xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_chardev.c (revision 44343e8b250abb2f6bfd615493ca07a7f11f3cc2)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/device.h>
25 #include <linux/err.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/sched.h>
29 #include <linux/slab.h>
30 #include <linux/uaccess.h>
31 #include <linux/compat.h>
32 #include <uapi/linux/kfd_ioctl.h>
33 #include <linux/time.h>
34 #include <linux/mm.h>
35 #include <linux/mman.h>
36 #include <linux/ptrace.h>
37 #include <linux/dma-buf.h>
38 #include <linux/processor.h>
39 #include "kfd_priv.h"
40 #include "kfd_device_queue_manager.h"
41 #include "kfd_svm.h"
42 #include "amdgpu_amdkfd.h"
43 #include "kfd_smi_events.h"
44 #include "amdgpu_dma_buf.h"
45 #include "kfd_debug.h"
46 
47 static long kfd_ioctl(struct file *, unsigned int, unsigned long);
48 static int kfd_open(struct inode *, struct file *);
49 static int kfd_release(struct inode *, struct file *);
50 static int kfd_mmap(struct file *, struct vm_area_struct *);
51 
52 static const char kfd_dev_name[] = "kfd";
53 
54 static const struct file_operations kfd_fops = {
55 	.owner = THIS_MODULE,
56 	.unlocked_ioctl = kfd_ioctl,
57 	.compat_ioctl = compat_ptr_ioctl,
58 	.open = kfd_open,
59 	.release = kfd_release,
60 	.mmap = kfd_mmap,
61 };
62 
63 static int kfd_char_dev_major = -1;
64 struct device *kfd_device;
65 static const struct class kfd_class = {
66 	.name = kfd_dev_name,
67 };
68 
69 static inline struct kfd_process_device *kfd_lock_pdd_by_id(struct kfd_process *p, __u32 gpu_id)
70 {
71 	struct kfd_process_device *pdd;
72 
73 	mutex_lock(&p->mutex);
74 	pdd = kfd_process_device_data_by_id(p, gpu_id);
75 
76 	if (pdd)
77 		return pdd;
78 
79 	mutex_unlock(&p->mutex);
80 	return NULL;
81 }
82 
83 static inline void kfd_unlock_pdd(struct kfd_process_device *pdd)
84 {
85 	mutex_unlock(&pdd->process->mutex);
86 }
87 
88 int kfd_chardev_init(void)
89 {
90 	int err = 0;
91 
92 	kfd_char_dev_major = register_chrdev(0, kfd_dev_name, &kfd_fops);
93 	err = kfd_char_dev_major;
94 	if (err < 0)
95 		goto err_register_chrdev;
96 
97 	err = class_register(&kfd_class);
98 	if (err)
99 		goto err_class_create;
100 
101 	kfd_device = device_create(&kfd_class, NULL,
102 				   MKDEV(kfd_char_dev_major, 0),
103 				   NULL, kfd_dev_name);
104 	err = PTR_ERR(kfd_device);
105 	if (IS_ERR(kfd_device))
106 		goto err_device_create;
107 
108 	return 0;
109 
110 err_device_create:
111 	class_unregister(&kfd_class);
112 err_class_create:
113 	unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
114 err_register_chrdev:
115 	return err;
116 }
117 
118 void kfd_chardev_exit(void)
119 {
120 	device_destroy(&kfd_class, MKDEV(kfd_char_dev_major, 0));
121 	class_unregister(&kfd_class);
122 	unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
123 	kfd_device = NULL;
124 }
125 
126 
127 static int kfd_open(struct inode *inode, struct file *filep)
128 {
129 	struct kfd_process *process;
130 	bool is_32bit_user_mode;
131 
132 	if (iminor(inode) != 0)
133 		return -ENODEV;
134 
135 	is_32bit_user_mode = in_compat_syscall();
136 
137 	if (is_32bit_user_mode) {
138 		dev_warn(kfd_device,
139 			"Process %d (32-bit) failed to open /dev/kfd\n"
140 			"32-bit processes are not supported by amdkfd\n",
141 			current->pid);
142 		return -EPERM;
143 	}
144 
145 	process = kfd_create_process(current);
146 	if (IS_ERR(process))
147 		return PTR_ERR(process);
148 
149 	if (kfd_process_init_cwsr_apu(process, filep)) {
150 		kfd_unref_process(process);
151 		return -EFAULT;
152 	}
153 
154 	/* filep now owns the reference returned by kfd_create_process */
155 	filep->private_data = process;
156 
157 	dev_dbg(kfd_device, "process pid %d opened kfd node, compat mode (32 bit) - %d\n",
158 		process->lead_thread->pid, process->is_32bit_user_mode);
159 
160 	return 0;
161 }
162 
163 static int kfd_release(struct inode *inode, struct file *filep)
164 {
165 	struct kfd_process *process = filep->private_data;
166 
167 	if (process)
168 		kfd_unref_process(process);
169 
170 	return 0;
171 }
172 
173 static int kfd_ioctl_get_version(struct file *filep, struct kfd_process *p,
174 					void *data)
175 {
176 	struct kfd_ioctl_get_version_args *args = data;
177 
178 	args->major_version = KFD_IOCTL_MAJOR_VERSION;
179 	args->minor_version = KFD_IOCTL_MINOR_VERSION;
180 
181 	return 0;
182 }
183 
184 static int set_queue_properties_from_user(struct queue_properties *q_properties,
185 				struct kfd_ioctl_create_queue_args *args)
186 {
187 	/*
188 	 * Repurpose queue percentage to accommodate new features:
189 	 * bit 0-7: queue percentage
190 	 * bit 8-15: pm4_target_xcc
191 	 */
192 	if ((args->queue_percentage & 0xFF) > KFD_MAX_QUEUE_PERCENTAGE) {
193 		pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
194 		return -EINVAL;
195 	}
196 
197 	if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
198 		pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
199 		return -EINVAL;
200 	}
201 
202 	if ((args->ring_base_address) &&
203 		(!access_ok((const void __user *) args->ring_base_address,
204 			sizeof(uint64_t)))) {
205 		pr_err("Can't access ring base address\n");
206 		return -EFAULT;
207 	}
208 
209 	if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
210 		pr_err("Ring size must be a power of 2 or 0\n");
211 		return -EINVAL;
212 	}
213 
214 	if (args->ring_size < KFD_MIN_QUEUE_RING_SIZE) {
215 		args->ring_size = KFD_MIN_QUEUE_RING_SIZE;
216 		pr_debug("Size lower. clamped to KFD_MIN_QUEUE_RING_SIZE");
217 	}
218 
219 	if (!access_ok((const void __user *) args->read_pointer_address,
220 			sizeof(uint32_t))) {
221 		pr_err("Can't access read pointer\n");
222 		return -EFAULT;
223 	}
224 
225 	if (!access_ok((const void __user *) args->write_pointer_address,
226 			sizeof(uint32_t))) {
227 		pr_err("Can't access write pointer\n");
228 		return -EFAULT;
229 	}
230 
231 	if (args->eop_buffer_address &&
232 		!access_ok((const void __user *) args->eop_buffer_address,
233 			sizeof(uint32_t))) {
234 		pr_debug("Can't access eop buffer");
235 		return -EFAULT;
236 	}
237 
238 	if (args->ctx_save_restore_address &&
239 		!access_ok((const void __user *) args->ctx_save_restore_address,
240 			sizeof(uint32_t))) {
241 		pr_debug("Can't access ctx save restore buffer");
242 		return -EFAULT;
243 	}
244 
245 	q_properties->is_interop = false;
246 	q_properties->is_gws = false;
247 	q_properties->queue_percent = args->queue_percentage & 0xFF;
248 	/* bit 8-15 are repurposed to be PM4 target XCC */
249 	q_properties->pm4_target_xcc = (args->queue_percentage >> 8) & 0xFF;
250 	q_properties->priority = args->queue_priority;
251 	q_properties->queue_address = args->ring_base_address;
252 	q_properties->queue_size = args->ring_size;
253 	q_properties->read_ptr = (void __user *)args->read_pointer_address;
254 	q_properties->write_ptr = (void __user *)args->write_pointer_address;
255 	q_properties->eop_ring_buffer_address = args->eop_buffer_address;
256 	q_properties->eop_ring_buffer_size = args->eop_buffer_size;
257 	q_properties->ctx_save_restore_area_address =
258 			args->ctx_save_restore_address;
259 	q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size;
260 	q_properties->ctl_stack_size = args->ctl_stack_size;
261 	q_properties->sdma_engine_id = args->sdma_engine_id;
262 	if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE ||
263 		args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
264 		q_properties->type = KFD_QUEUE_TYPE_COMPUTE;
265 	else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA)
266 		q_properties->type = KFD_QUEUE_TYPE_SDMA;
267 	else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_XGMI)
268 		q_properties->type = KFD_QUEUE_TYPE_SDMA_XGMI;
269 	else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_BY_ENG_ID)
270 		q_properties->type = KFD_QUEUE_TYPE_SDMA_BY_ENG_ID;
271 	else
272 		return -ENOTSUPP;
273 
274 	if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
275 		q_properties->format = KFD_QUEUE_FORMAT_AQL;
276 	else
277 		q_properties->format = KFD_QUEUE_FORMAT_PM4;
278 
279 	pr_debug("Queue Percentage: %d, %d\n",
280 			q_properties->queue_percent, args->queue_percentage);
281 
282 	pr_debug("Queue Priority: %d, %d\n",
283 			q_properties->priority, args->queue_priority);
284 
285 	pr_debug("Queue Address: 0x%llX, 0x%llX\n",
286 			q_properties->queue_address, args->ring_base_address);
287 
288 	pr_debug("Queue Size: 0x%llX, %u\n",
289 			q_properties->queue_size, args->ring_size);
290 
291 	pr_debug("Queue r/w Pointers: %px, %px\n",
292 			q_properties->read_ptr,
293 			q_properties->write_ptr);
294 
295 	pr_debug("Queue Format: %d\n", q_properties->format);
296 
297 	pr_debug("Queue EOP: 0x%llX\n", q_properties->eop_ring_buffer_address);
298 
299 	pr_debug("Queue CTX save area: 0x%llX\n",
300 			q_properties->ctx_save_restore_area_address);
301 
302 	return 0;
303 }
304 
305 static int kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p,
306 					void *data)
307 {
308 	struct kfd_ioctl_create_queue_args *args = data;
309 	struct kfd_node *dev;
310 	int err = 0;
311 	unsigned int queue_id;
312 	struct kfd_process_device *pdd;
313 	struct queue_properties q_properties;
314 	uint32_t doorbell_offset_in_process = 0;
315 
316 	memset(&q_properties, 0, sizeof(struct queue_properties));
317 
318 	pr_debug("Creating queue ioctl\n");
319 
320 	err = set_queue_properties_from_user(&q_properties, args);
321 	if (err)
322 		return err;
323 
324 	pr_debug("Looking for gpu id 0x%x\n", args->gpu_id);
325 
326 	mutex_lock(&p->mutex);
327 
328 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
329 	if (!pdd) {
330 		pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
331 		err = -EINVAL;
332 		goto err_pdd;
333 	}
334 	dev = pdd->dev;
335 
336 	pdd = kfd_bind_process_to_device(dev, p);
337 	if (IS_ERR(pdd)) {
338 		err = -ESRCH;
339 		goto err_bind_process;
340 	}
341 
342 	if (q_properties.type == KFD_QUEUE_TYPE_SDMA_BY_ENG_ID) {
343 		int max_sdma_eng_id = kfd_get_num_sdma_engines(dev) +
344 				      kfd_get_num_xgmi_sdma_engines(dev) - 1;
345 
346 		if (q_properties.sdma_engine_id > max_sdma_eng_id) {
347 			err = -EINVAL;
348 			pr_err("sdma_engine_id %i exceeds maximum id of %i\n",
349 			       q_properties.sdma_engine_id, max_sdma_eng_id);
350 			goto err_sdma_engine_id;
351 		}
352 	}
353 
354 	if (!pdd->qpd.proc_doorbells) {
355 		err = kfd_alloc_process_doorbells(dev->kfd, pdd);
356 		if (err) {
357 			pr_debug("failed to allocate process doorbells\n");
358 			goto err_bind_process;
359 		}
360 	}
361 
362 	err = kfd_queue_acquire_buffers(pdd, &q_properties);
363 	if (err) {
364 		pr_debug("failed to acquire user queue buffers\n");
365 		goto err_acquire_queue_buf;
366 	}
367 
368 	pr_debug("Creating queue for process pid %d on gpu 0x%x\n",
369 			p->lead_thread->pid,
370 			dev->id);
371 
372 	err = pqm_create_queue(&p->pqm, dev, &q_properties, &queue_id,
373 			NULL, NULL, NULL, &doorbell_offset_in_process);
374 	if (err != 0)
375 		goto err_create_queue;
376 
377 	args->queue_id = queue_id;
378 
379 
380 	/* Return gpu_id as doorbell offset for mmap usage */
381 	args->doorbell_offset = KFD_MMAP_TYPE_DOORBELL;
382 	args->doorbell_offset |= KFD_MMAP_GPU_ID(args->gpu_id);
383 	if (KFD_IS_SOC15(dev))
384 		/* On SOC15 ASICs, include the doorbell offset within the
385 		 * process doorbell frame, which is 2 pages.
386 		 */
387 		args->doorbell_offset |= doorbell_offset_in_process;
388 
389 	mutex_unlock(&p->mutex);
390 
391 	pr_debug("Queue id %d was created successfully\n", args->queue_id);
392 
393 	pr_debug("Ring buffer address == 0x%016llX\n",
394 			args->ring_base_address);
395 
396 	pr_debug("Read ptr address    == 0x%016llX\n",
397 			args->read_pointer_address);
398 
399 	pr_debug("Write ptr address   == 0x%016llX\n",
400 			args->write_pointer_address);
401 
402 	kfd_dbg_ev_raise(KFD_EC_MASK(EC_QUEUE_NEW), p, dev, queue_id, false, NULL, 0);
403 	return 0;
404 
405 err_create_queue:
406 	kfd_queue_unref_bo_vas(pdd, &q_properties);
407 	kfd_queue_release_buffers(pdd, &q_properties);
408 err_acquire_queue_buf:
409 err_sdma_engine_id:
410 err_bind_process:
411 err_pdd:
412 	mutex_unlock(&p->mutex);
413 	return err;
414 }
415 
416 static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p,
417 					void *data)
418 {
419 	int retval;
420 	struct kfd_ioctl_destroy_queue_args *args = data;
421 
422 	pr_debug("Destroying queue id %d for process pid %d\n",
423 				args->queue_id,
424 				p->lead_thread->pid);
425 
426 	mutex_lock(&p->mutex);
427 
428 	retval = pqm_destroy_queue(&p->pqm, args->queue_id);
429 
430 	mutex_unlock(&p->mutex);
431 	return retval;
432 }
433 
434 static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p,
435 					void *data)
436 {
437 	int retval;
438 	struct kfd_ioctl_update_queue_args *args = data;
439 	struct queue_properties properties;
440 
441 	/*
442 	 * Repurpose queue percentage to accommodate new features:
443 	 * bit 0-7: queue percentage
444 	 * bit 8-15: pm4_target_xcc
445 	 */
446 	if ((args->queue_percentage & 0xFF) > KFD_MAX_QUEUE_PERCENTAGE) {
447 		pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
448 		return -EINVAL;
449 	}
450 
451 	if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
452 		pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
453 		return -EINVAL;
454 	}
455 
456 	if ((args->ring_base_address) &&
457 		(!access_ok((const void __user *) args->ring_base_address,
458 			sizeof(uint64_t)))) {
459 		pr_err("Can't access ring base address\n");
460 		return -EFAULT;
461 	}
462 
463 	if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
464 		pr_err("Ring size must be a power of 2 or 0\n");
465 		return -EINVAL;
466 	}
467 
468 	if (args->ring_size < KFD_MIN_QUEUE_RING_SIZE) {
469 		args->ring_size = KFD_MIN_QUEUE_RING_SIZE;
470 		pr_debug("Size lower. clamped to KFD_MIN_QUEUE_RING_SIZE");
471 	}
472 
473 	properties.queue_address = args->ring_base_address;
474 	properties.queue_size = args->ring_size;
475 	properties.queue_percent = args->queue_percentage & 0xFF;
476 	/* bit 8-15 are repurposed to be PM4 target XCC */
477 	properties.pm4_target_xcc = (args->queue_percentage >> 8) & 0xFF;
478 	properties.priority = args->queue_priority;
479 
480 	pr_debug("Updating queue id %d for process pid %d\n",
481 			args->queue_id, p->lead_thread->pid);
482 
483 	mutex_lock(&p->mutex);
484 
485 	retval = pqm_update_queue_properties(&p->pqm, args->queue_id, &properties);
486 
487 	mutex_unlock(&p->mutex);
488 
489 	return retval;
490 }
491 
492 static int kfd_ioctl_set_cu_mask(struct file *filp, struct kfd_process *p,
493 					void *data)
494 {
495 	int retval;
496 	const int max_num_cus = 1024;
497 	struct kfd_ioctl_set_cu_mask_args *args = data;
498 	struct mqd_update_info minfo = {0};
499 	uint32_t __user *cu_mask_ptr = (uint32_t __user *)args->cu_mask_ptr;
500 	size_t cu_mask_size = sizeof(uint32_t) * (args->num_cu_mask / 32);
501 
502 	if ((args->num_cu_mask % 32) != 0) {
503 		pr_debug("num_cu_mask 0x%x must be a multiple of 32",
504 				args->num_cu_mask);
505 		return -EINVAL;
506 	}
507 
508 	minfo.cu_mask.count = args->num_cu_mask;
509 	if (minfo.cu_mask.count == 0) {
510 		pr_debug("CU mask cannot be 0");
511 		return -EINVAL;
512 	}
513 
514 	/* To prevent an unreasonably large CU mask size, set an arbitrary
515 	 * limit of max_num_cus bits.  We can then just drop any CU mask bits
516 	 * past max_num_cus bits and just use the first max_num_cus bits.
