xref: /linux/drivers/gpu/drm/amd/amdgpu/sdma_v5_2.c (revision cdd30ebb1b9f36159d66f088b61aee264e649d7a)
1 /*
2  * Copyright 2019 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/delay.h>
25 #include <linux/firmware.h>
26 #include <linux/module.h>
27 #include <linux/pci.h>
28 
29 #include "amdgpu.h"
30 #include "amdgpu_ucode.h"
31 #include "amdgpu_trace.h"
32 
33 #include "gc/gc_10_3_0_offset.h"
34 #include "gc/gc_10_3_0_sh_mask.h"
35 #include "ivsrcid/sdma0/irqsrcs_sdma0_5_0.h"
36 #include "ivsrcid/sdma1/irqsrcs_sdma1_5_0.h"
37 #include "ivsrcid/sdma2/irqsrcs_sdma2_5_0.h"
38 #include "ivsrcid/sdma3/irqsrcs_sdma3_5_0.h"
39 
40 #include "soc15_common.h"
41 #include "soc15.h"
42 #include "navi10_sdma_pkt_open.h"
43 #include "nbio_v2_3.h"
44 #include "sdma_common.h"
45 #include "sdma_v5_2.h"
46 
47 MODULE_FIRMWARE("amdgpu/sienna_cichlid_sdma.bin");
48 MODULE_FIRMWARE("amdgpu/navy_flounder_sdma.bin");
49 MODULE_FIRMWARE("amdgpu/dimgrey_cavefish_sdma.bin");
50 MODULE_FIRMWARE("amdgpu/beige_goby_sdma.bin");
51 
52 MODULE_FIRMWARE("amdgpu/vangogh_sdma.bin");
53 MODULE_FIRMWARE("amdgpu/yellow_carp_sdma.bin");
54 MODULE_FIRMWARE("amdgpu/sdma_5_2_6.bin");
55 MODULE_FIRMWARE("amdgpu/sdma_5_2_7.bin");
56 
57 #define SDMA1_REG_OFFSET 0x600
58 #define SDMA3_REG_OFFSET 0x400
59 #define SDMA0_HYP_DEC_REG_START 0x5880
60 #define SDMA0_HYP_DEC_REG_END 0x5893
61 #define SDMA1_HYP_DEC_REG_OFFSET 0x20
62 
63 static const struct amdgpu_hwip_reg_entry sdma_reg_list_5_2[] = {
64 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_STATUS_REG),
65 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_STATUS1_REG),
66 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_STATUS2_REG),
67 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_STATUS3_REG),
68 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_UCODE_CHECKSUM),
69 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_RB_RPTR_FETCH_HI),
70 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_RB_RPTR_FETCH),
71 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_UTCL1_RD_STATUS),
72 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_UTCL1_WR_STATUS),
73 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_UTCL1_RD_XNACK0),
74 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_UTCL1_RD_XNACK1),
75 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_UTCL1_WR_XNACK0),
76 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_UTCL1_WR_XNACK1),
77 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_RB_CNTL),
78 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_RB_RPTR),
79 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_RB_RPTR_HI),
80 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_RB_WPTR),
81 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_RB_WPTR_HI),
82 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_IB_OFFSET),
83 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_IB_BASE_LO),
84 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_IB_BASE_HI),
85 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_IB_CNTL),
86 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_IB_RPTR),
87 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_IB_SUB_REMAIN),
88 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_DUMMY_REG),
89 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_PAGE_RB_CNTL),
90 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_PAGE_RB_RPTR),
91 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_PAGE_RB_RPTR_HI),
92 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_PAGE_RB_WPTR),
93 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_PAGE_RB_WPTR_HI),
94 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_PAGE_IB_OFFSET),
95 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_PAGE_IB_BASE_LO),
96 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_PAGE_IB_BASE_HI),
97 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_PAGE_DUMMY_REG),
98 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_RLC0_RB_CNTL),
99 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_RLC0_RB_RPTR),
100 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_RLC0_RB_RPTR_HI),
101 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_RLC0_RB_WPTR),
102 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_RLC0_RB_WPTR_HI),
103 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_RLC0_IB_OFFSET),
104 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_RLC0_IB_BASE_LO),
105 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_RLC0_IB_BASE_HI),
106 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_RLC0_DUMMY_REG),
107 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_INT_STATUS),
108 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_VM_CNTL),
109 	SOC15_REG_ENTRY_STR(GC, 0, mmGRBM_STATUS2)
110 };
111 
112 static void sdma_v5_2_set_ring_funcs(struct amdgpu_device *adev);
113 static void sdma_v5_2_set_buffer_funcs(struct amdgpu_device *adev);
114 static void sdma_v5_2_set_vm_pte_funcs(struct amdgpu_device *adev);
115 static void sdma_v5_2_set_irq_funcs(struct amdgpu_device *adev);
116 
117 static u32 sdma_v5_2_get_reg_offset(struct amdgpu_device *adev, u32 instance, u32 internal_offset)
118 {
119 	u32 base;
120 
121 	if (internal_offset >= SDMA0_HYP_DEC_REG_START &&
122 	    internal_offset <= SDMA0_HYP_DEC_REG_END) {
123 		base = adev->reg_offset[GC_HWIP][0][1];
124 		if (instance != 0)
125 			internal_offset += SDMA1_HYP_DEC_REG_OFFSET * instance;
126 	} else {
127 		if (instance < 2) {
128 			base = adev->reg_offset[GC_HWIP][0][0];
129 			if (instance == 1)
130 				internal_offset += SDMA1_REG_OFFSET;
131 		} else {
132 			base = adev->reg_offset[GC_HWIP][0][2];
133 			if (instance == 3)
134 				internal_offset += SDMA3_REG_OFFSET;
135 		}
136 	}
137 
138 	return base + internal_offset;
139 }
140 
141 static unsigned sdma_v5_2_ring_init_cond_exec(struct amdgpu_ring *ring,
142 					      uint64_t addr)
143 {
144 	unsigned ret;
145 
146 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_COND_EXE));
147 	amdgpu_ring_write(ring, lower_32_bits(addr));
148 	amdgpu_ring_write(ring, upper_32_bits(addr));
149 	amdgpu_ring_write(ring, 1);
150 	/* this is the offset we need patch later */
151 	ret = ring->wptr & ring->buf_mask;
152 	/* insert dummy here and patch it later */
153 	amdgpu_ring_write(ring, 0);
154 
155 	return ret;
156 }
157 
158 /**
159  * sdma_v5_2_ring_get_rptr - get the current read pointer
160  *
161  * @ring: amdgpu ring pointer
162  *
163  * Get the current rptr from the hardware (NAVI10+).
164  */
165 static uint64_t sdma_v5_2_ring_get_rptr(struct amdgpu_ring *ring)
166 {
167 	u64 *rptr;
168 
169 	/* XXX check if swapping is necessary on BE */
170 	rptr = (u64 *)ring->rptr_cpu_addr;
171 
172 	DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
173 	return ((*rptr) >> 2);
174 }
175 
176 /**
177  * sdma_v5_2_ring_get_wptr - get the current write pointer
178  *
179  * @ring: amdgpu ring pointer
180  *
181  * Get the current wptr from the hardware (NAVI10+).
182  */
183 static uint64_t sdma_v5_2_ring_get_wptr(struct amdgpu_ring *ring)
184 {
185 	struct amdgpu_device *adev = ring->adev;
186 	u64 wptr;
187 
188 	if (ring->use_doorbell) {
189 		/* XXX check if swapping is necessary on BE */
190 		wptr = READ_ONCE(*((u64 *)ring->wptr_cpu_addr));
191 		DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
192 	} else {
193 		wptr = RREG32(sdma_v5_2_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR_HI));
194 		wptr = wptr << 32;
195 		wptr |= RREG32(sdma_v5_2_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR));
196 		DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n", ring->me, wptr);
197 	}
198 
199 	return wptr >> 2;
200 }
201 
202 /**
203  * sdma_v5_2_ring_set_wptr - commit the write pointer
204  *
205  * @ring: amdgpu ring pointer
206  *
207  * Write the wptr back to the hardware (NAVI10+).
208  */
209 static void sdma_v5_2_ring_set_wptr(struct amdgpu_ring *ring)
210 {
211 	struct amdgpu_device *adev = ring->adev;
212 
213 	DRM_DEBUG("Setting write pointer\n");
214 	if (ring->use_doorbell) {
215 		DRM_DEBUG("Using doorbell -- "
216 				"wptr_offs == 0x%08x "
217 				"lower_32_bits(ring->wptr << 2) == 0x%08x "
218 				"upper_32_bits(ring->wptr << 2) == 0x%08x\n",
219 				ring->wptr_offs,
220 				lower_32_bits(ring->wptr << 2),
221 				upper_32_bits(ring->wptr << 2));
222 		/* XXX check if swapping is necessary on BE */
223 		atomic64_set((atomic64_t *)ring->wptr_cpu_addr,
224 			     ring->wptr << 2);
225 		DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
226 				ring->doorbell_index, ring->wptr << 2);
227 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
228 		if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(5, 2, 1)) {
229 			/* SDMA seems to miss doorbells sometimes when powergating kicks in.
