1 /* 2 * Copyright 2020 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 */ 23 24 #include <linux/delay.h> 25 #include <linux/firmware.h> 26 #include <linux/module.h> 27 #include <linux/pci.h> 28 29 #include "amdgpu.h" 30 #include "amdgpu_ucode.h" 31 #include "amdgpu_trace.h" 32 33 #include "gc/gc_11_0_0_offset.h" 34 #include "gc/gc_11_0_0_sh_mask.h" 35 #include "gc/gc_11_0_0_default.h" 36 #include "hdp/hdp_6_0_0_offset.h" 37 #include "ivsrcid/gfx/irqsrcs_gfx_11_0_0.h" 38 39 #include "soc15_common.h" 40 #include "soc15.h" 41 #include "sdma_v6_0_0_pkt_open.h" 42 #include "nbio_v4_3.h" 43 #include "sdma_common.h" 44 #include "sdma_v6_0.h" 45 #include "v11_structs.h" 46 47 MODULE_FIRMWARE("amdgpu/sdma_6_0_0.bin"); 48 MODULE_FIRMWARE("amdgpu/sdma_6_0_1.bin"); 49 MODULE_FIRMWARE("amdgpu/sdma_6_0_2.bin"); 50 MODULE_FIRMWARE("amdgpu/sdma_6_0_3.bin"); 51 MODULE_FIRMWARE("amdgpu/sdma_6_1_0.bin"); 52 MODULE_FIRMWARE("amdgpu/sdma_6_1_1.bin"); 53 MODULE_FIRMWARE("amdgpu/sdma_6_1_2.bin"); 54 55 #define SDMA1_REG_OFFSET 0x600 56 #define SDMA0_HYP_DEC_REG_START 0x5880 57 #define SDMA0_HYP_DEC_REG_END 0x589a 58 #define SDMA1_HYP_DEC_REG_OFFSET 0x20 59 60 static const struct amdgpu_hwip_reg_entry sdma_reg_list_6_0[] = { 61 SOC15_REG_ENTRY_STR(GC, 0, regSDMA0_STATUS_REG), 62 SOC15_REG_ENTRY_STR(GC, 0, regSDMA0_STATUS1_REG), 63 SOC15_REG_ENTRY_STR(GC, 0, regSDMA0_STATUS2_REG), 64 SOC15_REG_ENTRY_STR(GC, 0, regSDMA0_STATUS3_REG), 65 SOC15_REG_ENTRY_STR(GC, 0, regSDMA0_STATUS4_REG), 66 SOC15_REG_ENTRY_STR(GC, 0, regSDMA0_STATUS5_REG), 67 SOC15_REG_ENTRY_STR(GC, 0, regSDMA0_STATUS6_REG), 68 SOC15_REG_ENTRY_STR(GC, 0, regSDMA0_UCODE_CHECKSUM), 69 SOC15_REG_ENTRY_STR(GC, 0, regSDMA0_RB_RPTR_FETCH_HI), 70 SOC15_REG_ENTRY_STR(GC, 0, regSDMA0_RB_RPTR_FETCH), 71 SOC15_REG_ENTRY_STR(GC, 0, regSDMA0_UTCL1_RD_STATUS), 72 SOC15_REG_ENTRY_STR(GC, 0, regSDMA0_UTCL1_WR_STATUS), 73 SOC15_REG_ENTRY_STR(GC, 0, regSDMA0_UTCL1_RD_XNACK0), 74 SOC15_REG_ENTRY_STR(GC, 0, regSDMA0_UTCL1_RD_XNACK1), 75 SOC15_REG_ENTRY_STR(GC, 0, regSDMA0_UTCL1_WR_XNACK0), 76 SOC15_REG_ENTRY_STR(GC, 0, regSDMA0_UTCL1_WR_XNACK1), 77 SOC15_REG_ENTRY_STR(GC, 0, regSDMA0_QUEUE0_RB_CNTL), 78 SOC15_REG_ENTRY_STR(GC, 0, regSDMA0_QUEUE0_RB_RPTR), 79 SOC15_REG_ENTRY_STR(GC, 0, regSDMA0_QUEUE0_RB_RPTR_HI), 80 SOC15_REG_ENTRY_STR(GC, 0, regSDMA0_QUEUE0_RB_WPTR), 81 SOC15_REG_ENTRY_STR(GC, 0, regSDMA0_QUEUE0_RB_WPTR_HI), 82 SOC15_REG_ENTRY_STR(GC, 0, regSDMA0_QUEUE0_IB_OFFSET), 83 SOC15_REG_ENTRY_STR(GC, 0, regSDMA0_QUEUE0_IB_BASE_LO), 84 SOC15_REG_ENTRY_STR(GC, 0, regSDMA0_QUEUE0_IB_BASE_HI), 85 SOC15_REG_ENTRY_STR(GC, 0, regSDMA0_QUEUE0_IB_CNTL), 86 SOC15_REG_ENTRY_STR(GC, 0, regSDMA0_QUEUE0_IB_RPTR), 87 SOC15_REG_ENTRY_STR(GC, 0, regSDMA0_QUEUE0_IB_SUB_REMAIN), 88 SOC15_REG_ENTRY_STR(GC, 0, regSDMA0_QUEUE0_DUMMY_REG), 89 SOC15_REG_ENTRY_STR(GC, 0, regSDMA0_QUEUE_STATUS0), 90 SOC15_REG_ENTRY_STR(GC, 0, regSDMA0_QUEUE1_RB_CNTL), 91 SOC15_REG_ENTRY_STR(GC, 0, regSDMA0_QUEUE1_RB_RPTR), 92 SOC15_REG_ENTRY_STR(GC, 0, regSDMA0_QUEUE1_RB_RPTR_HI), 93 SOC15_REG_ENTRY_STR(GC, 0, regSDMA0_QUEUE1_RB_WPTR), 94 SOC15_REG_ENTRY_STR(GC, 0, regSDMA0_QUEUE1_RB_WPTR_HI), 95 SOC15_REG_ENTRY_STR(GC, 0, regSDMA0_QUEUE1_IB_OFFSET), 96 SOC15_REG_ENTRY_STR(GC, 0, regSDMA0_QUEUE1_IB_BASE_LO), 97 SOC15_REG_ENTRY_STR(GC, 0, regSDMA0_QUEUE1_IB_BASE_HI), 98 SOC15_REG_ENTRY_STR(GC, 0, regSDMA0_QUEUE1_IB_RPTR), 99 SOC15_REG_ENTRY_STR(GC, 0, regSDMA0_QUEUE1_IB_SUB_REMAIN), 100 SOC15_REG_ENTRY_STR(GC, 0, regSDMA0_QUEUE1_DUMMY_REG), 101 SOC15_REG_ENTRY_STR(GC, 0, regSDMA0_QUEUE2_RB_CNTL), 102 SOC15_REG_ENTRY_STR(GC, 0, regSDMA0_QUEUE2_RB_RPTR), 103 SOC15_REG_ENTRY_STR(GC, 0, regSDMA0_QUEUE2_RB_RPTR_HI), 104 SOC15_REG_ENTRY_STR(GC, 0, regSDMA0_QUEUE2_RB_WPTR), 105 SOC15_REG_ENTRY_STR(GC, 0, regSDMA0_QUEUE2_RB_WPTR_HI), 106 SOC15_REG_ENTRY_STR(GC, 0, regSDMA0_QUEUE2_IB_OFFSET), 107 SOC15_REG_ENTRY_STR(GC, 0, regSDMA0_QUEUE2_IB_BASE_LO), 108 SOC15_REG_ENTRY_STR(GC, 0, regSDMA0_QUEUE2_IB_BASE_HI), 109 SOC15_REG_ENTRY_STR(GC, 0, regSDMA0_QUEUE2_IB_RPTR), 110 SOC15_REG_ENTRY_STR(GC, 0, regSDMA0_QUEUE2_IB_SUB_REMAIN), 111 SOC15_REG_ENTRY_STR(GC, 0, regSDMA0_QUEUE2_DUMMY_REG), 112 SOC15_REG_ENTRY_STR(GC, 0, regSDMA0_INT_STATUS), 113 SOC15_REG_ENTRY_STR(GC, 0, regGRBM_STATUS2), 114 SOC15_REG_ENTRY_STR(GC, 0, regSDMA0_CHICKEN_BITS), 115 }; 116 117 static void sdma_v6_0_set_ring_funcs(struct amdgpu_device *adev); 118 static void sdma_v6_0_set_buffer_funcs(struct amdgpu_device *adev); 119 static void sdma_v6_0_set_vm_pte_funcs(struct amdgpu_device *adev); 120 static void sdma_v6_0_set_irq_funcs(struct amdgpu_device *adev); 121 static int sdma_v6_0_start(struct amdgpu_device *adev); 122 123 static u32 sdma_v6_0_get_reg_offset(struct amdgpu_device *adev, u32 instance, u32 internal_offset) 124 { 125 u32 base; 126 127 if (internal_offset >= SDMA0_HYP_DEC_REG_START && 128 internal_offset <= SDMA0_HYP_DEC_REG_END) { 129 base = adev->reg_offset[GC_HWIP][0][1]; 130 if (instance != 0) 131 internal_offset += SDMA1_HYP_DEC_REG_OFFSET * instance; 132 } else { 133 base = adev->reg_offset[GC_HWIP][0][0]; 134 if (instance == 1) 135 internal_offset += SDMA1_REG_OFFSET; 136 } 137 138 return base + internal_offset; 139 } 140 141 static unsigned sdma_v6_0_ring_init_cond_exec(struct amdgpu_ring *ring, 142 uint64_t addr) 143 { 144 unsigned ret; 145 146 amdgpu_ring_write(ring, SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_COND_EXE)); 147 amdgpu_ring_write(ring, lower_32_bits(addr)); 148 amdgpu_ring_write(ring, upper_32_bits(addr)); 149 amdgpu_ring_write(ring, 1); 150 /* this is the offset we need patch later */ 151 ret = ring->wptr & ring->buf_mask; 152 /* insert dummy here and patch it later */ 153 amdgpu_ring_write(ring, 0); 154 155 return ret; 156 } 157 158 /** 159 * sdma_v6_0_ring_get_rptr - get the current read pointer 160 * 161 * @ring: amdgpu ring pointer 162 * 163 * Get the current rptr from the hardware. 164 */ 165 static uint64_t sdma_v6_0_ring_get_rptr(struct amdgpu_ring *ring) 166 { 167 u64 *rptr; 168 169 /* XXX check if swapping is necessary on BE */ 170 rptr = (u64 *)ring->rptr_cpu_addr; 171 172 DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr); 173 return ((*rptr) >> 2); 174 } 175 176 /** 177 * sdma_v6_0_ring_get_wptr - get the current write pointer 178 * 179 * @ring: amdgpu ring pointer 180 * 181 * Get the current wptr from the hardware. 182 */ 183 static uint64_t sdma_v6_0_ring_get_wptr(struct amdgpu_ring *ring) 184 { 185 u64 wptr = 0; 186 187 if (ring->use_doorbell) { 188 /* XXX check if swapping is necessary on BE */ 189 wptr = READ_ONCE(*((u64 *)ring->wptr_cpu_addr)); 190 DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr); 191 } 192 193 return wptr >> 2; 194 } 195 196 /** 197 * sdma_v6_0_ring_set_wptr - commit the write pointer 198 * 199 * @ring: amdgpu ring pointer 200 * 201 * Write the wptr back to the hardware. 