xref: /linux/drivers/gpu/drm/amd/amdgpu/tonga_ih.c (revision e5c86679d5e864947a52fb31e45a425dea3e7fa9)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 #include "drmP.h"
24 #include "amdgpu.h"
25 #include "amdgpu_ih.h"
26 #include "vid.h"
27 
28 #include "oss/oss_3_0_d.h"
29 #include "oss/oss_3_0_sh_mask.h"
30 
31 #include "bif/bif_5_1_d.h"
32 #include "bif/bif_5_1_sh_mask.h"
33 
34 /*
35  * Interrupts
36  * Starting with r6xx, interrupts are handled via a ring buffer.
37  * Ring buffers are areas of GPU accessible memory that the GPU
38  * writes interrupt vectors into and the host reads vectors out of.
39  * There is a rptr (read pointer) that determines where the
40  * host is currently reading, and a wptr (write pointer)
41  * which determines where the GPU has written.  When the
42  * pointers are equal, the ring is idle.  When the GPU
43  * writes vectors to the ring buffer, it increments the
44  * wptr.  When there is an interrupt, the host then starts
45  * fetching commands and processing them until the pointers are
46  * equal again at which point it updates the rptr.
47  */
48 
49 static void tonga_ih_set_interrupt_funcs(struct amdgpu_device *adev);
50 
51 /**
52  * tonga_ih_enable_interrupts - Enable the interrupt ring buffer
53  *
54  * @adev: amdgpu_device pointer
55  *
56  * Enable the interrupt ring buffer (VI).
57  */
58 static void tonga_ih_enable_interrupts(struct amdgpu_device *adev)
59 {
60 	u32 ih_rb_cntl = RREG32(mmIH_RB_CNTL);
61 
62 	ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, RB_ENABLE, 1);
63 	ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, ENABLE_INTR, 1);
64 	WREG32(mmIH_RB_CNTL, ih_rb_cntl);
65 	adev->irq.ih.enabled = true;
66 }
67 
68 /**
69  * tonga_ih_disable_interrupts - Disable the interrupt ring buffer
70  *
71  * @adev: amdgpu_device pointer
72  *
73  * Disable the interrupt ring buffer (VI).
74  */
75 static void tonga_ih_disable_interrupts(struct amdgpu_device *adev)
76 {
77 	u32 ih_rb_cntl = RREG32(mmIH_RB_CNTL);
78 
79 	ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, RB_ENABLE, 0);
80 	ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, ENABLE_INTR, 0);
81 	WREG32(mmIH_RB_CNTL, ih_rb_cntl);
82 	/* set rptr, wptr to 0 */
83 	WREG32(mmIH_RB_RPTR, 0);
84 	WREG32(mmIH_RB_WPTR, 0);
85 	adev->irq.ih.enabled = false;
86 	adev->irq.ih.rptr = 0;
87 }
88 
89 /**
90  * tonga_ih_irq_init - init and enable the interrupt ring
91  *
92  * @adev: amdgpu_device pointer
93  *
94  * Allocate a ring buffer for the interrupt controller,
95  * enable the RLC, disable interrupts, enable the IH
96  * ring buffer and enable it (VI).
97  * Called at device load and reume.
98  * Returns 0 for success, errors for failure.