230 			 * Updating the wptr directly will wake it. This is only safe because
231 			 * we disallow gfxoff in begin_use() and then allow it again in end_use().
232 			 */
233 			WREG32(sdma_v5_2_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR),
234 			       lower_32_bits(ring->wptr << 2));
235 			WREG32(sdma_v5_2_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR_HI),
236 			       upper_32_bits(ring->wptr << 2));
237 		}
238 	} else {
239 		DRM_DEBUG("Not using doorbell -- "
240 				"mmSDMA%i_GFX_RB_WPTR == 0x%08x "
241 				"mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
242 				ring->me,
243 				lower_32_bits(ring->wptr << 2),
244 				ring->me,
245 				upper_32_bits(ring->wptr << 2));
246 		WREG32(sdma_v5_2_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR),
247 			lower_32_bits(ring->wptr << 2));
248 		WREG32(sdma_v5_2_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR_HI),
249 			upper_32_bits(ring->wptr << 2));
250 	}
251 }
252 
253 static void sdma_v5_2_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
254 {
255 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
256 	int i;
257 
258 	for (i = 0; i < count; i++)
259 		if (sdma && sdma->burst_nop && (i == 0))
260 			amdgpu_ring_write(ring, ring->funcs->nop |
261 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
262 		else
263 			amdgpu_ring_write(ring, ring->funcs->nop);
264 }
265 
266 /**
267  * sdma_v5_2_ring_emit_ib - Schedule an IB on the DMA engine
268  *
269  * @ring: amdgpu ring pointer
270  * @job: job to retrieve vmid from
271  * @ib: IB object to schedule
272  * @flags: unused
273  *
274  * Schedule an IB in the DMA ring.
275  */
276 static void sdma_v5_2_ring_emit_ib(struct amdgpu_ring *ring,
277 				   struct amdgpu_job *job,
278 				   struct amdgpu_ib *ib,
279 				   uint32_t flags)
280 {
281 	unsigned vmid = AMDGPU_JOB_GET_VMID(job);
282 	uint64_t csa_mc_addr = amdgpu_sdma_get_csa_mc_addr(ring, vmid);
283 
284 	/* An IB packet must end on a 8 DW boundary--the next dword
285 	 * must be on a 8-dword boundary. Our IB packet below is 6
286 	 * dwords long, thus add x number of NOPs, such that, in
287 	 * modular arithmetic,
288 	 * wptr + 6 + x = 8k, k >= 0, which in C is,
289 	 * (wptr + 6 + x) % 8 = 0.
290 	 * The expression below, is a solution of x.
291 	 */
292 	sdma_v5_2_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7);
293 
294 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
295 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
296 	/* base must be 32 byte aligned */
297 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
298 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
299 	amdgpu_ring_write(ring, ib->length_dw);
300 	amdgpu_ring_write(ring, lower_32_bits(csa_mc_addr));
301 	amdgpu_ring_write(ring, upper_32_bits(csa_mc_addr));
302 }
303 
304 /**
305  * sdma_v5_2_ring_emit_mem_sync - flush the IB by graphics cache rinse
306  *
307  * @ring: amdgpu ring pointer
308  *
309  * flush the IB by graphics cache rinse.
310  */
311 static void sdma_v5_2_ring_emit_mem_sync(struct amdgpu_ring *ring)
312 {
313 	uint32_t gcr_cntl = SDMA_GCR_GL2_INV | SDMA_GCR_GL2_WB |
314 			    SDMA_GCR_GLM_INV | SDMA_GCR_GL1_INV |
315 			    SDMA_GCR_GLV_INV | SDMA_GCR_GLK_INV |
316 			    SDMA_GCR_GLI_INV(1);
317 
318 	/* flush entire cache L0/L1/L2, this can be optimized by performance requirement */
319 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_GCR_REQ));
320 	amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD1_BASE_VA_31_7(0));
321 	amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD2_GCR_CONTROL_15_0(gcr_cntl) |
322 			SDMA_PKT_GCR_REQ_PAYLOAD2_BASE_VA_47_32(0));
323 	amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD3_LIMIT_VA_31_7(0) |
324 			SDMA_PKT_GCR_REQ_PAYLOAD3_GCR_CONTROL_18_16(gcr_cntl >> 16));
325 	amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD4_LIMIT_VA_47_32(0) |
326 			SDMA_PKT_GCR_REQ_PAYLOAD4_VMID(0));
327 }
328 
329 /**
330  * sdma_v5_2_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
331  *
332  * @ring: amdgpu ring pointer
333  *
334  * Emit an hdp flush packet on the requested DMA ring.
335  */
336 static void sdma_v5_2_ring_emit_hdp_flush(struct amdgpu_ring *ring)
337 {
338 	struct amdgpu_device *adev = ring->adev;
339 	u32 ref_and_mask = 0;
340 	const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg;
341 
342 	if (ring->me > 1) {
343 		amdgpu_asic_flush_hdp(adev, ring);
344 	} else {
345 		ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 << ring->me;
346 
347 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
348 				  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
349 				  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
350 		amdgpu_ring_write(ring, (adev->nbio.funcs->get_hdp_flush_done_offset(adev)) << 2);
351 		amdgpu_ring_write(ring, (adev->nbio.funcs->get_hdp_flush_req_offset(adev)) << 2);
352 		amdgpu_ring_write(ring, ref_and_mask); /* reference */
353 		amdgpu_ring_write(ring, ref_and_mask); /* mask */
354 		amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
355 				  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
356 	}
357 }
358 
359 /**
360  * sdma_v5_2_ring_emit_fence - emit a fence on the DMA ring
361  *
362  * @ring: amdgpu ring pointer
363  * @addr: address
364  * @seq: sequence number
365  * @flags: fence related flags
366  *
367  * Add a DMA fence packet to the ring to write
368  * the fence seq number and DMA trap packet to generate
369  * an interrupt if needed.
370  */
371 static void sdma_v5_2_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
372 				      unsigned flags)
373 {
374 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
375 	/* write the fence */
376 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE) |
377 			  SDMA_PKT_FENCE_HEADER_MTYPE(0x3)); /* Ucached(UC) */
378 	/* zero in first two bits */
379 	BUG_ON(addr & 0x3);
380 	amdgpu_ring_write(ring, lower_32_bits(addr));
381 	amdgpu_ring_write(ring, upper_32_bits(addr));
382 	amdgpu_ring_write(ring, lower_32_bits(seq));
383 
384 	/* optionally write high bits as well */
385 	if (write64bit) {
386 		addr += 4;
387 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE) |
388 				  SDMA_PKT_FENCE_HEADER_MTYPE(0x3));
389 		/* zero in first two bits */
390 		BUG_ON(addr & 0x3);
391 		amdgpu_ring_write(ring, lower_32_bits(addr));
392 		amdgpu_ring_write(ring, upper_32_bits(addr));
393 		amdgpu_ring_write(ring, upper_32_bits(seq));
394 	}
395 
396 	if ((flags & AMDGPU_FENCE_FLAG_INT)) {
397 		uint32_t ctx = ring->is_mes_queue ?
398 			(ring->hw_queue_id | AMDGPU_FENCE_MES_QUEUE_FLAG) : 0;
399 		/* generate an interrupt */
400 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
401 		amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(ctx));
402 	}
403 }
404 
405 
406 /**
407  * sdma_v5_2_gfx_stop - stop the gfx async dma engines
408  *
409  * @adev: amdgpu_device pointer
410  *
411  * Stop the gfx async dma ring buffers.
412  */
413 static void sdma_v5_2_gfx_stop(struct amdgpu_device *adev)
414 {
415 	u32 rb_cntl, ib_cntl;
416 	int i;
417 
418 	for (i = 0; i < adev->sdma.num_instances; i++) {
419 		rb_cntl = RREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL));
420 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
421 		WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
422 		ib_cntl = RREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL));
423 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
424 		WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
425 	}
426 }
427 
428 /**
429  * sdma_v5_2_rlc_stop - stop the compute async dma engines
430  *
431  * @adev: amdgpu_device pointer
432  *
433  * Stop the compute async dma queues.