202 */ 203 static void sdma_v6_0_ring_set_wptr(struct amdgpu_ring *ring) 204 { 205 struct amdgpu_device *adev = ring->adev; 206 207 if (ring->use_doorbell) { 208 DRM_DEBUG("Using doorbell -- " 209 "wptr_offs == 0x%08x " 210 "lower_32_bits(ring->wptr) << 2 == 0x%08x " 211 "upper_32_bits(ring->wptr) << 2 == 0x%08x\n", 212 ring->wptr_offs, 213 lower_32_bits(ring->wptr << 2), 214 upper_32_bits(ring->wptr << 2)); 215 /* XXX check if swapping is necessary on BE */ 216 atomic64_set((atomic64_t *)ring->wptr_cpu_addr, 217 ring->wptr << 2); 218 DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n", 219 ring->doorbell_index, ring->wptr << 2); 220 WDOORBELL64(ring->doorbell_index, ring->wptr << 2); 221 } else { 222 DRM_DEBUG("Not using doorbell -- " 223 "regSDMA%i_GFX_RB_WPTR == 0x%08x " 224 "regSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n", 225 ring->me, 226 lower_32_bits(ring->wptr << 2), 227 ring->me, 228 upper_32_bits(ring->wptr << 2)); 229 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, 230 ring->me, regSDMA0_QUEUE0_RB_WPTR), 231 lower_32_bits(ring->wptr << 2)); 232 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, 233 ring->me, regSDMA0_QUEUE0_RB_WPTR_HI), 234 upper_32_bits(ring->wptr << 2)); 235 } 236 } 237 238 static void sdma_v6_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count) 239 { 240 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring); 241 int i; 242 243 for (i = 0; i < count; i++) 244 if (sdma && sdma->burst_nop && (i == 0)) 245 amdgpu_ring_write(ring, ring->funcs->nop | 246 SDMA_PKT_NOP_HEADER_COUNT(count - 1)); 247 else 248 amdgpu_ring_write(ring, ring->funcs->nop); 249 } 250 251 /* 252 * sdma_v6_0_ring_emit_ib - Schedule an IB on the DMA engine 253 * 254 * @ring: amdgpu ring pointer 255 * @ib: IB object to schedule 256 * @flags: unused 257 * @job: job to retrieve vmid from 258 * 259 * Schedule an IB in the DMA ring. 260 */ 261 static void sdma_v6_0_ring_emit_ib(struct amdgpu_ring *ring, 262 struct amdgpu_job *job, 263 struct amdgpu_ib *ib, 264 uint32_t flags) 265 { 266 unsigned vmid = AMDGPU_JOB_GET_VMID(job); 267 uint64_t csa_mc_addr = amdgpu_sdma_get_csa_mc_addr(ring, vmid); 268 269 /* An IB packet must end on a 8 DW boundary--the next dword 270 * must be on a 8-dword boundary. Our IB packet below is 6 271 * dwords long, thus add x number of NOPs, such that, in 272 * modular arithmetic, 273 * wptr + 6 + x = 8k, k >= 0, which in C is, 274 * (wptr + 6 + x) % 8 = 0. 275 * The expression below, is a solution of x. 276 */ 277 sdma_v6_0_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7); 278 279 amdgpu_ring_write(ring, SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_INDIRECT) | 280 SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf)); 281 /* base must be 32 byte aligned */ 282 amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0); 283 amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr)); 284 amdgpu_ring_write(ring, ib->length_dw); 285 amdgpu_ring_write(ring, lower_32_bits(csa_mc_addr)); 286 amdgpu_ring_write(ring, upper_32_bits(csa_mc_addr)); 287 } 288 289 /** 290 * sdma_v6_0_ring_emit_mem_sync - flush the IB by graphics cache rinse 291 * 292 * @ring: amdgpu ring pointer 293 * 294 * flush the IB by graphics cache rinse. 295 */ 296 static void sdma_v6_0_ring_emit_mem_sync(struct amdgpu_ring *ring) 297 { 298 uint32_t gcr_cntl = SDMA_GCR_GL2_INV | SDMA_GCR_GL2_WB | SDMA_GCR_GLM_INV | 299 SDMA_GCR_GL1_INV | SDMA_GCR_GLV_INV | SDMA_GCR_GLK_INV | 300 SDMA_GCR_GLI_INV(1); 301 302 /* flush entire cache L0/L1/L2, this can be optimized by performance requirement */ 303 amdgpu_ring_write(ring, SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_GCR_REQ)); 304 amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD1_BASE_VA_31_7(0)); 305 amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD2_GCR_CONTROL_15_0(gcr_cntl) | 306 SDMA_PKT_GCR_REQ_PAYLOAD2_BASE_VA_47_32(0)); 307 amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD3_LIMIT_VA_31_7(0) | 308 SDMA_PKT_GCR_REQ_PAYLOAD3_GCR_CONTROL_18_16(gcr_cntl >> 16)); 309 amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD4_LIMIT_VA_47_32(0) | 310 SDMA_PKT_GCR_REQ_PAYLOAD4_VMID(0)); 311 } 312 313 314 /** 315 * sdma_v6_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring 316 * 317 * @ring: amdgpu ring pointer 318 * 319 * Emit an hdp flush packet on the requested DMA ring. 320 */ 321 static void sdma_v6_0_ring_emit_hdp_flush(struct amdgpu_ring *ring) 322 { 323 struct amdgpu_device *adev = ring->adev; 324 u32 ref_and_mask = 0; 325 const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg; 326 327 ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 << ring->me; 328 329 amdgpu_ring_write(ring, SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_POLL_REGMEM) | 330 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) | 331 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */ 332 amdgpu_ring_write(ring, (adev->nbio.funcs->get_hdp_flush_done_offset(adev)) << 2); 333 amdgpu_ring_write(ring, (adev->nbio.funcs->get_hdp_flush_req_offset(adev)) << 2); 334 amdgpu_ring_write(ring, ref_and_mask); /* reference */ 335 amdgpu_ring_write(ring, ref_and_mask); /* mask */ 336 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | 337 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */ 338 } 339 340 /** 341 * sdma_v6_0_ring_emit_fence - emit a fence on the DMA ring 342 * 343 * @ring: amdgpu ring pointer 344 * @addr: address 345 * @seq: fence seq number 346 * @flags: fence flags 347 * 348 * Add a DMA fence packet to the ring to write 349 * the fence seq number and DMA trap packet to generate 350 * an interrupt if needed. 351 */ 352 static void sdma_v6_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq, 353 unsigned flags) 354 { 355 bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT; 356 /* write the fence */ 357 amdgpu_ring_write(ring, SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_FENCE) | 358 SDMA_PKT_FENCE_HEADER_MTYPE(0x3)); /* Ucached(UC) */ 359 /* zero in first two bits */ 360 BUG_ON(addr & 0x3); 361 amdgpu_ring_write(ring, lower_32_bits(addr)); 362 amdgpu_ring_write(ring, upper_32_bits(addr)); 363 amdgpu_ring_write(ring, lower_32_bits(seq)); 364 365 /* optionally write high bits as well */ 366 if (write64bit) { 367 addr += 4; 368 amdgpu_ring_write(ring, SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_FENCE) | 369 SDMA_PKT_FENCE_HEADER_MTYPE(0x3)); 370 /* zero in first two bits */ 371 BUG_ON(addr & 0x3); 372 amdgpu_ring_write(ring, lower_32_bits(addr)); 373 amdgpu_ring_write(ring, upper_32_bits(addr)); 374 amdgpu_ring_write(ring, upper_32_bits(seq)); 375 } 376 377 if (flags & AMDGPU_FENCE_FLAG_INT) { 378 uint32_t ctx = ring->is_mes_queue ? 379 (ring->hw_queue_id | AMDGPU_FENCE_MES_QUEUE_FLAG) : 0; 380 /* generate an interrupt */ 381 amdgpu_ring_write(ring, SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_TRAP)); 382 amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(ctx)); 383 } 384 } 385 386 /** 387 * sdma_v6_0_gfx_stop - stop the gfx async dma engines 388 * 389 * @adev: amdgpu_device pointer 390 * 391 * Stop the gfx async dma ring buffers. 392 */ 393 static void sdma_v6_0_gfx_stop(struct amdgpu_device *adev) 394 { 395 u32 rb_cntl, ib_cntl; 396 int i; 397 398 for (i = 0; i < adev->sdma.num_instances; i++) { 399 rb_cntl = RREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_RB_CNTL)); 400 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_QUEUE0_RB_CNTL, RB_ENABLE, 0); 401 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_RB_CNTL), rb_cntl); 402 ib_cntl = RREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_IB_CNTL)); 403 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_QUEUE0_IB_CNTL, IB_ENABLE, 0); 404 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_IB_CNTL), ib_cntl); 405 } 406 } 407 408 /** 409 * sdma_v6_0_rlc_stop - stop the compute async dma engines 410 * 411 * @adev: amdgpu_device pointer 412 * 413 * Stop the compute async dma queues. 414 */ 415 static void sdma_v6_0_rlc_stop(struct amdgpu_device *adev) 416 { 417 /* XXX todo */ 418 } 419 420 /** 421 * sdma_v6_0_ctxempty_int_enable - enable or disable context empty interrupts 422 * 423 * @adev: amdgpu_device pointer 424 * @enable: enable/disable context switching due to queue empty conditions 425 * 426 * Enable or disable the async dma engines queue empty context switch. 427 */ 428 static void sdma_v6_0_ctxempty_int_enable(struct amdgpu_device *adev, bool enable) 429 { 430 u32 f32_cntl; 431 int i; 432 433 if (!amdgpu_sriov_vf(adev)) { 434 for (i = 0; i < adev->sdma.num_instances; i++) { 435 f32_cntl = RREG32(sdma_v6_0_get_reg_offset(adev, i, regSDMA0_CNTL)); 436 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL, 437 CTXEMPTY_INT_ENABLE, enable ? 