99  */
100 static int tonga_ih_irq_init(struct amdgpu_device *adev)
101 {
102 	int rb_bufsz;
103 	u32 interrupt_cntl, ih_rb_cntl, ih_doorbell_rtpr;
104 	u64 wptr_off;
105 
106 	/* disable irqs */
107 	tonga_ih_disable_interrupts(adev);
108 
109 	/* setup interrupt control */
110 	WREG32(mmINTERRUPT_CNTL2, adev->dummy_page.addr >> 8);
111 	interrupt_cntl = RREG32(mmINTERRUPT_CNTL);
112 	/* INTERRUPT_CNTL__IH_DUMMY_RD_OVERRIDE_MASK=0 - dummy read disabled with msi, enabled without msi
113 	 * INTERRUPT_CNTL__IH_DUMMY_RD_OVERRIDE_MASK=1 - dummy read controlled by IH_DUMMY_RD_EN
114 	 */
115 	interrupt_cntl = REG_SET_FIELD(interrupt_cntl, INTERRUPT_CNTL, IH_DUMMY_RD_OVERRIDE, 0);
116 	/* INTERRUPT_CNTL__IH_REQ_NONSNOOP_EN_MASK=1 if ring is in non-cacheable memory, e.g., vram */
117 	interrupt_cntl = REG_SET_FIELD(interrupt_cntl, INTERRUPT_CNTL, IH_REQ_NONSNOOP_EN, 0);
118 	WREG32(mmINTERRUPT_CNTL, interrupt_cntl);
119 
120 	/* Ring Buffer base. [39:8] of 40-bit address of the beginning of the ring buffer*/
121 	if (adev->irq.ih.use_bus_addr)
122 		WREG32(mmIH_RB_BASE, adev->irq.ih.rb_dma_addr >> 8);
123 	else
124 		WREG32(mmIH_RB_BASE, adev->irq.ih.gpu_addr >> 8);
125 
126 	rb_bufsz = order_base_2(adev->irq.ih.ring_size / 4);
127 	ih_rb_cntl = REG_SET_FIELD(0, IH_RB_CNTL, WPTR_OVERFLOW_CLEAR, 1);
128 	ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, RB_SIZE, rb_bufsz);
129 	/* Ring Buffer write pointer writeback. If enabled, IH_RB_WPTR register value is written to memory */
130 	ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, WPTR_WRITEBACK_ENABLE, 1);
131 	ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, MC_VMID, 0);
132 
133 	if (adev->irq.msi_enabled)
134 		ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, RPTR_REARM, 1);
135 
136 	WREG32(mmIH_RB_CNTL, ih_rb_cntl);
137 
138 	/* set the writeback address whether it's enabled or not */
139 	if (adev->irq.ih.use_bus_addr)
140 		wptr_off = adev->irq.ih.rb_dma_addr + (adev->irq.ih.wptr_offs * 4);
141 	else
142 		wptr_off = adev->wb.gpu_addr + (adev->irq.ih.wptr_offs * 4);
143 	WREG32(mmIH_RB_WPTR_ADDR_LO, lower_32_bits(wptr_off));
144 	WREG32(mmIH_RB_WPTR_ADDR_HI, upper_32_bits(wptr_off) & 0xFF);
145 
146 	/* set rptr, wptr to 0 */
147 	WREG32(mmIH_RB_RPTR, 0);
148 	WREG32(mmIH_RB_WPTR, 0);
149 
150 	ih_doorbell_rtpr = RREG32(mmIH_DOORBELL_RPTR);
151 	if (adev->irq.ih.use_doorbell) {
152 		ih_doorbell_rtpr = REG_SET_FIELD(ih_doorbell_rtpr, IH_DOORBELL_RPTR,
153 						 OFFSET, adev->irq.ih.doorbell_index);
154 		ih_doorbell_rtpr = REG_SET_FIELD(ih_doorbell_rtpr, IH_DOORBELL_RPTR,
155 						 ENABLE, 1);
156 	} else {
157 		ih_doorbell_rtpr = REG_SET_FIELD(ih_doorbell_rtpr, IH_DOORBELL_RPTR,
158 						 ENABLE, 0);
159 	}
160 	WREG32(mmIH_DOORBELL_RPTR, ih_doorbell_rtpr);
161 
162 	pci_set_master(adev->pdev);
163 
164 	/* enable interrupts */
165 	tonga_ih_enable_interrupts(adev);
166 
167 	return 0;
168 }
169 
170 /**
171  * tonga_ih_irq_disable - disable interrupts
172  *
173  * @adev: amdgpu_device pointer
174  *
175  * Disable interrupts on the hw (VI).
