unlock; 1576 1577 idr_handle = kfd_process_device_create_obj_handle(pdd, mem); 1578 if (idr_handle < 0) { 1579 r = -EFAULT; 1580 goto err_free; 1581 } 1582 1583 mutex_unlock(&p->mutex); 1584 1585 args->handle = MAKE_HANDLE(args->gpu_id, idr_handle); 1586 1587 return 0; 1588 1589 err_free: 1590 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, (struct kgd_mem *)mem, 1591 pdd->drm_priv, NULL); 1592 err_unlock: 1593 mutex_unlock(&p->mutex); 1594 return r; 1595 } 1596 1597 static int kfd_ioctl_export_dmabuf(struct file *filep, 1598 struct kfd_process *p, void *data) 1599 { 1600 struct kfd_ioctl_export_dmabuf_args *args = data; 1601 struct kfd_process_device *pdd; 1602 struct dma_buf *dmabuf; 1603 struct kfd_node *dev; 1604 void *mem; 1605 int ret = 0; 1606 1607 dev = kfd_device_by_id(GET_GPU_ID(args->handle)); 1608 if (!dev) 1609 return -EINVAL; 1610 1611 mutex_lock(&p->mutex); 1612 1613 pdd = kfd_get_process_device_data(dev, p); 1614 if (!pdd) { 1615 ret = -EINVAL; 1616 goto err_unlock; 1617 } 1618 1619 mem = kfd_process_device_translate_handle(pdd, 1620 GET_IDR_HANDLE(args->handle)); 1621 if (!mem) { 1622 ret = -EINVAL; 1623 goto err_unlock; 1624 } 1625 1626 ret = amdgpu_amdkfd_gpuvm_export_dmabuf(mem, &dmabuf); 1627 mutex_unlock(&p->mutex); 1628 if (ret) 1629 goto err_out; 1630 1631 ret = dma_buf_fd(dmabuf, args->flags); 1632 if (ret < 0) { 1633 dma_buf_put(dmabuf); 1634 goto err_out; 1635 } 1636 /* dma_buf_fd assigns the reference count to the fd, no need to 1637 * put the reference here. 1638 */ 1639 args->dmabuf_fd = ret; 1640 1641 return 0; 1642 1643 err_unlock: 1644 mutex_unlock(&p->mutex); 1645 err_out: 1646 return ret; 1647 } 1648 1649 /* Handle requests for watching SMI events */ 1650 static int kfd_ioctl_smi_events(struct file *filep, 1651 struct kfd_process *p, void *data) 1652 { 1653 struct kfd_ioctl_smi_events_args *args = data; 1654 struct kfd_process_device *pdd; 1655 1656 mutex_lock(&p->mutex); 1657 1658 pdd = kfd_process_device_data_by_id(p, args->gpuid); 1659 mutex_unlock(&p->mutex); 1660 if (!pdd) 1661 return -EINVAL; 1662 1663 return kfd_smi_event_open(pdd->dev, &args->anon_fd); 1664 } 1665 1666 #if IS_ENABLED(CONFIG_HSA_AMD_SVM) 1667 1668 static int kfd_ioctl_set_xnack_mode(struct file *filep, 1669 struct kfd_process *p, void *data) 1670 { 1671 struct kfd_ioctl_set_xnack_mode_args *args = data; 1672 int r = 0; 1673 1674 mutex_lock(&p->mutex); 1675 if (args->xnack_enabled >= 0) { 1676 if (!list_empty(&p->pqm.queues)) { 1677 pr_debug("Process has user queues running\n"); 1678 r = -EBUSY; 1679 goto out_unlock; 1680 } 1681 1682 if (p->xnack_enabled == args->xnack_enabled) 1683 goto out_unlock; 1684 1685 if (args->xnack_enabled && !kfd_process_xnack_mode(p, true)) { 1686 r = -EPERM; 1687 goto out_unlock; 1688 } 1689 1690 r = svm_range_switch_xnack_reserve_mem(p, args->xnack_enabled); 1691 } else { 1692 args->xnack_enabled = p->xnack_enabled; 1693 } 1694 1695 out_unlock: 1696 mutex_unlock(&p->mutex); 1697 1698 return r; 1699 } 1700 1701 static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data) 1702 { 1703 struct kfd_ioctl_svm_args *args = data; 1704 int r = 0; 1705 1706 pr_debug("start 0x%llx size 0x%llx op 0x%x nattr 0x%x\n", 1707 args->start_addr, args->size, args->op, args->nattr); 1708 1709 if ((args->start_addr & ~PAGE_MASK) || (args->size & ~PAGE_MASK)) 1710 return -EINVAL; 1711 if (!args->start_addr || !args->size) 1712 return -EINVAL; 1713 1714 r = svm_ioctl(p, args->op, args->start_addr, args->size, args->nattr, 1715 args->attrs); 1716 1717 return r; 1718 } 1719 #else 1720 static int kfd_ioctl_set_xnack_mode(struct file *filep, 1721 struct kfd_process *p, void *data) 1722 { 1723 return -EPERM; 1724 } 1725 static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data) 1726 { 1727 return -EPERM; 1728 } 1729 #endif 1730 1731 static int criu_checkpoint_process(struct kfd_process *p, 1732 uint8_t __user *user_priv_data, 1733 uint64_t *priv_offset) 1734 { 1735 struct kfd_criu_process_priv_data process_priv; 1736 int ret; 1737 1738 memset(&process_priv, 0, sizeof(process_priv)); 1739 1740 process_priv.version = KFD_CRIU_PRIV_VERSION; 1741 /* For CR, we don't consider negative xnack mode which is used for 1742 * querying without changing it, here 0 simply means disabled and 1 1743 * means enabled so retry for finding a valid PTE. 1744 */ 1745 process_priv.xnack_mode = p->xnack_enabled ? 1 : 0; 1746 1747 ret = copy_to_user(user_priv_data + *priv_offset, 1748 &process_priv, sizeof(process_priv)); 1749 1750 if (ret) { 1751 pr_err("Failed to copy process information to user\n"); 1752 ret = -EFAULT; 1753 } 1754 1755 *priv_offset += sizeof(process_priv); 1756 return ret; 1757 } 1758 1759 static int criu_checkpoint_devices(struct kfd_process *p, 1760 uint32_t num_devices, 1761 uint8_t __user *user_addr, 1762 uint8_t __user *user_priv_data, 1763 uint64_t *priv_offset) 1764 { 1765 struct kfd_criu_device_priv_data *device_priv = NULL; 1766 struct kfd_criu_device_bucket *device_buckets = NULL; 1767 int ret = 0, i; 1768 1769 device_buckets = kvzalloc(num_devices * sizeof(*device_buckets), GFP_KERNEL); 1770 if (!device_buckets) { 1771 ret = -ENOMEM; 1772 goto exit; 1773 } 1774 1775 device_priv = kvzalloc(num_devices * sizeof(*device_priv), GFP_KERNEL); 1776 if (!device_priv) { 1777 ret = -ENOMEM; 1778 goto exit; 1779 } 1780 1781 for (i = 0; i < num_devices; i++) { 1782 struct kfd_process_device *pdd = p->pdds[i]; 1783 1784 device_buckets[i].user_gpu_id = pdd->user_gpu_id; 1785 device_buckets[i].actual_gpu_id = pdd->dev->id; 1786 1787 /* 1788 * priv_data does not contain useful information for now and is reserved for 1789 * future use, so we do not set its contents. 1790 */ 1791 } 1792 1793 ret = copy_to_user(user_addr, device_buckets, num_devices * sizeof(*device_buckets)); 1794 if (ret) { 1795 pr_err("Failed to copy device information to user\n"); 1796 ret = -EFAULT; 1797 goto exit; 1798 } 1799 1800 ret = copy_to_user(user_priv_data + *priv_offset, 1801 device_priv, 1802 num_devices * sizeof(*device_priv)); 1803 if (ret) { 1804 pr_err("Failed to copy device information to user\n"); 1805 ret = -EFAULT; 1806 } 1807 *priv_offset += num_devices * sizeof(*device_priv); 1808 1809 exit: 1810 kvfree(device_buckets); 1811 kvfree(device_priv); 1812 return ret; 1813 } 1814 1815 static uint32_t get_process_num_bos(struct kfd_process *p) 1816 { 1817 uint32_t num_of_bos = 0; 1818 int i; 1819 1820 /* Run over all PDDs of the process */ 1821 for (i = 0; i < p->n_pdds; i++) { 1822 struct kfd_process_device *pdd = p->pdds[i]; 1823 void *mem; 1824 int id; 1825 1826 idr_for_each_entry(&pdd->alloc_idr, mem, id) { 1827 struct kgd_mem *kgd_mem = (struct kgd_mem *)mem; 1828 1829 if (!kgd_mem->va || kgd_mem->va > pdd->gpuvm_base) 1830 num_of_bos++; 1831 } 1832 } 1833 return num_of_bos; 1834 } 1835 1836 static int criu_get_prime_handle(struct kgd_mem *mem, 1837 int flags, u32 *shared_fd, 1838 struct file **file) 1839 { 1840 struct dma_buf *dmabuf; 1841 int ret; 1842 1843 ret = amdgpu_amdkfd_gpuvm_export_dmabuf(mem, &dmabuf); 1844 if (ret) { 1845 pr_err("dmabuf export failed for the BO\n"); 1846 return ret; 1847 } 1848 1849 ret = get_unused_fd_flags(flags); 1850 if (ret < 0) { 1851 pr_err("dmabuf create fd failed, ret:%d\n", ret); 1852 goto out_free_dmabuf; 1853 } 1854 1855 *shared_fd = ret; 1856 *file = dmabuf->file; 1857 return 0; 1858 1859 out_free_dmabuf: 1860 dma_buf_put(dmabuf); 1861 return ret; 1862 } 1863 1864 static void commit_files(struct file **files, 1865 struct kfd_criu_bo_bucket *bo_buckets, 1866 unsigned int count, 1867 int err) 1868 { 1869 while (count--) { 1870 struct file *file = files[count]; 1871 1872 if (!file) 1873 continue; 1874 if (err) { 1875 fput(file); 1876 put_unused_fd(bo_buckets[count].dmabuf_fd); 1877 } else { 1878 fd_install(bo_buckets[count].dmabuf_fd, file); 1879 } 1880 } 1881 } 1882 1883 static int criu_checkpoint_bos(struct kfd_process *p, 1884 uint32_t num_bos, 1885 uint8_t __user *user_bos, 1886 uint8_t __user *user_priv_data, 1887 uint64_t *priv_offset) 1888 { 1889 struct kfd_criu_bo_bucket *bo_buckets; 1890 struct kfd_criu_bo_priv_data *bo_privs; 1891 struct file **files = NULL; 1892 int ret = 0, pdd_index, bo_index = 0, id; 1893 void *mem; 1894 1895 bo_buckets = kvzalloc(num_bos * sizeof(*bo_buckets), GFP_KERNEL); 1896 if (!bo_buckets) 1897 return -ENOMEM; 1898 1899 bo_privs = kvzalloc(num_bos * sizeof(*bo_privs), GFP_KERNEL); 1900 if (!bo_privs) { 1901 ret = -ENOMEM; 1902 goto exit; 1903 } 1904 1905 files = kvzalloc(num_bos * sizeof(struct file *), GFP_KERNEL); 1906 if (!files) { 1907 ret = -ENOMEM; 1908 goto exit; 1909 } 1910 1911 for (pdd_index = 0; pdd_index < p->n_pdds; pdd_index++) { 1912 struct kfd_process_device *pdd = p->pdds[pdd_index]; 1913 struct amdgpu_bo *dumper_bo; 1914 struct kgd_mem *kgd_mem; 1915 1916 idr_for_each_entry(&pdd->alloc_idr, mem, id) { 1917 struct kfd_criu_bo_bucket *bo_bucket; 1918 struct kfd_criu_bo_priv_data *bo_priv; 1919 int i, dev_idx = 0; 1920 1921 kgd_mem = (struct kgd_mem *)mem; 1922 dumper_bo = kgd_mem->bo; 1923 1924 /* Skip checkpointing BOs that are used for Trap handler 1925 * code and state. Currently, these BOs have a VA that 1926 * is less GPUVM Base 1927 */ 1928 if (kgd_mem->va && kgd_mem->va <= pdd->gpuvm_base) 1929 continue; 1930 1931 bo_bucket = &bo_buckets[bo_index]; 1932 bo_priv = &bo_privs[bo_index]; 1933 1934 bo_bucket->gpu_id = pdd->user_gpu_id; 1935 bo_bucket->addr = (uint64_t)kgd_mem->va; 1936 bo_bucket->size = amdgpu_bo_size(dumper_bo); 1937 bo_bucket->alloc_flags = (uint32_t)kgd_mem->alloc_flags; 1938 bo_priv->idr_handle = id; 1939 1940 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 1941 ret = amdgpu_ttm_tt_get_userptr(&dumper_bo->tbo, 1942 &bo_priv->user_addr); 1943 if (ret) { 1944 pr_err("Failed to obtain user address for user-pointer bo\n"); 1945 goto exit; 1946 } 1947 } 1948 if (bo_bucket->alloc_flags 1949 & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) { 1950 ret = criu_get_prime_handle(kgd_mem, 1951 bo_bucket->alloc_flags & 1952 KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? DRM_RDWR : 0, 1953 &bo_bucket->dmabuf_fd, &files[bo_index]); 1954 if (ret) 1955 goto exit; 1956 } else { 1957 bo_bucket->dmabuf_fd = KFD_INVALID_FD; 1958 } 1959 1960 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) 1961 bo_bucket->offset = KFD_MMAP_TYPE_DOORBELL | 1962 KFD_MMAP_GPU_ID(pdd->dev->id); 1963 else if (bo_bucket->alloc_flags & 1964 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) 1965 bo_bucket->offset = KFD_MMAP_TYPE_MMIO | 1966 KFD_MMAP_GPU_ID(pdd->dev->id); 1967 else 1968 bo_bucket->offset = amdgpu_bo_mmap_offset(dumper_bo); 1969 1970 for (i = 0; i < p->n_pdds; i++) { 1971 if (amdgpu_amdkfd_bo_mapped_to_dev(p->pdds[i]->drm_priv, kgd_mem)) 1972 bo_priv->mapped_gpuids[dev_idx++] = p->pdds[i]->user_gpu_id; 1973 } 1974 1975 pr_debug("bo_size = 0x%llx, bo_addr = 0x%llx bo_offset = 0x%llx\n" 1976 "gpu_id = 0x%x alloc_flags = 0x%x idr_handle = 0x%x", 1977 bo_bucket->size, 1978 bo_bucket->addr, 1979 bo_bucket->offset, 1980 bo_bucket->gpu_id, 1981 bo_bucket->alloc_flags, 1982 bo_priv->idr_handle); 1983 bo_index++; 1984 } 1985 } 1986 1987 ret = copy_to_user(user_bos, bo_buckets, num_bos * sizeof(*bo_buckets)); 1988 if (ret) { 1989 pr_err("Failed to copy BO information to user\n"); 1990 ret = -EFAULT; 1991 goto exit; 1992 } 1993 1994 ret = copy_to_user(user_priv_data + *priv_offset, bo_privs, num_bos * sizeof(*bo_privs)); 1995 if (ret) { 1996 pr_err("Failed to copy BO priv information to user\n"); 1997 ret = -EFAULT; 1998 goto exit; 1999 } 2000 2001 *priv_offset += num_bos * sizeof(*bo_privs); 2002 2003 exit: 2004 commit_files(files, bo_buckets, bo_index, ret); 2005 kvfree(files); 2006 kvfree(bo_buckets); 2007 kvfree(bo_privs); 2008 return ret; 2009 } 2010 2011 static int criu_get_process_object_info(struct kfd_process *p, 2012 uint32_t *num_devices, 2013 uint32_t *num_bos, 2014 uint32_t *num_objects, 2015 uint64_t *objs_priv_size) 2016 { 2017 uint64_t queues_priv_data_size, svm_priv_data_size, priv_size; 2018 uint32_t num_queues, num_events, num_svm_ranges; 2019 int ret; 2020 2021 *num_devices = p->n_pdds; 2022 *num_bos = get_process_num_bos(p); 2023 2024 ret = kfd_process_get_queue_info(p, &num_queues, &queues_priv_data_size); 2025 if (ret) 2026 return ret; 2027 2028 num_events = kfd_get_num_events(p); 2029 2030 ret = svm_range_get_info(p, &num_svm_ranges, &svm_priv_data_size); 2031 if (ret) 2032 return ret; 2033 2034 *num_objects = num_queues + num_events + num_svm_ranges; 2035 2036 if (objs_priv_size) { 2037 priv_size = sizeof(struct kfd_criu_process_priv_data); 2038 priv_size += *num_devices * sizeof(struct kfd_criu_device_priv_data); 2039 priv_size += *num_bos * sizeof(struct kfd_criu_bo_priv_data); 2040 priv_size += queues_priv_data_size; 2041 priv_size += num_events * sizeof(struct kfd_criu_event_priv_data); 2042 priv_size += svm_priv_data_size; 2043 *objs_priv_size = priv_size; 2044 } 2045 return 0; 2046 } 2047 2048 static int criu_checkpoint(struct file *filep, 2049 struct kfd_process *p, 2050 struct kfd_ioctl_criu_args *args) 2051 { 2052 int ret; 2053 uint32_t num_devices, num_bos, num_objects; 2054 uint64_t priv_size, priv_offset = 0, bo_priv_offset; 2055 2056 if (!args->devices || !args->bos || !args->priv_data) 2057 return -EINVAL; 2058 2059 mutex_lock(&p->mutex); 2060 2061 if (!p->n_pdds) { 2062 pr_err("No pdd for given process\n"); 2063 ret = -ENODEV; 2064 goto exit_unlock; 2065 } 2066 2067 /* Confirm all process queues are evicted */ 2068 if (!p->queues_paused) { 