517 	 */
518 	if (minfo.cu_mask.count > max_num_cus) {
519 		pr_debug("CU mask cannot be greater than 1024 bits");
520 		minfo.cu_mask.count = max_num_cus;
521 		cu_mask_size = sizeof(uint32_t) * (max_num_cus/32);
522 	}
523 
524 	minfo.cu_mask.ptr = memdup_user(cu_mask_ptr, cu_mask_size);
525 	if (IS_ERR(minfo.cu_mask.ptr)) {
526 		pr_debug("Could not copy CU mask from userspace");
527 		return PTR_ERR(minfo.cu_mask.ptr);
528 	}
529 
530 	mutex_lock(&p->mutex);
531 
532 	retval = pqm_update_mqd(&p->pqm, args->queue_id, &minfo);
533 
534 	mutex_unlock(&p->mutex);
535 
536 	kfree(minfo.cu_mask.ptr);
537 	return retval;
538 }
539 
540 static int kfd_ioctl_get_queue_wave_state(struct file *filep,
541 					  struct kfd_process *p, void *data)
542 {
543 	struct kfd_ioctl_get_queue_wave_state_args *args = data;
544 	int r;
545 
546 	mutex_lock(&p->mutex);
547 
548 	r = pqm_get_wave_state(&p->pqm, args->queue_id,
549 			       (void __user *)args->ctl_stack_address,
550 			       &args->ctl_stack_used_size,
551 			       &args->save_area_used_size);
552 
553 	mutex_unlock(&p->mutex);
554 
555 	return r;
556 }
557 
558 static int kfd_ioctl_set_memory_policy(struct file *filep,
559 					struct kfd_process *p, void *data)
560 {
561 	struct kfd_ioctl_set_memory_policy_args *args = data;
562 	int err = 0;
563 	struct kfd_process_device *pdd;
564 	enum cache_policy default_policy, alternate_policy;
565 
566 	if (args->default_policy != KFD_IOC_CACHE_POLICY_COHERENT
567 	    && args->default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
568 		return -EINVAL;
569 	}
570 
571 	if (args->alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT
572 	    && args->alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
573 		return -EINVAL;
574 	}
575 
576 	mutex_lock(&p->mutex);
577 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
578 	if (!pdd) {
579 		pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
580 		err = -EINVAL;
581 		goto err_pdd;
582 	}
583 
584 	pdd = kfd_bind_process_to_device(pdd->dev, p);
585 	if (IS_ERR(pdd)) {
586 		err = -ESRCH;
587 		goto out;
588 	}
589 
590 	default_policy = (args->default_policy == KFD_IOC_CACHE_POLICY_COHERENT)
591 			 ? cache_policy_coherent : cache_policy_noncoherent;
592 
593 	alternate_policy =
594 		(args->alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT)
595 		   ? cache_policy_coherent : cache_policy_noncoherent;
596 
597 	if (!pdd->dev->dqm->ops.set_cache_memory_policy(pdd->dev->dqm,
598 				&pdd->qpd,
599 				default_policy,
600 				alternate_policy,
601 				(void __user *)args->alternate_aperture_base,
602 				args->alternate_aperture_size,
603 				args->misc_process_flag))
604 		err = -EINVAL;
605 
606 out:
607 err_pdd:
608 	mutex_unlock(&p->mutex);
609 
610 	return err;
611 }
612 
613 static int kfd_ioctl_set_trap_handler(struct file *filep,
614 					struct kfd_process *p, void *data)
615 {
616 	struct kfd_ioctl_set_trap_handler_args *args = data;
617 	int err = 0;
618 	struct kfd_process_device *pdd;
619 
620 	mutex_lock(&p->mutex);
621 
622 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
623 	if (!pdd) {
624 		err = -EINVAL;
625 		goto err_pdd;
626 	}
627 
628 	pdd = kfd_bind_process_to_device(pdd->dev, p);
629 	if (IS_ERR(pdd)) {
630 		err = -ESRCH;
631 		goto out;
632 	}
633 
634 	kfd_process_set_trap_handler(&pdd->qpd, args->tba_addr, args->tma_addr);
635 
636 out:
637 err_pdd:
638 	mutex_unlock(&p->mutex);
639 
640 	return err;
641 }
642 
643 static int kfd_ioctl_dbg_register(struct file *filep,
644 				struct kfd_process *p, void *data)
645 {
646 	return -EPERM;
647 }
648 
649 static int kfd_ioctl_dbg_unregister(struct file *filep,
650 				struct kfd_process *p, void *data)
651 {
652 	return -EPERM;
653 }
654 
655 static int kfd_ioctl_dbg_address_watch(struct file *filep,
656 					struct kfd_process *p, void *data)
657 {
658 	return -EPERM;
659 }
660 
661 /* Parse and generate fixed size data structure for wave control */
662 static int kfd_ioctl_dbg_wave_control(struct file *filep,
663 					struct kfd_process *p, void *data)
664 {
665 	return -EPERM;
666 }
667 
668 static int kfd_ioctl_get_clock_counters(struct file *filep,
669 				struct kfd_process *p, void *data)
670 {
671 	struct kfd_ioctl_get_clock_counters_args *args = data;
672 	struct kfd_process_device *pdd;
673 
674 	mutex_lock(&p->mutex);
675 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
676 	mutex_unlock(&p->mutex);
677 	if (pdd)
678 		/* Reading GPU clock counter from KGD */
679 		args->gpu_clock_counter = amdgpu_amdkfd_get_gpu_clock_counter(pdd->dev->adev);
680 	else
681 		/* Node without GPU resource */
682 		args->gpu_clock_counter = 0;
683 
684 	/* No access to rdtsc. Using raw monotonic time */
685 	args->cpu_clock_counter = ktime_get_raw_ns();
686 	args->system_clock_counter = ktime_get_boottime_ns();
687 
688 	/* Since the counter is in nano-seconds we use 1GHz frequency */
689 	args->system_clock_freq = 1000000000;
690 
691 	return 0;
692 }
693 
694 
695 static int kfd_ioctl_get_process_apertures(struct file *filp,
696 				struct kfd_process *p, void *data)
697 {
698 	struct kfd_ioctl_get_process_apertures_args *args = data;
699 	struct kfd_process_device_apertures *pAperture;
700 	int i;
701 
702 	dev_dbg(kfd_device, "get apertures for process pid %d", p->lead_thread->pid);
703 
704 	args->num_of_nodes = 0;
705 
706 	mutex_lock(&p->mutex);
707 	/* Run over all pdd of the process */
708 	for (i = 0; i < p->n_pdds; i++) {
709 		struct kfd_process_device *pdd = p->pdds[i];
710 
711 		pAperture =
712 			&args->process_apertures[args->num_of_nodes];
713 		pAperture->gpu_id = pdd->dev->id;
714 		pAperture->lds_base = pdd->lds_base;
715 		pAperture->lds_limit = pdd->lds_limit;
716 		pAperture->gpuvm_base = pdd->gpuvm_base;
717 		pAperture->gpuvm_limit = pdd->gpuvm_limit;
718 		pAperture->scratch_base = pdd->scratch_base;
719 		pAperture->scratch_limit = pdd->scratch_limit;
720 
721 		dev_dbg(kfd_device,
722 			"node id %u\n", args->num_of_nodes);
723 		dev_dbg(kfd_device,
724 			"gpu id %u\n", pdd->dev->id);
725 		dev_dbg(kfd_device,
726 			"lds_base %llX\n", pdd->lds_base);
727 		dev_dbg(kfd_device,
728 			"lds_limit %llX\n", pdd->lds_limit);
729 		dev_dbg(kfd_device,
730 			"gpuvm_base %llX\n", pdd->gpuvm_base);
731 		dev_dbg(kfd_device,
732 			"gpuvm_limit %llX\n", pdd->gpuvm_limit);
733 		dev_dbg(kfd_device,
734 			"scratch_base %llX\n", pdd->scratch_base);
735 		dev_dbg(kfd_device,
736 			"scratch_limit %llX\n", pdd->scratch_limit);
737 
738 		if (++args->num_of_nodes >= NUM_OF_SUPPORTED_GPUS)
739 			break;
740 	}
741 	mutex_unlock(&p->mutex);
742 
743 	return 0;
744 }
745 
746 static int kfd_ioctl_get_process_apertures_new(struct file *filp,
747 				struct kfd_process *p, void *data)
748 {
749 	struct kfd_ioctl_get_process_apertures_new_args *args = data;
750 	struct kfd_process_device_apertures *pa;
751 	int ret;
752 	int i;
753 
754 	dev_dbg(kfd_device, "get apertures for process pid %d",
755 			p->lead_thread->pid);
756 
757 	if (args->num_of_nodes == 0) {
758 		/* Return number of nodes, so that user space can alloacate
759 		 * sufficient memory
760 		 */
761 		mutex_lock(&p->mutex);
762 		args->num_of_nodes = p->n_pdds;
763 		goto out_unlock;
764 	}
765 
766 	/* Fill in process-aperture information for all available
767 	 * nodes, but not more than args->num_of_nodes as that is
768 	 * the amount of memory allocated by user
769 	 */
770 	pa = kcalloc(args->num_of_nodes, sizeof(struct kfd_process_device_apertures),
771 		     GFP_KERNEL);
772 	if (!pa)
773 		return -ENOMEM;
774 
775 	mutex_lock(&p->mutex);
776 
777 	if (!p->n_pdds) {
778 		args->num_of_nodes = 0;
779 		kfree(pa);
780 		goto out_unlock;
781 	}
782 
783 	/* Run over all pdd of the process */
784 	for (i = 0; i < min(p->n_pdds, args->num_of_nodes); i++) {
785 		struct kfd_process_device *pdd = p->pdds[i];
786 
787 		pa[i].gpu_id = pdd->dev->id;
788 		pa[i].lds_base = pdd->lds_base;
789 		pa[i].lds_limit = pdd->lds_limit;
790 		pa[i].gpuvm_base = pdd->gpuvm_base;
791 		pa[i].gpuvm_limit = pdd->gpuvm_limit;
792 		pa[i].scratch_base = pdd->scratch_base;
793 		pa[i].scratch_limit = pdd->scratch_limit;
794 
795 		dev_dbg(kfd_device,
796 			"gpu id %u\n", pdd->dev->id);
797 		dev_dbg(kfd_device,
798 			"lds_base %llX\n", pdd->lds_base);
799 		dev_dbg(kfd_device,
800 			"lds_limit %llX\n", pdd->lds_limit);
801 		dev_dbg(kfd_device,
802 			"gpuvm_base %llX\n", pdd->gpuvm_base);
803 		dev_dbg(kfd_device,
804 			"gpuvm_limit %llX\n", pdd->gpuvm_limit);
805 		dev_dbg(kfd_device,
806 			"scratch_base %llX\n", pdd->scratch_base);
807 		dev_dbg(kfd_device,
808 			"scratch_limit %llX\n", pdd->scratch_limit);
809 	}
810 	mutex_unlock(&p->mutex);
811 
812 	args->num_of_nodes = i;
813 	ret = copy_to_user(
814 			(void __user *)args->kfd_process_device_apertures_ptr,
815 			pa,
816 			(i * sizeof(struct kfd_process_device_apertures)));
817 	kfree(pa);
818 	return ret ? -EFAULT : 0;
819 
820 out_unlock:
821 	mutex_unlock(&p->mutex);
822 	return 0;
823 }
824 
825 static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p,
826 					void *data)
827 {
828 	struct kfd_ioctl_create_event_args *args = data;
829 	int err;
830 
831 	/* For dGPUs the event page is allocated in user mode. The
832 	 * handle is passed to KFD with the first call to this IOCTL
833 	 * through the event_page_offset field.