176  */
177 static void tonga_ih_irq_disable(struct amdgpu_device *adev)
178 {
179 	tonga_ih_disable_interrupts(adev);
180 
181 	/* Wait and acknowledge irq */
182 	mdelay(1);
183 }
184 
185 /**
186  * tonga_ih_get_wptr - get the IH ring buffer wptr
187  *
188  * @adev: amdgpu_device pointer
189  *
190  * Get the IH ring buffer wptr from either the register
191  * or the writeback memory buffer (VI).  Also check for
192  * ring buffer overflow and deal with it.
193  * Used by cz_irq_process(VI).
194  * Returns the value of the wptr.
195  */
196 static u32 tonga_ih_get_wptr(struct amdgpu_device *adev)
197 {
198 	u32 wptr, tmp;
199 
200 	if (adev->irq.ih.use_bus_addr)
201 		wptr = le32_to_cpu(adev->irq.ih.ring[adev->irq.ih.wptr_offs]);
202 	else
203 		wptr = le32_to_cpu(adev->wb.wb[adev->irq.ih.wptr_offs]);
204 
205 	if (REG_GET_FIELD(wptr, IH_RB_WPTR, RB_OVERFLOW)) {
206 		wptr = REG_SET_FIELD(wptr, IH_RB_WPTR, RB_OVERFLOW, 0);
207 		/* When a ring buffer overflow happen start parsing interrupt
208 		 * from the last not overwritten vector (wptr + 16). Hopefully
209 		 * this should allow us to catchup.
210 		 */
211 		dev_warn(adev->dev, "IH ring buffer overflow (0x%08X, 0x%08X, 0x%08X)\n",
212 			wptr, adev->irq.ih.rptr, (wptr + 16) & adev->irq.ih.ptr_mask);
213 		adev->irq.ih.rptr = (wptr + 16) & adev->irq.ih.ptr_mask;
214 		tmp = RREG32(mmIH_RB_CNTL);
215 		tmp = REG_SET_FIELD(tmp, IH_RB_CNTL, WPTR_OVERFLOW_CLEAR, 1);
216 		WREG32(mmIH_RB_CNTL, tmp);
217 	}
218 	return (wptr & adev->irq.ih.ptr_mask);
219 }
220 
221 /**
222  * tonga_ih_decode_iv - decode an interrupt vector
223  *
224  * @adev: amdgpu_device pointer
225  *
226  * Decodes the interrupt vector at the current rptr
227  * position and also advance the position.
228  */
229 static void tonga_ih_decode_iv(struct amdgpu_device *adev,
230 				 struct amdgpu_iv_entry *entry)
231 {
232 	/* wptr/rptr are in bytes! */
233 	u32 ring_index = adev->irq.ih.rptr >> 2;
234 	uint32_t dw[4];
235 
236 	dw[0] = le32_to_cpu(adev->irq.ih.ring[ring_index + 0]);
237 	dw[1] = le32_to_cpu(adev->irq.ih.ring[ring_index + 1]);
238 	dw[2] = le32_to_cpu(adev->irq.ih.ring[ring_index + 2]);
239 	dw[3] = le32_to_cpu(adev->irq.ih.ring[ring_index + 3]);
240 
241 	entry->src_id = dw[0] & 0xff;
242 	entry->src_data = dw[1] & 0xfffffff;
243 	entry->ring_id = dw[2] & 0xff;
244 	entry->vm_id = (dw[2] >> 8) & 0xff;
245 	entry->pas_id = (dw[2] >> 16) & 0xffff;
246 
247 	/* wptr/rptr are in bytes! */
248 	adev->irq.ih.rptr += 16;
249 }
250 
251 /**
252  * tonga_ih_set_rptr - set the IH ring buffer rptr
253  *
254  * @adev: amdgpu_device pointer
255  *
256  * Set the IH ring buffer rptr.