2069 pr_err("Cannot dump process when queues are not in evicted state\n"); 2070 /* CRIU plugin did not call op PROCESS_INFO before checkpointing */ 2071 ret = -EINVAL; 2072 goto exit_unlock; 2073 } 2074 2075 ret = criu_get_process_object_info(p, &num_devices, &num_bos, &num_objects, &priv_size); 2076 if (ret) 2077 goto exit_unlock; 2078 2079 if (num_devices != args->num_devices || 2080 num_bos != args->num_bos || 2081 num_objects != args->num_objects || 2082 priv_size != args->priv_data_size) { 2083 2084 ret = -EINVAL; 2085 goto exit_unlock; 2086 } 2087 2088 /* each function will store private data inside priv_data and adjust priv_offset */ 2089 ret = criu_checkpoint_process(p, (uint8_t __user *)args->priv_data, &priv_offset); 2090 if (ret) 2091 goto exit_unlock; 2092 2093 ret = criu_checkpoint_devices(p, num_devices, (uint8_t __user *)args->devices, 2094 (uint8_t __user *)args->priv_data, &priv_offset); 2095 if (ret) 2096 goto exit_unlock; 2097 2098 /* Leave room for BOs in the private data. They need to be restored 2099 * before events, but we checkpoint them last to simplify the error 2100 * handling. 2101 */ 2102 bo_priv_offset = priv_offset; 2103 priv_offset += num_bos * sizeof(struct kfd_criu_bo_priv_data); 2104 2105 if (num_objects) { 2106 ret = kfd_criu_checkpoint_queues(p, (uint8_t __user *)args->priv_data, 2107 &priv_offset); 2108 if (ret) 2109 goto exit_unlock; 2110 2111 ret = kfd_criu_checkpoint_events(p, (uint8_t __user *)args->priv_data, 2112 &priv_offset); 2113 if (ret) 2114 goto exit_unlock; 2115 2116 ret = kfd_criu_checkpoint_svm(p, (uint8_t __user *)args->priv_data, &priv_offset); 2117 if (ret) 2118 goto exit_unlock; 2119 } 2120 2121 /* This must be the last thing in this function that can fail. 2122 * Otherwise we leak dmabuf file descriptors. 2123 */ 2124 ret = criu_checkpoint_bos(p, num_bos, (uint8_t __user *)args->bos, 2125 (uint8_t __user *)args->priv_data, &bo_priv_offset); 2126 2127 exit_unlock: 2128 mutex_unlock(&p->mutex); 2129 if (ret) 2130 pr_err("Failed to dump CRIU ret:%d\n", ret); 2131 else 2132 pr_debug("CRIU dump ret:%d\n", ret); 2133 2134 return ret; 2135 } 2136 2137 static int criu_restore_process(struct kfd_process *p, 2138 struct kfd_ioctl_criu_args *args, 2139 uint64_t *priv_offset, 2140 uint64_t max_priv_data_size) 2141 { 2142 int ret = 0; 2143 struct kfd_criu_process_priv_data process_priv; 2144 2145 if (*priv_offset + sizeof(process_priv) > max_priv_data_size) 2146 return -EINVAL; 2147 2148 ret = copy_from_user(&process_priv, 2149 (void __user *)(args->priv_data + *priv_offset), 2150 sizeof(process_priv)); 2151 if (ret) { 2152 pr_err("Failed to copy process private information from user\n"); 2153 ret = -EFAULT; 2154 goto exit; 2155 } 2156 *priv_offset += sizeof(process_priv); 2157 2158 if (process_priv.version != KFD_CRIU_PRIV_VERSION) { 2159 pr_err("Invalid CRIU API version (checkpointed:%d current:%d)\n", 2160 process_priv.version, KFD_CRIU_PRIV_VERSION); 2161 return -EINVAL; 2162 } 2163 2164 pr_debug("Setting XNACK mode\n"); 2165 if (process_priv.xnack_mode && !kfd_process_xnack_mode(p, true)) { 2166 pr_err("xnack mode cannot be set\n"); 2167 ret = -EPERM; 2168 goto exit; 2169 } else { 2170 pr_debug("set xnack mode: %d\n", process_priv.xnack_mode); 2171 p->xnack_enabled = process_priv.xnack_mode; 2172 } 2173 2174 exit: 2175 return ret; 2176 } 2177 2178 static int criu_restore_devices(struct kfd_process *p, 2179 struct kfd_ioctl_criu_args *args, 2180 uint64_t *priv_offset, 2181 uint64_t max_priv_data_size) 2182 { 2183 struct kfd_criu_device_bucket *device_buckets; 2184 struct kfd_criu_device_priv_data *device_privs; 2185 int ret = 0; 2186 uint32_t i; 2187 2188 if (args->num_devices != p->n_pdds) 2189 return -EINVAL; 2190 2191 if (*priv_offset + (args->num_devices * sizeof(*device_privs)) > max_priv_data_size) 2192 return -EINVAL; 2193 2194 device_buckets = kmalloc_array(args->num_devices, sizeof(*device_buckets), GFP_KERNEL); 2195 if (!device_buckets) 2196 return -ENOMEM; 2197 2198 ret = copy_from_user(device_buckets, (void __user *)args->devices, 2199 args->num_devices * sizeof(*device_buckets)); 2200 if (ret) { 2201 pr_err("Failed to copy devices buckets from user\n"); 2202 ret = -EFAULT; 2203 goto exit; 2204 } 2205 2206 for (i = 0; i < args->num_devices; i++) { 2207 struct kfd_node *dev; 2208 struct kfd_process_device *pdd; 2209 struct file *drm_file; 2210 2211 /* device private data is not currently used */ 2212 2213 if (!device_buckets[i].user_gpu_id) { 2214 pr_err("Invalid user gpu_id\n"); 2215 ret = -EINVAL; 2216 goto exit; 2217 } 2218 2219 dev = kfd_device_by_id(device_buckets[i].actual_gpu_id); 2220 if (!dev) { 2221 pr_err("Failed to find device with gpu_id = %x\n", 2222 device_buckets[i].actual_gpu_id); 2223 ret = -EINVAL; 2224 goto exit; 2225 } 2226 2227 pdd = kfd_get_process_device_data(dev, p); 2228 if (!pdd) { 2229 pr_err("Failed to get pdd for gpu_id = %x\n", 2230 device_buckets[i].actual_gpu_id); 2231 ret = -EINVAL; 2232 goto exit; 2233 } 2234 pdd->user_gpu_id = device_buckets[i].user_gpu_id; 2235 2236 drm_file = fget(device_buckets[i].drm_fd); 2237 if (!drm_file) { 2238 pr_err("Invalid render node file descriptor sent from plugin (%d)\n", 2239 device_buckets[i].drm_fd); 2240 ret = -EINVAL; 2241 goto exit; 2242 } 2243 2244 if (pdd->drm_file) { 2245 ret = -EINVAL; 2246 goto exit; 2247 } 2248 2249 /* create the vm using render nodes for kfd pdd */ 2250 if (kfd_process_device_init_vm(pdd, drm_file)) { 2251 pr_err("could not init vm for given pdd\n"); 2252 /* On success, the PDD keeps the drm_file reference */ 2253 fput(drm_file); 2254 ret = -EINVAL; 2255 goto exit; 2256 } 2257 /* 2258 * pdd now already has the vm bound to render node so below api won't create a new 2259 * exclusive kfd mapping but use existing one with renderDXXX but is still needed 2260 * for iommu v2 binding and runtime pm. 2261 */ 2262 pdd = kfd_bind_process_to_device(dev, p); 2263 if (IS_ERR(pdd)) { 2264 ret = PTR_ERR(pdd); 2265 goto exit; 2266 } 2267 2268 if (!pdd->qpd.proc_doorbells) { 2269 ret = kfd_alloc_process_doorbells(dev->kfd, pdd); 2270 if (ret) 2271 goto exit; 2272 } 2273 } 2274 2275 /* 2276 * We are not copying device private data from user as we are not using the data for now, 2277 * but we still adjust for its private data. 2278 */ 2279 *priv_offset += args->num_devices * sizeof(*device_privs); 2280 2281 exit: 2282 kfree(device_buckets); 2283 return ret; 2284 } 2285 2286 static int criu_restore_memory_of_gpu(struct kfd_process_device *pdd, 2287 struct kfd_criu_bo_bucket *bo_bucket, 2288 struct kfd_criu_bo_priv_data *bo_priv, 2289 struct kgd_mem **kgd_mem) 2290 { 2291 int idr_handle; 2292 int ret; 2293 const bool criu_resume = true; 2294 u64 offset; 2295 2296 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) { 