1 : 0); 438 WREG32(sdma_v6_0_get_reg_offset(adev, i, regSDMA0_CNTL), f32_cntl); 439 } 440 } 441 } 442 443 /** 444 * sdma_v6_0_enable - stop the async dma engines 445 * 446 * @adev: amdgpu_device pointer 447 * @enable: enable/disable the DMA MEs. 448 * 449 * Halt or unhalt the async dma engines. 450 */ 451 static void sdma_v6_0_enable(struct amdgpu_device *adev, bool enable) 452 { 453 u32 f32_cntl; 454 int i; 455 456 if (!enable) { 457 sdma_v6_0_gfx_stop(adev); 458 sdma_v6_0_rlc_stop(adev); 459 } 460 461 if (amdgpu_sriov_vf(adev)) 462 return; 463 464 for (i = 0; i < adev->sdma.num_instances; i++) { 465 f32_cntl = RREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_F32_CNTL)); 466 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1); 467 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_F32_CNTL), f32_cntl); 468 } 469 } 470 471 /** 472 * sdma_v6_0_gfx_resume_instance - start/restart a certain sdma engine 473 * 474 * @adev: amdgpu_device pointer 475 * @i: instance 476 * @restore: used to restore wptr when restart 477 * 478 * Set up the gfx DMA ring buffers and enable them. On restart, we will restore wptr and rptr. 479 * Return 0 for success. 480 */ 481 static int sdma_v6_0_gfx_resume_instance(struct amdgpu_device *adev, int i, bool restore) 482 { 483 struct amdgpu_ring *ring; 484 u32 rb_cntl, ib_cntl; 485 u32 rb_bufsz; 486 u32 doorbell; 487 u32 doorbell_offset; 488 u32 temp; 489 u64 wptr_gpu_addr; 490 491 ring = &adev->sdma.instance[i].ring; 492 if (!amdgpu_sriov_vf(adev)) 493 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_SEM_WAIT_FAIL_TIMER_CNTL), 0); 494 495 /* Set ring buffer size in dwords */ 496 rb_bufsz = order_base_2(ring->ring_size / 4); 497 rb_cntl = RREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_RB_CNTL)); 498 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_QUEUE0_RB_CNTL, RB_SIZE, rb_bufsz); 499 #ifdef __BIG_ENDIAN 500 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_QUEUE0_RB_CNTL, RB_SWAP_ENABLE, 1); 501 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_QUEUE0_RB_CNTL, 502 RPTR_WRITEBACK_SWAP_ENABLE, 1); 503 #endif 504 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_QUEUE0_RB_CNTL, RB_PRIV, 1); 505 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_RB_CNTL), rb_cntl); 506 507 /* Initialize the ring buffer's read and write pointers */ 508 if (restore) { 509 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_RB_RPTR), lower_32_bits(ring->wptr << 2)); 510 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_RB_RPTR_HI), upper_32_bits(ring->wptr << 2)); 511 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_RB_WPTR), lower_32_bits(ring->wptr << 2)); 512 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_RB_WPTR_HI), upper_32_bits(ring->wptr << 2)); 513 } else { 514 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_RB_RPTR), 0); 515 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_RB_RPTR_HI), 0); 516 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_RB_WPTR), 0); 517 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_RB_WPTR_HI), 0); 518 } 519 /* setup the wptr shadow polling */ 520 wptr_gpu_addr = ring->wptr_gpu_addr; 521 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_RB_WPTR_POLL_ADDR_LO), 522 lower_32_bits(wptr_gpu_addr)); 523 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_RB_WPTR_POLL_ADDR_HI), 524 upper_32_bits(wptr_gpu_addr)); 525 526 /* set the wb address whether it's enabled or not */ 527 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_RB_RPTR_ADDR_HI), 528 upper_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFF); 529 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_RB_RPTR_ADDR_LO), 530 lower_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFC); 531 532 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_QUEUE0_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1); 533 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_QUEUE0_RB_CNTL, WPTR_POLL_ENABLE, 0); 534 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_QUEUE0_RB_CNTL, F32_WPTR_POLL_ENABLE, 1); 535 536 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_RB_BASE), ring->gpu_addr >> 8); 537 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_RB_BASE_HI), ring->gpu_addr >> 40); 538 539 if (!restore) 540 ring->wptr = 0; 541 542 /* before programing wptr to a less value, need set minor_ptr_update first */ 543 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_MINOR_PTR_UPDATE), 1); 544 545 if (!amdgpu_sriov_vf(adev)) { /* only bare-metal use register write for wptr */ 546 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_RB_WPTR), lower_32_bits(ring->wptr) << 2); 547 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_RB_WPTR_HI), upper_32_bits(ring->wptr) << 2); 548 } 549 550 doorbell = RREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_DOORBELL)); 551 doorbell_offset = RREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_DOORBELL_OFFSET)); 552 553 if (ring->use_doorbell) { 554 doorbell = REG_SET_FIELD(doorbell, SDMA0_QUEUE0_DOORBELL, ENABLE, 1); 555 doorbell_offset = REG_SET_FIELD(doorbell_offset, SDMA0_QUEUE0_DOORBELL_OFFSET, 556 OFFSET, ring->doorbell_index); 557 } else { 558 doorbell = REG_SET_FIELD(doorbell, SDMA0_QUEUE0_DOORBELL, ENABLE, 0); 559 } 560 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_DOORBELL), doorbell); 561 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_DOORBELL_OFFSET), doorbell_offset); 562 563 if (i == 0) 564 adev->nbio.funcs->sdma_doorbell_range(adev, i, ring->use_doorbell, 565 ring->doorbell_index, 566 adev->doorbell_index.sdma_doorbell_range * adev->sdma.num_instances); 567 568 if (amdgpu_sriov_vf(adev)) 569 sdma_v6_0_ring_set_wptr(ring); 570 571 /* set minor_ptr_update to 0 after wptr programed */ 572 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_MINOR_PTR_UPDATE), 0); 573 574 /* Set up sdma hang watchdog */ 575 temp = RREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_WATCHDOG_CNTL)); 576 /* 100ms per unit */ 577 temp = REG_SET_FIELD(temp, SDMA0_WATCHDOG_CNTL, QUEUE_HANG_COUNT, 578 max(adev->usec_timeout/100000, 1)); 579 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_WATCHDOG_CNTL), temp); 580 581 /* Set up RESP_MODE to non-copy addresses */ 582 temp = RREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_UTCL1_CNTL)); 583 temp = REG_SET_FIELD(temp, SDMA0_UTCL1_CNTL, RESP_MODE, 3); 584 temp = REG_SET_FIELD(temp, SDMA0_UTCL1_CNTL, REDO_DELAY, 9); 585 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_UTCL1_CNTL), temp); 586 587 /* program default cache read and write policy */ 588 temp = RREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_UTCL1_PAGE)); 589 /* clean read policy and write policy bits */ 590 temp &= 0xFF0FFF; 591 temp |= ((CACHE_READ_POLICY_L2__DEFAULT << 12) | 592 (CACHE_WRITE_POLICY_L2__DEFAULT << 14) | 593 SDMA0_UTCL1_PAGE__LLC_NOALLOC_MASK); 594 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_UTCL1_PAGE), temp); 595 596 if (!amdgpu_sriov_vf(adev)) { 597 /* unhalt engine */ 598 temp = RREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_F32_CNTL)); 599 temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0); 600 temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, TH1_RESET, 0); 601 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_F32_CNTL), temp); 602 } 603 604 /* enable DMA RB */ 605 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_QUEUE0_RB_CNTL, RB_ENABLE, 1); 606 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_RB_CNTL), rb_cntl); 607 608 ib_cntl = RREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_IB_CNTL)); 609 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_QUEUE0_IB_CNTL, IB_ENABLE, 1); 610 #ifdef __BIG_ENDIAN 611 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_QUEUE0_IB_CNTL, IB_SWAP_ENABLE, 1); 612 #endif 613 /* enable DMA IBs */ 614 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_IB_CNTL), ib_cntl); 615 616 if (amdgpu_sriov_vf(adev)) 617 sdma_v6_0_enable(adev, true); 618 619 return amdgpu_ring_test_helper(ring); 620 } 621 622 /** 623 * sdma_v6_0_gfx_resume - setup and start the async dma engines 624 * 625 * @adev: amdgpu_device pointer 626 * 627 * Set up the gfx DMA ring buffers and enable them. 628 * Returns 0 for success, error for failure. 