xref: /linux/drivers/gpu/drm/amd/amdgpu/tonga_ih.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 #include "drmP.h"
24 #include "amdgpu.h"
25 #include "amdgpu_ih.h"
26 #include "vid.h"
27 
28 #include "oss/oss_3_0_d.h"
29 #include "oss/oss_3_0_sh_mask.h"
30 
31 #include "bif/bif_5_1_d.h"
32 #include "bif/bif_5_1_sh_mask.h"
33 
34 /*
35  * Interrupts
36  * Starting with r6xx, interrupts are handled via a ring buffer.
37  * Ring buffers are areas of GPU accessible memory that the GPU
38  * writes interrupt vectors into and the host reads vectors out of.
39  * There is a rptr (read pointer) that determines where the
40  * host is currently reading, and a wptr (write pointer)
41  * which determines where the GPU has written.  When the
42  * pointers are equal, the ring is idle.  When the GPU
43  * writes vectors to the ring buffer, it increments the
44  * wptr.  When there is an interrupt, the host then starts
45  * fetching commands and processing them until the pointers are
46  * equal again at which point it updates the rptr.
47  */
48 
49 static void tonga_ih_set_interrupt_funcs(struct amdgpu_device *adev);
50 
51 /**
52  * tonga_ih_enable_interrupts - Enable the interrupt ring buffer
53  *
54  * @adev: amdgpu_device pointer
55  *
56  * Enable the interrupt ring buffer (VI).
57  */
58 static void tonga_ih_enable_interrupts(struct amdgpu_device *adev)
59 {
60 	u32 ih_rb_cntl = RREG32(mmIH_RB_CNTL);
61 
62 	ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, RB_ENABLE, 1);
63 	ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, ENABLE_INTR, 1);
64 	WREG32(mmIH_RB_CNTL, ih_rb_cntl);
65 	adev->irq.ih.enabled = true;
66 }
67 
68 /**
69  * tonga_ih_disable_interrupts - Disable the interrupt ring buffer
70  *
71  * @adev: amdgpu_device pointer
72  *
73  * Disable the interrupt ring buffer (VI).
74  */
75 static void tonga_ih_disable_interrupts(struct amdgpu_device *adev)
76 {
77 	u32 ih_rb_cntl = RREG32(mmIH_RB_CNTL);
78 
79 	ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, RB_ENABLE, 0);
80 	ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, ENABLE_INTR, 0);
81 	WREG32(mmIH_RB_CNTL, ih_rb_cntl);
82 	/* set rptr, wptr to 0 */
83 	WREG32(mmIH_RB_RPTR, 0);
84 	WREG32(mmIH_RB_WPTR, 0);
85 	adev->irq.ih.enabled = false;
86 	adev->irq.ih.rptr = 0;
87 }
88 
89 /**
90  * tonga_ih_irq_init - init and enable the interrupt ring
91  *
92  * @adev: amdgpu_device pointer
93  *
94  * Allocate a ring buffer for the interrupt controller,
95  * enable the RLC, disable interrupts, enable the IH
96  * ring buffer and enable it (VI).
97  * Called at device load and reume.
98  * Returns 0 for success, errors for failure.