2297 if (bo_bucket->size != 2298 kfd_doorbell_process_slice(pdd->dev->kfd)) 2299 return -EINVAL; 2300 2301 offset = kfd_get_process_doorbells(pdd); 2302 if (!offset) 2303 return -ENOMEM; 2304 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) { 2305 /* MMIO BOs need remapped bus address */ 2306 if (bo_bucket->size != PAGE_SIZE) { 2307 pr_err("Invalid page size\n"); 2308 return -EINVAL; 2309 } 2310 offset = pdd->dev->adev->rmmio_remap.bus_addr; 2311 if (!offset || (PAGE_SIZE > 4096)) { 2312 pr_err("amdgpu_amdkfd_get_mmio_remap_phys_addr failed\n"); 2313 return -ENOMEM; 2314 } 2315 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 2316 offset = bo_priv->user_addr; 2317 } 2318 /* Create the BO */ 2319 ret = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(pdd->dev->adev, bo_bucket->addr, 2320 bo_bucket->size, pdd->drm_priv, kgd_mem, 2321 &offset, bo_bucket->alloc_flags, criu_resume); 2322 if (ret) { 2323 pr_err("Could not create the BO\n"); 2324 return ret; 2325 } 2326 pr_debug("New BO created: size:0x%llx addr:0x%llx offset:0x%llx\n", 2327 bo_bucket->size, bo_bucket->addr, offset); 2328 2329 /* Restore previous IDR handle */ 2330 pr_debug("Restoring old IDR handle for the BO"); 2331 idr_handle = idr_alloc(&pdd->alloc_idr, *kgd_mem, bo_priv->idr_handle, 2332 bo_priv->idr_handle + 1, GFP_KERNEL); 2333 2334 if (idr_handle < 0) { 2335 pr_err("Could not allocate idr\n"); 2336 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, *kgd_mem, pdd->drm_priv, 2337 NULL); 2338 return -ENOMEM; 2339 } 2340 2341 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) 2342 bo_bucket->restored_offset = KFD_MMAP_TYPE_DOORBELL | KFD_MMAP_GPU_ID(pdd->dev->id); 2343 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) { 2344 bo_bucket->restored_offset = KFD_MMAP_TYPE_MMIO | KFD_MMAP_GPU_ID(pdd->dev->id); 2345 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { 2346 bo_bucket->restored_offset = offset; 2347 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 2348 bo_bucket->restored_offset = offset; 2349 /* Update the VRAM usage count */ 2350 atomic64_add(bo_bucket->size, &pdd->vram_usage); 2351 } 2352 return 0; 2353 } 2354 2355 static int criu_restore_bo(struct kfd_process *p, 2356 struct kfd_criu_bo_bucket *bo_bucket, 2357 struct kfd_criu_bo_priv_data *bo_priv, 2358 struct file **file) 2359 { 2360 struct kfd_process_device *pdd; 2361 struct kgd_mem *kgd_mem; 2362 int ret; 2363 int j; 2364 2365 pr_debug("Restoring BO size:0x%llx addr:0x%llx gpu_id:0x%x flags:0x%x idr_handle:0x%x\n", 2366 bo_bucket->size, bo_bucket->addr, bo_bucket->gpu_id, bo_bucket->alloc_flags, 2367 bo_priv->idr_handle); 2368 2369 pdd = kfd_process_device_data_by_id(p, bo_bucket->gpu_id); 2370 if (!pdd) { 2371 pr_err("Failed to get pdd\n"); 2372 return -ENODEV; 2373 } 2374 2375 ret = criu_restore_memory_of_gpu(pdd, bo_bucket, bo_priv, &kgd_mem); 2376 if (ret) 2377 return ret; 2378 2379 /* now map these BOs to GPU/s */ 2380 for (j = 0; j < p->n_pdds; j++) { 2381 struct kfd_node *peer; 2382 struct kfd_process_device *peer_pdd; 2383 2384 if (!bo_priv->mapped_gpuids[j]) 2385 break; 2386 2387 peer_pdd = kfd_process_device_data_by_id(p, bo_priv->mapped_gpuids[j]); 2388 if (!peer_pdd) 2389 return -EINVAL; 2390 2391 peer = peer_pdd->dev; 2392 2393 peer_pdd = kfd_bind_process_to_device(peer, p); 2394 if (IS_ERR(peer_pdd)) 2395 return PTR_ERR(peer_pdd); 2396 2397 ret = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(peer->adev, kgd_mem, 2398 peer_pdd->drm_priv); 2399 if (ret) { 2400 pr_err("Failed to map to gpu %d/%d\n", j, p->n_pdds); 2401 return ret; 2402 } 2403 } 2404 2405 pr_debug("map memory was successful for the BO\n"); 2406 /* create the dmabuf object and export the bo */ 2407 if (bo_bucket->alloc_flags 2408 & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) { 2409 ret = criu_get_prime_handle(kgd_mem, DRM_RDWR, 2410 &bo_bucket->dmabuf_fd, file); 2411 if (ret) 2412 return ret; 2413 } else { 2414 bo_bucket->dmabuf_fd = KFD_INVALID_FD; 2415 } 2416 2417 return 0; 2418 } 2419 2420 static int criu_restore_bos(struct kfd_process *p, 2421 struct kfd_ioctl_criu_args *args, 2422 uint64_t *priv_offset, 2423 uint64_t max_priv_data_size) 2424 { 2425 struct kfd_criu_bo_bucket *bo_buckets = NULL; 2426 struct kfd_criu_bo_priv_data *bo_privs = NULL; 2427 struct file **files = NULL; 2428 int ret = 0; 2429 uint32_t i = 0; 2430 2431 if (*priv_offset + (args->num_bos * sizeof(*bo_privs)) > max_priv_data_size) 2432 return -EINVAL; 2433 2434 /* Prevent MMU notifications until stage-4 IOCTL (CRIU_RESUME) is received */ 2435 amdgpu_amdkfd_block_mmu_notifications(p->kgd_process_info); 2436 2437 bo_buckets = kvmalloc_array(args->num_bos, sizeof(*bo_buckets), GFP_KERNEL); 2438 if (!bo_buckets) 2439 return -ENOMEM; 2440 2441 files = kvzalloc(args->num_bos * sizeof(struct file *), GFP_KERNEL); 2442 if (!files) { 2443 ret = -ENOMEM; 2444 goto exit; 2445 } 2446 2447 ret = copy_from_user(bo_buckets, (void __user *)args->bos, 2448 args->num_bos * sizeof(*bo_buckets)); 2449 if (ret) { 2450 pr_err("Failed to copy BOs information from user\n"); 2451 ret = -EFAULT; 2452 goto exit; 2453 } 2454 2455 bo_privs = kvmalloc_array(args->num_bos, sizeof(*bo_privs), GFP_KERNEL); 2456 if (!bo_privs) { 2457 ret = -ENOMEM; 2458 goto exit; 2459 } 2460 2461 ret = copy_from_user(bo_privs, (void __user *)args->priv_data + *priv_offset, 2462 args->num_bos * sizeof(*bo_privs)); 2463 if (ret) { 2464 pr_err("Failed to copy BOs information from user\n"); 2465 ret = -EFAULT; 2466 goto exit; 2467 } 2468 *priv_offset += args->num_bos * sizeof(*bo_privs); 2469 2470 /* Create and map new BOs */ 2471 for (; i < args->num_bos; i++) { 2472 ret = criu_restore_bo(p, &bo_buckets[i], &bo_privs[i], &files[i]); 2473 if (ret) { 2474 pr_debug("Failed to restore BO[%d] ret%d\n", i, ret); 2475 goto exit; 2476 } 2477 } /* done */ 2478 2479 /* Copy only the buckets back so user can read bo_buckets[N].restored_offset */ 2480 ret = copy_to_user((void __user *)args->bos, 2481 bo_buckets, 2482 (args->num_bos * sizeof(*bo_buckets))); 2483 if (ret) 2484 ret = -EFAULT; 2485 2486 exit: 2487 commit_files(files, bo_buckets, i, ret); 2488 kvfree(files); 2489 kvfree(bo_buckets); 2490 kvfree(bo_privs); 2491 return ret; 2492 } 2493 2494 static int criu_restore_objects(struct file *filep, 2495 struct kfd_process *p, 2496 struct kfd_ioctl_criu_args *args, 2497 uint64_t *priv_offset, 2498 uint64_t max_priv_data_size) 2499 { 2500 int ret = 0; 2501 uint32_t i; 2502 2503 BUILD_BUG_ON(offsetof(struct kfd_criu_queue_priv_data, object_type)); 2504 BUILD_BUG_ON(offsetof(struct kfd_criu_event_priv_data, object_type)); 2505 BUILD_BUG_ON(offsetof(struct kfd_criu_svm_range_priv_data, object_type)); 2506 2507 for (i = 0; i < args->num_objects; i++) { 2508 uint32_t