629 */ 630 static int sdma_v6_0_gfx_resume(struct amdgpu_device *adev) 631 { 632 int i, r; 633 634 for (i = 0; i < adev->sdma.num_instances; i++) { 635 r = sdma_v6_0_gfx_resume_instance(adev, i, false); 636 if (r) 637 return r; 638 } 639 640 return 0; 641 } 642 643 /** 644 * sdma_v6_0_rlc_resume - setup and start the async dma engines 645 * 646 * @adev: amdgpu_device pointer 647 * 648 * Set up the compute DMA queues and enable them. 649 * Returns 0 for success, error for failure. 650 */ 651 static int sdma_v6_0_rlc_resume(struct amdgpu_device *adev) 652 { 653 return 0; 654 } 655 656 /** 657 * sdma_v6_0_load_microcode - load the sDMA ME ucode 658 * 659 * @adev: amdgpu_device pointer 660 * 661 * Loads the sDMA0/1 ucode. 662 * Returns 0 for success, -EINVAL if the ucode is not available. 663 */ 664 static int sdma_v6_0_load_microcode(struct amdgpu_device *adev) 665 { 666 const struct sdma_firmware_header_v2_0 *hdr; 667 const __le32 *fw_data; 668 u32 fw_size; 669 int i, j; 670 bool use_broadcast; 671 672 /* halt the MEs */ 673 sdma_v6_0_enable(adev, false); 674 675 if (!adev->sdma.instance[0].fw) 676 return -EINVAL; 677 678 /* use broadcast mode to load SDMA microcode by default */ 679 use_broadcast = true; 680 681 if (use_broadcast) { 682 dev_info(adev->dev, "Use broadcast method to load SDMA firmware\n"); 683 /* load Control Thread microcode */ 684 hdr = (const struct sdma_firmware_header_v2_0 *)adev->sdma.instance[0].fw->data; 685 amdgpu_ucode_print_sdma_hdr(&hdr->header); 686 fw_size = le32_to_cpu(hdr->ctx_jt_offset + hdr->ctx_jt_size) / 4; 687 688 fw_data = (const __le32 *) 689 (adev->sdma.instance[0].fw->data + 690 le32_to_cpu(hdr->header.ucode_array_offset_bytes)); 691 692 WREG32(sdma_v6_0_get_reg_offset(adev, 0, regSDMA0_BROADCAST_UCODE_ADDR), 0); 693 694 for (j = 0; j < fw_size; j++) { 695 if (amdgpu_emu_mode == 1 && j % 500 == 0) 696 msleep(1); 697 WREG32(sdma_v6_0_get_reg_offset(adev, 0, regSDMA0_BROADCAST_UCODE_DATA), le32_to_cpup(fw_data++)); 698 } 699 700 /* load Context Switch microcode */ 701 fw_size = le32_to_cpu(hdr->ctl_jt_offset + hdr->ctl_jt_size) / 4; 702 703 fw_data = (const __le32 *) 704 (adev->sdma.instance[0].fw->data + 705 le32_to_cpu(hdr->ctl_ucode_offset)); 706 707 WREG32(sdma_v6_0_get_reg_offset(adev, 0, regSDMA0_BROADCAST_UCODE_ADDR), 0x8000); 708 709 for (j = 0; j < fw_size; j++) { 710 if (amdgpu_emu_mode == 1 && j % 500 == 0) 711 msleep(1); 712 WREG32(sdma_v6_0_get_reg_offset(adev, 0, regSDMA0_BROADCAST_UCODE_DATA), le32_to_cpup(fw_data++)); 713 } 714 } else { 715 dev_info(adev->dev, "Use legacy method to load SDMA firmware\n"); 716 for (i = 0; i < adev->sdma.num_instances; i++) { 717 /* load Control Thread microcode */ 718 hdr = (const struct sdma_firmware_header_v2_0 *)adev->sdma.instance[0].fw->data; 719 amdgpu_ucode_print_sdma_hdr(&hdr->header); 720 fw_size = le32_to_cpu(hdr->ctx_jt_offset + hdr->ctx_jt_size) / 4; 721 722 fw_data = (const __le32 *) 723 (adev->sdma.instance[0].fw->data + 724 le32_to_cpu(hdr->header.ucode_array_offset_bytes)); 725 726 WREG32(sdma_v6_0_get_reg_offset(adev, i, regSDMA0_UCODE_ADDR), 0); 727 728 for (j = 0; j < fw_size; j++) { 729 if (amdgpu_emu_mode == 1 && j % 500 == 0) 730 msleep(1); 731 WREG32(sdma_v6_0_get_reg_offset(adev, i, regSDMA0_UCODE_DATA), le32_to_cpup(fw_data++)); 732 } 733 734 WREG32(sdma_v6_0_get_reg_offset(adev, i, regSDMA0_UCODE_ADDR), adev->sdma.instance[0].fw_version); 735 736 /* load Context Switch microcode */ 737 fw_size = le32_to_cpu(hdr->ctl_jt_offset + hdr->ctl_jt_size) / 4; 738 739 fw_data = (const __le32 *) 740 (adev->sdma.instance[0].fw->data + 741 le32_to_cpu(hdr->ctl_ucode_offset)); 742 743 WREG32(sdma_v6_0_get_reg_offset(adev, i, regSDMA0_UCODE_ADDR), 0x8000); 744 745 for (j = 0; j < fw_size; j++) { 746 if (amdgpu_emu_mode == 1 && j % 500 == 0) 747 msleep(1); 748 WREG32(sdma_v6_0_get_reg_offset(adev, i, regSDMA0_UCODE_DATA), le32_to_cpup(fw_data++)); 749 } 750 751 WREG32(sdma_v6_0_get_reg_offset(adev, i, regSDMA0_UCODE_ADDR), adev->sdma.instance[0].fw_version); 752 } 753 } 754 755 return 0; 756 } 757 758 static int sdma_v6_0_soft_reset(struct amdgpu_ip_block *ip_block) 759 { 760 struct amdgpu_device *adev = ip_block->adev; 761 u32 tmp; 762 int i; 763 764 sdma_v6_0_gfx_stop(adev); 765 766 for (i = 0; i < adev->sdma.num_instances; i++) { 767 tmp = RREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_FREEZE)); 768 tmp |= SDMA0_FREEZE__FREEZE_MASK; 769 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_FREEZE), tmp); 770 tmp = RREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_F32_CNTL)); 771 tmp |= SDMA0_F32_CNTL__HALT_MASK; 772 tmp |= SDMA0_F32_CNTL__TH1_RESET_MASK; 773 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_F32_CNTL), tmp); 774 775 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_PREEMPT), 0); 776 777 udelay(100); 778 779 tmp = GRBM_SOFT_RESET__SOFT_RESET_SDMA0_MASK << i; 780 WREG32_SOC15(GC, 0, regGRBM_SOFT_RESET, tmp); 781 tmp = RREG32_SOC15(GC, 0, regGRBM_SOFT_RESET); 782 783 udelay(100); 784 785 WREG32_SOC15(GC, 0, regGRBM_SOFT_RESET, 0); 786 tmp = RREG32_SOC15(GC, 0, regGRBM_SOFT_RESET); 787 788 udelay(100); 789 } 790 791 return sdma_v6_0_start(adev); 792 } 793 794 static bool sdma_v6_0_check_soft_reset(struct amdgpu_ip_block *ip_block) 795 { 796 struct amdgpu_device *adev = ip_block->adev; 797 struct amdgpu_ring *ring; 798 int i, r; 799 long tmo = msecs_to_jiffies(1000); 800 801 for (i = 0; i < adev->sdma.num_instances; i++) { 802 ring = &adev->sdma.instance[i].ring; 803 r = amdgpu_ring_test_ib(ring, tmo); 804 if (r) 805 return true; 806 } 807 808 return false; 809 } 810 811 /** 812 * sdma_v6_0_start - setup and start the async dma engines 813 * 814 * @adev: amdgpu_device pointer 815 * 816 * Set up the DMA engines and enable them. 817 * Returns 0 for success, error for failure. 818 */ 819 static int sdma_v6_0_start(struct amdgpu_device *adev) 820 { 821 int r = 0; 822 823 if (amdgpu_sriov_vf(adev)) { 824 sdma_v6_0_enable(adev, false); 825 826 /* set RB registers */ 827 r = sdma_v6_0_gfx_resume(adev); 828 return r; 829 } 830 831 if (adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) { 832 r = sdma_v6_0_load_microcode(adev); 833 if (r) 834 return r; 835 836 /* The value of regSDMA_F32_CNTL is invalid the moment after loading fw */ 837 if (amdgpu_emu_mode == 1) 838 msleep(1000); 839 } 840 841 /* unhalt the MEs */ 842 sdma_v6_0_enable(adev, true); 843 /* enable sdma ring preemption */ 844 sdma_v6_0_ctxempty_int_enable(adev, true); 845 846 /* start the gfx rings and rlc compute queues */ 847 r = sdma_v6_0_gfx_resume(adev); 848 if (r) 849 return r; 850 r = sdma_v6_0_rlc_resume(adev); 851 852 return r; 853 } 854 855 static int sdma_v6_0_mqd_init(struct amdgpu_device *adev, void *mqd, 856 struct amdgpu_mqd_prop *prop) 857 { 858 struct v11_sdma_mqd *m = mqd; 859 uint64_t wb_gpu_addr; 860 861 m->sdmax_rlcx_rb_cntl = 862 order_base_2(prop->queue_size / 4) << SDMA0_QUEUE0_RB_CNTL__RB_SIZE__SHIFT | 863 1 << SDMA0_QUEUE0_RB_CNTL__RPTR_WRITEBACK_ENABLE__SHIFT | 864 4 << SDMA0_QUEUE0_RB_CNTL__RPTR_WRITEBACK_TIMER__SHIFT | 865 1 << SDMA0_QUEUE0_RB_CNTL__F32_WPTR_POLL_ENABLE__SHIFT; 866 867 m->sdmax_rlcx_rb_base = lower_32_bits(prop->hqd_base_gpu_addr >> 8); 868 m->sdmax_rlcx_rb_base_hi = upper_32_bits(prop->hqd_base_gpu_addr >> 8); 869 870 wb_gpu_addr = prop->wptr_gpu_addr; 871 m->sdmax_rlcx_rb_wptr_poll_addr_lo = lower_32_bits(wb_gpu_addr); 