99  */
100 static int tonga_ih_irq_init(struct amdgpu_device *adev)
101 {
102 	int ret = 0;
103 	int rb_bufsz;
104 	u32 interrupt_cntl, ih_rb_cntl, ih_doorbell_rtpr;
105 	u64 wptr_off;
106 
107 	/* disable irqs */
108 	tonga_ih_disable_interrupts(adev);
109 
110 	/* setup interrupt control */
111 	WREG32(mmINTERRUPT_CNTL2, adev->dummy_page.addr >> 8);
112 	interrupt_cntl = RREG32(mmINTERRUPT_CNTL);
113 	/* INTERRUPT_CNTL__IH_DUMMY_RD_OVERRIDE_MASK=0 - dummy read disabled with msi, enabled without msi
114 	 * INTERRUPT_CNTL__IH_DUMMY_RD_OVERRIDE_MASK=1 - dummy read controlled by IH_DUMMY_RD_EN
115 	 */
116 	interrupt_cntl = REG_SET_FIELD(interrupt_cntl, INTERRUPT_CNTL, IH_DUMMY_RD_OVERRIDE, 0);
117 	/* INTERRUPT_CNTL__IH_REQ_NONSNOOP_EN_MASK=1 if ring is in non-cacheable memory, e.g., vram */
118 	interrupt_cntl = REG_SET_FIELD(interrupt_cntl, INTERRUPT_CNTL, IH_REQ_NONSNOOP_EN, 0);
119 	WREG32(mmINTERRUPT_CNTL, interrupt_cntl);
120 
121 	/* Ring Buffer base. [39:8] of 40-bit address of the beginning of the ring buffer*/
122 	if (adev->irq.ih.use_bus_addr)
123 		WREG32(mmIH_RB_BASE, adev->irq.ih.rb_dma_addr >> 8);
124 	else
125 		WREG32(mmIH_RB_BASE, adev->irq.ih.gpu_addr >> 8);
126 
127 	rb_bufsz = order_base_2(adev->irq.ih.ring_size / 4);
128 	ih_rb_cntl = REG_SET_FIELD(0, IH_RB_CNTL, WPTR_OVERFLOW_CLEAR, 1);
129 	ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, RB_SIZE, rb_bufsz);
130 	/* Ring Buffer write pointer writeback. If enabled, IH_RB_WPTR register value is written to memory */
131 	ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, WPTR_WRITEBACK_ENABLE, 1);
132 	ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, MC_VMID, 0);
133 
134 	if (adev->irq.msi_enabled)
135 		ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, RPTR_REARM, 1);
136 
137 	WREG32(mmIH_RB_CNTL, ih_rb_cntl);
138 
139 	/* set the writeback address whether it's enabled or not */
140 	if (adev->irq.ih.use_bus_addr)
141 		wptr_off = adev->irq.ih.rb_dma_addr + (adev->irq.ih.wptr_offs * 4);
142 	else
143 		wptr_off = adev->wb.gpu_addr + (adev->irq.ih.wptr_offs * 4);
144 	WREG32(mmIH_RB_WPTR_ADDR_LO, lower_32_bits(wptr_off));
145 	WREG32(mmIH_RB_WPTR_ADDR_HI, upper_32_bits(wptr_off) & 0xFF);
146 
147 	/* set rptr, wptr to 0 */
148 	WREG32(mmIH_RB_RPTR, 0);
149 	WREG32(mmIH_RB_WPTR, 0);
150 
151 	ih_doorbell_rtpr = RREG32(mmIH_DOORBELL_RPTR);
152 	if (adev->irq.ih.use_doorbell) {
153 		ih_doorbell_rtpr = REG_SET_FIELD(ih_doorbell_rtpr, IH_DOORBELL_RPTR,
154 						 OFFSET, adev->irq.ih.doorbell_index);
155 		ih_doorbell_rtpr = REG_SET_FIELD(ih_doorbell_rtpr, IH_DOORBELL_RPTR,
156 						 ENABLE, 1);
157 	} else {
158 		ih_doorbell_rtpr = REG_SET_FIELD(ih_doorbell_rtpr, IH_DOORBELL_RPTR,
159 						 ENABLE, 0);
160 	}
161 	WREG32(mmIH_DOORBELL_RPTR, ih_doorbell_rtpr);
162 
163 	pci_set_master(adev->pdev);
164 
165 	/* enable interrupts */
166 	tonga_ih_enable_interrupts(adev);
167 
168 	return ret;
169 }
170 
171 /**
172  * tonga_ih_irq_disable - disable interrupts
173  *
174  * @adev: amdgpu_device pointer
175  *
176  * Disable interrupts on the hw (VI).