object_type; 2509 2510 if (*priv_offset + sizeof(object_type) > max_priv_data_size) { 2511 pr_err("Invalid private data size\n"); 2512 return -EINVAL; 2513 } 2514 2515 ret = get_user(object_type, (uint32_t __user *)(args->priv_data + *priv_offset)); 2516 if (ret) { 2517 pr_err("Failed to copy private information from user\n"); 2518 goto exit; 2519 } 2520 2521 switch (object_type) { 2522 case KFD_CRIU_OBJECT_TYPE_QUEUE: 2523 ret = kfd_criu_restore_queue(p, (uint8_t __user *)args->priv_data, 2524 priv_offset, max_priv_data_size); 2525 if (ret) 2526 goto exit; 2527 break; 2528 case KFD_CRIU_OBJECT_TYPE_EVENT: 2529 ret = kfd_criu_restore_event(filep, p, (uint8_t __user *)args->priv_data, 2530 priv_offset, max_priv_data_size); 2531 if (ret) 2532 goto exit; 2533 break; 2534 case KFD_CRIU_OBJECT_TYPE_SVM_RANGE: 2535 ret = kfd_criu_restore_svm(p, (uint8_t __user *)args->priv_data, 2536 priv_offset, max_priv_data_size); 2537 if (ret) 2538 goto exit; 2539 break; 2540 default: 2541 pr_err("Invalid object type:%u at index:%d\n", object_type, i); 2542 ret = -EINVAL; 2543 goto exit; 2544 } 2545 } 2546 exit: 2547 return ret; 2548 } 2549 2550 static int criu_restore(struct file *filep, 2551 struct kfd_process *p, 2552 struct kfd_ioctl_criu_args *args) 2553 { 2554 uint64_t priv_offset = 0; 2555 int ret = 0; 2556 2557 pr_debug("CRIU restore (num_devices:%u num_bos:%u num_objects:%u priv_data_size:%llu)\n", 2558 args->num_devices, args->num_bos, args->num_objects, args->priv_data_size); 2559 2560 if (!args->bos || !args->devices || !args->priv_data || !args->priv_data_size || 2561 !args->num_devices || !args->num_bos) 2562 return -EINVAL; 2563 2564 mutex_lock(&p->mutex); 2565 2566 /* 2567 * Set the process to evicted state to avoid running any new queues before all the memory 2568 * mappings are ready. 2569 */ 2570 ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_RESTORE); 2571 if (ret) 2572 goto exit_unlock; 2573 2574 /* Each function will adjust priv_offset based on how many bytes they consumed */ 2575 ret = criu_restore_process(p, args, &priv_offset, args->priv_data_size); 2576 if (ret) 2577 goto exit_unlock; 2578 2579 ret = criu_restore_devices(p, args, &priv_offset, args->priv_data_size); 2580 if (ret) 2581 goto exit_unlock; 2582 2583 ret = criu_restore_bos(p, args, &priv_offset, args->priv_data_size); 2584 if (ret) 2585 goto exit_unlock; 2586 2587 ret = criu_restore_objects(filep, p, args, &priv_offset, args->priv_data_size); 2588 if (ret) 2589 goto exit_unlock; 2590 2591 if (priv_offset != args->priv_data_size) { 2592 pr_err("Invalid private data size\n"); 2593 ret = -EINVAL; 2594 } 2595 2596 exit_unlock: 2597 mutex_unlock(&p->mutex); 2598 if (ret) 2599 pr_err("Failed to restore CRIU ret:%d\n", ret); 2600 else 2601 pr_debug("CRIU restore successful\n"); 2602 2603 return ret; 2604 } 2605 2606 static int criu_unpause(struct file *filep, 2607 struct kfd_process *p, 2608 struct kfd_ioctl_criu_args *args) 2609 { 2610 int ret; 2611 2612 mutex_lock(&p->mutex); 2613 2614 if (!p->queues_paused) { 2615 mutex_unlock(&p->mutex); 2616 return -EINVAL; 2617 } 2618 2619 ret = kfd_process_restore_queues(p); 2620 if (ret) 2621 pr_err("Failed to unpause queues ret:%d\n", ret); 2622 else 2623 p->queues_paused = false; 2624 2625 mutex_unlock(&p->mutex); 2626 2627 return ret; 2628 } 2629 2630 static int criu_resume(struct file *filep, 2631 struct kfd_process *p, 2632 struct kfd_ioctl_criu_args *args) 2633 { 2634 struct kfd_process *target = NULL; 2635 struct pid *pid = NULL; 2636 int ret = 0; 2637 2638 pr_debug("Inside %s, target pid for criu restore: %d\n", __func__, 2639 args->pid); 2640 2641 pid = find_get_pid(args->pid); 2642 if (!pid) { 2643 pr_err("Cannot find pid info for %i\n", args->pid); 2644 return -ESRCH; 2645 } 2646 2647 pr_debug("calling kfd_lookup_process_by_pid\n"); 2648 target = kfd_lookup_process_by_pid(pid); 2649 2650 put_pid(pid); 2651 2652 if (!target) { 2653 pr_debug("Cannot find process info for %i\n", args->pid); 2654 return -ESRCH; 2655 } 2656 2657 mutex_lock(&target->mutex); 2658 ret = kfd_criu_resume_svm(target); 2659 if (ret) { 2660 pr_err("kfd_criu_resume_svm failed for %i\n", args->pid); 2661 goto exit; 2662 } 2663 2664 ret = amdgpu_amdkfd_criu_resume(target->kgd_process_info); 2665 if (ret) 2666 pr_err("amdgpu_amdkfd_criu_resume failed for %i\n", args->pid); 2667 2668 exit: 2669 mutex_unlock(&target->mutex); 2670 2671 kfd_unref_process(target); 2672 return ret; 2673 } 2674 2675 static int criu_process_info(struct file *filep, 2676 struct kfd_process *p, 2677 struct kfd_ioctl_criu_args *args) 2678 { 2679 int ret = 0; 2680 2681 mutex_lock(&p->mutex); 2682 2683 if (!p->n_pdds) { 2684 pr_err("No pdd for given process\n"); 2685 ret = -ENODEV; 2686 goto err_unlock; 2687 } 2688 2689 ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_CHECKPOINT); 2690 if (ret) 2691 goto err_unlock; 2692 2693 p->queues_paused = true; 2694 2695 args->pid = task_pid_nr_ns(p->lead_thread, 2696 task_active_pid_ns(p->lead_thread)); 2697 2698 ret = criu_get_process_object_info(p, &args->num_devices, &args->num_bos, 2699 &args->num_objects, &args->priv_data_size); 2700 if (ret) 2701 goto err_unlock; 2702 2703 dev_dbg(kfd_device, "Num of devices:%u bos:%u objects:%u priv_data_size:%lld\n", 2704 args->num_devices, args->num_bos, args->num_objects, 2705 args->priv_data_size); 2706 2707 err_unlock: 2708 if (ret) { 2709 kfd_process_restore_queues(p); 2710 p->queues_paused = false; 2711 } 2712 mutex_unlock(&p->mutex); 2713 return ret; 2714 } 2715 2716 static int kfd_ioctl_criu(struct file *filep, struct kfd_process *p, void *data) 2717 { 2718 struct kfd_ioctl_criu_args *args = data; 2719 int ret; 2720 2721 dev_dbg(kfd_device, "CRIU operation: %d\n", args->op); 2722 switch (args->op) { 2723 case KFD_CRIU_OP_PROCESS_INFO: 2724 ret = criu_process_info(filep, p, args); 2725 break; 2726 case KFD_CRIU_OP_CHECKPOINT: 2727 ret = criu_checkpoint(filep, p, args); 2728 break; 2729 case KFD_CRIU_OP_UNPAUSE: 2730 ret = criu_unpause(filep, p, args); 2731 break; 2732 case KFD_CRIU_OP_RESTORE: 2733 ret = criu_restore(filep, p, args); 2734 break; 2735 case KFD_CRIU_OP_RESUME: 2736 ret = criu_resume(filep, p, args); 2737 break; 2738 default: 2739 dev_dbg(kfd_device, "Unsupported CRIU operation:%d\n", args->op); 2740 ret = -EINVAL; 2741 break; 2742 } 2743 2744 if (ret) 2745 dev_dbg(kfd_device, "CRIU operation:%d err:%d\n", args->op, ret); 2746 2747 return ret; 2748 } 2749 2750 static int runtime_enable(struct kfd_process *p, uint64_t r_debug, 2751 bool enable_ttmp_setup) 2752 { 2753 int i = 0, ret = 0; 2754 2755 if (p->is_runtime_retry) 2756 goto retry; 2757 2758 if (p->runtime_info.runtime_state != DEBUG_RUNTIME_STATE_DISABLED) 2759 return -EBUSY; 2760 2761 for (i = 0; i < p->n_pdds; i++) { 2762 struct kfd_process_device *pdd = p->pdds[i]; 2763 2764 if (pdd->qpd.queue_count) 2765 return -EEXIST; 2766 2767 /* 2768 * Setup TTMPs by default. 