872 m->sdmax_rlcx_rb_wptr_poll_addr_hi = upper_32_bits(wb_gpu_addr); 873 874 wb_gpu_addr = prop->rptr_gpu_addr; 875 m->sdmax_rlcx_rb_rptr_addr_lo = lower_32_bits(wb_gpu_addr); 876 m->sdmax_rlcx_rb_rptr_addr_hi = upper_32_bits(wb_gpu_addr); 877 878 m->sdmax_rlcx_ib_cntl = RREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, 0, 879 regSDMA0_QUEUE0_IB_CNTL)); 880 881 m->sdmax_rlcx_doorbell_offset = 882 prop->doorbell_index << SDMA0_QUEUE0_DOORBELL_OFFSET__OFFSET__SHIFT; 883 884 m->sdmax_rlcx_doorbell = REG_SET_FIELD(0, SDMA0_QUEUE0_DOORBELL, ENABLE, 1); 885 886 m->sdmax_rlcx_skip_cntl = 0; 887 m->sdmax_rlcx_context_status = 0; 888 m->sdmax_rlcx_doorbell_log = 0; 889 890 m->sdmax_rlcx_rb_aql_cntl = regSDMA0_QUEUE0_RB_AQL_CNTL_DEFAULT; 891 m->sdmax_rlcx_dummy_reg = regSDMA0_QUEUE0_DUMMY_REG_DEFAULT; 892 893 return 0; 894 } 895 896 static void sdma_v6_0_set_mqd_funcs(struct amdgpu_device *adev) 897 { 898 adev->mqds[AMDGPU_HW_IP_DMA].mqd_size = sizeof(struct v11_sdma_mqd); 899 adev->mqds[AMDGPU_HW_IP_DMA].init_mqd = sdma_v6_0_mqd_init; 900 } 901 902 /** 903 * sdma_v6_0_ring_test_ring - simple async dma engine test 904 * 905 * @ring: amdgpu_ring structure holding ring information 906 * 907 * Test the DMA engine by writing using it to write an 908 * value to memory. 909 * Returns 0 for success, error for failure. 910 */ 911 static int sdma_v6_0_ring_test_ring(struct amdgpu_ring *ring) 912 { 913 struct amdgpu_device *adev = ring->adev; 914 unsigned i; 915 unsigned index; 916 int r; 917 u32 tmp; 918 u64 gpu_addr; 919 volatile uint32_t *cpu_ptr = NULL; 920 921 tmp = 0xCAFEDEAD; 922 923 if (ring->is_mes_queue) { 924 uint32_t offset = 0; 925 offset = amdgpu_mes_ctx_get_offs(ring, 926 AMDGPU_MES_CTX_PADDING_OFFS); 927 gpu_addr = amdgpu_mes_ctx_get_offs_gpu_addr(ring, offset); 928 cpu_ptr = amdgpu_mes_ctx_get_offs_cpu_addr(ring, offset); 929 *cpu_ptr = tmp; 930 } else { 931 r = amdgpu_device_wb_get(adev, &index); 932 if (r) { 933 dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r); 934 return r; 935 } 936 937 gpu_addr = adev->wb.gpu_addr + (index * 4); 938 adev->wb.wb[index] = cpu_to_le32(tmp); 939 } 940 941 r = amdgpu_ring_alloc(ring, 5); 942 if (r) { 943 DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r); 944 if (!ring->is_mes_queue) 945 amdgpu_device_wb_free(adev, index); 946 return r; 947 } 948 949 amdgpu_ring_write(ring, SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_WRITE) | 950 SDMA_PKT_COPY_LINEAR_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR)); 951 amdgpu_ring_write(ring, lower_32_bits(gpu_addr)); 952 amdgpu_ring_write(ring, upper_32_bits(gpu_addr)); 953 amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0)); 954 amdgpu_ring_write(ring, 0xDEADBEEF); 955 amdgpu_ring_commit(ring); 956 957 for (i = 0; i < adev->usec_timeout; i++) { 958 if (ring->is_mes_queue) 959 tmp = le32_to_cpu(*cpu_ptr); 960 else 961 tmp = le32_to_cpu(adev->wb.wb[index]); 962 if (tmp == 0xDEADBEEF) 963 break; 964 if (amdgpu_emu_mode == 1) 965 msleep(1); 966 else 967 udelay(1); 968 } 969 970 if (i >= adev->usec_timeout) 971 r = -ETIMEDOUT; 972 973 if (!ring->is_mes_queue) 974 amdgpu_device_wb_free(adev, index); 975 976 return r; 977 } 978 979 /* 980 * sdma_v6_0_ring_test_ib - test an IB on the DMA engine 981 * 982 * @ring: amdgpu_ring structure holding ring information 983 * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT 984 * 985 * Test a simple IB in the DMA ring. 986 * Returns 0 on success, error on failure. 987 */ 988 static int sdma_v6_0_ring_test_ib(struct amdgpu_ring *ring, long timeout) 989 { 990 struct amdgpu_device *adev = ring->adev; 991 struct amdgpu_ib ib; 992 struct dma_fence *f = NULL; 993 unsigned index; 994 long r; 995 u32 tmp = 0; 996 u64 gpu_addr; 997 volatile uint32_t *cpu_ptr = NULL; 998 999 tmp = 0xCAFEDEAD; 1000 memset(&ib, 0, sizeof(ib)); 1001 1002 if (ring->is_mes_queue) { 1003 uint32_t offset = 0; 1004 offset = amdgpu_mes_ctx_get_offs(ring, AMDGPU_MES_CTX_IB_OFFS); 1005 ib.gpu_addr = amdgpu_mes_ctx_get_offs_gpu_addr(ring, offset); 1006 ib.ptr = (void *)amdgpu_mes_ctx_get_offs_cpu_addr(ring, offset); 1007 1008 offset = amdgpu_mes_ctx_get_offs(ring, 1009 AMDGPU_MES_CTX_PADDING_OFFS); 1010 gpu_addr = amdgpu_mes_ctx_get_offs_gpu_addr(ring, offset); 1011 cpu_ptr = amdgpu_mes_ctx_get_offs_cpu_addr(ring, offset); 1012 *cpu_ptr = tmp; 1013 } else { 1014 r = amdgpu_device_wb_get(adev, &index); 1015 if (r) { 1016 dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r); 1017 return r; 1018 } 1019 1020 gpu_addr = adev->wb.gpu_addr + (index * 4); 1021 adev->wb.wb[index] = cpu_to_le32(tmp); 1022 1023 r = amdgpu_ib_get(adev, NULL, 256, AMDGPU_IB_POOL_DIRECT, &ib); 1024 if (r) { 1025 DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r); 1026 goto err0; 1027 } 1028 } 1029 1030 ib.ptr[0] = SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_WRITE) | 1031 SDMA_PKT_COPY_LINEAR_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); 1032 ib.ptr[1] = lower_32_bits(gpu_addr); 1033 ib.ptr[2] = upper_32_bits(gpu_addr); 1034 ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0); 1035 ib.ptr[4] = 0xDEADBEEF; 1036 ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); 1037 ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); 1038 ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); 1039 ib.length_dw = 8; 1040 1041 r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f); 1042 if (r) 1043 goto err1; 1044 1045 r = dma_fence_wait_timeout(f, false, timeout); 1046 if (r == 0) { 1047 DRM_ERROR("amdgpu: IB test timed out\n"); 1048 r = -ETIMEDOUT; 1049 goto err1; 1050 } else if (r < 0) { 1051 DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r); 1052 goto err1; 1053 } 1054 1055 if (ring->is_mes_queue) 1056 tmp = le32_to_cpu(*cpu_ptr); 1057 else 1058 tmp = le32_to_cpu(adev->wb.wb[index]); 1059 1060 if (tmp == 0xDEADBEEF) 1061 r = 0; 1062 else 1063 r = -EINVAL; 1064 1065 err1: 1066 amdgpu_ib_free(&ib, NULL); 1067 dma_fence_put(f); 1068 err0: 1069 if (!ring->is_mes_queue) 1070 amdgpu_device_wb_free(adev, index); 1071 return r; 1072 } 1073 1074 1075 /** 1076 * sdma_v6_0_vm_copy_pte - update PTEs by copying them from the GART 1077 * 1078 * @ib: indirect buffer to fill with commands 1079 * @pe: addr of the page entry 1080 * @src: src addr to copy from 1081 * @count: number of page entries to update 1082 * 1083 * Update PTEs by copying them from the GART using sDMA. 1084 */ 1085 static void sdma_v6_0_vm_copy_pte(struct amdgpu_ib *ib, 1086 uint64_t pe, uint64_t src, 1087 unsigned count) 1088 { 1089 unsigned bytes = count * 8; 1090 1091 ib->ptr[ib->length_dw++] = SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_COPY) | 1092 SDMA_PKT_COPY_LINEAR_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR); 1093 ib->ptr[ib->length_dw++] = bytes - 1; 1094 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ 1095 ib->ptr[ib->length_dw++] = lower_32_bits(src); 1096 ib->ptr[ib->length_dw++] = upper_32_bits(src); 1097 ib->ptr[ib->length_dw++] = lower_32_bits(pe); 1098 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 1099 1100 } 1101 1102 /** 1103 * sdma_v6_0_vm_write_pte - update PTEs by writing them manually 1104 * 1105 * @ib: indirect buffer to fill with commands 1106 * @pe: addr of the page entry 1107 * @value: dst addr to write into pe 1108 * @count: number of page entries to update 1109 * @incr: increase next addr by incr bytes 1110 * 1111 * Update PTEs by writing them manually using sDMA. 1112 */ 1113 static void sdma_v6_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe, 1114 uint64_t value, unsigned count, 1115 uint32_t incr) 1116 { 1117 unsigned ndw = count * 2; 1118 1119 ib->ptr[ib->length_dw++] = SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_WRITE) | 1120 SDMA_PKT_COPY_LINEAR_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); 1121 