434  */
435 static void sdma_v5_2_rlc_stop(struct amdgpu_device *adev)
436 {
437 	/* XXX todo */
438 }
439 
440 /**
441  * sdma_v5_2_ctx_switch_enable - stop the async dma engines context switch
442  *
443  * @adev: amdgpu_device pointer
444  * @enable: enable/disable the DMA MEs context switch.
445  *
446  * Halt or unhalt the async dma engines context switch.
447  */
448 static void sdma_v5_2_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
449 {
450 	u32 f32_cntl, phase_quantum = 0;
451 	int i;
452 
453 	if (amdgpu_sdma_phase_quantum) {
454 		unsigned value = amdgpu_sdma_phase_quantum;
455 		unsigned unit = 0;
456 
457 		while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
458 				SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
459 			value = (value + 1) >> 1;
460 			unit++;
461 		}
462 		if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
463 			    SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
464 			value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
465 				 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
466 			unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
467 				SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
468 			WARN_ONCE(1,
469 			"clamping sdma_phase_quantum to %uK clock cycles\n",
470 				  value << unit);
471 		}
472 		phase_quantum =
473 			value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
474 			unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
475 	}
476 
477 	for (i = 0; i < adev->sdma.num_instances; i++) {
478 		if (enable && amdgpu_sdma_phase_quantum) {
479 			WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_PHASE0_QUANTUM),
480 			       phase_quantum);
481 			WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_PHASE1_QUANTUM),
482 			       phase_quantum);
483 			WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_PHASE2_QUANTUM),
484 			       phase_quantum);
485 		}
486 
487 		if (!amdgpu_sriov_vf(adev)) {
488 			f32_cntl = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CNTL));
489 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
490 					AUTO_CTXSW_ENABLE, enable ? 1 : 0);
491 			WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CNTL), f32_cntl);
492 		}
493 	}
494 
495 }
496 
497 /**
498  * sdma_v5_2_enable - stop the async dma engines
499  *
500  * @adev: amdgpu_device pointer
501  * @enable: enable/disable the DMA MEs.
502  *
503  * Halt or unhalt the async dma engines.
504  */
505 static void sdma_v5_2_enable(struct amdgpu_device *adev, bool enable)
506 {
507 	u32 f32_cntl;
508 	int i;
509 
510 	if (!enable) {
511 		sdma_v5_2_gfx_stop(adev);
512 		sdma_v5_2_rlc_stop(adev);
513 	}
514 
515 	if (!amdgpu_sriov_vf(adev)) {
516 		for (i = 0; i < adev->sdma.num_instances; i++) {
517 			f32_cntl = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_F32_CNTL));
518 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
519 			WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), f32_cntl);
520 		}
521 	}
522 }
523 
524 /**
525  * sdma_v5_2_gfx_resume_instance - start/restart a certain sdma engine
526  *
527  * @adev: amdgpu_device pointer
528  * @i: instance
529  * @restore: used to restore wptr when restart
530  *
531  * Set up the gfx DMA ring buffers and enable them. On restart, we will restore wptr and rptr.
532  * Return 0 for success.
533  */
534 
535 static int sdma_v5_2_gfx_resume_instance(struct amdgpu_device *adev, int i, bool restore)
536 {
537 	struct amdgpu_ring *ring;
538 	u32 rb_cntl, ib_cntl;
539 	u32 rb_bufsz;
540 	u32 doorbell;
541 	u32 doorbell_offset;
542 	u32 temp;
543 	u32 wptr_poll_cntl;
544 	u64 wptr_gpu_addr;
545 
546 	ring = &adev->sdma.instance[i].ring;
547 
548 	if (!amdgpu_sriov_vf(adev))
549 		WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL), 0);
550 
551 	/* Set ring buffer size in dwords */
552 	rb_bufsz = order_base_2(ring->ring_size / 4);
553 	rb_cntl = RREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL));
554 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
555 #ifdef __BIG_ENDIAN
556 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
557 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
558 				RPTR_WRITEBACK_SWAP_ENABLE, 1);
559 #endif
560 	WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
561 
562 	/* Initialize the ring buffer's read and write pointers */
563 	if (restore) {
564 		WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR), lower_32_bits(ring->wptr << 2));
565 		WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_HI), upper_32_bits(ring->wptr << 2));
566 		WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR), lower_32_bits(ring->wptr << 2));
567 		WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI), upper_32_bits(ring->wptr << 2));
568 	} else {
569 		WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR), 0);
570 		WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_HI), 0);
571 		WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR), 0);
572 		WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI), 0);
573 	}
574 
575 	/* setup the wptr shadow polling */
576 	wptr_gpu_addr = ring->wptr_gpu_addr;
577 	WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO),
578 	       lower_32_bits(wptr_gpu_addr));
579 	WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI),
580 	       upper_32_bits(wptr_gpu_addr));
581 	wptr_poll_cntl = RREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i,
582 						 mmSDMA0_GFX_RB_WPTR_POLL_CNTL));
583 	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
584 				       SDMA0_GFX_RB_WPTR_POLL_CNTL,
585 				       F32_POLL_ENABLE, 1);
586 	WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL),
587 	       wptr_poll_cntl);
588 
589 	/* set the wb address whether it's enabled or not */
590 	WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_HI),
591 	       upper_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFF);
592 	WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_LO),
593 	       lower_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFC);
594 
595 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
596 
597 	WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE), ring->gpu_addr >> 8);
598 	WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE_HI), ring->gpu_addr >> 40);
599 
600 	if (!restore)
601 		ring->wptr = 0;
602 
603 	/* before programing wptr to a less value, need set minor_ptr_update first */
604 	WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 1);
605 
606 	if (!amdgpu_sriov_vf(adev)) { /* only bare-metal use register write for wptr */
607 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR), lower_32_bits(ring->wptr << 2));
608 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI), upper_32_bits(ring->wptr << 2));
609 	}
610 
611 	doorbell = RREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL));
612 	doorbell_offset = RREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL_OFFSET));
613 
614 	if (ring->use_doorbell) {
615 		doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
616 		doorbell_offset = REG_SET_FIELD(doorbell_offset, SDMA0_GFX_DOORBELL_OFFSET,
617 				OFFSET, ring->doorbell_index);
618 	} else {
619 		doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
620 	}
621 	WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL), doorbell);
622 	WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL_OFFSET), doorbell_offset);
623 
624 	adev->nbio.funcs->sdma_doorbell_range(adev, i, ring->use_doorbell,
625 					      ring->doorbell_index,
626 					      adev->doorbell_index.sdma_doorbell_range);
627 
628 	if (amdgpu_sriov_vf(adev))
629 		sdma_v5_2_ring_set_wptr(ring);
630 
631 	/* set minor_ptr_update to 0 after wptr programed */
632 
633 	WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 0);
634 
635 	/* SRIOV VF has no control of any of registers below */
636 	if (!amdgpu_sriov_vf(adev)) {
637 		/* set utc l1 enable flag always to 1 */
638 		temp = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CNTL));
639 		temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
640 
641 		/* enable MCBP */
642 		temp = REG_SET_FIELD(temp, SDMA0_CNTL, MIDCMD_PREEMPT_ENABLE, 1);
643 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CNTL), temp);
644 
645 		/* Set up RESP_MODE to non-copy addresses */
646 		temp = RREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UTCL1_CNTL));
647 		temp = REG_SET_FIELD(temp, SDMA0_UTCL1_CNTL, RESP_MODE, 3);
648 		temp = REG_SET_FIELD(temp, SDMA0_UTCL1_CNTL, REDO_DELAY, 9);
649 		WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UTCL1_CNTL), temp);
650 
651 		/* program default cache read and write policy */
652 		temp = RREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UTCL1_PAGE));
653 		/* clean read policy and write policy bits */
654 		temp &= 0xFF0FFF;
655 		temp |= ((CACHE_READ_POLICY_L2__DEFAULT << 12) |
656 			 (CACHE_WRITE_POLICY_L2__DEFAULT << 14) |
657 			 SDMA0_UTCL1_PAGE__LLC_NOALLOC_MASK);
658 		WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UTCL1_PAGE), temp);
659 
660 		/* unhalt engine */
661 		temp = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_F32_CNTL));
662 		temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
663 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), temp);
664 	}
665 
666 	/* enable DMA RB */
667 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
668 	WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
669 
670 	ib_cntl = RREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL));
671 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
672 #ifdef __BIG_ENDIAN
673 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
674 #endif
675 	/* enable DMA IBs */
676 	WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
677 
678 	if (amdgpu_sriov_vf(adev)) { /* bare-metal sequence doesn't need below to lines */
679 		sdma_v5_2_ctx_switch_enable(adev, true);
680 		sdma_v5_2_enable(adev, true);
681 	}
682 
683 	return amdgpu_ring_test_helper(ring);
684 }
685 
686 /**
687  * sdma_v5_2_gfx_resume - setup and start the async dma engines
688  *
689  * @adev: amdgpu_device pointer
690  *
691  * Set up the gfx DMA ring buffers and enable them.