257  */
258 static void tonga_ih_set_rptr(struct amdgpu_device *adev)
259 {
260 	if (adev->irq.ih.use_doorbell) {
261 		/* XXX check if swapping is necessary on BE */
262 		if (adev->irq.ih.use_bus_addr)
263 			adev->irq.ih.ring[adev->irq.ih.rptr_offs] = adev->irq.ih.rptr;
264 		else
265 			adev->wb.wb[adev->irq.ih.rptr_offs] = adev->irq.ih.rptr;
266 		WDOORBELL32(adev->irq.ih.doorbell_index, adev->irq.ih.rptr);
267 	} else {
268 		WREG32(mmIH_RB_RPTR, adev->irq.ih.rptr);
269 	}
270 }
271 
272 static int tonga_ih_early_init(void *handle)
273 {
274 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
275 	int ret;
276 
277 	ret = amdgpu_irq_add_domain(adev);
278 	if (ret)
279 		return ret;
280 
281 	tonga_ih_set_interrupt_funcs(adev);
282 
283 	return 0;
284 }
285 
286 static int tonga_ih_sw_init(void *handle)
287 {
288 	int r;
289 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
290 
291 	r = amdgpu_ih_ring_init(adev, 4 * 1024, true);
292 	if (r)
293 		return r;
294 
295 	adev->irq.ih.use_doorbell = true;
296 	adev->irq.ih.doorbell_index = AMDGPU_DOORBELL_IH;
297 
298 	r = amdgpu_irq_init(adev);
299 
300 	return r;
301 }
302 
303 static int tonga_ih_sw_fini(void *handle)
304 {
305 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
306 
307 	amdgpu_irq_fini(adev);
308 	amdgpu_ih_ring_fini(adev);
309 	amdgpu_irq_remove_domain(adev);
310 
311 	return 0;
312 }
313 
314 static int tonga_ih_hw_init(void *handle)
315 {
316 	int r;
317 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
318 
319 	r = tonga_ih_irq_init(adev);
320 	if (r)
321 		return r;
322 
323 	return 0;
324 }
325 
326 static int tonga_ih_hw_fini(void *handle)
327 {
328 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
329 
330 	tonga_ih_irq_disable(adev);
331 
332 	return 0;
333 }
334 
335 static int tonga_ih_suspend(void *handle)
336 {
337 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
338 
339 	return tonga_ih_hw_fini(adev);
340 }
341 
342 static int tonga_ih_resume(void *handle)
343 {
344 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
345 
346 	return tonga_ih_hw_init(adev);
347 }
348 
349 static bool tonga_ih_is_idle(void *handle)
350 {
351 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
352 	u32 tmp = RREG32(mmSRBM_STATUS);
353 
354 	if (REG_GET_FIELD(tmp, SRBM_STATUS, IH_BUSY))
355 		return false;
356 
357 	return true;
358 }
359 
360 static int tonga_ih_wait_for_idle(void *handle)
361 {
362 	unsigned i;
363 	u32 tmp;
364 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
365 
366 	for (i = 0; i < adev->usec_timeout; i++) {
367 		/* read MC_STATUS */
368 		tmp = RREG32(mmSRBM_STATUS);
369 		if (!REG_GET_FIELD(tmp, SRBM_STATUS, IH_BUSY))
370 			return 0;
371 		udelay(1);
372 	}
373 	return -ETIMEDOUT;
374 }
375 
376 static bool tonga_ih_check_soft_reset(void *handle)
377 {
378 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
379 	u32 srbm_soft_reset = 0;
380 	u32 tmp = RREG32(mmSRBM_STATUS);
381 
382 	if (tmp & SRBM_STATUS__IH_BUSY_MASK)
383 		srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET,