ib->ptr[ib->length_dw++] = lower_32_bits(pe); 1122 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 1123 ib->ptr[ib->length_dw++] = ndw - 1; 1124 for (; ndw > 0; ndw -= 2) { 1125 ib->ptr[ib->length_dw++] = lower_32_bits(value); 1126 ib->ptr[ib->length_dw++] = upper_32_bits(value); 1127 value += incr; 1128 } 1129 } 1130 1131 /** 1132 * sdma_v6_0_vm_set_pte_pde - update the page tables using sDMA 1133 * 1134 * @ib: indirect buffer to fill with commands 1135 * @pe: addr of the page entry 1136 * @addr: dst addr to write into pe 1137 * @count: number of page entries to update 1138 * @incr: increase next addr by incr bytes 1139 * @flags: access flags 1140 * 1141 * Update the page tables using sDMA. 1142 */ 1143 static void sdma_v6_0_vm_set_pte_pde(struct amdgpu_ib *ib, 1144 uint64_t pe, 1145 uint64_t addr, unsigned count, 1146 uint32_t incr, uint64_t flags) 1147 { 1148 /* for physically contiguous pages (vram) */ 1149 ib->ptr[ib->length_dw++] = SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_PTEPDE); 1150 ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */ 1151 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 1152 ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */ 1153 ib->ptr[ib->length_dw++] = upper_32_bits(flags); 1154 ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */ 1155 ib->ptr[ib->length_dw++] = upper_32_bits(addr); 1156 ib->ptr[ib->length_dw++] = incr; /* increment size */ 1157 ib->ptr[ib->length_dw++] = 0; 1158 ib->ptr[ib->length_dw++] = count - 1; /* number of entries */ 1159 } 1160 1161 /* 1162 * sdma_v6_0_ring_pad_ib - pad the IB 1163 * @ib: indirect buffer to fill with padding 1164 * @ring: amdgpu ring pointer 1165 * 1166 * Pad the IB with NOPs to a boundary multiple of 8. 1167 */ 1168 static void sdma_v6_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib) 1169 { 1170 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring); 1171 u32 pad_count; 1172 int i; 1173 1174 pad_count = (-ib->length_dw) & 0x7; 1175 for (i = 0; i < pad_count; i++) 1176 if (sdma && sdma->burst_nop && (i == 0)) 1177 ib->ptr[ib->length_dw++] = 1178 SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_NOP) | 1179 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1); 1180 else 1181 ib->ptr[ib->length_dw++] = 1182 SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_NOP); 1183 } 1184 1185 /** 1186 * sdma_v6_0_ring_emit_pipeline_sync - sync the pipeline 1187 * 1188 * @ring: amdgpu_ring pointer 1189 * 1190 * Make sure all previous operations are completed (CIK). 1191 */ 1192 static void sdma_v6_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring) 1193 { 1194 uint32_t seq = ring->fence_drv.sync_seq; 1195 uint64_t addr = ring->fence_drv.gpu_addr; 1196 1197 /* wait for idle */ 1198 amdgpu_ring_write(ring, SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_POLL_REGMEM) | 1199 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) | 1200 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */ 1201 SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1)); 1202 amdgpu_ring_write(ring, addr & 0xfffffffc); 1203 amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff); 1204 amdgpu_ring_write(ring, seq); /* reference */ 1205 amdgpu_ring_write(ring, 0xffffffff); /* mask */ 1206 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | 1207 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */ 1208 } 1209 1210 /* 1211 * sdma_v6_0_ring_emit_vm_flush - vm flush using sDMA 1212 * 1213 * @ring: amdgpu_ring pointer 1214 * @vmid: vmid number to use 1215 * @pd_addr: address 1216 * 1217 * Update the page table base and flush the VM TLB 1218 * using sDMA. 1219 */ 1220 static void sdma_v6_0_ring_emit_vm_flush(struct amdgpu_ring *ring, 1221 unsigned vmid, uint64_t pd_addr) 1222 { 1223 struct amdgpu_vmhub *hub = &ring->adev->vmhub[ring->vm_hub]; 1224 uint32_t req = hub->vmhub_funcs->get_invalidate_req(vmid, 0); 1225 1226 /* Update the PD address for this VMID. */ 1227 amdgpu_ring_emit_wreg(ring, hub->ctx0_ptb_addr_lo32 + 1228 (hub->ctx_addr_distance * vmid), 1229 lower_32_bits(pd_addr)); 1230 amdgpu_ring_emit_wreg(ring, hub->ctx0_ptb_addr_hi32 + 1231 (hub->ctx_addr_distance * vmid), 1232 upper_32_bits(pd_addr)); 1233 1234 /* Trigger invalidation. */ 1235 amdgpu_ring_write(ring, 1236 SDMA_PKT_VM_INVALIDATION_HEADER_OP(SDMA_OP_POLL_REGMEM) | 1237 SDMA_PKT_VM_INVALIDATION_HEADER_SUB_OP(SDMA_SUBOP_VM_INVALIDATION) | 1238 SDMA_PKT_VM_INVALIDATION_HEADER_GFX_ENG_ID(ring->vm_inv_eng) | 1239 SDMA_PKT_VM_INVALIDATION_HEADER_MM_ENG_ID(0x1f)); 1240 amdgpu_ring_write(ring, req); 1241 amdgpu_ring_write(ring, 0xFFFFFFFF); 1242 amdgpu_ring_write(ring, 1243 SDMA_PKT_VM_INVALIDATION_ADDRESSRANGEHI_INVALIDATEACK(1 << vmid) | 1244 SDMA_PKT_VM_INVALIDATION_ADDRESSRANGEHI_ADDRESSRANGEHI(0x1F)); 1245 } 1246 1247 static void sdma_v6_0_ring_emit_wreg(struct amdgpu_ring *ring, 1248 uint32_t reg, uint32_t val) 1249 { 1250 amdgpu_ring_write(ring, SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_SRBM_WRITE) | 1251 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf)); 1252 amdgpu_ring_write(ring, reg); 1253 amdgpu_ring_write(ring, val); 1254 } 1255 1256 static void sdma_v6_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg, 1257 uint32_t val, uint32_t mask) 1258 { 1259 amdgpu_ring_write(ring, SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_POLL_REGMEM) | 1260 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) | 1261 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* equal */ 1262 amdgpu_ring_write(ring, reg << 2); 1263 amdgpu_ring_write(ring, 0); 1264 amdgpu_ring_write(ring, val); /* reference */ 1265 amdgpu_ring_write(ring, mask); /* mask */ 1266 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | 1267 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); 1268 } 1269 1270 static void sdma_v6_0_ring_emit_reg_write_reg_wait(struct amdgpu_ring *ring, 1271 uint32_t reg0, uint32_t reg1, 1272 uint32_t ref, uint32_t mask) 1273 { 1274 amdgpu_ring_emit_wreg(ring, reg0, ref); 1275 /* wait for a cycle to reset vm_inv_eng*_ack */ 1276 amdgpu_ring_emit_reg_wait(ring, reg0, 0, 0); 1277 amdgpu_ring_emit_reg_wait(ring, reg1, mask, mask); 1278 } 1279 1280 static struct amdgpu_sdma_ras sdma_v6_0_3_ras = { 1281 .ras_block = { 1282 .ras_late_init = amdgpu_ras_block_late_init, 1283 }, 1284 }; 1285 1286 static void sdma_v6_0_set_ras_funcs(struct amdgpu_device *adev) 1287 { 1288 switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) { 1289 case IP_VERSION(6, 0, 3): 1290 adev->sdma.ras = &sdma_v6_0_3_ras; 1291 break; 1292 default: 1293 break; 1294 } 1295 } 1296 1297 static int sdma_v6_0_early_init(struct amdgpu_ip_block *ip_block) 1298 { 1299 struct amdgpu_device *adev = ip_block->adev; 1300 int r; 1301 1302 r = amdgpu_sdma_init_microcode(adev, 0, true); 1303 if (r) 1304 return r; 1305 1306 sdma_v6_0_set_ring_funcs(adev); 1307 sdma_v6_0_set_buffer_funcs(adev); 1308 sdma_v6_0_set_vm_pte_funcs(adev); 1309 sdma_v6_0_set_irq_funcs(adev); 1310 sdma_v6_0_set_mqd_funcs(adev); 1311 sdma_v6_0_set_ras_funcs(adev); 1312 1313 return 0; 1314 } 1315 1316 static int sdma_v6_0_sw_init(struct amdgpu_ip_block *ip_block) 1317 { 1318 struct amdgpu_ring *ring; 1319 int r, i; 1320 struct amdgpu_device *adev = ip_block->adev; 1321 uint32_t reg_count = ARRAY_SIZE(sdma_reg_list_6_0); 1322 uint32_t *ptr; 1323 1324 /* SDMA trap event */ 1325 r = amdgpu_irq_add_id(adev, SOC21_IH_CLIENTID_GFX, 1326 GFX_11_0_0__SRCID__SDMA_TRAP, 1327 &adev->sdma.trap_irq); 1328 if (r) 1329 return r; 1330 1331 for (i = 0; i < adev->sdma.num_instances; i++) { 1332 ring = &adev->sdma.instance[i].ring; 1333 ring->ring_obj = NULL; 1334 ring->use_doorbell = true; 1335 ring->me = i; 1336 1337 DRM_DEBUG("SDMA %d use_doorbell being set to: [%s]\n", i, 1338 ring->use_doorbell?"true":"false"); 1339 1340 ring->doorbell_index = 1341 (adev->doorbell_index.sdma_engine[i] << 1); // get DWORD offset 1342 1343 ring->vm_hub = AMDGPU_GFXHUB(0); 1344 sprintf(ring->name, "sdma%d", i); 1345 r = amdgpu_ring_init(adev, ring, 1024, 1346 &adev->sdma.trap_irq, 1347 AMDGPU_SDMA_IRQ_INSTANCE0 + i, 1348 AMDGPU_RING_PRIO_DEFAULT, NULL); 1349 if (r) 1350 return r; 1351 } 1352 1353 adev->sdma.supported_reset = 1354 amdgpu_get_soft_full_reset_mask(&adev->sdma.instance[0].ring); 1355 switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) { 1356 case IP_VERSION(6, 0, 0): 1357 case IP_VERSION(6, 0, 2): 1358 case IP_VERSION(6, 0, 3): 1359 if (adev->sdma.instance[0].fw_version >= 21) 1360 adev->sdma.supported_reset |= AMDGPU_RESET_TYPE_PER_QUEUE; 1361 break; 1362 default: 1363 break; 1364 } 1365 1366 if (amdgpu_sdma_ras_sw_init(adev)) { 1367 dev_err(adev->dev, "Failed to initialize sdma ras block!