692  * Returns 0 for success, error for failure.
693  */
694 static int sdma_v5_2_gfx_resume(struct amdgpu_device *adev)
695 {
696 	int i, r;
697 
698 	for (i = 0; i < adev->sdma.num_instances; i++) {
699 		r = sdma_v5_2_gfx_resume_instance(adev, i, false);
700 		if (r)
701 			return r;
702 	}
703 
704 	return 0;
705 }
706 
707 /**
708  * sdma_v5_2_rlc_resume - setup and start the async dma engines
709  *
710  * @adev: amdgpu_device pointer
711  *
712  * Set up the compute DMA queues and enable them.
713  * Returns 0 for success, error for failure.
714  */
715 static int sdma_v5_2_rlc_resume(struct amdgpu_device *adev)
716 {
717 	return 0;
718 }
719 
720 /**
721  * sdma_v5_2_load_microcode - load the sDMA ME ucode
722  *
723  * @adev: amdgpu_device pointer
724  *
725  * Loads the sDMA0/1/2/3 ucode.
726  * Returns 0 for success, -EINVAL if the ucode is not available.
727  */
728 static int sdma_v5_2_load_microcode(struct amdgpu_device *adev)
729 {
730 	const struct sdma_firmware_header_v1_0 *hdr;
731 	const __le32 *fw_data;
732 	u32 fw_size;
733 	int i, j;
734 
735 	/* halt the MEs */
736 	sdma_v5_2_enable(adev, false);
737 
738 	for (i = 0; i < adev->sdma.num_instances; i++) {
739 		if (!adev->sdma.instance[i].fw)
740 			return -EINVAL;
741 
742 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
743 		amdgpu_ucode_print_sdma_hdr(&hdr->header);
744 		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
745 
746 		fw_data = (const __le32 *)
747 			(adev->sdma.instance[i].fw->data +
748 				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
749 
750 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), 0);
751 
752 		for (j = 0; j < fw_size; j++) {
753 			if (amdgpu_emu_mode == 1 && j % 500 == 0)
754 				msleep(1);
755 			WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UCODE_DATA), le32_to_cpup(fw_data++));
756 		}
757 
758 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), adev->sdma.instance[i].fw_version);
759 	}
760 
761 	return 0;
762 }
763 
764 static int sdma_v5_2_soft_reset(struct amdgpu_ip_block *ip_block)
765 {
766 	struct amdgpu_device *adev = ip_block->adev;
767 	u32 grbm_soft_reset;
768 	u32 tmp;
769 	int i;
770 
771 	for (i = 0; i < adev->sdma.num_instances; i++) {
772 		grbm_soft_reset = REG_SET_FIELD(0,
773 						GRBM_SOFT_RESET, SOFT_RESET_SDMA0,
774 						1);
775 		grbm_soft_reset <<= i;
776 
777 		tmp = RREG32_SOC15(GC, 0, mmGRBM_SOFT_RESET);
778 		tmp |= grbm_soft_reset;
779 		DRM_DEBUG("GRBM_SOFT_RESET=0x%08X\n", tmp);
780 		WREG32_SOC15(GC, 0, mmGRBM_SOFT_RESET, tmp);
781 		tmp = RREG32_SOC15(GC, 0, mmGRBM_SOFT_RESET);
782 
783 		udelay(50);
784 
785 		tmp &= ~grbm_soft_reset;
786 		WREG32_SOC15(GC, 0, mmGRBM_SOFT_RESET, tmp);
787 		tmp = RREG32_SOC15(GC, 0, mmGRBM_SOFT_RESET);
788 
789 		udelay(50);
790 	}
791 
792 	return 0;
793 }
794 
795 /**
796  * sdma_v5_2_start - setup and start the async dma engines
797  *
798  * @adev: amdgpu_device pointer
799  *
800  * Set up the DMA engines and enable them.
801  * Returns 0 for success, error for failure.
802  */
803 static int sdma_v5_2_start(struct amdgpu_device *adev)
804 {
805 	int r = 0;
806 	struct amdgpu_ip_block *ip_block;
807 
808 	if (amdgpu_sriov_vf(adev)) {
809 		sdma_v5_2_ctx_switch_enable(adev, false);
810 		sdma_v5_2_enable(adev, false);
811 
812 		/* set RB registers */
813 		r = sdma_v5_2_gfx_resume(adev);
814 		return r;
815 	}
816 
817 	if (adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) {
818 		r = sdma_v5_2_load_microcode(adev);
819 		if (r)
820 			return r;
821 
822 		/* The value of mmSDMA_F32_CNTL is invalid the moment after loading fw */
823 		if (amdgpu_emu_mode == 1)
824 			msleep(1000);
825 	}
826 
827 	ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_SDMA);
828 	if (!ip_block)
829 		return -EINVAL;
830 
831 	sdma_v5_2_soft_reset(ip_block);
832 	/* unhalt the MEs */
833 	sdma_v5_2_enable(adev, true);
834 	/* enable sdma ring preemption */
835 	sdma_v5_2_ctx_switch_enable(adev, true);
836 
837 	/* start the gfx rings and rlc compute queues */
838 	r = sdma_v5_2_gfx_resume(adev);
839 	if (r)
840 		return r;
841 	r = sdma_v5_2_rlc_resume(adev);
842 
843 	return r;
844 }
845 
846 static int sdma_v5_2_mqd_init(struct amdgpu_device *adev, void *mqd,
847 			      struct amdgpu_mqd_prop *prop)
848 {
849 	struct v10_sdma_mqd *m = mqd;
850 	uint64_t wb_gpu_addr;
851 
852 	m->sdmax_rlcx_rb_cntl =
853 		order_base_2(prop->queue_size / 4) << SDMA0_RLC0_RB_CNTL__RB_SIZE__SHIFT |
854 		1 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_ENABLE__SHIFT |
855 		6 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_TIMER__SHIFT |
856 		1 << SDMA0_RLC0_RB_CNTL__RB_PRIV__SHIFT;
857 
858 	m->sdmax_rlcx_rb_base = lower_32_bits(prop->hqd_base_gpu_addr >> 8);
859 	m->sdmax_rlcx_rb_base_hi = upper_32_bits(prop->hqd_base_gpu_addr >> 8);
860 
861 	m->sdmax_rlcx_rb_wptr_poll_cntl = RREG32(sdma_v5_2_get_reg_offset(adev, 0,
862 						  mmSDMA0_GFX_RB_WPTR_POLL_CNTL));
863 
864 	wb_gpu_addr = prop->wptr_gpu_addr;
865 	m->sdmax_rlcx_rb_wptr_poll_addr_lo = lower_32_bits(wb_gpu_addr);
866 	m->sdmax_rlcx_rb_wptr_poll_addr_hi = upper_32_bits(wb_gpu_addr);
867 
868 	wb_gpu_addr = prop->rptr_gpu_addr;
869 	m->sdmax_rlcx_rb_rptr_addr_lo = lower_32_bits(wb_gpu_addr);
870 	m->sdmax_rlcx_rb_rptr_addr_hi = upper_32_bits(wb_gpu_addr);
871 
872 	m->sdmax_rlcx_ib_cntl = RREG32(sdma_v5_2_get_reg_offset(adev, 0,
873 							mmSDMA0_GFX_IB_CNTL));
874 
875 	m->sdmax_rlcx_doorbell_offset =
876 		prop->doorbell_index << SDMA0_RLC0_DOORBELL_OFFSET__OFFSET__SHIFT;
877 
878 	m->sdmax_rlcx_doorbell = REG_SET_FIELD(0, SDMA0_RLC0_DOORBELL, ENABLE, 1);
879 
880 	return 0;
881 }
882 
883 static void sdma_v5_2_set_mqd_funcs(struct amdgpu_device *adev)
884 {
885 	adev->mqds[AMDGPU_HW_IP_DMA].mqd_size = sizeof(struct v10_sdma_mqd);
886 	adev->mqds[AMDGPU_HW_IP_DMA].init_mqd = sdma_v5_2_mqd_init;
887 }
888 
889 /**
890  * sdma_v5_2_ring_test_ring - simple async dma engine test
891  *
892  * @ring: amdgpu_ring structure holding ring information
893  *
894  * Test the DMA engine by writing using it to write an
895  * value to memory.
896  * Returns 0 for success, error for failure.