177  */
178 static void tonga_ih_irq_disable(struct amdgpu_device *adev)
179 {
180 	tonga_ih_disable_interrupts(adev);
181 
182 	/* Wait and acknowledge irq */
183 	mdelay(1);
184 }
185 
186 /**
187  * tonga_ih_get_wptr - get the IH ring buffer wptr
188  *
189  * @adev: amdgpu_device pointer
190  *
191  * Get the IH ring buffer wptr from either the register
192  * or the writeback memory buffer (VI).  Also check for
193  * ring buffer overflow and deal with it.
194  * Used by cz_irq_process(VI).
195  * Returns the value of the wptr.
196  */
197 static u32 tonga_ih_get_wptr(struct amdgpu_device *adev)
198 {
199 	u32 wptr, tmp;
200 
201 	if (adev->irq.ih.use_bus_addr)
202 		wptr = le32_to_cpu(adev->irq.ih.ring[adev->irq.ih.wptr_offs]);
203 	else
204 		wptr = le32_to_cpu(adev->wb.wb[adev->irq.ih.wptr_offs]);
205 
206 	if (REG_GET_FIELD(wptr, IH_RB_WPTR, RB_OVERFLOW)) {
207 		wptr = REG_SET_FIELD(wptr, IH_RB_WPTR, RB_OVERFLOW, 0);
208 		/* When a ring buffer overflow happen start parsing interrupt
209 		 * from the last not overwritten vector (wptr + 16). Hopefully
210 		 * this should allow us to catchup.
211 		 */
212 		dev_warn(adev->dev, "IH ring buffer overflow (0x%08X, 0x%08X, 0x%08X)\n",
213 			wptr, adev->irq.ih.rptr, (wptr + 16) & adev->irq.ih.ptr_mask);
214 		adev->irq.ih.rptr = (wptr + 16) & adev->irq.ih.ptr_mask;
215 		tmp = RREG32(mmIH_RB_CNTL);
216 		tmp = REG_SET_FIELD(tmp, IH_RB_CNTL, WPTR_OVERFLOW_CLEAR, 1);
217 		WREG32(mmIH_RB_CNTL, tmp);
218 	}
219 	return (wptr & adev->irq.ih.ptr_mask);
220 }
221 
222 /**
223  * tonga_ih_decode_iv - decode an interrupt vector
224  *
225  * @adev: amdgpu_device pointer
226  *
227  * Decodes the interrupt vector at the current rptr
228  * position and also advance the position.
229  */
230 static void tonga_ih_decode_iv(struct amdgpu_device *adev,
231 				 struct amdgpu_iv_entry *entry)
232 {
233 	/* wptr/rptr are in bytes! */
234 	u32 ring_index = adev->irq.ih.rptr >> 2;
235 	uint32_t dw[4];
236 
237 	dw[0] = le32_to_cpu(adev->irq.ih.ring[ring_index + 0]);
238 	dw[1] = le32_to_cpu(adev->irq.ih.ring[ring_index + 1]);
239 	dw[2] = le32_to_cpu(adev->irq.ih.ring[ring_index + 2]);
240 	dw[3] = le32_to_cpu(adev->irq.ih.ring[ring_index + 3]);
241 
242 	entry->src_id = dw[0] & 0xff;
243 	entry->src_data = dw[1] & 0xfffffff;
244 	entry->ring_id = dw[2] & 0xff;
245 	entry->vm_id = (dw[2] >> 8) & 0xff;
246 	entry->pas_id = (dw[2] >> 16) & 0xffff;
247 
248 	/* wptr/rptr are in bytes! */
249 	adev->irq.ih.rptr += 16;
250 }
251 
252 /**
253  * tonga_ih_set_rptr - set the IH ring buffer rptr
254  *
255  * @adev: amdgpu_device pointer
256  *
257  * Set the IH ring buffer rptr.