2769 * Note that this call must remain here for MES ADD QUEUE to 2770 * skip_process_ctx_clear unconditionally as the first call to 2771 * SET_SHADER_DEBUGGER clears any stale process context data 2772 * saved in MES. 2773 */ 2774 if (pdd->dev->kfd->shared_resources.enable_mes) 2775 kfd_dbg_set_mes_debug_mode(pdd, !kfd_dbg_has_cwsr_workaround(pdd->dev)); 2776 } 2777 2778 p->runtime_info.runtime_state = DEBUG_RUNTIME_STATE_ENABLED; 2779 p->runtime_info.r_debug = r_debug; 2780 p->runtime_info.ttmp_setup = enable_ttmp_setup; 2781 2782 if (p->runtime_info.ttmp_setup) { 2783 for (i = 0; i < p->n_pdds; i++) { 2784 struct kfd_process_device *pdd = p->pdds[i]; 2785 2786 if (!kfd_dbg_is_rlc_restore_supported(pdd->dev)) { 2787 amdgpu_gfx_off_ctrl(pdd->dev->adev, false); 2788 pdd->dev->kfd2kgd->enable_debug_trap( 2789 pdd->dev->adev, 2790 true, 2791 pdd->dev->vm_info.last_vmid_kfd); 2792 } else if (kfd_dbg_is_per_vmid_supported(pdd->dev)) { 2793 pdd->spi_dbg_override = pdd->dev->kfd2kgd->enable_debug_trap( 2794 pdd->dev->adev, 2795 false, 2796 0); 2797 } 2798 } 2799 } 2800 2801 retry: 2802 if (p->debug_trap_enabled) { 2803 if (!p->is_runtime_retry) { 2804 kfd_dbg_trap_activate(p); 2805 kfd_dbg_ev_raise(KFD_EC_MASK(EC_PROCESS_RUNTIME), 2806 p, NULL, 0, false, NULL, 0); 2807 } 2808 2809 mutex_unlock(&p->mutex); 2810 ret = down_interruptible(&p->runtime_enable_sema); 2811 mutex_lock(&p->mutex); 2812 2813 p->is_runtime_retry = !!ret; 2814 } 2815 2816 return ret; 2817 } 2818 2819 static int runtime_disable(struct kfd_process *p) 2820 { 2821 int i = 0, ret; 2822 bool was_enabled = p->runtime_info.runtime_state == DEBUG_RUNTIME_STATE_ENABLED; 2823 2824 p->runtime_info.runtime_state = DEBUG_RUNTIME_STATE_DISABLED; 2825 p->runtime_info.r_debug = 0; 2826 2827 if (p->debug_trap_enabled) { 2828 if (was_enabled) 2829 kfd_dbg_trap_deactivate(p, false, 0); 2830 2831 if (!p->is_runtime_retry) 2832 kfd_dbg_ev_raise(KFD_EC_MASK(EC_PROCESS_RUNTIME), 2833 p, NULL, 0, false, NULL, 0); 2834 2835 mutex_unlock(&p->mutex); 2836 ret = down_interruptible(&p->runtime_enable_sema); 2837 mutex_lock(&p->mutex); 2838 2839 p->is_runtime_retry = !!ret; 2840 if (ret) 2841 return ret; 2842 } 2843 2844 if (was_enabled && p->runtime_info.ttmp_setup) { 2845 for (i = 0; i < p->n_pdds; i++) { 2846 struct kfd_process_device *pdd = p->pdds[i]; 2847 2848 if (!kfd_dbg_is_rlc_restore_supported(pdd->dev)) 2849 amdgpu_gfx_off_ctrl(pdd->dev->adev, true); 2850 } 2851 } 2852 2853 p->runtime_info.ttmp_setup = false; 2854 2855 /* disable ttmp setup */ 2856 for (i = 0; i < p->n_pdds; i++) { 2857 struct kfd_process_device *pdd = p->pdds[i]; 2858 2859 if (kfd_dbg_is_per_vmid_supported(pdd->dev)) { 2860 pdd->spi_dbg_override = 2861 pdd->dev->kfd2kgd->disable_debug_trap( 2862 pdd->dev->adev, 2863 false, 2864 pdd->dev->vm_info.last_vmid_kfd); 2865 2866 if (!pdd->dev->kfd->shared_resources.enable_mes) 2867 debug_refresh_runlist(pdd->dev->dqm); 2868 else 2869 kfd_dbg_set_mes_debug_mode(pdd, 2870 !kfd_dbg_has_cwsr_workaround(pdd->dev)); 2871 } 2872 } 2873 2874 return 0; 2875 } 2876 2877 static int kfd_ioctl_runtime_enable(struct file *filep, struct kfd_process *p, void *data) 2878 { 2879 struct kfd_ioctl_runtime_enable_args *args = data; 2880 int r; 2881 2882 mutex_lock(&p->mutex); 2883 2884 if (args->mode_mask & KFD_RUNTIME_ENABLE_MODE_ENABLE_MASK) 2885 r = runtime_enable(p, args->r_debug, 2886 !!(args->mode_mask & KFD_RUNTIME_ENABLE_MODE_TTMP_SAVE_MASK)); 2887 else 2888 r = runtime_disable(p); 2889 2890 mutex_unlock(&p->mutex); 2891 2892 return r; 2893 } 2894 2895 static int kfd_ioctl_set_debug_trap(struct file *filep, struct kfd_process *p, void *data) 2896 { 2897 struct kfd_ioctl_dbg_trap_args *args = data; 2898 struct task_struct *thread = NULL; 2899 struct mm_struct *mm = NULL; 2900 struct pid *pid = NULL; 2901 struct kfd_process *target = NULL; 2902 struct kfd_process_device *pdd = NULL; 2903 int r = 0; 2904 2905 if (sched_policy == KFD_SCHED_POLICY_NO_HWS) { 2906 pr_err("Debugging does not support sched_policy %i", sched_policy); 2907 return -EINVAL; 2908 } 2909 2910 pid = find_get_pid(args->pid); 2911 if (!pid) { 2912 pr_debug("Cannot find pid info for %i\n", args->pid); 2913 r = -ESRCH; 2914 goto out; 2915 } 2916 2917 thread = get_pid_task(pid, PIDTYPE_PID); 2918 if (!thread) { 2919 r = -ESRCH; 2920 goto out; 2921 } 2922 2923 mm = get_task_mm(thread); 2924 if (!mm) { 2925 r = -ESRCH; 2926 goto out; 2927 } 2928 2929 if (args->op == KFD_IOC_DBG_TRAP_ENABLE) { 2930 bool create_process; 2931 2932 rcu_read_lock(); 2933 create_process = thread && thread != current && ptrace_parent(thread) == current; 2934 rcu_read_unlock(); 2935 2936 target = create_process ? kfd_create_process(thread) : 2937 kfd_lookup_process_by_pid(pid); 2938 } else { 2939 target = kfd_lookup_process_by_pid(pid); 2940 } 2941 2942 if (IS_ERR_OR_NULL(target)) { 2943 pr_debug("Cannot find process PID %i to debug\n", args->pid); 2944 r = target ? PTR_ERR(target) : -ESRCH; 2945 target = NULL; 2946 goto out; 2947 } 2948 2949 /* Check if target is still PTRACED. */ 2950 rcu_read_lock(); 2951 if (target != p && args->op != KFD_IOC_DBG_TRAP_DISABLE 2952 && ptrace_parent(target->lead_thread) != current) { 2953 pr_err("PID %i is not PTRACED and cannot be debugged\n", args->pid); 2954 r = -EPERM; 2955 } 2956 rcu_read_unlock(); 2957 2958 if (r) 2959 goto out; 2960 2961 mutex_lock(&target->mutex); 2962 2963 if (args->op != KFD_IOC_DBG_TRAP_ENABLE && !target->debug_trap_enabled) { 2964 pr_err("PID %i not debug enabled for op %i\n", args->pid, args->op); 2965 r = -EINVAL; 2966 goto unlock_out; 2967 } 2968 2969 if (target->runtime_info.runtime_state != DEBUG_RUNTIME_STATE_ENABLED && 2970 (args->op == KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_OVERRIDE || 2971 args->op == KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_MODE || 2972 args->op == KFD_IOC_DBG_TRAP_SUSPEND_QUEUES || 2973 args->op == KFD_IOC_DBG_TRAP_RESUME_QUEUES || 2974 args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH || 2975 args->op == KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH || 2976 args->op == KFD_IOC_DBG_TRAP_SET_FLAGS)) { 2977 r = -EPERM; 2978 goto unlock_out; 2979 } 2980 2981 if (args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH || 2982 args->op == KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH) { 2983 int user_gpu_id = kfd_process_get_user_gpu_id(target, 2984 args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ? 