897  */
898 static int sdma_v5_2_ring_test_ring(struct amdgpu_ring *ring)
899 {
900 	struct amdgpu_device *adev = ring->adev;
901 	unsigned i;
902 	unsigned index;
903 	int r;
904 	u32 tmp;
905 	u64 gpu_addr;
906 	volatile uint32_t *cpu_ptr = NULL;
907 
908 	tmp = 0xCAFEDEAD;
909 
910 	if (ring->is_mes_queue) {
911 		uint32_t offset = 0;
912 		offset = amdgpu_mes_ctx_get_offs(ring,
913 					 AMDGPU_MES_CTX_PADDING_OFFS);
914 		gpu_addr = amdgpu_mes_ctx_get_offs_gpu_addr(ring, offset);
915 		cpu_ptr = amdgpu_mes_ctx_get_offs_cpu_addr(ring, offset);
916 		*cpu_ptr = tmp;
917 	} else {
918 		r = amdgpu_device_wb_get(adev, &index);
919 		if (r) {
920 			dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
921 			return r;
922 		}
923 
924 		gpu_addr = adev->wb.gpu_addr + (index * 4);
925 		adev->wb.wb[index] = cpu_to_le32(tmp);
926 	}
927 
928 	r = amdgpu_ring_alloc(ring, 20);
929 	if (r) {
930 		DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
931 		if (!ring->is_mes_queue)
932 			amdgpu_device_wb_free(adev, index);
933 		return r;
934 	}
935 
936 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
937 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
938 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
939 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
940 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
941 	amdgpu_ring_write(ring, 0xDEADBEEF);
942 	amdgpu_ring_commit(ring);
943 
944 	for (i = 0; i < adev->usec_timeout; i++) {
945 		if (ring->is_mes_queue)
946 			tmp = le32_to_cpu(*cpu_ptr);
947 		else
948 			tmp = le32_to_cpu(adev->wb.wb[index]);
949 		if (tmp == 0xDEADBEEF)
950 			break;
951 		if (amdgpu_emu_mode == 1)
952 			msleep(1);
953 		else
954 			udelay(1);
955 	}
956 
957 	if (i >= adev->usec_timeout)
958 		r = -ETIMEDOUT;
959 
960 	if (!ring->is_mes_queue)
961 		amdgpu_device_wb_free(adev, index);
962 
963 	return r;
964 }
965 
966 /**
967  * sdma_v5_2_ring_test_ib - test an IB on the DMA engine
968  *
969  * @ring: amdgpu_ring structure holding ring information
970  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
971  *
972  * Test a simple IB in the DMA ring.
973  * Returns 0 on success, error on failure.
974  */
975 static int sdma_v5_2_ring_test_ib(struct amdgpu_ring *ring, long timeout)
976 {
977 	struct amdgpu_device *adev = ring->adev;
978 	struct amdgpu_ib ib;
979 	struct dma_fence *f = NULL;
980 	unsigned index;
981 	long r;
982 	u32 tmp = 0;
983 	u64 gpu_addr;
984 	volatile uint32_t *cpu_ptr = NULL;
985 
986 	tmp = 0xCAFEDEAD;
987 	memset(&ib, 0, sizeof(ib));
988 
989 	if (ring->is_mes_queue) {
990 		uint32_t offset = 0;
991 		offset = amdgpu_mes_ctx_get_offs(ring, AMDGPU_MES_CTX_IB_OFFS);
992 		ib.gpu_addr = amdgpu_mes_ctx_get_offs_gpu_addr(ring, offset);
993 		ib.ptr = (void *)amdgpu_mes_ctx_get_offs_cpu_addr(ring, offset);
994 
995 		offset = amdgpu_mes_ctx_get_offs(ring,
996 					 AMDGPU_MES_CTX_PADDING_OFFS);
997 		gpu_addr = amdgpu_mes_ctx_get_offs_gpu_addr(ring, offset);
998 		cpu_ptr = amdgpu_mes_ctx_get_offs_cpu_addr(ring, offset);
999 		*cpu_ptr = tmp;
1000 	} else {
1001 		r = amdgpu_device_wb_get(adev, &index);
1002 		if (r) {
1003 			dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
1004 			return r;
1005 		}
1006 
1007 		gpu_addr = adev->wb.gpu_addr + (index * 4);
1008 		adev->wb.wb[index] = cpu_to_le32(tmp);
1009 
1010 		r = amdgpu_ib_get(adev, NULL, 256, AMDGPU_IB_POOL_DIRECT, &ib);
1011 		if (r) {
1012 			DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
1013 			goto err0;
1014 		}
1015 	}
1016 
1017 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1018 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1019 	ib.ptr[1] = lower_32_bits(gpu_addr);
1020 	ib.ptr[2] = upper_32_bits(gpu_addr);
1021 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1022 	ib.ptr[4] = 0xDEADBEEF;
1023 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1024 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1025 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1026 	ib.length_dw = 8;
1027 
1028 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1029 	if (r)
1030 		goto err1;
1031 
1032 	r = dma_fence_wait_timeout(f, false, timeout);
1033 	if (r == 0) {
1034 		DRM_ERROR("amdgpu: IB test timed out\n");
1035 		r = -ETIMEDOUT;
1036 		goto err1;
1037 	} else if (r < 0) {
1038 		DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
1039 		goto err1;
1040 	}
1041 
1042 	if (ring->is_mes_queue)
1043 		tmp = le32_to_cpu(*cpu_ptr);
1044 	else
1045 		tmp = le32_to_cpu(adev->wb.wb[index]);
1046 
1047 	if (tmp == 0xDEADBEEF)
1048 		r = 0;
1049 	else
1050 		r = -EINVAL;
1051 
1052 err1:
1053 	amdgpu_ib_free(adev, &ib, NULL);
1054 	dma_fence_put(f);
1055 err0:
1056 	if (!ring->is_mes_queue)
1057 		amdgpu_device_wb_free(adev, index);
1058 	return r;
1059 }
1060 
1061 
1062 /**
1063  * sdma_v5_2_vm_copy_pte - update PTEs by copying them from the GART
1064  *
1065  * @ib: indirect buffer to fill with commands
1066  * @pe: addr of the page entry
1067  * @src: src addr to copy from
1068  * @count: number of page entries to update
1069  *
1070  * Update PTEs by copying them from the GART using sDMA.
1071  */
1072 static void sdma_v5_2_vm_copy_pte(struct amdgpu_ib *ib,
1073 				  uint64_t pe, uint64_t src,
1074 				  unsigned count)
1075 {
1076 	unsigned bytes = count * 8;
1077 
1078 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1079 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1080 	ib->ptr[ib->length_dw++] = bytes - 1;
1081 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1082 	ib->ptr[ib->length_dw++] = lower_32_bits(src);
1083 	ib->ptr[ib->length_dw++] = upper_32_bits(src);
1084 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1085 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1086 
1087 }
1088 
1089 /**
1090  * sdma_v5_2_vm_write_pte - update PTEs by writing them manually
1091  *
1092  * @ib: indirect buffer to fill with commands
1093  * @pe: addr of the page entry
1094  * @value: dst addr to write into pe
1095  * @count: number of page entries to update
1096  * @incr: increase next addr by incr bytes
1097  *
1098  * Update PTEs by writing them manually using sDMA.
1099  */
1100 static void sdma_v5_2_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1101 				   uint64_t value, unsigned count,
1102 				   uint32_t incr)
1103 {
1104 	unsigned ndw = count * 2;
1105 
1106 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1107 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1108 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1109 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1110 	ib->ptr[ib->length_dw++] = ndw - 1;
1111 	for (; ndw > 0; ndw -= 2) {
1112 		ib->ptr[ib->length_dw++] = lower_32_bits(value);
1113 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
1114 		value += incr;
1115 	}
1116 }
1117 
1118 /**
1119  * sdma_v5_2_vm_set_pte_pde - update the page tables using sDMA
1120  *
1121  * @ib: indirect buffer to fill with commands
1122  * @pe: addr of the page entry
1123  * @addr: dst addr to write into pe
1124  * @count: number of page entries to update
1125  * @incr: increase next addr by incr bytes
1126  * @flags: access flags
1127  *
1128  * Update the page tables using sDMA.
1129  */
1130 static void sdma_v5_2_vm_set_pte_pde(struct amdgpu_ib *ib,
1131 				     uint64_t pe,
1132 				     uint64_t addr, unsigned count,
1133 				     uint32_t incr, uint64_t flags)
1134 {
1135 	/* for physically contiguous pages (vram) */
1136 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1137 	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1138 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1139 	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1140 	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1141 	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1142 	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1143 	ib->ptr[ib->length_dw++] = incr; /* increment size */
1144 	ib->ptr[ib->length_dw++] = 0;
1145 	ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1146 }
1147 
1148 /**
1149  * sdma_v5_2_ring_pad_ib - pad the IB
1150  *
1151  * @ib: indirect buffer to fill with padding
1152  * @ring: amdgpu_ring structure holding ring information
1153  *
1154  * Pad the IB with NOPs to a boundary multiple of 8.