834 	 */
835 	if (args->event_page_offset) {
836 		mutex_lock(&p->mutex);
837 		err = kfd_kmap_event_page(p, args->event_page_offset);
838 		mutex_unlock(&p->mutex);
839 		if (err)
840 			return err;
841 	}
842 
843 	err = kfd_event_create(filp, p, args->event_type,
844 				args->auto_reset != 0, args->node_id,
845 				&args->event_id, &args->event_trigger_data,
846 				&args->event_page_offset,
847 				&args->event_slot_index);
848 
849 	pr_debug("Created event (id:0x%08x) (%s)\n", args->event_id, __func__);
850 	return err;
851 }
852 
853 static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p,
854 					void *data)
855 {
856 	struct kfd_ioctl_destroy_event_args *args = data;
857 
858 	return kfd_event_destroy(p, args->event_id);
859 }
860 
861 static int kfd_ioctl_set_event(struct file *filp, struct kfd_process *p,
862 				void *data)
863 {
864 	struct kfd_ioctl_set_event_args *args = data;
865 
866 	return kfd_set_event(p, args->event_id);
867 }
868 
869 static int kfd_ioctl_reset_event(struct file *filp, struct kfd_process *p,
870 				void *data)
871 {
872 	struct kfd_ioctl_reset_event_args *args = data;
873 
874 	return kfd_reset_event(p, args->event_id);
875 }
876 
877 static int kfd_ioctl_wait_events(struct file *filp, struct kfd_process *p,
878 				void *data)
879 {
880 	struct kfd_ioctl_wait_events_args *args = data;
881 
882 	return kfd_wait_on_events(p, args->num_events,
883 			(void __user *)args->events_ptr,
884 			(args->wait_for_all != 0),
885 			&args->timeout, &args->wait_result);
886 }
887 static int kfd_ioctl_set_scratch_backing_va(struct file *filep,
888 					struct kfd_process *p, void *data)
889 {
890 	struct kfd_ioctl_set_scratch_backing_va_args *args = data;
891 	struct kfd_process_device *pdd;
892 	struct kfd_node *dev;
893 	long err;
894 
895 	mutex_lock(&p->mutex);
896 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
897 	if (!pdd) {
898 		err = -EINVAL;
899 		goto err_pdd;
900 	}
901 	dev = pdd->dev;
902 
903 	pdd = kfd_bind_process_to_device(dev, p);
904 	if (IS_ERR(pdd)) {
905 		err = PTR_ERR(pdd);
906 		goto bind_process_to_device_fail;
907 	}
908 
909 	pdd->qpd.sh_hidden_private_base = args->va_addr;
910 
911 	mutex_unlock(&p->mutex);
912 
913 	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS &&
914 	    pdd->qpd.vmid != 0 && dev->kfd2kgd->set_scratch_backing_va)
915 		dev->kfd2kgd->set_scratch_backing_va(
916 			dev->adev, args->va_addr, pdd->qpd.vmid);
917 
918 	return 0;
919 
920 bind_process_to_device_fail:
921 err_pdd:
922 	mutex_unlock(&p->mutex);
923 	return err;
924 }
925 
926 static int kfd_ioctl_get_tile_config(struct file *filep,
927 		struct kfd_process *p, void *data)
928 {
929 	struct kfd_ioctl_get_tile_config_args *args = data;
930 	struct kfd_process_device *pdd;
931 	struct tile_config config;
932 	int err = 0;
933 
934 	mutex_lock(&p->mutex);
935 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
936 	mutex_unlock(&p->mutex);
937 	if (!pdd)
938 		return -EINVAL;
939 
940 	amdgpu_amdkfd_get_tile_config(pdd->dev->adev, &config);
941 
942 	args->gb_addr_config = config.gb_addr_config;
943 	args->num_banks = config.num_banks;
944 	args->num_ranks = config.num_ranks;
945 
946 	if (args->num_tile_configs > config.num_tile_configs)
947 		args->num_tile_configs = config.num_tile_configs;
948 	err = copy_to_user((void __user *)args->tile_config_ptr,
949 			config.tile_config_ptr,
950 			args->num_tile_configs * sizeof(uint32_t));
951 	if (err) {
952 		args->num_tile_configs = 0;
953 		return -EFAULT;
954 	}
955 
956 	if (args->num_macro_tile_configs > config.num_macro_tile_configs)
957 		args->num_macro_tile_configs =
958 				config.num_macro_tile_configs;
959 	err = copy_to_user((void __user *)args->macro_tile_config_ptr,
960 			config.macro_tile_config_ptr,
961 			args->num_macro_tile_configs * sizeof(uint32_t));
962 	if (err) {
963 		args->num_macro_tile_configs = 0;
964 		return -EFAULT;
965 	}
966 
967 	return 0;
968 }
969 
970 static int kfd_ioctl_acquire_vm(struct file *filep, struct kfd_process *p,
971 				void *data)
972 {
973 	struct kfd_ioctl_acquire_vm_args *args = data;
974 	struct kfd_process_device *pdd;
975 	struct file *drm_file;
976 	int ret;
977 
978 	drm_file = fget(args->drm_fd);
979 	if (!drm_file)
980 		return -EINVAL;
981 
982 	mutex_lock(&p->mutex);
983 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
984 	if (!pdd) {
985 		ret = -EINVAL;
986 		goto err_pdd;
987 	}
988 
989 	if (pdd->drm_file) {
990 		ret = pdd->drm_file == drm_file ? 0 : -EBUSY;
991 		goto err_drm_file;
992 	}
993 
994 	ret = kfd_process_device_init_vm(pdd, drm_file);
995 	if (ret)
996 		goto err_unlock;
997 
998 	/* On success, the PDD keeps the drm_file reference */
999 	mutex_unlock(&p->mutex);
1000 
1001 	return 0;
1002 
1003 err_unlock:
1004 err_pdd:
1005 err_drm_file:
1006 	mutex_unlock(&p->mutex);
1007 	fput(drm_file);
1008 	return ret;
1009 }
1010 
1011 bool kfd_dev_is_large_bar(struct kfd_node *dev)
1012 {
1013 	if (dev->kfd->adev->debug_largebar) {
1014 		pr_debug("Simulate large-bar allocation on non large-bar machine\n");
1015 		return true;
1016 	}
1017 
1018 	if (dev->local_mem_info.local_mem_size_private == 0 &&
1019 	    dev->local_mem_info.local_mem_size_public > 0)
1020 		return true;
1021 
1022 	if (dev->local_mem_info.local_mem_size_public == 0 &&
1023 	    dev->kfd->adev->gmc.is_app_apu) {
1024 		pr_debug("APP APU, Consider like a large bar system\n");
1025 		return true;
1026 	}
1027 
1028 	return false;
1029 }
1030 
1031 static int kfd_ioctl_get_available_memory(struct file *filep,
1032 					  struct kfd_process *p, void *data)
1033 {
1034 	struct kfd_ioctl_get_available_memory_args *args = data;
1035 	struct kfd_process_device *pdd = kfd_lock_pdd_by_id(p, args->gpu_id);
1036 
1037 	if (!pdd)
1038 		return -EINVAL;
1039 	args->available = amdgpu_amdkfd_get_available_memory(pdd->dev->adev,
1040 							pdd->dev->node_id);
1041 	kfd_unlock_pdd(pdd);
1042 	return 0;
1043 }
1044 
1045 static int kfd_ioctl_alloc_memory_of_gpu(struct file *filep,
1046 					struct kfd_process *p, void *data)
1047 {
1048 	struct kfd_ioctl_alloc_memory_of_gpu_args *args = data;
1049 	struct kfd_process_device *pdd;
1050 	void *mem;
1051 	struct kfd_node *dev;
1052 	int idr_handle;
1053 	long err;
1054 	uint64_t offset = args->mmap_offset;
1055 	uint32_t flags = args->flags;
1056 
1057 	if (args->size == 0)
1058 		return -EINVAL;
1059 
1060 #if IS_ENABLED(CONFIG_HSA_AMD_SVM)
1061 	/* Flush pending deferred work to avoid racing with deferred actions
1062 	 * from previous memory map changes (e.g. munmap).
1063 	 */
1064 	svm_range_list_lock_and_flush_work(&p->svms, current->mm);
1065 	mutex_lock(&p->svms.lock);
1066 	mmap_write_unlock(current->mm);
1067 
1068 	/* Skip a special case that allocates VRAM without VA,
1069 	 * VA will be invalid of 0.
1070 	 */
1071 	if (!(!args->va_addr && (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM)) &&
1072 	    interval_tree_iter_first(&p->svms.objects,
1073 				     args->va_addr >> PAGE_SHIFT,
1074 				     (args->va_addr + args->size - 1) >> PAGE_SHIFT)) {
1075 		pr_err("Address: 0x%llx already allocated by SVM\n",
1076 			args->va_addr);
1077 		mutex_unlock(&p->svms.lock);
1078 		return -EADDRINUSE;
1079 	}
1080 
1081 	/* When register user buffer check if it has been registered by svm by
1082 	 * buffer cpu virtual address.
1083 	 */
1084 	if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) &&
1085 	    interval_tree_iter_first(&p->svms.objects,
1086 				     args->mmap_offset >> PAGE_SHIFT,
1087 				     (args->mmap_offset  + args->size - 1) >> PAGE_SHIFT)) {
1088 		pr_err("User Buffer Address: 0x%llx already allocated by SVM\n",
1089 			args->mmap_offset);
1090 		mutex_unlock(&p->svms.lock);
1091 		return -EADDRINUSE;
1092 	}
1093 
1094 	mutex_unlock(&p->svms.lock);
1095 #endif
1096 	mutex_lock(&p->mutex);
1097 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
1098 	if (!pdd) {
1099 		err = -EINVAL;
1100 		goto err_pdd;
1101 	}
1102 
1103 	dev = pdd->dev;
1104 
1105 	if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) &&
1106 		(flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) &&
1107 		!kfd_dev_is_large_bar(dev)) {
1108 		pr_err("Alloc host visible vram on small bar is not allowed\n");
1109 		err = -EINVAL;
1110 		goto err_large_bar;
1111 	}
1112 
1113 	pdd = kfd_bind_process_to_device(dev, p);
1114 	if (IS_ERR(pdd)) {
1115 		err = PTR_ERR(pdd);
1116 		goto err_unlock;
1117 	}
1118 
1119 	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
1120 		if (args->size != kfd_doorbell_process_slice(dev->kfd)) {
1121 			err = -EINVAL;
1122 			goto err_unlock;
1123 		}
1124 		offset = kfd_get_process_doorbells(pdd);
1125 		if (!offset) {
1126 			err = -ENOMEM;
1127 			goto err_unlock;
1128 		}
1129 	} else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
1130 		if (args->size != PAGE_SIZE) {
1131 			err = -EINVAL;
1132 			goto err_unlock;
1133 		}
1134 		offset = dev->adev->rmmio_remap.bus_addr;
1135 		if (!offset || (PAGE_SIZE > 4096)) {
1136 			err = -ENOMEM;
1137 			goto err_unlock;
1138 		}
1139 	}
1140 
1141 	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(
1142 		dev->adev, args->va_addr, args->size,
1143 		pdd->drm_priv, (struct kgd_mem **) &mem, &offset,
1144 		flags, false);
1145 
1146 	if (err)
1147 		goto err_unlock;
1148 
1149 	idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1150 	if (idr_handle < 0) {
1151 		err = -EFAULT;
1152 		goto err_free;
1153 	}
1154 
1155 	/* Update the VRAM usage count */
1156 	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
1157 		uint64_t size = args->size;
1158 
1159 		if (flags & KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM)
1160 			size >>= 1;
1161 		atomic64_add(PAGE_ALIGN(size), &pdd->vram_usage);
1162 	}
1163 
1164 	mutex_unlock(&p->mutex);
1165 
1166 	args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1167 	args->mmap_offset = offset;
1168 
1169 	/* MMIO is mapped through kfd device
1170 	 * Generate a kfd mmap offset
1171 	 */
1172 	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1173 		args->mmap_offset = KFD_MMAP_TYPE_MMIO
1174 					| KFD_MMAP_GPU_ID(args->gpu_id);
1175 
1176 	return 0;
1177 
1178 err_free:
1179 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, (struct kgd_mem *)mem,
1180 					       pdd->drm_priv, NULL);
1181 err_unlock:
1182 err_pdd:
1183 err_large_bar:
1184 	mutex_unlock(&p->mutex);
1185 	return err;
1186 }
1187 
1188 static int kfd_ioctl_free_memory_of_gpu(struct file *filep,
1189 					struct kfd_process *p, void *data)
1190 {
1191 	struct kfd_ioctl_free_memory_of_gpu_args *args = data;
1192 	struct kfd_process_device *pdd;
1193 	void *mem;
1194 	int ret;
1195 	uint64_t size = 0;
1196 
1197 	mutex_lock(&p->mutex);
1198 	/*
1199 	 * Safeguard to prevent user space from freeing signal BO.
1200 	 * It will be freed at process termination.
1201 	 */
1202 	if (p->signal_handle && (p->signal_handle == args->handle)) {
1203 		pr_err("Free signal BO is not allowed\n");
1204 		ret = -EPERM;
1205 		goto err_unlock;
1206 	}
1207 
1208 	pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1209 	if (!pdd) {
1210 		pr_err("Process device data doesn't exist\n");
1211 		ret = -EINVAL;
1212 		goto err_pdd;
1213 	}
1214 
1215 	mem = kfd_process_device_translate_handle(
1216 		pdd, GET_IDR_HANDLE(args->handle));
1217 	if (!mem) {
1218 		ret = -EINVAL;
1219 		goto err_unlock;
1220 	}
1221 
1222 	ret = amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev,
1223 				(struct kgd_mem *)mem, pdd->drm_priv, &size);
1224 
1225 	/* If freeing the buffer failed, leave the handle in place for
1226 	 * clean-up during process tear-down.
1227 	 */
1228 	if (!ret)
1229 		kfd_process_device_remove_obj_handle(
1230 			pdd, GET_IDR_HANDLE(args->handle));
1231 
1232 	atomic64_sub(size, &pdd->vram_usage);
1233 
1234 err_unlock:
1235 err_pdd:
1236 	mutex_unlock(&p->mutex);
1237 	return ret;
1238 }
1239 
1240 static int kfd_ioctl_map_memory_to_gpu(struct file *filep,
1241 					struct kfd_process *p, void *data)
1242 {
1243 	struct kfd_ioctl_map_memory_to_gpu_args *args = data;
1244 	struct kfd_process_device *pdd, *peer_pdd;
1245 	void *mem;
1246 	struct kfd_node *dev;
1247 	long err = 0;
1248 	int i;
1249 	uint32_t *devices_arr = NULL;
1250 
1251 	if (!args->n_devices) {
1252 		pr_debug("Device IDs array empty\n");
1253 		return -EINVAL;
1254 	}
1255 	if (args->n_success > args->n_devices) {
1256 		pr_debug("n_success exceeds n_devices\n");
1257 		return -EINVAL;
1258 	}
1259 
1260 	devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1261 				    GFP_KERNEL);
1262 	if (!devices_arr)
1263 		return -ENOMEM;
1264 
1265 	err = copy_from_user(devices_arr,
1266 			     (void __user *)args->device_ids_array_ptr,
1267 			     args->n_devices * sizeof(*devices_arr));
1268 	if (err != 0) {
1269 		err = -EFAULT;
1270 		goto copy_from_user_failed;
1271 	}
1272 
1273 	mutex_lock(&p->mutex);
1274 	pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1275 	if (!pdd) {
1276 		err = -EINVAL;
1277 		goto get_process_device_data_failed;
1278 	}
1279 	dev = pdd->dev;
1280 
1281 	pdd = kfd_bind_process_to_device(dev, p);
1282 	if (IS_ERR(pdd)) {
1283 		err = PTR_ERR(pdd);
1284 		goto bind_process_to_device_failed;
1285 	}
1286 
1287 	mem = kfd_process_device_translate_handle(pdd,
1288 						GET_IDR_HANDLE(args->handle));
1289 	if (!mem) {
1290 		err = -ENOMEM;
1291 		goto get_mem_obj_from_handle_failed;
1292 	}
1293 
1294 	for (i = args->n_success; i < args->n_devices; i++) {
1295 		peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1296 		if (!peer_pdd) {
1297 			pr_debug("Getting device by id failed for 0x%x\n",
1298 				 devices_arr[i]);
1299 			err = -EINVAL;
1300 			goto get_mem_obj_from_handle_failed;
1301 		}
1302 
1303 		peer_pdd = kfd_bind_process_to_device(peer_pdd->dev, p);
1304 		if (IS_ERR(peer_pdd)) {
1305 			err = PTR_ERR(peer_pdd);
1306 			goto get_mem_obj_from_handle_failed;
1307 		}
1308 
1309 		err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(