258  */
259 static void tonga_ih_set_rptr(struct amdgpu_device *adev)
260 {
261 	if (adev->irq.ih.use_doorbell) {
262 		/* XXX check if swapping is necessary on BE */
263 		if (adev->irq.ih.use_bus_addr)
264 			adev->irq.ih.ring[adev->irq.ih.rptr_offs] = adev->irq.ih.rptr;
265 		else
266 			adev->wb.wb[adev->irq.ih.rptr_offs] = adev->irq.ih.rptr;
267 		WDOORBELL32(adev->irq.ih.doorbell_index, adev->irq.ih.rptr);
268 	} else {
269 		WREG32(mmIH_RB_RPTR, adev->irq.ih.rptr);
270 	}
271 }
272 
273 static int tonga_ih_early_init(void *handle)
274 {
275 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
276 
277 	tonga_ih_set_interrupt_funcs(adev);
278 	return 0;
279 }
280 
281 static int tonga_ih_sw_init(void *handle)
282 {
283 	int r;
284 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
285 
286 	r = amdgpu_ih_ring_init(adev, 4 * 1024, true);
287 	if (r)
288 		return r;
289 
290 	adev->irq.ih.use_doorbell = true;
291 	adev->irq.ih.doorbell_index = AMDGPU_DOORBELL_IH;
292 
293 	r = amdgpu_irq_init(adev);
294 
295 	return r;
296 }
297 
298 static int tonga_ih_sw_fini(void *handle)
299 {
300 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
301 
302 	amdgpu_irq_fini(adev);
303 	amdgpu_ih_ring_fini(adev);
304 
305 	return 0;
306 }
307 
308 static int tonga_ih_hw_init(void *handle)
309 {
310 	int r;
311 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
312 
313 	r = tonga_ih_irq_init(adev);
314 	if (r)
315 		return r;
316 
317 	return 0;
318 }
319 
320 static int tonga_ih_hw_fini(void *handle)
321 {
322 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
323 
324 	tonga_ih_irq_disable(adev);
325 
326 	return 0;
327 }
328 
329 static int tonga_ih_suspend(void *handle)
330 {
331 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
332 
333 	return tonga_ih_hw_fini(adev);
334 }
335 
336 static int tonga_ih_resume(void *handle)
337 {
338 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
339 
340 	return tonga_ih_hw_init(adev);
341 }
342 
343 static bool tonga_ih_is_idle(void *handle)
344 {
345 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
346 	u32 tmp = RREG32(mmSRBM_STATUS);
347 
348 	if (REG_GET_FIELD(tmp, SRBM_STATUS, IH_BUSY))
349 		return false;
350 
351 	return true;
352 }
353 
354 static int tonga_ih_wait_for_idle(void *handle)
355 {
356 	unsigned i;
357 	u32 tmp;
358 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
359 
360 	for (i = 0; i < adev->usec_timeout; i++) {
361 		/* read MC_STATUS */
362 		tmp = RREG32(mmSRBM_STATUS);
363 		if (!REG_GET_FIELD(tmp, SRBM_STATUS, IH_BUSY))
364 			return 0;
365 		udelay(1);
366 	}
367 	return -ETIMEDOUT;
368 }
369 
370 static void tonga_ih_print_status(void *handle)
371 {
372 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
373 
374 	dev_info(adev->dev, "TONGA IH registers\n");
375 	dev_info(adev->dev, "  SRBM_STATUS=0x%08X\n",
376 		RREG32(mmSRBM_STATUS));
377 	dev_info(adev->dev, "  SRBM_STATUS2=0x%08X\n",