1155  */
1156 static void sdma_v5_2_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1157 {
1158 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1159 	u32 pad_count;
1160 	int i;
1161 
1162 	pad_count = (-ib->length_dw) & 0x7;
1163 	for (i = 0; i < pad_count; i++)
1164 		if (sdma && sdma->burst_nop && (i == 0))
1165 			ib->ptr[ib->length_dw++] =
1166 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1167 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1168 		else
1169 			ib->ptr[ib->length_dw++] =
1170 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1171 }
1172 
1173 
1174 /**
1175  * sdma_v5_2_ring_emit_pipeline_sync - sync the pipeline
1176  *
1177  * @ring: amdgpu_ring pointer
1178  *
1179  * Make sure all previous operations are completed (CIK).
1180  */
1181 static void sdma_v5_2_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1182 {
1183 	uint32_t seq = ring->fence_drv.sync_seq;
1184 	uint64_t addr = ring->fence_drv.gpu_addr;
1185 
1186 	/* wait for idle */
1187 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1188 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1189 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
1190 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
1191 	amdgpu_ring_write(ring, addr & 0xfffffffc);
1192 	amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
1193 	amdgpu_ring_write(ring, seq); /* reference */
1194 	amdgpu_ring_write(ring, 0xffffffff); /* mask */
1195 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1196 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
1197 }
1198 
1199 
1200 /**
1201  * sdma_v5_2_ring_emit_vm_flush - vm flush using sDMA
1202  *
1203  * @ring: amdgpu_ring pointer
1204  * @vmid: vmid number to use
1205  * @pd_addr: address
1206  *
1207  * Update the page table base and flush the VM TLB
1208  * using sDMA.
1209  */
1210 static void sdma_v5_2_ring_emit_vm_flush(struct amdgpu_ring *ring,
1211 					 unsigned vmid, uint64_t pd_addr)
1212 {
1213 	struct amdgpu_vmhub *hub = &ring->adev->vmhub[ring->vm_hub];
1214 	uint32_t req = hub->vmhub_funcs->get_invalidate_req(vmid, 0);
1215 
1216 	/* Update the PD address for this VMID. */
1217 	amdgpu_ring_emit_wreg(ring, hub->ctx0_ptb_addr_lo32 +
1218 			      (hub->ctx_addr_distance * vmid),
1219 			      lower_32_bits(pd_addr));
1220 	amdgpu_ring_emit_wreg(ring, hub->ctx0_ptb_addr_hi32 +
1221 			      (hub->ctx_addr_distance * vmid),
1222 			      upper_32_bits(pd_addr));
1223 
1224 	/* Trigger invalidation. */
1225 	amdgpu_ring_write(ring,
1226 			  SDMA_PKT_VM_INVALIDATION_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1227 			  SDMA_PKT_VM_INVALIDATION_HEADER_SUB_OP(SDMA_SUBOP_VM_INVALIDATION) |
1228 			  SDMA_PKT_VM_INVALIDATION_HEADER_GFX_ENG_ID(ring->vm_inv_eng) |
1229 			  SDMA_PKT_VM_INVALIDATION_HEADER_MM_ENG_ID(0x1f));
1230 	amdgpu_ring_write(ring, req);
1231 	amdgpu_ring_write(ring, 0xFFFFFFFF);
1232 	amdgpu_ring_write(ring,
1233 			  SDMA_PKT_VM_INVALIDATION_ADDRESSRANGEHI_INVALIDATEACK(1 << vmid) |
1234 			  SDMA_PKT_VM_INVALIDATION_ADDRESSRANGEHI_ADDRESSRANGEHI(0x1F));
1235 }
1236 
1237 static void sdma_v5_2_ring_emit_wreg(struct amdgpu_ring *ring,
1238 				     uint32_t reg, uint32_t val)
1239 {
1240 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1241 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1242 	amdgpu_ring_write(ring, reg);
1243 	amdgpu_ring_write(ring, val);
1244 }
1245 
1246 static void sdma_v5_2_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1247 					 uint32_t val, uint32_t mask)
1248 {
1249 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1250 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1251 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* equal */
1252 	amdgpu_ring_write(ring, reg << 2);
1253 	amdgpu_ring_write(ring, 0);
1254 	amdgpu_ring_write(ring, val); /* reference */
1255 	amdgpu_ring_write(ring, mask); /* mask */
1256 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1257 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10));
1258 }
1259 
1260 static void sdma_v5_2_ring_emit_reg_write_reg_wait(struct amdgpu_ring *ring,
1261 						   uint32_t reg0, uint32_t reg1,
1262 						   uint32_t ref, uint32_t mask)
1263 {
1264 	amdgpu_ring_emit_wreg(ring, reg0, ref);
1265 	/* wait for a cycle to reset vm_inv_eng*_ack */
1266 	amdgpu_ring_emit_reg_wait(ring, reg0, 0, 0);
1267 	amdgpu_ring_emit_reg_wait(ring, reg1, mask, mask);
1268 }
1269 
1270 static int sdma_v5_2_early_init(struct amdgpu_ip_block *ip_block)
1271 {
1272 	struct amdgpu_device *adev = ip_block->adev;
1273 	int r;
1274 
1275 	r = amdgpu_sdma_init_microcode(adev, 0, true);
1276 	if (r)
1277 		return r;
1278 
1279 	sdma_v5_2_set_ring_funcs(adev);
1280 	sdma_v5_2_set_buffer_funcs(adev);
1281 	sdma_v5_2_set_vm_pte_funcs(adev);
1282 	sdma_v5_2_set_irq_funcs(adev);
1283 	sdma_v5_2_set_mqd_funcs(adev);
1284 
1285 	return 0;
1286 }
1287 
1288 static unsigned sdma_v5_2_seq_to_irq_id(int seq_num)
1289 {
1290 	switch (seq_num) {
1291 	case 0:
1292 		return SOC15_IH_CLIENTID_SDMA0;
1293 	case 1:
1294 		return SOC15_IH_CLIENTID_SDMA1;
1295 	case 2:
1296 		return SOC15_IH_CLIENTID_SDMA2;
1297 	case 3:
1298 		return SOC15_IH_CLIENTID_SDMA3_Sienna_Cichlid;
1299 	default:
1300 		break;
1301 	}
1302 	return -EINVAL;
1303 }
1304 
1305 static unsigned sdma_v5_2_seq_to_trap_id(int seq_num)
1306 {
1307 	switch (seq_num) {
1308 	case 0:
1309 		return SDMA0_5_0__SRCID__SDMA_TRAP;
1310 	case 1:
1311 		return SDMA1_5_0__SRCID__SDMA_TRAP;
1312 	case 2:
1313 		return SDMA2_5_0__SRCID__SDMA_TRAP;
1314 	case 3:
1315 		return SDMA3_5_0__SRCID__SDMA_TRAP;
1316 	default:
1317 		break;
1318 	}
1319 	return -EINVAL;
1320 }
1321 
1322 static int sdma_v5_2_sw_init(struct amdgpu_ip_block *ip_block)
1323 {
1324 	struct amdgpu_ring *ring;
1325 	int r, i;
1326 	struct amdgpu_device *adev = ip_block->adev;
1327 	uint32_t reg_count = ARRAY_SIZE(sdma_reg_list_5_2);
1328 	uint32_t *ptr;
1329 
1330 	/* SDMA trap event */
1331 	for (i = 0; i < adev->sdma.num_instances; i++) {
1332 		r = amdgpu_irq_add_id(adev, sdma_v5_2_seq_to_irq_id(i),
1333 				      sdma_v5_2_seq_to_trap_id(i),
1334 				      &adev->sdma.trap_irq);
1335 		if (r)
1336 			return r;
1337 	}
1338 
1339 	for (i = 0; i < adev->sdma.num_instances; i++) {
1340 		ring = &adev->sdma.instance[i].ring;
1341 		ring->ring_obj = NULL;
1342 		ring->use_doorbell = true;
1343 		ring->me = i;
1344 
1345 		DRM_INFO("use_doorbell being set to: [%s]\n",
1346 				ring->use_doorbell?"true":"false");
1347 
1348 		ring->doorbell_index =
1349 			(adev->doorbell_index.sdma_engine[i] << 1); //get DWORD offset
1350 
1351 		ring->vm_hub = AMDGPU_GFXHUB(0);
1352 		sprintf(ring->name, "sdma%d", i);
1353 		r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
1354 				     AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1355 				     AMDGPU_RING_PRIO_DEFAULT, NULL);
1356 		if (r)
1357 			return r;
1358 	}
1359 
1360 	adev->sdma.supported_reset =