1310 			peer_pdd->dev->adev, (struct kgd_mem *)mem,
1311 			peer_pdd->drm_priv);
1312 		if (err) {
1313 			struct pci_dev *pdev = peer_pdd->dev->adev->pdev;
1314 
1315 			dev_err(dev->adev->dev,
1316 			       "Failed to map peer:%04x:%02x:%02x.%d mem_domain:%d\n",
1317 			       pci_domain_nr(pdev->bus),
1318 			       pdev->bus->number,
1319 			       PCI_SLOT(pdev->devfn),
1320 			       PCI_FUNC(pdev->devfn),
1321 			       ((struct kgd_mem *)mem)->domain);
1322 			goto map_memory_to_gpu_failed;
1323 		}
1324 		args->n_success = i+1;
1325 	}
1326 
1327 	err = amdgpu_amdkfd_gpuvm_sync_memory(dev->adev, (struct kgd_mem *) mem, true);
1328 	if (err) {
1329 		pr_debug("Sync memory failed, wait interrupted by user signal\n");
1330 		goto sync_memory_failed;
1331 	}
1332 
1333 	mutex_unlock(&p->mutex);
1334 
1335 	/* Flush TLBs after waiting for the page table updates to complete */
1336 	for (i = 0; i < args->n_devices; i++) {
1337 		peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1338 		if (WARN_ON_ONCE(!peer_pdd))
1339 			continue;
1340 		kfd_flush_tlb(peer_pdd, TLB_FLUSH_LEGACY);
1341 	}
1342 	kfree(devices_arr);
1343 
1344 	return err;
1345 
1346 get_process_device_data_failed:
1347 bind_process_to_device_failed:
1348 get_mem_obj_from_handle_failed:
1349 map_memory_to_gpu_failed:
1350 sync_memory_failed:
1351 	mutex_unlock(&p->mutex);
1352 copy_from_user_failed:
1353 	kfree(devices_arr);
1354 
1355 	return err;
1356 }
1357 
1358 static int kfd_ioctl_unmap_memory_from_gpu(struct file *filep,
1359 					struct kfd_process *p, void *data)
1360 {
1361 	struct kfd_ioctl_unmap_memory_from_gpu_args *args = data;
1362 	struct kfd_process_device *pdd, *peer_pdd;
1363 	void *mem;
1364 	long err = 0;
1365 	uint32_t *devices_arr = NULL, i;
1366 	bool flush_tlb;
1367 
1368 	if (!args->n_devices) {
1369 		pr_debug("Device IDs array empty\n");
1370 		return -EINVAL;
1371 	}
1372 	if (args->n_success > args->n_devices) {
1373 		pr_debug("n_success exceeds n_devices\n");
1374 		return -EINVAL;
1375 	}
1376 
1377 	devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1378 				    GFP_KERNEL);
1379 	if (!devices_arr)
1380 		return -ENOMEM;
1381 
1382 	err = copy_from_user(devices_arr,
1383 			     (void __user *)args->device_ids_array_ptr,
1384 			     args->n_devices * sizeof(*devices_arr));
1385 	if (err != 0) {
1386 		err = -EFAULT;
1387 		goto copy_from_user_failed;
1388 	}
1389 
1390 	mutex_lock(&p->mutex);
1391 	pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1392 	if (!pdd) {
1393 		err = -EINVAL;
1394 		goto bind_process_to_device_failed;
1395 	}
1396 
1397 	mem = kfd_process_device_translate_handle(pdd,
1398 						GET_IDR_HANDLE(args->handle));
1399 	if (!mem) {
1400 		err = -ENOMEM;
1401 		goto get_mem_obj_from_handle_failed;
1402 	}
1403 
1404 	for (i = args->n_success; i < args->n_devices; i++) {
1405 		peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1406 		if (!peer_pdd) {
1407 			err = -EINVAL;
1408 			goto get_mem_obj_from_handle_failed;
1409 		}
1410 		err = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
1411 			peer_pdd->dev->adev, (struct kgd_mem *)mem, peer_pdd->drm_priv);
1412 		if (err) {
1413 			pr_debug("Failed to unmap from gpu %d/%d\n", i, args->n_devices);
1414 			goto unmap_memory_from_gpu_failed;
1415 		}
1416 		args->n_success = i+1;
1417 	}
1418 
1419 	flush_tlb = kfd_flush_tlb_after_unmap(pdd->dev->kfd);
1420 	if (flush_tlb) {
1421 		err = amdgpu_amdkfd_gpuvm_sync_memory(pdd->dev->adev,
1422 				(struct kgd_mem *) mem, true);
1423 		if (err) {
1424 			pr_debug("Sync memory failed, wait interrupted by user signal\n");
1425 			goto sync_memory_failed;
1426 		}
1427 	}
1428 
1429 	/* Flush TLBs after waiting for the page table updates to complete */
1430 	for (i = 0; i < args->n_devices; i++) {
1431 		peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1432 		if (WARN_ON_ONCE(!peer_pdd))
1433 			continue;
1434 		if (flush_tlb)
1435 			kfd_flush_tlb(peer_pdd, TLB_FLUSH_HEAVYWEIGHT);
1436 
1437 		/* Remove dma mapping after tlb flush to avoid IO_PAGE_FAULT */
1438 		err = amdgpu_amdkfd_gpuvm_dmaunmap_mem(mem, peer_pdd->drm_priv);
1439 		if (err)
1440 			goto sync_memory_failed;
1441 	}
1442 
1443 	mutex_unlock(&p->mutex);
1444 
1445 	kfree(devices_arr);
1446 
1447 	return 0;
1448 
1449 bind_process_to_device_failed:
1450 get_mem_obj_from_handle_failed:
1451 unmap_memory_from_gpu_failed:
1452 sync_memory_failed:
1453 	mutex_unlock(&p->mutex);
1454 copy_from_user_failed:
1455 	kfree(devices_arr);
1456 	return err;
1457 }
1458 
1459 static int kfd_ioctl_alloc_queue_gws(struct file *filep,
1460 		struct kfd_process *p, void *data)
1461 {
1462 	int retval;
1463 	struct kfd_ioctl_alloc_queue_gws_args *args = data;
1464 	struct queue *q;
1465 	struct kfd_node *dev;
1466 
1467 	mutex_lock(&p->mutex);
1468 	q = pqm_get_user_queue(&p->pqm, args->queue_id);
1469 
1470 	if (q) {
1471 		dev = q->device;
1472 	} else {
1473 		retval = -EINVAL;
1474 		goto out_unlock;
1475 	}
1476 
1477 	if (!dev->gws) {
1478 		retval = -ENODEV;
1479 		goto out_unlock;
1480 	}
1481 
1482 	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
1483 		retval = -ENODEV;
1484 		goto out_unlock;
1485 	}
1486 
1487 	if (p->debug_trap_enabled && (!kfd_dbg_has_gws_support(dev) ||
1488 				      kfd_dbg_has_cwsr_workaround(dev))) {
1489 		retval = -EBUSY;
1490 		goto out_unlock;
1491 	}
1492 
1493 	retval = pqm_set_gws(&p->pqm, args->queue_id, args->num_gws ? dev->gws : NULL);
1494 	mutex_unlock(&p->mutex);
1495 
1496 	args->first_gws = 0;
1497 	return retval;
1498 
1499 out_unlock:
1500 	mutex_unlock(&p->mutex);
1501 	return retval;
1502 }
1503 
1504 static int kfd_ioctl_get_dmabuf_info(struct file *filep,
1505 		struct kfd_process *p, void *data)
1506 {
1507 	struct kfd_ioctl_get_dmabuf_info_args *args = data;
1508 	struct kfd_node *dev = NULL;
1509 	struct amdgpu_device *dmabuf_adev;
1510 	void *metadata_buffer = NULL;
1511 	uint32_t flags;
1512 	int8_t xcp_id;
1513 	unsigned int i;
1514 	int r;
1515 
1516 	/* Find a KFD GPU device that supports the get_dmabuf_info query */
1517 	for (i = 0; kfd_topology_enum_kfd_devices(i, &dev) == 0; i++)
1518 		if (dev && !kfd_devcgroup_check_permission(dev))
1519 			break;
1520 	if (!dev)
1521 		return -EINVAL;
1522 
1523 	if (args->metadata_ptr) {
1524 		metadata_buffer = kzalloc(args->metadata_size, GFP_KERNEL);
1525 		if (!metadata_buffer)
1526 			return -ENOMEM;
1527 	}
1528 
1529 	/* Get dmabuf info from KGD */
1530 	r = amdgpu_amdkfd_get_dmabuf_info(dev->adev, args->dmabuf_fd,
1531 					  &dmabuf_adev, &args->size,
1532 					  metadata_buffer, args->metadata_size,
1533 					  &args->metadata_size, &flags, &xcp_id);
1534 	if (r)
1535 		goto exit;
1536 
1537 	if (xcp_id >= 0)
1538 		args->gpu_id = dmabuf_adev->kfd.dev->nodes[xcp_id]->id;
1539 	else
1540 		args->gpu_id = dev->id;
1541 	args->flags = flags;
1542 
1543 	/* Copy metadata buffer to user mode */
1544 	if (metadata_buffer) {
1545 		r = copy_to_user((void __user *)args->metadata_ptr,
1546 				 metadata_buffer, args->metadata_size);
1547 		if (r != 0)
1548 			r = -EFAULT;
1549 	}
1550 
1551 exit:
1552 	kfree(metadata_buffer);
1553 
1554 	return r;
1555 }
1556 
1557 static int kfd_ioctl_import_dmabuf(struct file *filep,
1558 				   struct kfd_process *p, void *data)
1559 {
1560 	struct kfd_ioctl_import_dmabuf_args *args = data;
1561 	struct kfd_process_device *pdd;
1562 	int idr_handle;
1563 	uint64_t size;
1564 	void *mem;
1565 	int r;
1566 
1567 	mutex_lock(&p->mutex);
1568 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
1569 	if (!pdd) {
1570 		r = -EINVAL;
1571 		goto err_unlock;
1572 	}
1573 
1574 	pdd = kfd_bind_process_to_device(pdd->dev, p);
1575 	if (IS_ERR(pdd)) {
1576 		r = PTR_ERR(pdd);
1577 		goto err_unlock;
1578 	}
1579 
1580 	r = amdgpu_amdkfd_gpuvm_import_dmabuf_fd(pdd->dev->adev, args->dmabuf_fd,
1581 						 args->va_addr, pdd->drm_priv,
1582 						 (struct kgd_mem **)&mem, &size,
1583 						 NULL);
1584 	if (r)
1585 		goto err_unlock;
1586 
1587 	idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1588 	if (idr_handle < 0) {
1589 		r = -EFAULT;
1590 		goto err_free;
1591 	}
1592 
1593 	mutex_unlock(&p->mutex);
1594 
1595 	args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1596 
1597 	return 0;
1598 
1599 err_free:
1600 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, (struct kgd_mem *)mem,
1601 					       pdd->drm_priv, NULL);
1602 err_unlock:
1603 	mutex_unlock(&p->mutex);
1604 	return r;
1605 }
1606 
1607 static int kfd_ioctl_export_dmabuf(struct file *filep,
1608 				   struct kfd_process *p, void *data)
1609 {
1610 	struct kfd_ioctl_export_dmabuf_args *args = data;
1611 	struct kfd_process_device *pdd;
1612 	struct dma_buf *dmabuf;
1613 	struct kfd_node *dev;
1614 	void *mem;
1615 	int ret = 0;
1616 
1617 	dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1618 	if (!dev)
1619 		return -EINVAL;
1620 
1621 	mutex_lock(&p->mutex);
1622 
1623 	pdd = kfd_get_process_device_data(dev, p);
1624 	if (!pdd) {
1625 		ret = -EINVAL;
1626 		goto err_unlock;
1627 	}
1628 
1629 	mem = kfd_process_device_translate_handle(pdd,
1630 						GET_IDR_HANDLE(args->handle));
1631 	if (!mem) {
1632 		ret = -EINVAL;
1633 		goto err_unlock;
1634 	}
1635 
1636 	ret = amdgpu_amdkfd_gpuvm_export_dmabuf(mem, &dmabuf);
1637 	mutex_unlock(&p->mutex);
1638 	if (ret)
1639 		goto err_out;
1640 
1641 	ret = dma_buf_fd(dmabuf, args->flags);
1642 	if (ret < 0) {
1643 		dma_buf_put(dmabuf);
1644 		goto err_out;
1645 	}
1646 	/* dma_buf_fd assigns the reference count to the fd, no need to
1647 	 * put the reference here.
1648 	 */
1649 	args->dmabuf_fd = ret;
1650 
1651 	return 0;
1652 
1653 err_unlock:
1654 	mutex_unlock(&p->mutex);
1655 err_out:
1656 	return ret;
1657 }
1658 
1659 /* Handle requests for watching SMI events */
1660 static int kfd_ioctl_smi_events(struct file *filep,
1661 				struct kfd_process *p, void *data)
1662 {
1663 	struct kfd_ioctl_smi_events_args *args = data;
1664 	struct kfd_process_device *pdd;
1665 
1666 	mutex_lock(&p->mutex);
1667 
1668 	pdd = kfd_process_device_data_by_id(p, args->gpuid);
1669 	mutex_unlock(&p->mutex);
1670 	if (!pdd)
1671 		return -EINVAL;
1672 
1673 	return kfd_smi_event_open(pdd->dev, &args->anon_fd);
1674 }
1675 
1676 #if IS_ENABLED(CONFIG_HSA_AMD_SVM)
1677 
1678 static int kfd_ioctl_set_xnack_mode(struct file *filep,
1679 				    struct kfd_process *p, void *data)
1680 {
1681 	struct kfd_ioctl_set_xnack_mode_args *args = data;
1682 	int r = 0;
1683 
1684 	mutex_lock(&p->mutex);
1685 	if (args->xnack_enabled >= 0) {
1686 		if (!list_empty(&p->pqm.queues)) {
1687 			pr_debug("Process has user queues running\n");
1688 			r = -EBUSY;
1689 			goto out_unlock;
1690 		}
1691 
1692 		if (p->xnack_enabled == args->xnack_enabled)
1693 			goto out_unlock;
1694 
1695 		if (args->xnack_enabled && !kfd_process_xnack_mode(p, true)) {
1696 			r = -EPERM;
1697 			goto out_unlock;
1698 		}
1699 
1700 		r = svm_range_switch_xnack_reserve_mem(p, args->xnack_enabled);
1701 	} else {
1702 		args->xnack_enabled = p->xnack_enabled;
1703 	}
1704 
1705 out_unlock:
1706 	mutex_unlock(&p->mutex);
1707 
1708 	return r;
1709 }
1710 
1711 static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1712 {
1713 	struct kfd_ioctl_svm_args *args = data;
1714 	int r = 0;
1715 
1716 	pr_debug("start 0x%llx size 0x%llx op 0x%x nattr 0x%x\n",
1717 		 args->start_addr, args->size, args->op, args->nattr);
1718 
1719 	if ((args->start_addr & ~PAGE_MASK) || (args->size & ~PAGE_MASK))
1720 		return -EINVAL;
1721 	if (!args->start_addr || !args->size)
1722 		return -EINVAL;
1723 
1724 	r = svm_ioctl(p, args->op, args->start_addr, args->size, args->nattr,
1725 		      args->attrs);
1726 
1727 	return r;
1728 }
1729 #else
1730 static int kfd_ioctl_set_xnack_mode(struct file *filep,
1731 				    struct kfd_process *p, void *data)
1732 {
1733 	return -EPERM;
1734 }
1735 static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1736 {
1737 	return -EPERM;
1738 }
1739 #endif
1740 
1741 static int criu_checkpoint_process(struct kfd_process *p,
1742 			     uint8_t __user *user_priv_data,
1743 			     uint64_t *priv_offset)
1744 {
1745 	struct kfd_criu_process_priv_data process_priv;
1746 	int ret;
1747 
1748 	memset(&process_priv, 0, sizeof(process_priv));
1749 
1750 	process_priv.version = KFD_CRIU_PRIV_VERSION;
1751 	/* For CR, we don't consider negative xnack mode which is used for
1752 	 * querying without changing it, here 0 simply means disabled and 1
1753 	 * means enabled so retry for finding a valid PTE.
1754 	 */
1755 	process_priv.xnack_mode = p->xnack_enabled ? 1 : 0;
1756 
1757 	ret = copy_to_user(user_priv_data + *priv_offset,
1758 				&process_priv, sizeof(process_priv));
1759 
1760 	if (ret) {
1761 		pr_err("Failed to copy process information to user\n");
1762 		ret = -EFAULT;
1763 	}
1764 
1765 	*priv_offset += sizeof(process_priv);
1766 	return ret;
1767 }
1768 
1769 static int criu_checkpoint_devices(struct kfd_process *p,
1770 			     uint32_t num_devices,
1771 			     uint8_t __user *user_addr,
1772 			     uint8_t __user *user_priv_data,
1773 			     uint64_t *priv_offset)
1774 {
1775 	struct kfd_criu_device_priv_data *device_priv = NULL;
1776 	struct kfd_criu_device_bucket *device_buckets = NULL;
1777 	int ret = 0, i;
1778 
1779 	device_buckets = kvzalloc(num_devices * sizeof(*device_buckets), GFP_KERNEL);
1780 	if (!device_buckets) {
1781 		ret = -ENOMEM;
1782 		goto exit;
1783 	}
1784 
1785 	device_priv = kvzalloc(num_devices * sizeof(*device_priv), GFP_KERNEL);
1786 	if (!device_priv) {
1787 		ret = -ENOMEM;
1788 		goto exit;
1789 	}
1790 
1791 	for (i = 0; i < num_devices; i++) {
1792 		struct kfd_process_device *pdd = p->pdds[i];
1793 
1794 		device_buckets[i].user_gpu_id = pdd->user_gpu_id;
1795 		device_buckets[i].actual_gpu_id = pdd->dev->id;
1796 
1797 		/*
1798 		 * priv_data does not contain useful information for now and is reserved for
1799 		 * future use, so we do not set its contents.