2985 args->set_node_address_watch.gpu_id : 2986 args->clear_node_address_watch.gpu_id); 2987 2988 pdd = kfd_process_device_data_by_id(target, user_gpu_id); 2989 if (user_gpu_id == -EINVAL || !pdd) { 2990 r = -ENODEV; 2991 goto unlock_out; 2992 } 2993 } 2994 2995 switch (args->op) { 2996 case KFD_IOC_DBG_TRAP_ENABLE: 2997 if (target != p) 2998 target->debugger_process = p; 2999 3000 r = kfd_dbg_trap_enable(target, 3001 args->enable.dbg_fd, 3002 (void __user *)args->enable.rinfo_ptr, 3003 &args->enable.rinfo_size); 3004 if (!r) 3005 target->exception_enable_mask = args->enable.exception_mask; 3006 3007 break; 3008 case KFD_IOC_DBG_TRAP_DISABLE: 3009 r = kfd_dbg_trap_disable(target); 3010 break; 3011 case KFD_IOC_DBG_TRAP_SEND_RUNTIME_EVENT: 3012 r = kfd_dbg_send_exception_to_runtime(target, 3013 args->send_runtime_event.gpu_id, 3014 args->send_runtime_event.queue_id, 3015 args->send_runtime_event.exception_mask); 3016 break; 3017 case KFD_IOC_DBG_TRAP_SET_EXCEPTIONS_ENABLED: 3018 kfd_dbg_set_enabled_debug_exception_mask(target, 3019 args->set_exceptions_enabled.exception_mask); 3020 break; 3021 case KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_OVERRIDE: 3022 r = kfd_dbg_trap_set_wave_launch_override(target, 3023 args->launch_override.override_mode, 3024 args->launch_override.enable_mask, 3025 args->launch_override.support_request_mask, 3026 &args->launch_override.enable_mask, 3027 &args->launch_override.support_request_mask); 3028 break; 3029 case KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_MODE: 3030 r = kfd_dbg_trap_set_wave_launch_mode(target, 3031 args->launch_mode.launch_mode); 3032 break; 3033 case KFD_IOC_DBG_TRAP_SUSPEND_QUEUES: 3034 r = suspend_queues(target, 3035 args->suspend_queues.num_queues, 3036 args->suspend_queues.grace_period, 3037 args->suspend_queues.exception_mask, 3038 (uint32_t *)args->suspend_queues.queue_array_ptr); 3039 3040 break; 3041 case KFD_IOC_DBG_TRAP_RESUME_QUEUES: 3042 r = resume_queues(target, args->resume_queues.num_queues, 3043 (uint32_t *)args->resume_queues.queue_array_ptr); 3044 break; 3045 case KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH: 3046 r = kfd_dbg_trap_set_dev_address_watch(pdd, 3047 args->set_node_address_watch.address, 3048 args->set_node_address_watch.mask, 3049 &args->set_node_address_watch.id, 3050 args->set_node_address_watch.mode); 3051 break; 3052 case KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH: 3053 r = kfd_dbg_trap_clear_dev_address_watch(pdd, 3054 args->clear_node_address_watch.id); 3055 break; 3056 case KFD_IOC_DBG_TRAP_SET_FLAGS: 3057 r = kfd_dbg_trap_set_flags(target, &args->set_flags.flags); 3058 break; 3059 case KFD_IOC_DBG_TRAP_QUERY_DEBUG_EVENT: 3060 r = kfd_dbg_ev_query_debug_event(target, 3061 &args->query_debug_event.queue_id, 3062 &args->query_debug_event.gpu_id, 3063 args->query_debug_event.exception_mask, 3064 &args->query_debug_event.exception_mask); 3065 break; 3066 case KFD_IOC_DBG_TRAP_QUERY_EXCEPTION_INFO: 3067 r = kfd_dbg_trap_query_exception_info(target, 3068 args->query_exception_info.source_id, 3069 args->query_exception_info.exception_code, 3070 args->query_exception_info.clear_exception, 3071 (void __user *)args->query_exception_info.info_ptr, 3072 &args->query_exception_info.info_size); 3073 break; 3074 case KFD_IOC_DBG_TRAP_GET_QUEUE_SNAPSHOT: 3075 r = pqm_get_queue_snapshot(&target->pqm, 3076 args->queue_snapshot.exception_mask, 3077 (void __user *)args->queue_snapshot.snapshot_buf_ptr, 3078 &args->queue_snapshot.num_queues, 3079 &args->queue_snapshot.entry_size); 3080 break; 3081 case KFD_IOC_DBG_TRAP_GET_DEVICE_SNAPSHOT: 3082 r = kfd_dbg_trap_device_snapshot(target, 3083 args->device_snapshot.exception_mask, 3084 (void __user *)args->device_snapshot.snapshot_buf_ptr, 3085 &args->device_snapshot.num_devices, 3086 &args->device_snapshot.entry_size); 3087 break; 3088 default: 3089 pr_err("Invalid option: %i\n", args->op); 3090 r = -EINVAL; 3091 } 3092 3093 unlock_out: 3094 mutex_unlock(&target->mutex); 3095 3096 out: 3097 if (thread) 3098 put_task_struct(thread); 3099 3100 if (mm) 3101 mmput(mm); 3102 3103 if (pid) 3104 put_pid(pid); 3105 3106 if (target) 3107 kfd_unref_process(target); 3108 3109 return r; 3110 } 3111 3112 #define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \ 3113 [_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, \ 3114 .cmd_drv = 0, .name = #ioctl} 3115 3116 /** Ioctl table */ 3117 static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = { 3118 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_VERSION, 3119 kfd_ioctl_get_version, 0), 3120 3121 AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_QUEUE, 3122 kfd_ioctl_create_queue, 0), 3123 3124 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_QUEUE, 3125 kfd_ioctl_destroy_queue, 0), 3126 3127 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_MEMORY_POLICY, 3128 kfd_ioctl_set_memory_policy, 0), 3129 3130 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_CLOCK_COUNTERS, 3131 kfd_ioctl_get_clock_counters, 0), 3132 3133 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES, 3134 kfd_ioctl_get_process_apertures, 0), 3135 3136 AMDKFD_IOCTL_DEF(AMDKFD_IOC_UPDATE_QUEUE, 3137 kfd_ioctl_update_queue, 0), 3138 3139 AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_EVENT, 3140 kfd_ioctl_create_event, 0), 3141 3142 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_EVENT, 3143 kfd_ioctl_destroy_event, 0), 3144 3145 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_EVENT, 3146 kfd_ioctl_set_event, 0), 3147 3148 AMDKFD_IOCTL_DEF(AMDKFD_IOC_RESET_EVENT, 3149 kfd_ioctl_reset_event, 0), 3150 3151 AMDKFD_IOCTL_DEF(AMDKFD_IOC_WAIT_EVENTS, 3152 kfd_ioctl_wait_events, 0), 3153 3154 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_REGISTER_DEPRECATED, 3155 kfd_ioctl_dbg_register, 0), 3156 3157 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_UNREGISTER_DEPRECATED, 3158 kfd_ioctl_dbg_unregister, 0), 3159 3160 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_ADDRESS_WATCH_DEPRECATED, 3161 kfd_ioctl_dbg_address_watch, 0), 3162 3163 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_WAVE_CONTROL_DEPRECATED, 3164 kfd_ioctl_dbg_wave_control, 0), 3165 3166 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_SCRATCH_BACKING_VA, 3167 kfd_ioctl_set_scratch_backing_va, 0), 3168 3169 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG, 3170 kfd_ioctl_get_tile_config, 0), 3171 3172 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_TRAP_HANDLER, 3173 kfd_ioctl_set_trap_handler, 0), 3174 3175 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES_NEW, 3176 kfd_ioctl_get_process_apertures_new, 0), 3177 3178 AMDKFD_IOCTL_DEF(AMDKFD_IOC_ACQUIRE_VM, 3179 kfd_ioctl_acquire_vm, 0), 3180 3181 AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_MEMORY_OF_GPU, 3182 kfd_ioctl_alloc_memory_of_gpu, 0), 3183 3184 AMDKFD_IOCTL_DEF(AMDKFD_IOC_FREE_MEMORY_OF_GPU, 3185 kfd_ioctl_free_memory_of_gpu, 