384 						SOFT_RESET_IH, 1);
385 
386 	if (srbm_soft_reset) {
387 		adev->irq.srbm_soft_reset = srbm_soft_reset;
388 		return true;
389 	} else {
390 		adev->irq.srbm_soft_reset = 0;
391 		return false;
392 	}
393 }
394 
395 static int tonga_ih_pre_soft_reset(void *handle)
396 {
397 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
398 
399 	if (!adev->irq.srbm_soft_reset)
400 		return 0;
401 
402 	return tonga_ih_hw_fini(adev);
403 }
404 
405 static int tonga_ih_post_soft_reset(void *handle)
406 {
407 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
408 
409 	if (!adev->irq.srbm_soft_reset)
410 		return 0;
411 
412 	return tonga_ih_hw_init(adev);
413 }
414 
415 static int tonga_ih_soft_reset(void *handle)
416 {
417 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
418 	u32 srbm_soft_reset;
419 
420 	if (!adev->irq.srbm_soft_reset)
421 		return 0;
422 	srbm_soft_reset = adev->irq.srbm_soft_reset;
423 
424 	if (srbm_soft_reset) {
425 		u32 tmp;
426 
427 		tmp = RREG32(mmSRBM_SOFT_RESET);
428 		tmp |= srbm_soft_reset;
429 		dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
430 		WREG32(mmSRBM_SOFT_RESET, tmp);
431 		tmp = RREG32(mmSRBM_SOFT_RESET);
432 
433 		udelay(50);
434 
435 		tmp &= ~srbm_soft_reset;
436 		WREG32(mmSRBM_SOFT_RESET, tmp);
437 		tmp = RREG32(mmSRBM_SOFT_RESET);
438 
439 		/* Wait a little for things to settle down */
440 		udelay(50);
441 	}
442 
443 	return 0;
444 }
445 
446 static int tonga_ih_set_clockgating_state(void *handle,
447 					  enum amd_clockgating_state state)
448 {
449 	return 0;
450 }
451 
452 static int tonga_ih_set_powergating_state(void *handle,
453 					  enum amd_powergating_state state)
454 {
455 	return 0;
456 }
457 
458 static const struct amd_ip_funcs tonga_ih_ip_funcs = {
459 	.name = "tonga_ih",
460 	.early_init = tonga_ih_early_init,
461 	.late_init = NULL,
462 	.sw_init = tonga_ih_sw_init,
463 	.sw_fini = tonga_ih_sw_fini,
464 	.hw_init = tonga_ih_hw_init,
465 	.hw_fini = tonga_ih_hw_fini,
466 	.suspend = tonga_ih_suspend,
467 	.resume = tonga_ih_resume,
468 	.is_idle = tonga_ih_is_idle,
469 	.wait_for_idle = tonga_ih_wait_for_idle,
470 	.check_soft_reset = tonga_ih_check_soft_reset,
471 	.pre_soft_reset = tonga_ih_pre_soft_reset,
472 	.soft_reset = tonga_ih_soft_reset,
473 	.post_soft_reset = tonga_ih_post_soft_reset,
474 	.set_clockgating_state = tonga_ih_set_clockgating_state,
475 	.set_powergating_state = tonga_ih_set_powergating_state,
476 };
477 
478 static const struct amdgpu_ih_funcs tonga_ih_funcs = {
479 	.get_wptr = tonga_ih_get_wptr,
480 	.decode_iv = tonga_ih_decode_iv,
481 	.set_rptr = tonga_ih_set_rptr
482 };
483 
484 static void tonga_ih_set_interrupt_funcs(struct amdgpu_device *adev)
485 {
486 	if (adev->irq.ih_funcs == NULL)
487 		adev->irq.ih_funcs = &tonga_ih_funcs;
488 }
489 
490 const struct amdgpu_ip_block_version tonga_ih_ip_block =
491 {
492 	.type = AMD_IP_BLOCK_TYPE_IH,
493 	.major = 3,
494 	.minor = 0,
495 	.rev = 0,
496 	.funcs = &tonga_ih_ip_funcs,
497 };
498