1800 		 */
1801 	}
1802 
1803 	ret = copy_to_user(user_addr, device_buckets, num_devices * sizeof(*device_buckets));
1804 	if (ret) {
1805 		pr_err("Failed to copy device information to user\n");
1806 		ret = -EFAULT;
1807 		goto exit;
1808 	}
1809 
1810 	ret = copy_to_user(user_priv_data + *priv_offset,
1811 			   device_priv,
1812 			   num_devices * sizeof(*device_priv));
1813 	if (ret) {
1814 		pr_err("Failed to copy device information to user\n");
1815 		ret = -EFAULT;
1816 	}
1817 	*priv_offset += num_devices * sizeof(*device_priv);
1818 
1819 exit:
1820 	kvfree(device_buckets);
1821 	kvfree(device_priv);
1822 	return ret;
1823 }
1824 
1825 static uint32_t get_process_num_bos(struct kfd_process *p)
1826 {
1827 	uint32_t num_of_bos = 0;
1828 	int i;
1829 
1830 	/* Run over all PDDs of the process */
1831 	for (i = 0; i < p->n_pdds; i++) {
1832 		struct kfd_process_device *pdd = p->pdds[i];
1833 		void *mem;
1834 		int id;
1835 
1836 		idr_for_each_entry(&pdd->alloc_idr, mem, id) {
1837 			struct kgd_mem *kgd_mem = (struct kgd_mem *)mem;
1838 
1839 			if (!kgd_mem->va || kgd_mem->va > pdd->gpuvm_base)
1840 				num_of_bos++;
1841 		}
1842 	}
1843 	return num_of_bos;
1844 }
1845 
1846 static int criu_get_prime_handle(struct kgd_mem *mem,
1847 				 int flags, u32 *shared_fd,
1848 				 struct file **file)
1849 {
1850 	struct dma_buf *dmabuf;
1851 	int ret;
1852 
1853 	ret = amdgpu_amdkfd_gpuvm_export_dmabuf(mem, &dmabuf);
1854 	if (ret) {
1855 		pr_err("dmabuf export failed for the BO\n");
1856 		return ret;
1857 	}
1858 
1859 	ret = get_unused_fd_flags(flags);
1860 	if (ret < 0) {
1861 		pr_err("dmabuf create fd failed, ret:%d\n", ret);
1862 		goto out_free_dmabuf;
1863 	}
1864 
1865 	*shared_fd = ret;
1866 	*file = dmabuf->file;
1867 	return 0;
1868 
1869 out_free_dmabuf:
1870 	dma_buf_put(dmabuf);
1871 	return ret;
1872 }
1873 
1874 static void commit_files(struct file **files,
1875 			 struct kfd_criu_bo_bucket *bo_buckets,
1876 			 unsigned int count,
1877 			 int err)
1878 {
1879 	while (count--) {
1880 		struct file *file = files[count];
1881 
1882 		if (!file)
1883 			continue;
1884 		if (err) {
1885 			fput(file);
1886 			put_unused_fd(bo_buckets[count].dmabuf_fd);
1887 		} else {
1888 			fd_install(bo_buckets[count].dmabuf_fd, file);
1889 		}
1890 	}
1891 }
1892 
1893 static int criu_checkpoint_bos(struct kfd_process *p,
1894 			       uint32_t num_bos,
1895 			       uint8_t __user *user_bos,
1896 			       uint8_t __user *user_priv_data,
1897 			       uint64_t *priv_offset)
1898 {
1899 	struct kfd_criu_bo_bucket *bo_buckets;
1900 	struct kfd_criu_bo_priv_data *bo_privs;
1901 	struct file **files = NULL;
1902 	int ret = 0, pdd_index, bo_index = 0, id;
1903 	void *mem;
1904 
1905 	bo_buckets = kvzalloc(num_bos * sizeof(*bo_buckets), GFP_KERNEL);
1906 	if (!bo_buckets)
1907 		return -ENOMEM;
1908 
1909 	bo_privs = kvzalloc(num_bos * sizeof(*bo_privs), GFP_KERNEL);
1910 	if (!bo_privs) {
1911 		ret = -ENOMEM;
1912 		goto exit;
1913 	}
1914 
1915 	files = kvzalloc(num_bos * sizeof(struct file *), GFP_KERNEL);
1916 	if (!files) {
1917 		ret = -ENOMEM;
1918 		goto exit;
1919 	}
1920 
1921 	for (pdd_index = 0; pdd_index < p->n_pdds; pdd_index++) {
1922 		struct kfd_process_device *pdd = p->pdds[pdd_index];
1923 		struct amdgpu_bo *dumper_bo;
1924 		struct kgd_mem *kgd_mem;
1925 
1926 		idr_for_each_entry(&pdd->alloc_idr, mem, id) {
1927 			struct kfd_criu_bo_bucket *bo_bucket;
1928 			struct kfd_criu_bo_priv_data *bo_priv;
1929 			int i, dev_idx = 0;
1930 
1931 			kgd_mem = (struct kgd_mem *)mem;
1932 			dumper_bo = kgd_mem->bo;
1933 
1934 			/* Skip checkpointing BOs that are used for Trap handler
1935 			 * code and state. Currently, these BOs have a VA that
1936 			 * is less GPUVM Base
1937 			 */
1938 			if (kgd_mem->va && kgd_mem->va <= pdd->gpuvm_base)
1939 				continue;
1940 
1941 			bo_bucket = &bo_buckets[bo_index];
1942 			bo_priv = &bo_privs[bo_index];
1943 
1944 			bo_bucket->gpu_id = pdd->user_gpu_id;
1945 			bo_bucket->addr = (uint64_t)kgd_mem->va;
1946 			bo_bucket->size = amdgpu_bo_size(dumper_bo);
1947 			bo_bucket->alloc_flags = (uint32_t)kgd_mem->alloc_flags;
1948 			bo_priv->idr_handle = id;
1949 
1950 			if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
1951 				ret = amdgpu_ttm_tt_get_userptr(&dumper_bo->tbo,
1952 								&bo_priv->user_addr);
1953 				if (ret) {
1954 					pr_err("Failed to obtain user address for user-pointer bo\n");
1955 					goto exit;
1956 				}
1957 			}
1958 			if (bo_bucket->alloc_flags
1959 			    & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) {
1960 				ret = criu_get_prime_handle(kgd_mem,
1961 						bo_bucket->alloc_flags &
1962 						KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? DRM_RDWR : 0,
1963 						&bo_bucket->dmabuf_fd, &files[bo_index]);
1964 				if (ret)
1965 					goto exit;
1966 			} else {
1967 				bo_bucket->dmabuf_fd = KFD_INVALID_FD;
1968 			}
1969 
1970 			if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL)
1971 				bo_bucket->offset = KFD_MMAP_TYPE_DOORBELL |
1972 					KFD_MMAP_GPU_ID(pdd->dev->id);
1973 			else if (bo_bucket->alloc_flags &
1974 				KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1975 				bo_bucket->offset = KFD_MMAP_TYPE_MMIO |
1976 					KFD_MMAP_GPU_ID(pdd->dev->id);
1977 			else
1978 				bo_bucket->offset = amdgpu_bo_mmap_offset(dumper_bo);
1979 
1980 			for (i = 0; i < p->n_pdds; i++) {
1981 				if (amdgpu_amdkfd_bo_mapped_to_dev(p->pdds[i]->drm_priv, kgd_mem))
1982 					bo_priv->mapped_gpuids[dev_idx++] = p->pdds[i]->user_gpu_id;
1983 			}
1984 
1985 			pr_debug("bo_size = 0x%llx, bo_addr = 0x%llx bo_offset = 0x%llx\n"
1986 					"gpu_id = 0x%x alloc_flags = 0x%x idr_handle = 0x%x",
1987 					bo_bucket->size,
1988 					bo_bucket->addr,
1989 					bo_bucket->offset,
1990 					bo_bucket->gpu_id,
1991 					bo_bucket->alloc_flags,
1992 					bo_priv->idr_handle);
1993 			bo_index++;
1994 		}
1995 	}
1996 
1997 	ret = copy_to_user(user_bos, bo_buckets, num_bos * sizeof(*bo_buckets));
1998 	if (ret) {
1999 		pr_err("Failed to copy BO information to user\n");
2000 		ret = -EFAULT;
2001 		goto exit;
2002 	}
2003 
2004 	ret = copy_to_user(user_priv_data + *priv_offset, bo_privs, num_bos * sizeof(*bo_privs));
2005 	if (ret) {
2006 		pr_err("Failed to copy BO priv information to user\n");
2007 		ret = -EFAULT;
2008 		goto exit;
2009 	}
2010 
2011 	*priv_offset += num_bos * sizeof(*bo_privs);
2012 
2013 exit:
2014 	commit_files(files, bo_buckets, bo_index, ret);
2015 	kvfree(files);
2016 	kvfree(bo_buckets);
2017 	kvfree(bo_privs);
2018 	return ret;
2019 }
2020 
2021 static int criu_get_process_object_info(struct kfd_process *p,
2022 					uint32_t *num_devices,
2023 					uint32_t *num_bos,
2024 					uint32_t *num_objects,
2025 					uint64_t *objs_priv_size)
2026 {
2027 	uint64_t queues_priv_data_size, svm_priv_data_size, priv_size;
2028 	uint32_t num_queues, num_events, num_svm_ranges;
2029 	int ret;
2030 
2031 	*num_devices = p->n_pdds;
2032 	*num_bos = get_process_num_bos(p);
2033 
2034 	ret = kfd_process_get_queue_info(p, &num_queues, &queues_priv_data_size);
2035 	if (ret)
2036 		return ret;
2037 
2038 	num_events = kfd_get_num_events(p);
2039 
2040 	svm_range_get_info(p, &num_svm_ranges, &svm_priv_data_size);
2041 
2042 	*num_objects = num_queues + num_events + num_svm_ranges;
2043 
2044 	if (objs_priv_size) {
2045 		priv_size = sizeof(struct kfd_criu_process_priv_data);
2046 		priv_size += *num_devices * sizeof(struct kfd_criu_device_priv_data);
2047 		priv_size += *num_bos * sizeof(struct kfd_criu_bo_priv_data);
2048 		priv_size += queues_priv_data_size;
2049 		priv_size += num_events * sizeof(struct kfd_criu_event_priv_data);
2050 		priv_size += svm_priv_data_size;
2051 		*objs_priv_size = priv_size;
2052 	}
2053 	return 0;
2054 }
2055 
2056 static int criu_checkpoint(struct file *filep,
2057 			   struct kfd_process *p,
2058 			   struct kfd_ioctl_criu_args *args)
2059 {
2060 	int ret;
2061 	uint32_t num_devices, num_bos, num_objects;
2062 	uint64_t priv_size, priv_offset = 0, bo_priv_offset;
2063 
2064 	if (!args->devices || !args->bos || !args->priv_data)
2065 		return -EINVAL;
2066 
2067 	mutex_lock(&p->mutex);
2068 
2069 	if (!p->n_pdds) {
2070 		pr_err("No pdd for given process\n");
2071 		ret = -ENODEV;
2072 		goto exit_unlock;
2073 	}
2074 
2075 	/* Confirm all process queues are evicted */
2076 	if (!p->queues_paused) {
2077 		pr_err("Cannot dump process when queues are not in evicted state\n");
2078 		/* CRIU plugin did not call op PROCESS_INFO before checkpointing */
2079 		ret = -EINVAL;
2080 		goto exit_unlock;
2081 	}
2082 
2083 	ret = criu_get_process_object_info(p, &num_devices, &num_bos, &num_objects, &priv_size);
2084 	if (ret)
2085 		goto exit_unlock;
2086 
2087 	if (num_devices != args->num_devices ||
2088 	    num_bos != args->num_bos ||
2089 	    num_objects != args->num_objects ||
2090 	    priv_size != args->priv_data_size) {
2091 
2092 		ret = -EINVAL;
2093 		goto exit_unlock;
2094 	}
2095 
2096 	/* each function will store private data inside priv_data and adjust priv_offset */
2097 	ret = criu_checkpoint_process(p, (uint8_t __user *)args->priv_data, &priv_offset);
2098 	if (ret)
2099 		goto exit_unlock;
2100 
2101 	ret = criu_checkpoint_devices(p, num_devices, (uint8_t __user *)args->devices,
2102 				(uint8_t __user *)args->priv_data, &priv_offset);
2103 	if (ret)
2104 		goto exit_unlock;
2105 
2106 	/* Leave room for BOs in the private data. They need to be restored
2107 	 * before events, but we checkpoint them last to simplify the error
2108 	 * handling.
2109 	 */
2110 	bo_priv_offset = priv_offset;
2111 	priv_offset += num_bos * sizeof(struct kfd_criu_bo_priv_data);
2112 
2113 	if (num_objects) {
2114 		ret = kfd_criu_checkpoint_queues(p, (uint8_t __user *)args->priv_data,
2115 						 &priv_offset);
2116 		if (ret)
2117 			goto exit_unlock;
2118 
2119 		ret = kfd_criu_checkpoint_events(p, (uint8_t __user *)args->priv_data,
2120 						 &priv_offset);
2121 		if (ret)
2122 			goto exit_unlock;
2123 
2124 		ret = kfd_criu_checkpoint_svm(p, (uint8_t __user *)args->priv_data, &priv_offset);
2125 		if (ret)
2126 			goto exit_unlock;
2127 	}
2128 
2129 	/* This must be the last thing in this function that can fail.
2130 	 * Otherwise we leak dmabuf file descriptors.
2131 	 */
2132 	ret = criu_checkpoint_bos(p, num_bos, (uint8_t __user *)args->bos,
2133 			   (uint8_t __user *)args->priv_data, &bo_priv_offset);
2134 
2135 exit_unlock:
2136 	mutex_unlock(&p->mutex);
2137 	if (ret)
2138 		pr_err("Failed to dump CRIU ret:%d\n", ret);
2139 	else
2140 		pr_debug("CRIU dump ret:%d\n", ret);
2141 
2142 	return ret;
2143 }
2144 
2145 static int criu_restore_process(struct kfd_process *p,
2146 				struct kfd_ioctl_criu_args *args,
2147 				uint64_t *priv_offset,
2148 				uint64_t max_priv_data_size)
2149 {
2150 	int ret = 0;
2151 	struct kfd_criu_process_priv_data process_priv;
2152 
2153 	if (*priv_offset + sizeof(process_priv) > max_priv_data_size)
2154 		return -EINVAL;
2155 
2156 	ret = copy_from_user(&process_priv,
2157 				(void __user *)(args->priv_data + *priv_offset),
2158 				sizeof(process_priv));
2159 	if (ret) {
2160 		pr_err("Failed to copy process private information from user\n");
2161 		ret = -EFAULT;
2162 		goto exit;
2163 	}
2164 	*priv_offset += sizeof(process_priv);
2165 
2166 	if (process_priv.version != KFD_CRIU_PRIV_VERSION) {
2167 		pr_err("Invalid CRIU API version (checkpointed:%d current:%d)\n",
2168 			process_priv.version, KFD_CRIU_PRIV_VERSION);
2169 		return -EINVAL;
2170 	}
2171 
2172 	pr_debug("Setting XNACK mode\n");
2173 	if (process_priv.xnack_mode && !kfd_process_xnack_mode(p, true)) {
2174 		pr_err("xnack mode cannot be set\n");
2175 		ret = -EPERM;
2176 		goto exit;
2177 	} else {
2178 		pr_debug("set xnack mode: %d\n", process_priv.xnack_mode);
2179 		p->xnack_enabled = process_priv.xnack_mode;
2180 	}
2181 
2182 exit:
2183 	return ret;
2184 }
2185 
2186 static int criu_restore_devices(struct kfd_process *p,
2187 				struct kfd_ioctl_criu_args *args,
2188 				uint64_t *priv_offset,
2189 				uint64_t max_priv_data_size)
2190 {
2191 	struct kfd_criu_device_bucket *device_buckets;
2192 	struct kfd_criu_device_priv_data *device_privs;
2193 	int ret = 0;
2194 	uint32_t i;
2195 
2196 	if (args->num_devices != p->n_pdds)
2197 		return -EINVAL;
2198 
2199 	if (*priv_offset + (args->num_devices * sizeof(*device_privs)) > max_priv_data_size)
2200 		return -EINVAL;
2201 
2202 	device_buckets = kmalloc_array(args->num_devices, sizeof(*device_buckets), GFP_KERNEL);
2203 	if (!device_buckets)
2204 		return -ENOMEM;
2205 
2206 	ret = copy_from_user(device_buckets, (void __user *)args->devices,
2207 				args->num_devices * sizeof(*device_buckets));
2208 	if (ret) {
2209 		pr_err("Failed to copy devices buckets from user\n");
2210 		ret = -EFAULT;
2211 		goto exit;
2212 	}
2213 
2214 	for (i = 0; i < args->num_devices; i++) {
2215 		struct kfd_node *dev;
2216 		struct kfd_process_device *pdd;
2217 		struct file *drm_file;
2218 
2219 		/* device private data is not currently used */
2220 
2221 		if (!device_buckets[i].user_gpu_id) {
2222 			pr_err("Invalid user gpu_id\n");
2223 			ret = -EINVAL;
2224 			goto exit;
2225 		}
2226 
2227 		dev = kfd_device_by_id(device_buckets[i].actual_gpu_id);
2228 		if (!dev) {
2229 			pr_err("Failed to find device with gpu_id = %x\n",
2230 				device_buckets[i].actual_gpu_id);
2231 			ret = -EINVAL;
2232 			goto exit;
2233 		}
2234 
2235 		pdd = kfd_get_process_device_data(dev, p);
2236 		if (!pdd) {
2237 			pr_err("Failed to get pdd for gpu_id = %x\n",
2238 					device_buckets[i].actual_gpu_id);
2239 			ret = -EINVAL;
2240 			goto exit;
2241 		}
2242 		pdd->user_gpu_id = device_buckets[i].user_gpu_id;
2243 
2244 		drm_file = fget(device_buckets[i].drm_fd);
2245 		if (!drm_file) {
2246 			pr_err("Invalid render node file descriptor sent from plugin (%d)\n",
2247 				device_buckets[i].drm_fd);
2248 			ret = -EINVAL;
2249 			goto exit;
2250 		}
2251 
2252 		if (pdd->drm_file) {
2253 			ret = -EINVAL;
2254 			goto exit;
2255 		}
2256 
2257 		/* create the vm using render nodes for kfd pdd */
2258 		if (kfd_process_device_init_vm(pdd, drm_file)) {
2259 			pr_err("could not init vm for given pdd\n");
2260 			/* On success, the PDD keeps the drm_file reference */
2261 			fput(drm_file);
2262 			ret = -EINVAL;
2263 			goto exit;
2264 		}
2265 		/*
2266 		 * pdd now already has the vm bound to render node so below api won't create a new
2267 		 * exclusive kfd mapping but use existing one with renderDXXX but is still needed
2268 		 * for iommu v2 binding  and runtime pm.