0), 3186 3187 AMDKFD_IOCTL_DEF(AMDKFD_IOC_MAP_MEMORY_TO_GPU, 3188 kfd_ioctl_map_memory_to_gpu, 0), 3189 3190 AMDKFD_IOCTL_DEF(AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU, 3191 kfd_ioctl_unmap_memory_from_gpu, 0), 3192 3193 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_CU_MASK, 3194 kfd_ioctl_set_cu_mask, 0), 3195 3196 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_QUEUE_WAVE_STATE, 3197 kfd_ioctl_get_queue_wave_state, 0), 3198 3199 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_DMABUF_INFO, 3200 kfd_ioctl_get_dmabuf_info, 0), 3201 3202 AMDKFD_IOCTL_DEF(AMDKFD_IOC_IMPORT_DMABUF, 3203 kfd_ioctl_import_dmabuf, 0), 3204 3205 AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_QUEUE_GWS, 3206 kfd_ioctl_alloc_queue_gws, 0), 3207 3208 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SMI_EVENTS, 3209 kfd_ioctl_smi_events, 0), 3210 3211 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SVM, kfd_ioctl_svm, 0), 3212 3213 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_XNACK_MODE, 3214 kfd_ioctl_set_xnack_mode, 0), 3215 3216 AMDKFD_IOCTL_DEF(AMDKFD_IOC_CRIU_OP, 3217 kfd_ioctl_criu, KFD_IOC_FLAG_CHECKPOINT_RESTORE), 3218 3219 AMDKFD_IOCTL_DEF(AMDKFD_IOC_AVAILABLE_MEMORY, 3220 kfd_ioctl_get_available_memory, 0), 3221 3222 AMDKFD_IOCTL_DEF(AMDKFD_IOC_EXPORT_DMABUF, 3223 kfd_ioctl_export_dmabuf, 0), 3224 3225 AMDKFD_IOCTL_DEF(AMDKFD_IOC_RUNTIME_ENABLE, 3226 kfd_ioctl_runtime_enable, 0), 3227 3228 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_TRAP, 3229 kfd_ioctl_set_debug_trap, 0), 3230 }; 3231 3232 #define AMDKFD_CORE_IOCTL_COUNT ARRAY_SIZE(amdkfd_ioctls) 3233 3234 static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg) 3235 { 3236 struct kfd_process *process; 3237 amdkfd_ioctl_t *func; 3238 const struct amdkfd_ioctl_desc *ioctl = NULL; 3239 unsigned int nr = _IOC_NR(cmd); 3240 char stack_kdata[128]; 3241 char *kdata = NULL; 3242 unsigned int usize, asize; 3243 int retcode = -EINVAL; 3244 bool ptrace_attached = false; 3245 3246 if (nr >= AMDKFD_CORE_IOCTL_COUNT) 3247 goto err_i1; 3248 3249 if ((nr >= AMDKFD_COMMAND_START) && (nr < AMDKFD_COMMAND_END)) { 3250 u32 amdkfd_size; 3251 3252 ioctl = &amdkfd_ioctls[nr]; 3253 3254 amdkfd_size = _IOC_SIZE(ioctl->cmd); 3255 usize = asize = _IOC_SIZE(cmd); 3256 if (amdkfd_size > asize) 3257 asize = amdkfd_size; 3258 3259 cmd = ioctl->cmd; 3260 } else 3261 goto err_i1; 3262 3263 dev_dbg(kfd_device, "ioctl cmd 0x%x (#0x%x), arg 0x%lx\n", cmd, nr, arg); 3264 3265 /* Get the process struct from the filep. Only the process 3266 * that opened /dev/kfd can use the file descriptor. Child 3267 * processes need to create their own KFD device context. 3268 */ 3269 process = filep->private_data; 3270 3271 rcu_read_lock(); 3272 if ((ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE) && 3273 ptrace_parent(process->lead_thread) == current) 3274 ptrace_attached = true; 3275 rcu_read_unlock(); 3276 3277 if (process->lead_thread != current->group_leader 3278 && !ptrace_attached) { 3279 dev_dbg(kfd_device, "Using KFD FD in wrong process\n"); 3280 retcode = -EBADF; 3281 goto err_i1; 3282 } 3283 3284 /* Do not trust userspace, use our own definition */ 3285 func = ioctl->func; 3286 3287 if (unlikely(!func)) { 3288 dev_dbg(kfd_device, "no function\n"); 3289 retcode = -EINVAL; 3290 goto err_i1; 3291 } 3292 3293 /* 3294 * Versions of docker shipped in Ubuntu 18.xx and 20.xx do not support 3295 * CAP_CHECKPOINT_RESTORE, so we also allow access if CAP_SYS_ADMIN as CAP_SYS_ADMIN is a 3296 * more priviledged access. 3297 */ 3298 if (unlikely(ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE)) { 3299 if (!capable(CAP_CHECKPOINT_RESTORE) && 3300 !capable(CAP_SYS_ADMIN)) { 3301 retcode = -EACCES; 3302 goto err_i1; 3303 } 3304 } 3305 3306 if (cmd & (IOC_IN | IOC_OUT)) { 3307 if (asize <= sizeof(stack_kdata)) { 3308 kdata = stack_kdata; 3309 } else { 3310 kdata = kmalloc(asize, GFP_KERNEL); 3311 if (!kdata) { 3312 retcode = -ENOMEM; 3313 goto err_i1; 3314 } 3315 } 3316 if (asize > usize) 3317 memset(kdata + usize, 0, asize - usize); 3318 } 3319 3320 if (cmd & IOC_IN) { 3321 if (copy_from_user(kdata, (void __user *)arg, usize) != 0) { 3322 retcode = -EFAULT; 3323 goto err_i1; 3324 } 3325 } else if (cmd & IOC_OUT) { 3326 memset(kdata, 0, usize); 3327 } 3328 3329 retcode = func(filep, process, kdata); 3330 3331 if (cmd & IOC_OUT) 3332 if (copy_to_user((void __user *)arg, kdata, usize) != 0) 3333 retcode = -EFAULT; 3334 3335 err_i1: 3336 if (!ioctl) 3337 dev_dbg(kfd_device, "invalid ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n", 3338 task_pid_nr(current), cmd, nr); 3339 3340 if (kdata != stack_kdata) 3341 kfree(kdata); 3342 3343 if (retcode) 3344 dev_dbg(kfd_device, "ioctl cmd (#0x%x), arg 0x%lx, ret = %d\n", 3345 nr, arg, retcode); 3346 3347 return retcode; 3348 } 3349 3350 static int kfd_mmio_mmap(struct kfd_node *dev, struct kfd_process *process, 3351 struct vm_area_struct *vma) 3352 { 3353 phys_addr_t address; 3354 3355 if (vma->vm_end - vma->vm_start != PAGE_SIZE) 3356 return -EINVAL; 3357 3358 if (PAGE_SIZE > 4096) 3359 return -EINVAL; 3360 3361 address = dev->adev->rmmio_remap.bus_addr; 3362 3363 vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE | 3364 VM_DONTDUMP | VM_PFNMAP); 3365 3366 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 3367 3368 pr_debug("pasid 0x%x mapping mmio page\n" 3369 " target user address == 0x%08llX\n" 3370 " physical address == 0x%08llX\n" 3371 " vm_flags == 0x%04lX\n" 3372 " size == 0x%04lX\n", 3373 process->pasid, (unsigned long long) vma->vm_start, 3374 address, vma->vm_flags, PAGE_SIZE); 3375 3376 return io_remap_pfn_range(vma, 3377 vma->vm_start, 3378 address >> PAGE_SHIFT, 3379 PAGE_SIZE, 3380 vma->vm_page_prot); 3381 } 3382 3383 3384 static int kfd_mmap(struct file *filp, struct vm_area_struct *vma) 3385 { 3386 struct kfd_process *process; 3387 struct kfd_node *dev = NULL; 3388 unsigned long mmap_offset; 3389 unsigned int gpu_id; 3390 3391 process = kfd_get_process(current); 3392 if (IS_ERR(process)) 3393 return PTR_ERR(process); 3394 3395 mmap_offset = vma->vm_pgoff << PAGE_SHIFT; 3396 gpu_id = KFD_MMAP_GET_GPU_ID(mmap_offset); 3397 if (gpu_id) 3398 dev = kfd_device_by_id(gpu_id); 3399 3400 switch (mmap_offset & KFD_MMAP_TYPE_MASK) { 3401 case KFD_MMAP_TYPE_DOORBELL: 3402 if (!dev) 3403 return -ENODEV; 3404 return kfd_doorbell_mmap(dev, process, vma); 3405 3406 case KFD_MMAP_TYPE_EVENTS: 3407 return kfd_event_mmap(process, vma); 3408 3409 case KFD_MMAP_TYPE_RESERVED_MEM: 3410 if (!dev) 3411 return -ENODEV; 3412 return kfd_reserved_mem_mmap(dev, process, vma); 3413 case KFD_MMAP_TYPE_MMIO: 3414 if (!dev) 3415 return -ENODEV; 3416 return kfd_mmio_mmap(dev, process, vma); 3417 } 3418 3419 return -EFAULT; 3420 } 3421