378 		RREG32(mmSRBM_STATUS2));
379 	dev_info(adev->dev, "  INTERRUPT_CNTL=0x%08X\n",
380 		 RREG32(mmINTERRUPT_CNTL));
381 	dev_info(adev->dev, "  INTERRUPT_CNTL2=0x%08X\n",
382 		 RREG32(mmINTERRUPT_CNTL2));
383 	dev_info(adev->dev, "  IH_CNTL=0x%08X\n",
384 		 RREG32(mmIH_CNTL));
385 	dev_info(adev->dev, "  IH_RB_CNTL=0x%08X\n",
386 		 RREG32(mmIH_RB_CNTL));
387 	dev_info(adev->dev, "  IH_RB_BASE=0x%08X\n",
388 		 RREG32(mmIH_RB_BASE));
389 	dev_info(adev->dev, "  IH_RB_WPTR_ADDR_LO=0x%08X\n",
390 		 RREG32(mmIH_RB_WPTR_ADDR_LO));
391 	dev_info(adev->dev, "  IH_RB_WPTR_ADDR_HI=0x%08X\n",
392 		 RREG32(mmIH_RB_WPTR_ADDR_HI));
393 	dev_info(adev->dev, "  IH_RB_RPTR=0x%08X\n",
394 		 RREG32(mmIH_RB_RPTR));
395 	dev_info(adev->dev, "  IH_RB_WPTR=0x%08X\n",
396 		 RREG32(mmIH_RB_WPTR));
397 }
398 
399 static int tonga_ih_soft_reset(void *handle)
400 {
401 	u32 srbm_soft_reset = 0;
402 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
403 	u32 tmp = RREG32(mmSRBM_STATUS);
404 
405 	if (tmp & SRBM_STATUS__IH_BUSY_MASK)
406 		srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET,
407 						SOFT_RESET_IH, 1);
408 
409 	if (srbm_soft_reset) {
410 		tonga_ih_print_status(adev);
411 
412 		tmp = RREG32(mmSRBM_SOFT_RESET);
413 		tmp |= srbm_soft_reset;
414 		dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
415 		WREG32(mmSRBM_SOFT_RESET, tmp);
416 		tmp = RREG32(mmSRBM_SOFT_RESET);
417 
418 		udelay(50);
419 
420 		tmp &= ~srbm_soft_reset;
421 		WREG32(mmSRBM_SOFT_RESET, tmp);
422 		tmp = RREG32(mmSRBM_SOFT_RESET);
423 
424 		/* Wait a little for things to settle down */
425 		udelay(50);
426 
427 		tonga_ih_print_status(adev);
428 	}
429 
430 	return 0;
431 }
432 
433 static int tonga_ih_set_clockgating_state(void *handle,
434 					  enum amd_clockgating_state state)
435 {
436 	return 0;
437 }
438 
439 static int tonga_ih_set_powergating_state(void *handle,
440 					  enum amd_powergating_state state)
441 {
442 	return 0;
443 }
444 
445 const struct amd_ip_funcs tonga_ih_ip_funcs = {
446 	.early_init = tonga_ih_early_init,
447 	.late_init = NULL,
448 	.sw_init = tonga_ih_sw_init,
449 	.sw_fini = tonga_ih_sw_fini,
450 	.hw_init = tonga_ih_hw_init,
451 	.hw_fini = tonga_ih_hw_fini,
452 	.suspend = tonga_ih_suspend,
453 	.resume = tonga_ih_resume,
454 	.is_idle = tonga_ih_is_idle,
455 	.wait_for_idle = tonga_ih_wait_for_idle,
456 	.soft_reset = tonga_ih_soft_reset,
457 	.print_status = tonga_ih_print_status,
458 	.set_clockgating_state = tonga_ih_set_clockgating_state,
459 	.set_powergating_state = tonga_ih_set_powergating_state,
460 };
461 
462 static const struct amdgpu_ih_funcs tonga_ih_funcs = {
463 	.get_wptr = tonga_ih_get_wptr,
464 	.decode_iv = tonga_ih_decode_iv,
465 	.set_rptr = tonga_ih_set_rptr
466 };
467 
468 static void tonga_ih_set_interrupt_funcs(struct amdgpu_device *adev)
469 {
470 	if (adev->irq.ih_funcs == NULL)
471 		adev->irq.ih_funcs = &tonga_ih_funcs;
472 }
473 
474