\n"); 1368 return -EINVAL; 1369 } 1370 1371 /* Allocate memory for SDMA IP Dump buffer */ 1372 ptr = kcalloc(adev->sdma.num_instances * reg_count, sizeof(uint32_t), GFP_KERNEL); 1373 if (ptr) 1374 adev->sdma.ip_dump = ptr; 1375 else 1376 DRM_ERROR("Failed to allocated memory for SDMA IP Dump\n"); 1377 1378 r = amdgpu_sdma_sysfs_reset_mask_init(adev); 1379 if (r) 1380 return r; 1381 1382 return r; 1383 } 1384 1385 static int sdma_v6_0_sw_fini(struct amdgpu_ip_block *ip_block) 1386 { 1387 struct amdgpu_device *adev = ip_block->adev; 1388 int i; 1389 1390 for (i = 0; i < adev->sdma.num_instances; i++) 1391 amdgpu_ring_fini(&adev->sdma.instance[i].ring); 1392 1393 amdgpu_sdma_sysfs_reset_mask_fini(adev); 1394 amdgpu_sdma_destroy_inst_ctx(adev, true); 1395 1396 kfree(adev->sdma.ip_dump); 1397 1398 return 0; 1399 } 1400 1401 static int sdma_v6_0_hw_init(struct amdgpu_ip_block *ip_block) 1402 { 1403 struct amdgpu_device *adev = ip_block->adev; 1404 1405 return sdma_v6_0_start(adev); 1406 } 1407 1408 static int sdma_v6_0_hw_fini(struct amdgpu_ip_block *ip_block) 1409 { 1410 struct amdgpu_device *adev = ip_block->adev; 1411 1412 if (amdgpu_sriov_vf(adev)) 1413 return 0; 1414 1415 sdma_v6_0_ctxempty_int_enable(adev, false); 1416 sdma_v6_0_enable(adev, false); 1417 1418 return 0; 1419 } 1420 1421 static int sdma_v6_0_suspend(struct amdgpu_ip_block *ip_block) 1422 { 1423 return sdma_v6_0_hw_fini(ip_block); 1424 } 1425 1426 static int sdma_v6_0_resume(struct amdgpu_ip_block *ip_block) 1427 { 1428 return sdma_v6_0_hw_init(ip_block); 1429 } 1430 1431 static bool sdma_v6_0_is_idle(void *handle) 1432 { 1433 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1434 u32 i; 1435 1436 for (i = 0; i < adev->sdma.num_instances; i++) { 1437 u32 tmp = RREG32(sdma_v6_0_get_reg_offset(adev, i, regSDMA0_STATUS_REG)); 1438 1439 if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK)) 1440 return false; 1441 } 1442 1443 return true; 1444 } 1445 1446 static int sdma_v6_0_wait_for_idle(struct amdgpu_ip_block *ip_block) 1447 { 1448 unsigned i; 1449 u32 sdma0, sdma1; 1450 struct amdgpu_device *adev = ip_block->adev; 1451 1452 for (i = 0; i < adev->usec_timeout; i++) { 1453 sdma0 = RREG32(sdma_v6_0_get_reg_offset(adev, 0, regSDMA0_STATUS_REG)); 1454 sdma1 = RREG32(sdma_v6_0_get_reg_offset(adev, 1, regSDMA0_STATUS_REG)); 1455 1456 if (sdma0 & sdma1 & SDMA0_STATUS_REG__IDLE_MASK) 1457 return 0; 1458 udelay(1); 1459 } 1460 return -ETIMEDOUT; 1461 } 1462 1463 static int sdma_v6_0_ring_preempt_ib(struct amdgpu_ring *ring) 1464 { 1465 int i, r = 0; 1466 struct amdgpu_device *adev = ring->adev; 1467 u32 index = 0; 1468 u64 sdma_gfx_preempt; 1469 1470 amdgpu_sdma_get_index_from_ring(ring, &index); 1471 sdma_gfx_preempt = 1472 sdma_v6_0_get_reg_offset(adev, index, regSDMA0_QUEUE0_PREEMPT); 1473 1474 /* assert preemption condition */ 1475 amdgpu_ring_set_preempt_cond_exec(ring, false); 1476 1477 /* emit the trailing fence */ 1478 ring->trail_seq += 1; 1479 amdgpu_ring_alloc(ring, 10); 1480 sdma_v6_0_ring_emit_fence(ring, ring->trail_fence_gpu_addr, 1481 ring->trail_seq, 0); 1482 amdgpu_ring_commit(ring); 1483 1484 /* assert IB preemption */ 1485 WREG32(sdma_gfx_preempt, 1); 1486 1487 /* poll the trailing fence */ 1488 for (i = 0; i < adev->usec_timeout; i++) { 1489 if (ring->trail_seq == 1490 le32_to_cpu(*(ring->trail_fence_cpu_addr))) 1491 break; 1492 udelay(1); 1493 } 1494 1495 if (i >= adev->usec_timeout) { 1496 r = -EINVAL; 1497 DRM_ERROR("ring %d failed to be preempted\n", ring->idx); 1498 } 1499 1500 /* deassert IB preemption */ 1501 WREG32(sdma_gfx_preempt, 0); 1502 1503 /* deassert the preemption condition */ 1504 amdgpu_ring_set_preempt_cond_exec(ring, true); 1505 return r; 1506 } 1507 1508 static int sdma_v6_0_reset_queue(struct amdgpu_ring *ring, unsigned int vmid) 1509 { 1510 struct amdgpu_device *adev = ring->adev; 1511 int i, r; 1512 1513 if (amdgpu_sriov_vf(adev)) 1514 return -EINVAL; 1515 1516 for (i = 0; i < adev->sdma.num_instances; i++) { 1517 if (ring == &adev->sdma.instance[i].ring) 1518 break; 1519 } 1520 1521 if (i == adev->sdma.num_instances) { 1522 DRM_ERROR("sdma instance not found\n"); 1523 return -EINVAL; 1524 } 1525 1526 r = amdgpu_mes_reset_legacy_queue(adev, ring, vmid, true); 1527 if (r) 1528 return r; 1529 1530 return sdma_v6_0_gfx_resume_instance(adev, i, true); 1531 } 1532 1533 static int sdma_v6_0_set_trap_irq_state(struct amdgpu_device *adev, 1534 struct amdgpu_irq_src *source, 1535 unsigned type, 1536 enum amdgpu_interrupt_state state) 1537 { 1538 u32 sdma_cntl; 1539 1540 u32 reg_offset = sdma_v6_0_get_reg_offset(adev, type, regSDMA0_CNTL); 1541 1542 if (!amdgpu_sriov_vf(adev)) { 1543 sdma_cntl = RREG32(reg_offset); 1544 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1545 state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0); 1546 WREG32(reg_offset, sdma_cntl); 1547 } 1548 1549 return 0; 1550 } 1551 1552 static int sdma_v6_0_process_trap_irq(struct amdgpu_device *adev, 1553 struct amdgpu_irq_src *source, 1554 struct amdgpu_iv_entry *entry) 1555 { 1556 int instances, queue; 1557 uint32_t mes_queue_id = entry->src_data[0]; 1558 1559 DRM_DEBUG("IH: SDMA trap\n"); 1560 1561 if (adev->enable_mes && (mes_queue_id & AMDGPU_FENCE_MES_QUEUE_FLAG)) { 1562 struct amdgpu_mes_queue *queue; 1563 1564 mes_queue_id &= AMDGPU_FENCE_MES_QUEUE_ID_MASK; 1565 1566 spin_lock(&adev->mes.queue_id_lock); 1567 queue = idr_find(&adev->mes.queue_id_idr, mes_queue_id); 1568 if (queue) { 1569 DRM_DEBUG("process smda queue id = %d\n", mes_queue_id); 1570 amdgpu_fence_process(queue->ring); 1571 } 1572 spin_unlock(&adev->mes.queue_id_lock); 1573 return 0; 1574 } 1575 1576 queue = entry->ring_id & 0xf; 1577 instances = (entry->ring_id & 0xf0) >> 4; 1578 if (instances > 1) { 1579 DRM_ERROR("IH: wrong ring_ID detected, as wrong sdma instance\n"); 1580 return -EINVAL; 1581 } 1582 1583 switch (entry->client_id) { 1584 case SOC21_IH_CLIENTID_GFX: 1585 switch (queue) { 1586 case 0: 1587 amdgpu_fence_process(&adev->sdma.instance[instances].ring); 1588 break; 1589 default: 1590 break; 1591 } 1592 break; 1593 } 1594 return 0; 1595 } 1596 1597 static int sdma_v6_0_process_illegal_inst_irq(struct amdgpu_device *adev, 1598 struct amdgpu_irq_src *source, 1599 struct amdgpu_iv_entry *entry) 1600 { 1601 return 0; 1602 } 1603 1604 static int sdma_v6_0_set_clockgating_state(struct amdgpu_ip_block *ip_block, 1605 enum amd_clockgating_state state) 1606 { 1607 return 0; 1608 } 1609 1610 static int sdma_v6_0_set_powergating_state(struct amdgpu_ip_block *ip_block, 1611 enum amd_powergating_state state) 1612 { 1613 return 0; 1614 } 1615 1616 static void sdma_v6_0_get_clockgating_state(void *handle, u64 *flags) 1617 { 1618 } 1619 1620 static void sdma_v6_0_print_ip_state(struct amdgpu_ip_block *ip_block, struct drm_printer *p) 1621 { 1622 struct amdgpu_device *adev = ip_block->adev; 1623 int i, j; 1624 uint32_t reg_count = ARRAY_SIZE(sdma_reg_list_6_0); 1625 uint32_t instance_offset; 