2269 		 */
2270 		pdd = kfd_bind_process_to_device(dev, p);
2271 		if (IS_ERR(pdd)) {
2272 			ret = PTR_ERR(pdd);
2273 			goto exit;
2274 		}
2275 
2276 		if (!pdd->qpd.proc_doorbells) {
2277 			ret = kfd_alloc_process_doorbells(dev->kfd, pdd);
2278 			if (ret)
2279 				goto exit;
2280 		}
2281 	}
2282 
2283 	/*
2284 	 * We are not copying device private data from user as we are not using the data for now,
2285 	 * but we still adjust for its private data.
2286 	 */
2287 	*priv_offset += args->num_devices * sizeof(*device_privs);
2288 
2289 exit:
2290 	kfree(device_buckets);
2291 	return ret;
2292 }
2293 
2294 static int criu_restore_memory_of_gpu(struct kfd_process_device *pdd,
2295 				      struct kfd_criu_bo_bucket *bo_bucket,
2296 				      struct kfd_criu_bo_priv_data *bo_priv,
2297 				      struct kgd_mem **kgd_mem)
2298 {
2299 	int idr_handle;
2300 	int ret;
2301 	const bool criu_resume = true;
2302 	u64 offset;
2303 
2304 	if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
2305 		if (bo_bucket->size !=
2306 				kfd_doorbell_process_slice(pdd->dev->kfd))
2307 			return -EINVAL;
2308 
2309 		offset = kfd_get_process_doorbells(pdd);
2310 		if (!offset)
2311 			return -ENOMEM;
2312 	} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
2313 		/* MMIO BOs need remapped bus address */
2314 		if (bo_bucket->size != PAGE_SIZE) {
2315 			pr_err("Invalid page size\n");
2316 			return -EINVAL;
2317 		}
2318 		offset = pdd->dev->adev->rmmio_remap.bus_addr;
2319 		if (!offset || (PAGE_SIZE > 4096)) {
2320 			pr_err("amdgpu_amdkfd_get_mmio_remap_phys_addr failed\n");
2321 			return -ENOMEM;
2322 		}
2323 	} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
2324 		offset = bo_priv->user_addr;
2325 	}
2326 	/* Create the BO */
2327 	ret = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(pdd->dev->adev, bo_bucket->addr,
2328 						      bo_bucket->size, pdd->drm_priv, kgd_mem,
2329 						      &offset, bo_bucket->alloc_flags, criu_resume);
2330 	if (ret) {
2331 		pr_err("Could not create the BO\n");
2332 		return ret;
2333 	}
2334 	pr_debug("New BO created: size:0x%llx addr:0x%llx offset:0x%llx\n",
2335 		 bo_bucket->size, bo_bucket->addr, offset);
2336 
2337 	/* Restore previous IDR handle */
2338 	pr_debug("Restoring old IDR handle for the BO");
2339 	idr_handle = idr_alloc(&pdd->alloc_idr, *kgd_mem, bo_priv->idr_handle,
2340 			       bo_priv->idr_handle + 1, GFP_KERNEL);
2341 
2342 	if (idr_handle < 0) {
2343 		pr_err("Could not allocate idr\n");
2344 		amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, *kgd_mem, pdd->drm_priv,
2345 						       NULL);
2346 		return -ENOMEM;
2347 	}
2348 
2349 	if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL)
2350 		bo_bucket->restored_offset = KFD_MMAP_TYPE_DOORBELL | KFD_MMAP_GPU_ID(pdd->dev->id);
2351 	if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
2352 		bo_bucket->restored_offset = KFD_MMAP_TYPE_MMIO | KFD_MMAP_GPU_ID(pdd->dev->id);
2353 	} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) {
2354 		bo_bucket->restored_offset = offset;
2355 	} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
2356 		bo_bucket->restored_offset = offset;
2357 		/* Update the VRAM usage count */
2358 		atomic64_add(bo_bucket->size, &pdd->vram_usage);
2359 	}
2360 	return 0;
2361 }
2362 
2363 static int criu_restore_bo(struct kfd_process *p,
2364 			   struct kfd_criu_bo_bucket *bo_bucket,
2365 			   struct kfd_criu_bo_priv_data *bo_priv,
2366 			   struct file **file)
2367 {
2368 	struct kfd_process_device *pdd;
2369 	struct kgd_mem *kgd_mem;
2370 	int ret;
2371 	int j;
2372 
2373 	pr_debug("Restoring BO size:0x%llx addr:0x%llx gpu_id:0x%x flags:0x%x idr_handle:0x%x\n",
2374 		 bo_bucket->size, bo_bucket->addr, bo_bucket->gpu_id, bo_bucket->alloc_flags,
2375 		 bo_priv->idr_handle);
2376 
2377 	pdd = kfd_process_device_data_by_id(p, bo_bucket->gpu_id);
2378 	if (!pdd) {
2379 		pr_err("Failed to get pdd\n");
2380 		return -ENODEV;
2381 	}
2382 
2383 	ret = criu_restore_memory_of_gpu(pdd, bo_bucket, bo_priv, &kgd_mem);
2384 	if (ret)
2385 		return ret;
2386 
2387 	/* now map these BOs to GPU/s */
2388 	for (j = 0; j < p->n_pdds; j++) {
2389 		struct kfd_node *peer;
2390 		struct kfd_process_device *peer_pdd;
2391 
2392 		if (!bo_priv->mapped_gpuids[j])
2393 			break;
2394 
2395 		peer_pdd = kfd_process_device_data_by_id(p, bo_priv->mapped_gpuids[j]);
2396 		if (!peer_pdd)
2397 			return -EINVAL;
2398 
2399 		peer = peer_pdd->dev;
2400 
2401 		peer_pdd = kfd_bind_process_to_device(peer, p);
2402 		if (IS_ERR(peer_pdd))
2403 			return PTR_ERR(peer_pdd);
2404 
2405 		ret = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(peer->adev, kgd_mem,
2406 							    peer_pdd->drm_priv);
2407 		if (ret) {
2408 			pr_err("Failed to map to gpu %d/%d\n", j, p->n_pdds);
2409 			return ret;
2410 		}
2411 	}
2412 
2413 	pr_debug("map memory was successful for the BO\n");
2414 	/* create the dmabuf object and export the bo */
2415 	if (bo_bucket->alloc_flags
2416 	    & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) {
2417 		ret = criu_get_prime_handle(kgd_mem, DRM_RDWR,
2418 					    &bo_bucket->dmabuf_fd, file);
2419 		if (ret)
2420 			return ret;
2421 	} else {
2422 		bo_bucket->dmabuf_fd = KFD_INVALID_FD;
2423 	}
2424 
2425 	return 0;
2426 }
2427 
2428 static int criu_restore_bos(struct kfd_process *p,
2429 			    struct kfd_ioctl_criu_args *args,
2430 			    uint64_t *priv_offset,
2431 			    uint64_t max_priv_data_size)
2432 {
2433 	struct kfd_criu_bo_bucket *bo_buckets = NULL;
2434 	struct kfd_criu_bo_priv_data *bo_privs = NULL;
2435 	struct file **files = NULL;
2436 	int ret = 0;
2437 	uint32_t i = 0;
2438 
2439 	if (*priv_offset + (args->num_bos * sizeof(*bo_privs)) > max_priv_data_size)
2440 		return -EINVAL;
2441 
2442 	/* Prevent MMU notifications until stage-4 IOCTL (CRIU_RESUME) is received */
2443 	amdgpu_amdkfd_block_mmu_notifications(p->kgd_process_info);
2444 
2445 	bo_buckets = kvmalloc_array(args->num_bos, sizeof(*bo_buckets), GFP_KERNEL);
2446 	if (!bo_buckets)
2447 		return -ENOMEM;
2448 
2449 	files = kvzalloc(args->num_bos * sizeof(struct file *), GFP_KERNEL);
2450 	if (!files) {
2451 		ret = -ENOMEM;
2452 		goto exit;
2453 	}
2454 
2455 	ret = copy_from_user(bo_buckets, (void __user *)args->bos,
2456 			     args->num_bos * sizeof(*bo_buckets));
2457 	if (ret) {
2458 		pr_err("Failed to copy BOs information from user\n");
2459 		ret = -EFAULT;
2460 		goto exit;
2461 	}
2462 
2463 	bo_privs = kvmalloc_array(args->num_bos, sizeof(*bo_privs), GFP_KERNEL);
2464 	if (!bo_privs) {
2465 		ret = -ENOMEM;
2466 		goto exit;
2467 	}
2468 
2469 	ret = copy_from_user(bo_privs, (void __user *)args->priv_data + *priv_offset,
2470 			     args->num_bos * sizeof(*bo_privs));
2471 	if (ret) {
2472 		pr_err("Failed to copy BOs information from user\n");
2473 		ret = -EFAULT;
2474 		goto exit;
2475 	}
2476 	*priv_offset += args->num_bos * sizeof(*bo_privs);
2477 
2478 	/* Create and map new BOs */
2479 	for (; i < args->num_bos; i++) {
2480 		ret = criu_restore_bo(p, &bo_buckets[i], &bo_privs[i], &files[i]);
2481 		if (ret) {
2482 			pr_debug("Failed to restore BO[%d] ret%d\n", i, ret);
2483 			goto exit;
2484 		}
2485 	} /* done */
2486 
2487 	/* Copy only the buckets back so user can read bo_buckets[N].restored_offset */
2488 	ret = copy_to_user((void __user *)args->bos,
2489 				bo_buckets,
2490 				(args->num_bos * sizeof(*bo_buckets)));
2491 	if (ret)
2492 		ret = -EFAULT;
2493 
2494 exit:
2495 	commit_files(files, bo_buckets, i, ret);
2496 	kvfree(files);
2497 	kvfree(bo_buckets);
2498 	kvfree(bo_privs);
2499 	return ret;
2500 }
2501 
2502 static int criu_restore_objects(struct file *filep,
2503 				struct kfd_process *p,
2504 				struct kfd_ioctl_criu_args *args,
2505 				uint64_t *priv_offset,
2506 				uint64_t max_priv_data_size)
2507 {
2508 	int ret = 0;
2509 	uint32_t i;
2510 
2511 	BUILD_BUG_ON(offsetof(struct kfd_criu_queue_priv_data, object_type));
2512 	BUILD_BUG_ON(offsetof(struct kfd_criu_event_priv_data, object_type));
2513 	BUILD_BUG_ON(offsetof(struct kfd_criu_svm_range_priv_data, object_type));
2514 
2515 	for (i = 0; i < args->num_objects; i++) {
2516 		uint32_t object_type;
2517 
2518 		if (*priv_offset + sizeof(object_type) > max_priv_data_size) {
2519 			pr_err("Invalid private data size\n");
2520 			return -EINVAL;
2521 		}
2522 
2523 		ret = get_user(object_type, (uint32_t __user *)(args->priv_data + *priv_offset));
2524 		if (ret) {
2525 			pr_err("Failed to copy private information from user\n");
2526 			goto exit;
2527 		}
2528 
2529 		switch (object_type) {
2530 		case KFD_CRIU_OBJECT_TYPE_QUEUE:
2531 			ret = kfd_criu_restore_queue(p, (uint8_t __user *)args->priv_data,
2532 						     priv_offset, max_priv_data_size);
2533 			if (ret)
2534 				goto exit;
2535 			break;
2536 		case KFD_CRIU_OBJECT_TYPE_EVENT:
2537 			ret = kfd_criu_restore_event(filep, p, (uint8_t __user *)args->priv_data,
2538 						     priv_offset, max_priv_data_size);
2539 			if (ret)
2540 				goto exit;
2541 			break;
2542 		case KFD_CRIU_OBJECT_TYPE_SVM_RANGE:
2543 			ret = kfd_criu_restore_svm(p, (uint8_t __user *)args->priv_data,
2544 						     priv_offset, max_priv_data_size);
2545 			if (ret)
2546 				goto exit;
2547 			break;
2548 		default:
2549 			pr_err("Invalid object type:%u at index:%d\n", object_type, i);
2550 			ret = -EINVAL;
2551 			goto exit;
2552 		}
2553 	}
2554 exit:
2555 	return ret;
2556 }
2557 
2558 static int criu_restore(struct file *filep,
2559 			struct kfd_process *p,
2560 			struct kfd_ioctl_criu_args *args)
2561 {
2562 	uint64_t priv_offset = 0;
2563 	int ret = 0;
2564 
2565 	pr_debug("CRIU restore (num_devices:%u num_bos:%u num_objects:%u priv_data_size:%llu)\n",
2566 		 args->num_devices, args->num_bos, args->num_objects, args->priv_data_size);
2567 
2568 	if ((args->num_bos > 0 && !args->bos) || !args->devices || !args->priv_data ||
2569 	    !args->priv_data_size || !args->num_devices)
2570 		return -EINVAL;
2571 
2572 	mutex_lock(&p->mutex);
2573 
2574 	/*
2575 	 * Set the process to evicted state to avoid running any new queues before all the memory
2576 	 * mappings are ready.