1361 		amdgpu_get_soft_full_reset_mask(&adev->sdma.instance[0].ring);
1362 	switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) {
1363 	case IP_VERSION(5, 2, 0):
1364 	case IP_VERSION(5, 2, 2):
1365 	case IP_VERSION(5, 2, 3):
1366 	case IP_VERSION(5, 2, 4):
1367 		if (adev->sdma.instance[0].fw_version >= 76)
1368 			adev->sdma.supported_reset |= AMDGPU_RESET_TYPE_PER_QUEUE;
1369 		break;
1370 	case IP_VERSION(5, 2, 5):
1371 		if (adev->sdma.instance[0].fw_version >= 34)
1372 			adev->sdma.supported_reset |= AMDGPU_RESET_TYPE_PER_QUEUE;
1373 		break;
1374 	default:
1375 		break;
1376 	}
1377 
1378 	/* Allocate memory for SDMA IP Dump buffer */
1379 	ptr = kcalloc(adev->sdma.num_instances * reg_count, sizeof(uint32_t), GFP_KERNEL);
1380 	if (ptr)
1381 		adev->sdma.ip_dump = ptr;
1382 	else
1383 		DRM_ERROR("Failed to allocated memory for SDMA IP Dump\n");
1384 
1385 	r = amdgpu_sdma_sysfs_reset_mask_init(adev);
1386 	if (r)
1387 		return r;
1388 
1389 	return r;
1390 }
1391 
1392 static int sdma_v5_2_sw_fini(struct amdgpu_ip_block *ip_block)
1393 {
1394 	struct amdgpu_device *adev = ip_block->adev;
1395 	int i;
1396 
1397 	for (i = 0; i < adev->sdma.num_instances; i++)
1398 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1399 
1400 	amdgpu_sdma_sysfs_reset_mask_fini(adev);
1401 	amdgpu_sdma_destroy_inst_ctx(adev, true);
1402 
1403 	kfree(adev->sdma.ip_dump);
1404 
1405 	return 0;
1406 }
1407 
1408 static int sdma_v5_2_hw_init(struct amdgpu_ip_block *ip_block)
1409 {
1410 	struct amdgpu_device *adev = ip_block->adev;
1411 
1412 	return sdma_v5_2_start(adev);
1413 }
1414 
1415 static int sdma_v5_2_hw_fini(struct amdgpu_ip_block *ip_block)
1416 {
1417 	struct amdgpu_device *adev = ip_block->adev;
1418 
1419 	if (amdgpu_sriov_vf(adev))
1420 		return 0;
1421 
1422 	sdma_v5_2_ctx_switch_enable(adev, false);
1423 	sdma_v5_2_enable(adev, false);
1424 
1425 	return 0;
1426 }
1427 
1428 static int sdma_v5_2_suspend(struct amdgpu_ip_block *ip_block)
1429 {
1430 	return sdma_v5_2_hw_fini(ip_block);
1431 }
1432 
1433 static int sdma_v5_2_resume(struct amdgpu_ip_block *ip_block)
1434 {
1435 	return sdma_v5_2_hw_init(ip_block);
1436 }
1437 
1438 static bool sdma_v5_2_is_idle(void *handle)
1439 {
1440 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1441 	u32 i;
1442 
1443 	for (i = 0; i < adev->sdma.num_instances; i++) {
1444 		u32 tmp = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_STATUS_REG));
1445 
1446 		if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
1447 			return false;
1448 	}
1449 
1450 	return true;
1451 }
1452 
1453 static int sdma_v5_2_wait_for_idle(struct amdgpu_ip_block *ip_block)
1454 {
1455 	unsigned i;
1456 	u32 sdma0, sdma1, sdma2, sdma3;
1457 	struct amdgpu_device *adev = ip_block->adev;
1458 
1459 	for (i = 0; i < adev->usec_timeout; i++) {
1460 		sdma0 = RREG32(sdma_v5_2_get_reg_offset(adev, 0, mmSDMA0_STATUS_REG));
1461 		sdma1 = RREG32(sdma_v5_2_get_reg_offset(adev, 1, mmSDMA0_STATUS_REG));
1462 		sdma2 = RREG32(sdma_v5_2_get_reg_offset(adev, 2, mmSDMA0_STATUS_REG));
1463 		sdma3 = RREG32(sdma_v5_2_get_reg_offset(adev, 3, mmSDMA0_STATUS_REG));
1464 
1465 		if (sdma0 & sdma1 & sdma2 & sdma3 & SDMA0_STATUS_REG__IDLE_MASK)
1466 			return 0;
1467 		udelay(1);
1468 	}
1469 	return -ETIMEDOUT;
1470 }
1471 
1472 static int sdma_v5_2_reset_queue(struct amdgpu_ring *ring, unsigned int vmid)
1473 {
1474 	struct amdgpu_device *adev = ring->adev;
1475 	int i, j, r;
1476 	u32 rb_cntl, ib_cntl, f32_cntl, freeze, cntl, preempt, soft_reset, stat1_reg;
1477 
1478 	if (amdgpu_sriov_vf(adev))
1479 		return -EINVAL;
1480 
1481 	for (i = 0; i < adev->sdma.num_instances; i++) {
1482 		if (ring == &adev->sdma.instance[i].ring)
1483 			break;
1484 	}
1485 
1486 	if (i == adev->sdma.num_instances) {
1487 		DRM_ERROR("sdma instance not found\n");
1488 		return -EINVAL;
1489 	}
1490 
1491 	amdgpu_gfx_rlc_enter_safe_mode(adev, 0);
1492 
1493 	/* stop queue */
1494 	ib_cntl = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL));
1495 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
1496 	WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
1497 
1498 	rb_cntl = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL));
1499 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
1500 	WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
1501 
1502 	/*engine stop SDMA1_F32_CNTL.HALT to 1 and SDMAx_FREEZE freeze bit to 1 */
1503 	freeze = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_FREEZE));
1504 	freeze = REG_SET_FIELD(freeze, SDMA0_FREEZE, FREEZE, 1);
1505 	WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_FREEZE), freeze);
1506 
1507 	for (j = 0; j < adev->usec_timeout; j++) {
1508 		freeze = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_FREEZE));
1509 
1510 		if (REG_GET_FIELD(freeze, SDMA0_FREEZE, FROZEN) & 1)
1511 			break;
1512 		udelay(1);
1513 	}
1514 
1515 
1516 	if (j == adev->usec_timeout) {
1517 		stat1_reg = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_STATUS1_REG));
1518 		if ((stat1_reg & 0x3FF) != 0x3FF) {
1519 			DRM_ERROR("cannot soft reset as sdma not idle\n");
1520 			r = -ETIMEDOUT;
1521 			goto err0;
1522 		}
1523 	}
1524 
1525 	f32_cntl = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_F32_CNTL));
1526 	f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
1527 	WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), f32_cntl);
1528 
1529 	cntl = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CNTL));
1530 	cntl = REG_SET_FIELD(cntl, SDMA0_CNTL, UTC_L1_ENABLE, 0);
1531 	WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CNTL), cntl);
1532 
1533 	/* soft reset SDMA_GFX_PREEMPT.IB_PREEMPT = 0 mmGRBM_SOFT_RESET.SOFT_RESET_SDMA0/1 = 1 */
1534 	preempt = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_PREEMPT));
1535 	preempt = REG_SET_FIELD(preempt, SDMA0_GFX_PREEMPT, IB_PREEMPT, 0);
1536 	WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_PREEMPT), preempt);
1537 
1538 	soft_reset = RREG32_SOC15(GC, 0, mmGRBM_SOFT_RESET);
1539 	soft_reset |= 1 << GRBM_SOFT_RESET__SOFT_RESET_SDMA0__SHIFT << i;
1540 
1541 
1542 	WREG32_SOC15(GC, 0, mmGRBM_SOFT_RESET, soft_reset);
1543 
1544 	udelay(50);
1545 
1546 	soft_reset &= ~(1 << GRBM_SOFT_RESET__SOFT_RESET_SDMA0__SHIFT << i);
1547 
1548 	WREG32_SOC15(GC, 0, mmGRBM_SOFT_RESET, soft_reset);
1549 
1550 	/* unfreeze and unhalt */
1551 	freeze = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_FREEZE));
1552 	freeze = REG_SET_FIELD(freeze, SDMA0_FREEZE, FREEZE, 0);
1553 	WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_FREEZE), freeze);
1554 
1555 	r = sdma_v5_2_gfx_resume_instance(adev, i, true);
1556 
1557 err0:
1558 	amdgpu_gfx_rlc_exit_safe_mode(adev, 0);
1559 	return r;
1560 }
1561 
1562 static int sdma_v5_2_ring_preempt_ib(struct amdgpu_ring *ring)
1563 {
1564 	int i, r = 0;
1565 	struct amdgpu_device *adev = ring->adev;
1566 	u32 index = 0;
1567 	u64 sdma_gfx_preempt;
1568 
1569 	amdgpu_sdma_get_index_from_ring(ring, &index);
1570 	sdma_gfx_preempt =