1626 1627 if (!adev->sdma.ip_dump) 1628 return; 1629 1630 drm_printf(p, "num_instances:%d\n", adev->sdma.num_instances); 1631 for (i = 0; i < adev->sdma.num_instances; i++) { 1632 instance_offset = i * reg_count; 1633 drm_printf(p, "\nInstance:%d\n", i); 1634 1635 for (j = 0; j < reg_count; j++) 1636 drm_printf(p, "%-50s \t 0x%08x\n", sdma_reg_list_6_0[j].reg_name, 1637 adev->sdma.ip_dump[instance_offset + j]); 1638 } 1639 } 1640 1641 static void sdma_v6_0_dump_ip_state(struct amdgpu_ip_block *ip_block) 1642 { 1643 struct amdgpu_device *adev = ip_block->adev; 1644 int i, j; 1645 uint32_t instance_offset; 1646 uint32_t reg_count = ARRAY_SIZE(sdma_reg_list_6_0); 1647 1648 if (!adev->sdma.ip_dump) 1649 return; 1650 1651 amdgpu_gfx_off_ctrl(adev, false); 1652 for (i = 0; i < adev->sdma.num_instances; i++) { 1653 instance_offset = i * reg_count; 1654 for (j = 0; j < reg_count; j++) 1655 adev->sdma.ip_dump[instance_offset + j] = 1656 RREG32(sdma_v6_0_get_reg_offset(adev, i, 1657 sdma_reg_list_6_0[j].reg_offset)); 1658 } 1659 amdgpu_gfx_off_ctrl(adev, true); 1660 } 1661 1662 const struct amd_ip_funcs sdma_v6_0_ip_funcs = { 1663 .name = "sdma_v6_0", 1664 .early_init = sdma_v6_0_early_init, 1665 .sw_init = sdma_v6_0_sw_init, 1666 .sw_fini = sdma_v6_0_sw_fini, 1667 .hw_init = sdma_v6_0_hw_init, 1668 .hw_fini = sdma_v6_0_hw_fini, 1669 .suspend = sdma_v6_0_suspend, 1670 .resume = sdma_v6_0_resume, 1671 .is_idle = sdma_v6_0_is_idle, 1672 .wait_for_idle = sdma_v6_0_wait_for_idle, 1673 .soft_reset = sdma_v6_0_soft_reset, 1674 .check_soft_reset = sdma_v6_0_check_soft_reset, 1675 .set_clockgating_state = sdma_v6_0_set_clockgating_state, 1676 .set_powergating_state = sdma_v6_0_set_powergating_state, 1677 .get_clockgating_state = sdma_v6_0_get_clockgating_state, 1678 .dump_ip_state = sdma_v6_0_dump_ip_state, 1679 .print_ip_state = sdma_v6_0_print_ip_state, 1680 }; 1681 1682 static const struct amdgpu_ring_funcs sdma_v6_0_ring_funcs = { 1683 .type = AMDGPU_RING_TYPE_SDMA, 1684 .align_mask = 0xf, 1685 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 1686 .support_64bit_ptrs = true, 1687 .secure_submission_supported = true, 1688 .get_rptr = sdma_v6_0_ring_get_rptr, 1689 .get_wptr = sdma_v6_0_ring_get_wptr, 1690 .set_wptr = sdma_v6_0_ring_set_wptr, 1691 .emit_frame_size = 1692 5 + /* sdma_v6_0_ring_init_cond_exec */ 1693 6 + /* sdma_v6_0_ring_emit_hdp_flush */ 1694 6 + /* sdma_v6_0_ring_emit_pipeline_sync */ 1695 /* sdma_v6_0_ring_emit_vm_flush */ 1696 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 + 1697 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 + 1698 10 + 10 + 10, /* sdma_v6_0_ring_emit_fence x3 for user fence, vm fence */ 1699 .emit_ib_size = 5 + 7 + 6, /* sdma_v6_0_ring_emit_ib */ 1700 .emit_ib = sdma_v6_0_ring_emit_ib, 1701 .emit_mem_sync = sdma_v6_0_ring_emit_mem_sync, 1702 .emit_fence = sdma_v6_0_ring_emit_fence, 1703 .emit_pipeline_sync = sdma_v6_0_ring_emit_pipeline_sync, 1704 .emit_vm_flush = sdma_v6_0_ring_emit_vm_flush, 1705 .emit_hdp_flush = sdma_v6_0_ring_emit_hdp_flush, 1706 .test_ring = sdma_v6_0_ring_test_ring, 1707 .test_ib = sdma_v6_0_ring_test_ib, 1708 .insert_nop = sdma_v6_0_ring_insert_nop, 1709 .pad_ib = sdma_v6_0_ring_pad_ib, 1710 .emit_wreg = sdma_v6_0_ring_emit_wreg, 1711 .emit_reg_wait = sdma_v6_0_ring_emit_reg_wait, 1712 .emit_reg_write_reg_wait = sdma_v6_0_ring_emit_reg_write_reg_wait, 1713 .init_cond_exec = sdma_v6_0_ring_init_cond_exec, 1714 .preempt_ib = sdma_v6_0_ring_preempt_ib, 1715 .reset = sdma_v6_0_reset_queue, 1716 }; 1717 1718 static void sdma_v6_0_set_ring_funcs(struct amdgpu_device *adev) 1719 { 1720 int i; 1721 1722 for (i = 0; i < adev->sdma.num_instances; i++) { 1723 adev->sdma.instance[i].ring.funcs = &sdma_v6_0_ring_funcs; 1724 adev->sdma.instance[i].ring.me = i; 1725 } 1726 } 1727 1728 static const struct amdgpu_irq_src_funcs sdma_v6_0_trap_irq_funcs = { 1729 .set = sdma_v6_0_set_trap_irq_state, 1730 .process = sdma_v6_0_process_trap_irq, 1731 }; 1732 1733 static const struct amdgpu_irq_src_funcs sdma_v6_0_illegal_inst_irq_funcs = { 1734 .process = sdma_v6_0_process_illegal_inst_irq, 1735 }; 1736 1737 static void sdma_v6_0_set_irq_funcs(struct amdgpu_device *adev) 1738 { 1739 adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE0 + 1740 adev->sdma.num_instances; 1741 adev->sdma.trap_irq.funcs = &sdma_v6_0_trap_irq_funcs; 1742 adev->sdma.illegal_inst_irq.funcs = &sdma_v6_0_illegal_inst_irq_funcs; 1743 } 1744 1745 /** 1746 * sdma_v6_0_emit_copy_buffer - copy buffer using the sDMA engine 1747 * 1748 * @ib: indirect buffer to fill with commands 1749 * @src_offset: src GPU address 1750 * @dst_offset: dst GPU address 1751 * @byte_count: number of bytes to xfer 1752 * @copy_flags: copy flags for the buffers 1753 * 1754 * Copy GPU buffers using the DMA engine. 1755 * Used by the amdgpu ttm implementation to move pages if 1756 * registered as the asic copy callback. 1757 */ 1758 static void sdma_v6_0_emit_copy_buffer(struct amdgpu_ib *ib, 1759 uint64_t src_offset, 1760 uint64_t dst_offset, 1761 uint32_t byte_count, 1762 uint32_t copy_flags) 1763 { 1764 ib->ptr[ib->length_dw++] = SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_COPY) | 1765 SDMA_PKT_COPY_LINEAR_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) | 1766 SDMA_PKT_COPY_LINEAR_HEADER_TMZ((copy_flags & AMDGPU_COPY_FLAGS_TMZ) ? 1 : 0); 1767 ib->ptr[ib->length_dw++] = byte_count - 1; 1768 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ 1769 ib->ptr[ib->length_dw++] = lower_32_bits(src_offset); 1770 ib->ptr[ib->length_dw++] = upper_32_bits(src_offset); 1771 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); 1772 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); 1773 } 1774 1775 /** 1776 * sdma_v6_0_emit_fill_buffer - fill buffer using the sDMA engine 1777 * 1778 * @ib: indirect buffer to fill 1779 * @src_data: value to write to buffer 1780 * @dst_offset: dst GPU address 1781 * @byte_count: number of bytes to xfer 1782 * 1783 * Fill GPU buffers using the DMA engine. 1784 */ 1785 static void sdma_v6_0_emit_fill_buffer(struct amdgpu_ib *ib, 1786 uint32_t src_data, 1787 uint64_t dst_offset, 1788 uint32_t byte_count) 1789 { 1790 ib->ptr[ib->length_dw++] = SDMA_PKT_CONSTANT_FILL_HEADER_OP(SDMA_OP_CONST_FILL); 1791 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); 1792 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); 1793 ib->ptr[ib->length_dw++] = src_data; 1794 ib->ptr[ib->length_dw++] = byte_count - 1; 1795 } 1796 1797 static const struct amdgpu_buffer_funcs sdma_v6_0_buffer_funcs = { 1798 .copy_max_bytes = 0x400000, 1799 .copy_num_dw = 7, 1800 .emit_copy_buffer = sdma_v6_0_emit_copy_buffer, 1801 1802 .fill_max_bytes = 0x400000, 1803 .fill_num_dw = 5, 1804 .emit_fill_buffer = sdma_v6_0_emit_fill_buffer, 1805 }; 1806 1807 static void sdma_v6_0_set_buffer_funcs(struct amdgpu_device *adev) 1808 { 1809 adev->mman.buffer_funcs = &sdma_v6_0_buffer_funcs; 1810 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring; 1811 } 1812 1813 static const struct amdgpu_vm_pte_funcs sdma_v6_0_vm_pte_funcs = { 1814 .copy_pte_num_dw = 7, 1815 .copy_pte = sdma_v6_0_vm_copy_pte, 1816 .write_pte = sdma_v6_0_vm_write_pte, 1817 .set_pte_pde = sdma_v6_0_vm_set_pte_pde, 1818 }; 1819 1820 static void sdma_v6_0_set_vm_pte_funcs(struct amdgpu_device *adev) 1821 { 1822 unsigned i; 1823 1824 adev->vm_manager.vm_pte_funcs = &sdma_v6_0_vm_pte_funcs; 1825 for (i = 0; i < adev->sdma.num_instances; i++) { 1826 adev->vm_manager.vm_pte_scheds[i] = 1827 &adev->sdma.instance[i].ring.sched; 1828 } 1829 adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances; 1830 } 1831 1832 const struct amdgpu_ip_block_version sdma_v6_0_ip_block = { 1833 .type = AMD_IP_BLOCK_TYPE_SDMA, 1834 .major = 6, 1835 .minor = 0, 1836 .rev = 0, 1837 .funcs = &sdma_v6_0_ip_funcs, 1838 }; 1839