2577 	 */
2578 	ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_RESTORE);
2579 	if (ret)
2580 		goto exit_unlock;
2581 
2582 	/* Each function will adjust priv_offset based on how many bytes they consumed */
2583 	ret = criu_restore_process(p, args, &priv_offset, args->priv_data_size);
2584 	if (ret)
2585 		goto exit_unlock;
2586 
2587 	ret = criu_restore_devices(p, args, &priv_offset, args->priv_data_size);
2588 	if (ret)
2589 		goto exit_unlock;
2590 
2591 	ret = criu_restore_bos(p, args, &priv_offset, args->priv_data_size);
2592 	if (ret)
2593 		goto exit_unlock;
2594 
2595 	ret = criu_restore_objects(filep, p, args, &priv_offset, args->priv_data_size);
2596 	if (ret)
2597 		goto exit_unlock;
2598 
2599 	if (priv_offset != args->priv_data_size) {
2600 		pr_err("Invalid private data size\n");
2601 		ret = -EINVAL;
2602 	}
2603 
2604 exit_unlock:
2605 	mutex_unlock(&p->mutex);
2606 	if (ret)
2607 		pr_err("Failed to restore CRIU ret:%d\n", ret);
2608 	else
2609 		pr_debug("CRIU restore successful\n");
2610 
2611 	return ret;
2612 }
2613 
2614 static int criu_unpause(struct file *filep,
2615 			struct kfd_process *p,
2616 			struct kfd_ioctl_criu_args *args)
2617 {
2618 	int ret;
2619 
2620 	mutex_lock(&p->mutex);
2621 
2622 	if (!p->queues_paused) {
2623 		mutex_unlock(&p->mutex);
2624 		return -EINVAL;
2625 	}
2626 
2627 	ret = kfd_process_restore_queues(p);
2628 	if (ret)
2629 		pr_err("Failed to unpause queues ret:%d\n", ret);
2630 	else
2631 		p->queues_paused = false;
2632 
2633 	mutex_unlock(&p->mutex);
2634 
2635 	return ret;
2636 }
2637 
2638 static int criu_resume(struct file *filep,
2639 			struct kfd_process *p,
2640 			struct kfd_ioctl_criu_args *args)
2641 {
2642 	struct kfd_process *target = NULL;
2643 	struct pid *pid = NULL;
2644 	int ret = 0;
2645 
2646 	pr_debug("Inside %s, target pid for criu restore: %d\n", __func__,
2647 		 args->pid);
2648 
2649 	pid = find_get_pid(args->pid);
2650 	if (!pid) {
2651 		pr_err("Cannot find pid info for %i\n", args->pid);
2652 		return -ESRCH;
2653 	}
2654 
2655 	pr_debug("calling kfd_lookup_process_by_pid\n");
2656 	target = kfd_lookup_process_by_pid(pid);
2657 
2658 	put_pid(pid);
2659 
2660 	if (!target) {
2661 		pr_debug("Cannot find process info for %i\n", args->pid);
2662 		return -ESRCH;
2663 	}
2664 
2665 	mutex_lock(&target->mutex);
2666 	ret = kfd_criu_resume_svm(target);
2667 	if (ret) {
2668 		pr_err("kfd_criu_resume_svm failed for %i\n", args->pid);
2669 		goto exit;
2670 	}
2671 
2672 	ret =  amdgpu_amdkfd_criu_resume(target->kgd_process_info);
2673 	if (ret)
2674 		pr_err("amdgpu_amdkfd_criu_resume failed for %i\n", args->pid);
2675 
2676 exit:
2677 	mutex_unlock(&target->mutex);
2678 
2679 	kfd_unref_process(target);
2680 	return ret;
2681 }
2682 
2683 static int criu_process_info(struct file *filep,
2684 				struct kfd_process *p,
2685 				struct kfd_ioctl_criu_args *args)
2686 {
2687 	int ret = 0;
2688 
2689 	mutex_lock(&p->mutex);
2690 
2691 	if (!p->n_pdds) {
2692 		pr_err("No pdd for given process\n");
2693 		ret = -ENODEV;
2694 		goto err_unlock;
2695 	}
2696 
2697 	ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_CHECKPOINT);
2698 	if (ret)
2699 		goto err_unlock;
2700 
2701 	p->queues_paused = true;
2702 
2703 	args->pid = task_pid_nr_ns(p->lead_thread,
2704 					task_active_pid_ns(p->lead_thread));
2705 
2706 	ret = criu_get_process_object_info(p, &args->num_devices, &args->num_bos,
2707 					   &args->num_objects, &args->priv_data_size);
2708 	if (ret)
2709 		goto err_unlock;
2710 
2711 	dev_dbg(kfd_device, "Num of devices:%u bos:%u objects:%u priv_data_size:%lld\n",
2712 				args->num_devices, args->num_bos, args->num_objects,
2713 				args->priv_data_size);
2714 
2715 err_unlock:
2716 	if (ret) {
2717 		kfd_process_restore_queues(p);
2718 		p->queues_paused = false;
2719 	}
2720 	mutex_unlock(&p->mutex);
2721 	return ret;
2722 }
2723 
2724 static int kfd_ioctl_criu(struct file *filep, struct kfd_process *p, void *data)
2725 {
2726 	struct kfd_ioctl_criu_args *args = data;
2727 	int ret;
2728 
2729 	dev_dbg(kfd_device, "CRIU operation: %d\n", args->op);
2730 	switch (args->op) {
2731 	case KFD_CRIU_OP_PROCESS_INFO:
2732 		ret = criu_process_info(filep, p, args);
2733 		break;
2734 	case KFD_CRIU_OP_CHECKPOINT:
2735 		ret = criu_checkpoint(filep, p, args);
2736 		break;
2737 	case KFD_CRIU_OP_UNPAUSE:
2738 		ret = criu_unpause(filep, p, args);
2739 		break;
2740 	case KFD_CRIU_OP_RESTORE:
2741 		ret = criu_restore(filep, p, args);
2742 		break;
2743 	case KFD_CRIU_OP_RESUME:
2744 		ret = criu_resume(filep, p, args);
2745 		break;
2746 	default:
2747 		dev_dbg(kfd_device, "Unsupported CRIU operation:%d\n", args->op);
2748 		ret = -EINVAL;
2749 		break;
2750 	}
2751 
2752 	if (ret)
2753 		dev_dbg(kfd_device, "CRIU operation:%d err:%d\n", args->op, ret);
2754 
2755 	return ret;
2756 }
2757 
2758 static int runtime_enable(struct kfd_process *p, uint64_t r_debug,
2759 			bool enable_ttmp_setup)
2760 {
2761 	int i = 0, ret = 0;
2762 
2763 	if (p->is_runtime_retry)
2764 		goto retry;
2765 
2766 	if (p->runtime_info.runtime_state != DEBUG_RUNTIME_STATE_DISABLED)
2767 		return -EBUSY;
2768 
2769 	for (i = 0; i < p->n_pdds; i++) {
2770 		struct kfd_process_device *pdd = p->pdds[i];
2771 
2772 		if (pdd->qpd.queue_count)
2773 			return -EEXIST;
2774 
2775 		/*
2776 		 * Setup TTMPs by default.
2777 		 * Note that this call must remain here for MES ADD QUEUE to
2778 		 * skip_process_ctx_clear unconditionally as the first call to
2779 		 * SET_SHADER_DEBUGGER clears any stale process context data
2780 		 * saved in MES.
2781 		 */
2782 		if (pdd->dev->kfd->shared_resources.enable_mes)
2783 			kfd_dbg_set_mes_debug_mode(pdd, !kfd_dbg_has_cwsr_workaround(pdd->dev));
2784 	}
2785 
2786 	p->runtime_info.runtime_state = DEBUG_RUNTIME_STATE_ENABLED;
2787 	p->runtime_info.r_debug = r_debug;
2788 	p->runtime_info.ttmp_setup = enable_ttmp_setup;
2789 
2790 	if (p->runtime_info.ttmp_setup) {
2791 		for (i = 0; i < p->n_pdds; i++) {
2792 			struct kfd_process_device *pdd = p->pdds[i];
2793 
2794 			if (!kfd_dbg_is_rlc_restore_supported(pdd->dev)) {
2795 				amdgpu_gfx_off_ctrl(pdd->dev->adev, false);
2796 				pdd->dev->kfd2kgd->enable_debug_trap(
2797 						pdd->dev->adev,
2798 						true,
2799 						pdd->dev->vm_info.last_vmid_kfd);
2800 			} else if (kfd_dbg_is_per_vmid_supported(pdd->dev)) {
2801 				pdd->spi_dbg_override = pdd->dev->kfd2kgd->enable_debug_trap(
2802 						pdd->dev->adev,
2803 						false,
2804 						0);
2805 			}
2806 		}
2807 	}
2808 
2809 retry:
2810 	if (p->debug_trap_enabled) {
2811 		if (!p->is_runtime_retry) {
2812 			kfd_dbg_trap_activate(p);
2813 			kfd_dbg_ev_raise(KFD_EC_MASK(EC_PROCESS_RUNTIME),
2814 					p, NULL, 0, false, NULL, 0);
2815 		}
2816 
2817 		mutex_unlock(&p->mutex);
2818 		ret = down_interruptible(&p->runtime_enable_sema);
2819 		mutex_lock(&p->mutex);
2820 
2821 		p->is_runtime_retry = !!ret;
2822 	}
2823 
2824 	return ret;
2825 }
2826 
2827 static int runtime_disable(struct kfd_process *p)
2828 {
2829 	int i = 0, ret;
2830 	bool was_enabled = p->runtime_info.runtime_state == DEBUG_RUNTIME_STATE_ENABLED;
2831 
2832 	p->runtime_info.runtime_state = DEBUG_RUNTIME_STATE_DISABLED;
2833 	p->runtime_info.r_debug = 0;
2834 
2835 	if (p->debug_trap_enabled) {
2836 		if (was_enabled)
2837 			kfd_dbg_trap_deactivate(p, false, 0);
2838 
2839 		if (!p->is_runtime_retry)
2840 			kfd_dbg_ev_raise(KFD_EC_MASK(EC_PROCESS_RUNTIME),
2841 					p, NULL, 0, false, NULL, 0);
2842 
2843 		mutex_unlock(&p->mutex);
2844 		ret = down_interruptible(&p->runtime_enable_sema);
2845 		mutex_lock(&p->mutex);
2846 
2847 		p->is_runtime_retry = !!ret;
2848 		if (ret)
2849 			return ret;
2850 	}
2851 
2852 	if (was_enabled && p->runtime_info.ttmp_setup) {
2853 		for (i = 0; i < p->n_pdds; i++) {
2854 			struct kfd_process_device *pdd = p->pdds[i];
2855 
2856 			if (!kfd_dbg_is_rlc_restore_supported(pdd->dev))
2857 				amdgpu_gfx_off_ctrl(pdd->dev->adev, true);
2858 		}
2859 	}
2860 
2861 	p->runtime_info.ttmp_setup = false;
2862 
2863 	/* disable ttmp setup */
2864 	for (i = 0; i < p->n_pdds; i++) {
2865 		struct kfd_process_device *pdd = p->pdds[i];
2866 
2867 		if (kfd_dbg_is_per_vmid_supported(pdd->dev)) {
2868 			pdd->spi_dbg_override =
2869 					pdd->dev->kfd2kgd->disable_debug_trap(
2870 					pdd->dev->adev,
2871 					false,
2872 					pdd->dev->vm_info.last_vmid_kfd);
2873 
2874 			if (!pdd->dev->kfd->shared_resources.enable_mes)
2875 				debug_refresh_runlist(pdd->dev->dqm);
2876 			else
2877 				kfd_dbg_set_mes_debug_mode(pdd,
2878 							   !kfd_dbg_has_cwsr_workaround(pdd->dev));
2879 		}
2880 	}
2881 
2882 	return 0;
2883 }
2884 
2885 static int kfd_ioctl_runtime_enable(struct file *filep, struct kfd_process *p, void *data)
2886 {
2887 	struct kfd_ioctl_runtime_enable_args *args = data;
2888 	int r;
2889 
2890 	mutex_lock(&p->mutex);
2891 
2892 	if (args->mode_mask & KFD_RUNTIME_ENABLE_MODE_ENABLE_MASK)
2893 		r = runtime_enable(p, args->r_debug,
2894 				!!(args->mode_mask & KFD_RUNTIME_ENABLE_MODE_TTMP_SAVE_MASK));
2895 	else
2896 		r = runtime_disable(p);
2897 
2898 	mutex_unlock(&p->mutex);
2899 
2900 	return r;
2901 }
2902 
2903 static int kfd_ioctl_set_debug_trap(struct file *filep, struct kfd_process *p, void *data)
2904 {
2905 	struct kfd_ioctl_dbg_trap_args *args = data;
2906 	struct task_struct *thread = NULL;
2907 	struct mm_struct *mm = NULL;
2908 	struct pid *pid = NULL;
2909 	struct kfd_process *target = NULL;
2910 	struct kfd_process_device *pdd = NULL;
2911 	int r = 0;
2912 
2913 	if (sched_policy == KFD_SCHED_POLICY_NO_HWS) {
2914 		pr_err("Debugging does not support sched_policy %i", sched_policy);
2915 		return -EINVAL;
2916 	}
2917 
2918 	pid = find_get_pid(args->pid);
2919 	if (!pid) {
2920 		pr_debug("Cannot find pid info for %i\n", args->pid);
2921 		r = -ESRCH;
2922 		goto out;
2923 	}
2924 
2925 	thread = get_pid_task(pid, PIDTYPE_PID);
2926 	if (!thread) {
2927 		r = -ESRCH;
2928 		goto out;
2929 	}
2930 
2931 	mm = get_task_mm(thread);
2932 	if (!mm) {
2933 		r = -ESRCH;
2934 		goto out;
2935 	}
2936 
2937 	if (args->op == KFD_IOC_DBG_TRAP_ENABLE) {
2938 		bool create_process;
2939 
2940 		rcu_read_lock();
2941 		create_process = thread && thread != current && ptrace_parent(thread) == current;
2942 		rcu_read_unlock();
2943 
2944 		target = create_process ? kfd_create_process(thread) :
2945 					kfd_lookup_process_by_pid(pid);
2946 	} else {
2947 		target = kfd_lookup_process_by_pid(pid);
2948 	}
2949 
2950 	if (IS_ERR_OR_NULL(target)) {
2951 		pr_debug("Cannot find process PID %i to debug\n", args->pid);
2952 		r = target ? PTR_ERR(target) : -ESRCH;
2953 		target = NULL;
2954 		goto out;
2955 	}
2956 
2957 	/* Check if target is still PTRACED. */
2958 	rcu_read_lock();
2959 	if (target != p && args->op != KFD_IOC_DBG_TRAP_DISABLE
2960 				&& ptrace_parent(target->lead_thread) != current) {
2961 		pr_err("PID %i is not PTRACED and cannot be debugged\n", args->pid);
2962 		r = -EPERM;
2963 	}
2964 	rcu_read_unlock();
2965 
2966 	if (r)
2967 		goto out;
2968 
2969 	mutex_lock(&target->mutex);
2970 
2971 	if (args->op != KFD_IOC_DBG_TRAP_ENABLE && !target->debug_trap_enabled) {
2972 		pr_err("PID %i not debug enabled for op %i\n", args->pid, args->op);
2973 		r = -EINVAL;
2974 		goto unlock_out;
2975 	}
2976 
2977 	if (target->runtime_info.runtime_state != DEBUG_RUNTIME_STATE_ENABLED &&
2978 			(args->op == KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_OVERRIDE ||
2979 			 args->op == KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_MODE ||
2980 			 args->op == KFD_IOC_DBG_TRAP_SUSPEND_QUEUES ||
2981 			 args->op == KFD_IOC_DBG_TRAP_RESUME_QUEUES ||
2982 			 args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ||
2983 			 args->op == KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH ||
2984 			 args->op == KFD_IOC_DBG_TRAP_SET_FLAGS)) {
2985 		r = -EPERM;
2986 		goto unlock_out;
2987 	}
2988 
2989 	if (args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ||
2990 	    args->op == KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH) {
2991 		int user_gpu_id = kfd_process_get_user_gpu_id(target,
2992 				args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ?
2993 					args->set_node_address_watch.gpu_id :
2994 					args->clear_node_address_watch.gpu_id);
2995 
2996 		pdd = kfd_process_device_data_by_id(target, user_gpu_id);
2997 		if (user_gpu_id == -EINVAL || !pdd) {
2998 			r = -ENODEV;
2999 			goto unlock_out;
3000 		}
3001 	}
3002 
3003 	switch (args->op) {
3004 	case KFD_IOC_DBG_TRAP_ENABLE:
3005 		if (target != p)
3006 			target->debugger_process = p;
3007 
3008 		r = kfd_dbg_trap_enable(target,
3009 					args->enable.dbg_fd,
3010 					(void __user *)args->enable.rinfo_ptr,
3011 					&args->enable.rinfo_size);
3012 		if (!r)
3013 			target->exception_enable_mask = args->enable.exception_mask;
3014 
3015 		break;
3016 	case KFD_IOC_DBG_TRAP_DISABLE:
3017 		r = kfd_dbg_trap_disable(target);
3018 		break;
3019 	case KFD_IOC_DBG_TRAP_SEND_RUNTIME_EVENT:
3020 		r = kfd_dbg_send_exception_to_runtime(target,
3021 				args->send_runtime_event.gpu_id,
3022 				args->send_runtime_event.queue_id,
3023 				args->send_runtime_event.exception_mask);
3024 		break;
3025 	case KFD_IOC_DBG_TRAP_SET_EXCEPTIONS_ENABLED:
3026 		kfd_dbg_set_enabled_debug_exception_mask(target,
3027 				args->set_exceptions_enabled.exception_mask);
3028 		break;
3029 	case KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_OVERRIDE:
3030 		r = kfd_dbg_trap_set_wave_launch_override(target,
3031 				args->launch_override.override_mode,
3032 				args->launch_override.enable_mask,
3033 				args->launch_override.support_request_mask,
3034 				&args->launch_override.enable_mask,
3035 				&args->launch_override.support_request_mask);
3036 		break;
3037 	case KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_MODE:
3038 		r = kfd_dbg_trap_set_wave_launch_mode(target,
3039 				args->launch_mode.launch_mode);
3040 		break;
3041 	case KFD_IOC_DBG_TRAP_SUSPEND_QUEUES:
3042 		r = suspend_queues(target,
3043 				args->suspend_queues.num_queues,
3044 				args->suspend_queues.grace_period,
3045 				args->suspend_queues.exception_mask,
3046 				(uint32_t *)args->suspend_queues.queue_array_ptr);
3047 
3048 		break;
3049 	case KFD_IOC_DBG_TRAP_RESUME_QUEUES:
3050 		r = resume_queues(target, args->resume_queues.num_queues,
3051 				(uint32_t *)args->resume_queues.queue_array_ptr);
3052 		break;
3053 	case KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH:
3054 		r = kfd_dbg_trap_set_dev_address_watch(pdd,
3055 				args->set_node_address_watch.address,
3056 				args->set_node_address_watch.mask,
3057 				&args->set_node_address_watch.id,
3058 				args->set_node_address_watch.mode);
3059 		break;
3060 	case KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH:
3061 		r = kfd_dbg_trap_clear_dev_address_watch(pdd,
3062 				args->clear_node_address_watch.id);
3063 		break;
3064 	case KFD_IOC_DBG_TRAP_SET_FLAGS:
3065 		r = kfd_dbg_trap_set_flags(target, &args->set_flags.flags);
3066 		break;
3067 	case KFD_IOC_DBG_TRAP_QUERY_DEBUG_EVENT:
3068 		r = kfd_dbg_ev_query_debug_event(target,
3069 				&args->query_debug_event.queue_id,
3070 				&args->query_debug_event.gpu_id,
3071 				args->query_debug_event.exception_mask,
3072 				&args->query_debug_event.exception_mask);
3073 		break;
3074 	case KFD_IOC_DBG_TRAP_QUERY_EXCEPTION_INFO:
3075 		r = kfd_dbg_trap_query_exception_info(target,
3076 				args->query_exception_info.source_id,
3077 				args->query_exception_info.exception_code,
3078 				args->query_exception_info.clear_exception,
3079 				(void __user *)args->query_exception_info.info_ptr,
3080 				&args->query_exception_info.info_size);
3081 		break;
3082 	case KFD_IOC_DBG_TRAP_GET_QUEUE_SNAPSHOT:
3083 		r = pqm_get_queue_snapshot(&target->pqm,
3084 				args->queue_snapshot.exception_mask,
3085 				(void __user *)args->queue_snapshot.snapshot_buf_ptr,
3086 				&args->queue_snapshot.num_queues,
3087 				&args->queue_snapshot.entry_size);
3088 		break;
3089 	case KFD_IOC_DBG_TRAP_GET_DEVICE_SNAPSHOT:
3090 		r = kfd_dbg_trap_device_snapshot(target,
3091 				args->device_snapshot.exception_mask,
3092 				(void __user *)args->device_snapshot.snapshot_buf_ptr,
3093 				&args->device_snapshot.num_devices,
3094 				&args->device_snapshot.entry_size);
3095 		break;
3096 	default:
3097 		pr_err("Invalid option: %i\n", args->op);
3098 		r = -EINVAL;
3099 	}
3100 
3101 unlock_out:
3102 	mutex_unlock(&target->mutex);
3103 
3104 out:
3105 	if (thread)
3106 		put_task_struct(thread);
3107 
3108 	if (mm)
3109 		mmput(mm);
3110 
3111 	if (pid)
3112 		put_pid(pid);
3113 
3114 	if (target)
3115 		kfd_unref_process(target);
3116 
3117 	return r;
3118 }
3119 
3120 #define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \
3121 	[_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, \
3122 			    .cmd_drv = 0, .name = #ioctl}
3123 
3124 /** Ioctl table */
3125 static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = {
3126 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_VERSION,
3127 			kfd_ioctl_get_version, 0),
3128 
3129 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_QUEUE,
3130 			kfd_ioctl_create_queue, 0),
3131 
3132 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_QUEUE,
3133 			kfd_ioctl_destroy_queue, 0),
3134 
3135 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_MEMORY_POLICY,
3136 			kfd_ioctl_set_memory_policy, 0),
3137 
3138 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_CLOCK_COUNTERS,
3139 			kfd_ioctl_get_clock_counters, 0),
3140 
3141 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES,
3142 			kfd_ioctl_get_process_apertures, 0),
3143 
3144 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_UPDATE_QUEUE,
3145 			kfd_ioctl_update_queue, 0),
3146 
3147 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_EVENT,
3148 			kfd_ioctl_create_event, 0),
3149 
3150 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_EVENT,
3151 			kfd_ioctl_destroy_event, 0),
3152 
3153 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_EVENT,
3154 			kfd_ioctl_set_event, 0),
3155 
3156 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_RESET_EVENT,
3157 			kfd_ioctl_reset_event, 0),
3158 
3159 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_WAIT_EVENTS,
3160 			kfd_ioctl_wait_events, 0),
3161 
3162 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_REGISTER_DEPRECATED,
3163 			kfd_ioctl_dbg_register, 0),
3164 
3165 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_UNREGISTER_DEPRECATED,
3166 			kfd_ioctl_dbg_unregister, 0),
3167 
3168 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_ADDRESS_WATCH_DEPRECATED,
3169 			kfd_ioctl_dbg_address_watch, 0),
3170 
3171 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_WAVE_CONTROL_DEPRECATED,
3172 			kfd_ioctl_dbg_wave_control, 0),
3173 
3174 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_SCRATCH_BACKING_VA,
3175 			kfd_ioctl_set_scratch_backing_va, 0),
3176 
3177 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG,
3178 			kfd_ioctl_get_tile_config, 0),
3179 
3180 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_TRAP_HANDLER,
3181 			kfd_ioctl_set_trap_handler, 0),
3182 
3183 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES_NEW,
3184 			kfd_ioctl_get_process_apertures_new, 0),
3185 
3186 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ACQUIRE_VM,
3187 			kfd_ioctl_acquire_vm, 0),
3188 
3189 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_MEMORY_OF_GPU,
3190 			kfd_ioctl_alloc_memory_of_gpu, 0),
3191 
3192 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_FREE_MEMORY_OF_GPU,
3193 			kfd_ioctl_free_memory_of_gpu, 0),
3194 
3195 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_MAP_MEMORY_TO_GPU,
3196 			kfd_ioctl_map_memory_to_gpu, 0),
3197 
3198 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU,
3199 			kfd_ioctl_unmap_memory_from_gpu, 0),
3200 
3201 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_CU_MASK,
3202 			kfd_ioctl_set_cu_mask, 0),
3203 
3204 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_QUEUE_WAVE_STATE,
3205 			kfd_ioctl_get_queue_wave_state, 0),
3206 
3207 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_DMABUF_INFO,
3208 				kfd_ioctl_get_dmabuf_info, 0),
3209 
3210 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_IMPORT_DMABUF,
3211 				kfd_ioctl_import_dmabuf, 0),
3212 
3213 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_QUEUE_GWS,
3214 			kfd_ioctl_alloc_queue_gws, 0),
3215 
3216 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SMI_EVENTS,
3217 			kfd_ioctl_smi_events, 0),
3218 
3219 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SVM, kfd_ioctl_svm, 0),
3220 
3221 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_XNACK_MODE,
3222 			kfd_ioctl_set_xnack_mode, 0),
3223 
3224 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CRIU_OP,
3225 			kfd_ioctl_criu, KFD_IOC_FLAG_CHECKPOINT_RESTORE),
3226 
3227 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_AVAILABLE_MEMORY,
3228 			kfd_ioctl_get_available_memory, 0),
3229 
3230 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_EXPORT_DMABUF,
3231 				kfd_ioctl_export_dmabuf, 0),
3232 
3233 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_RUNTIME_ENABLE,
3234 			kfd_ioctl_runtime_enable, 0),
3235 
3236 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_TRAP,
3237 			kfd_ioctl_set_debug_trap, 0),
3238 };
3239 
3240 #define AMDKFD_CORE_IOCTL_COUNT	ARRAY_SIZE(amdkfd_ioctls)
3241 
3242 static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
3243 {
3244 	struct kfd_process *process;
3245 	amdkfd_ioctl_t *func;
3246 	const struct amdkfd_ioctl_desc *ioctl = NULL;
3247 	unsigned int nr = _IOC_NR(cmd);
3248 	char stack_kdata[128];
3249 	char *kdata = NULL;
3250 	unsigned int usize, asize;
3251 	int retcode = -EINVAL;
3252 	bool ptrace_attached = false;
3253 
3254 	if (nr >= AMDKFD_CORE_IOCTL_COUNT) {
3255 		retcode = -ENOTTY;
3256 		goto err_i1;
3257 	}
3258 
3259 	if ((nr >= AMDKFD_COMMAND_START) && (nr < AMDKFD_COMMAND_END)) {
3260 		u32 amdkfd_size;
3261 
3262 		ioctl = &amdkfd_ioctls[nr];
3263 
3264 		amdkfd_size = _IOC_SIZE(ioctl->cmd);
3265 		usize = asize = _IOC_SIZE(cmd);
3266 		if (amdkfd_size > asize)
3267 			asize = amdkfd_size;
3268 
3269 		cmd = ioctl->cmd;
3270 	} else {
3271 		retcode = -ENOTTY;
3272 		goto err_i1;
3273 	}
3274 
3275 	dev_dbg(kfd_device, "ioctl cmd 0x%x (#0x%x), arg 0x%lx\n", cmd, nr, arg);
3276 
3277 	/* Get the process struct from the filep. Only the process
3278 	 * that opened /dev/kfd can use the file descriptor. Child
3279 	 * processes need to create their own KFD device context.
3280 	 */
3281 	process = filep->private_data;
3282 
3283 	rcu_read_lock();
3284 	if ((ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE) &&
3285 	    ptrace_parent(process->lead_thread) == current)
3286 		ptrace_attached = true;
3287 	rcu_read_unlock();
3288 
3289 	if (process->lead_thread != current->group_leader
3290 	    && !ptrace_attached) {
3291 		dev_dbg(kfd_device, "Using KFD FD in wrong process\n");
3292 		retcode = -EBADF;
3293 		goto err_i1;
3294 	}
3295 
3296 	/* Do not trust userspace, use our own definition */
3297 	func = ioctl->func;
3298 
3299 	if (unlikely(!func)) {
3300 		dev_dbg(kfd_device, "no function\n");
3301 		retcode = -EINVAL;
3302 		goto err_i1;
3303 	}
3304 
3305 	/*
3306 	 * Versions of docker shipped in Ubuntu 18.xx and 20.xx do not support
3307 	 * CAP_CHECKPOINT_RESTORE, so we also allow access if CAP_SYS_ADMIN as CAP_SYS_ADMIN is a
3308 	 * more priviledged access.
3309 	 */
3310 	if (unlikely(ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE)) {
3311 		if (!capable(CAP_CHECKPOINT_RESTORE) &&
3312 						!capable(CAP_SYS_ADMIN)) {
3313 			retcode = -EACCES;
3314 			goto err_i1;
3315 		}
3316 	}
3317 
3318 	if (cmd & (IOC_IN | IOC_OUT)) {
3319 		if (asize <= sizeof(stack_kdata)) {
3320 			kdata = stack_kdata;
3321 		} else {
3322 			kdata = kmalloc(asize, GFP_KERNEL);
3323 			if (!kdata) {
3324 				retcode = -ENOMEM;
3325 				goto err_i1;
3326 			}
3327 		}
3328 		if (asize > usize)
3329 			memset(kdata + usize, 0, asize - usize);
3330 	}
3331 
3332 	if (cmd & IOC_IN) {
3333 		if (copy_from_user(kdata, (void __user *)arg, usize) != 0) {
3334 			retcode = -EFAULT;
3335 			goto err_i1;
3336 		}
3337 	} else if (cmd & IOC_OUT) {
3338 		memset(kdata, 0, usize);
3339 	}
3340 
3341 	retcode = func(filep, process, kdata);
3342 
3343 	if (cmd & IOC_OUT)
3344 		if (copy_to_user((void __user *)arg, kdata, usize) != 0)
3345 			retcode = -EFAULT;
3346 
3347 err_i1:
3348 	if (!ioctl)
3349 		dev_dbg(kfd_device, "invalid ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n",
3350 			  task_pid_nr(current), cmd, nr);
3351 
3352 	if (kdata != stack_kdata)
3353 		kfree(kdata);
3354 
3355 	if (retcode)
3356 		dev_dbg(kfd_device, "ioctl cmd (#0x%x), arg 0x%lx, ret = %d\n",
3357 				nr, arg, retcode);
3358 
3359 	return retcode;
3360 }
3361 
3362 static int kfd_mmio_mmap(struct kfd_node *dev, struct kfd_process *process,
3363 		      struct vm_area_struct *vma)
3364 {
3365 	phys_addr_t address;
3366 
3367 	if (vma->vm_end - vma->vm_start != PAGE_SIZE)
3368 		return -EINVAL;
3369 
3370 	if (PAGE_SIZE > 4096)
3371 		return -EINVAL;
3372 
3373 	address = dev->adev->rmmio_remap.bus_addr;
3374 
3375 	vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE |
3376 				VM_DONTDUMP | VM_PFNMAP);
3377 
3378 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
3379 
3380 	pr_debug("process pid %d mapping mmio page\n"
3381 		 "     target user address == 0x%08llX\n"
3382 		 "     physical address    == 0x%08llX\n"
3383 		 "     vm_flags            == 0x%04lX\n"
3384 		 "     size                == 0x%04lX\n",
3385 		 process->lead_thread->pid, (unsigned long long) vma->vm_start,
3386 		 address, vma->vm_flags, PAGE_SIZE);
3387 
3388 	return io_remap_pfn_range(vma,
3389 				vma->vm_start,
3390 				address >> PAGE_SHIFT,
3391 				PAGE_SIZE,
3392 				vma->vm_page_prot);
3393 }
3394 
3395 
3396 static int kfd_mmap(struct file *filp, struct vm_area_struct *vma)
3397 {
3398 	struct kfd_process *process;
3399 	struct kfd_node *dev = NULL;
3400 	unsigned long mmap_offset;
3401 	unsigned int gpu_id;
3402 
3403 	process = kfd_get_process(current);
3404 	if (IS_ERR(process))
3405 		return PTR_ERR(process);
3406 
3407 	mmap_offset = vma->vm_pgoff << PAGE_SHIFT;
3408 	gpu_id = KFD_MMAP_GET_GPU_ID(mmap_offset);
3409 	if (gpu_id)
3410 		dev = kfd_device_by_id(gpu_id);
3411 
3412 	switch (mmap_offset & KFD_MMAP_TYPE_MASK) {
3413 	case KFD_MMAP_TYPE_DOORBELL:
3414 		if (!dev)
3415 			return -ENODEV;
3416 		return kfd_doorbell_mmap(dev, process, vma);
3417 
3418 	case KFD_MMAP_TYPE_EVENTS:
3419 		return kfd_event_mmap(process, vma);
3420 
3421 	case KFD_MMAP_TYPE_RESERVED_MEM:
3422 		if (!dev)
3423 			return -ENODEV;
3424 		return kfd_reserved_mem_mmap(dev, process, vma);
3425 	case KFD_MMAP_TYPE_MMIO:
3426 		if (!dev)
3427 			return -ENODEV;
3428 		return kfd_mmio_mmap(dev, process, vma);
3429 	}
3430 
3431 	return -EFAULT;
3432 }
3433