1571 		sdma_v5_2_get_reg_offset(adev, index, mmSDMA0_GFX_PREEMPT);
1572 
1573 	/* assert preemption condition */
1574 	amdgpu_ring_set_preempt_cond_exec(ring, false);
1575 
1576 	/* emit the trailing fence */
1577 	ring->trail_seq += 1;
1578 	amdgpu_ring_alloc(ring, 10);
1579 	sdma_v5_2_ring_emit_fence(ring, ring->trail_fence_gpu_addr,
1580 				  ring->trail_seq, 0);
1581 	amdgpu_ring_commit(ring);
1582 
1583 	/* assert IB preemption */
1584 	WREG32(sdma_gfx_preempt, 1);
1585 
1586 	/* poll the trailing fence */
1587 	for (i = 0; i < adev->usec_timeout; i++) {
1588 		if (ring->trail_seq ==
1589 		    le32_to_cpu(*(ring->trail_fence_cpu_addr)))
1590 			break;
1591 		udelay(1);
1592 	}
1593 
1594 	if (i >= adev->usec_timeout) {
1595 		r = -EINVAL;
1596 		DRM_ERROR("ring %d failed to be preempted\n", ring->idx);
1597 	}
1598 
1599 	/* deassert IB preemption */
1600 	WREG32(sdma_gfx_preempt, 0);
1601 
1602 	/* deassert the preemption condition */
1603 	amdgpu_ring_set_preempt_cond_exec(ring, true);
1604 	return r;
1605 }
1606 
1607 static int sdma_v5_2_set_trap_irq_state(struct amdgpu_device *adev,
1608 					struct amdgpu_irq_src *source,
1609 					unsigned type,
1610 					enum amdgpu_interrupt_state state)
1611 {
1612 	u32 sdma_cntl;
1613 	u32 reg_offset = sdma_v5_2_get_reg_offset(adev, type, mmSDMA0_CNTL);
1614 
1615 	if (!amdgpu_sriov_vf(adev)) {
1616 		sdma_cntl = RREG32(reg_offset);
1617 		sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
1618 			       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
1619 		WREG32(reg_offset, sdma_cntl);
1620 	}
1621 
1622 	return 0;
1623 }
1624 
1625 static int sdma_v5_2_process_trap_irq(struct amdgpu_device *adev,
1626 				      struct amdgpu_irq_src *source,
1627 				      struct amdgpu_iv_entry *entry)
1628 {
1629 	uint32_t mes_queue_id = entry->src_data[0];
1630 
1631 	DRM_DEBUG("IH: SDMA trap\n");
1632 
1633 	if (adev->enable_mes && (mes_queue_id & AMDGPU_FENCE_MES_QUEUE_FLAG)) {
1634 		struct amdgpu_mes_queue *queue;
1635 
1636 		mes_queue_id &= AMDGPU_FENCE_MES_QUEUE_ID_MASK;
1637 
1638 		spin_lock(&adev->mes.queue_id_lock);
1639 		queue = idr_find(&adev->mes.queue_id_idr, mes_queue_id);
1640 		if (queue) {
1641 			DRM_DEBUG("process smda queue id = %d\n", mes_queue_id);
1642 			amdgpu_fence_process(queue->ring);
1643 		}
1644 		spin_unlock(&adev->mes.queue_id_lock);
1645 		return 0;
1646 	}
1647 
1648 	switch (entry->client_id) {
1649 	case SOC15_IH_CLIENTID_SDMA0:
1650 		switch (entry->ring_id) {
1651 		case 0:
1652 			amdgpu_fence_process(&adev->sdma.instance[0].ring);
1653 			break;
1654 		case 1:
1655 			/* XXX compute */
1656 			break;
1657 		case 2:
1658 			/* XXX compute */
1659 			break;
1660 		case 3:
1661 			/* XXX page queue*/
1662 			break;
1663 		}
1664 		break;
1665 	case SOC15_IH_CLIENTID_SDMA1:
1666 		switch (entry->ring_id) {
1667 		case 0:
1668 			amdgpu_fence_process(&adev->sdma.instance[1].ring);
1669 			break;
1670 		case 1:
1671 			/* XXX compute */
1672 			break;
1673 		case 2:
1674 			/* XXX compute */
1675 			break;
1676 		case 3:
1677 			/* XXX page queue*/
1678 			break;
1679 		}
1680 		break;
1681 	case SOC15_IH_CLIENTID_SDMA2:
1682 		switch (entry->ring_id) {
1683 		case 0:
1684 			amdgpu_fence_process(&adev->sdma.instance[2].ring);
1685 			break;
1686 		case 1:
1687 			/* XXX compute */
1688 			break;
1689 		case 2:
1690 			/* XXX compute */
1691 			break;
1692 		case 3:
1693 			/* XXX page queue*/
1694 			break;
1695 		}
1696 		break;
1697 	case SOC15_IH_CLIENTID_SDMA3_Sienna_Cichlid:
1698 		switch (entry->ring_id) {
1699 		case 0:
1700 			amdgpu_fence_process(&adev->sdma.instance[3].ring);
1701 			break;
1702 		case 1:
1703 			/* XXX compute */
1704 			break;
1705 		case 2:
1706 			/* XXX compute */
1707 			break;
1708 		case 3:
1709 			/* XXX page queue*/
1710 			break;
1711 		}
1712 		break;
1713 	}
1714 	return 0;
1715 }
1716 
1717 static int sdma_v5_2_process_illegal_inst_irq(struct amdgpu_device *adev,
1718 					      struct amdgpu_irq_src *source,
1719 					      struct amdgpu_iv_entry *entry)
1720 {
1721 	return 0;
1722 }
1723 
1724 static bool sdma_v5_2_firmware_mgcg_support(struct amdgpu_device *adev,
1725 						     int i)
1726 {
1727 	switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) {
1728 	case IP_VERSION(5, 2, 1):
1729 		if (adev->sdma.instance[i].fw_version < 70)
1730 			return false;
1731 		break;
1732 	case IP_VERSION(5, 2, 3):
1733 		if (adev->sdma.instance[i].fw_version < 47)
1734 			return false;
1735 		break;
1736 	case IP_VERSION(5, 2, 7):
1737 		if (adev->sdma.instance[i].fw_version < 9)
1738 			return false;
1739 		break;
1740 	default:
1741 		return true;
1742 	}
1743 
1744 	return true;
1745 
1746 }
1747 
1748 static void sdma_v5_2_update_medium_grain_clock_gating(struct amdgpu_device *adev,
1749 						       bool enable)
1750 {
1751 	uint32_t data, def;
1752 	int i;
1753 
1754 	for (i = 0; i < adev->sdma.num_instances; i++) {
1755 
1756 		if (!sdma_v5_2_firmware_mgcg_support(adev, i))
1757 			adev->cg_flags &= ~AMD_CG_SUPPORT_SDMA_MGCG;
1758 
1759 		if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
1760 			/* Enable sdma clock gating */
1761 			def = data = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL));
1762 			data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1763 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1764 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1765 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1766 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK |
1767 				  SDMA0_CLK_CTRL__SOFT_OVERRIDER_REG_MASK);
1768 			if (def != data)
1769 				WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL), data);
1770 		} else {
1771 			/* Disable sdma clock gating */
1772 			def = data = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL));
1773 			data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1774 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1775 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1776 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1777 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK |
1778 				 SDMA0_CLK_CTRL__SOFT_OVERRIDER_REG_MASK);
1779 			if (def != data)
1780 				WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL), data);
1781 		}
1782 	}
1783 }
1784 
1785 static void sdma_v5_2_update_medium_grain_light_sleep(struct amdgpu_device *adev,
1786 						      bool enable)
1787 {
1788 	uint32_t data, def;
1789 	int i;
1790 
1791 	for (i = 0; i < adev->sdma.num_instances; i++) {
1792 		if (adev->sdma.instance[i].fw_version < 70 &&
1793 		    amdgpu_ip_version(adev, SDMA0_HWIP, 0) ==
1794 			    IP_VERSION(5, 2, 1))
1795 			adev->cg_flags &= ~AMD_CG_SUPPORT_SDMA_LS;
1796 
1797 		if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
1798 			/* Enable sdma mem light sleep */
1799 			def = data = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL));
1800 			data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1801 			if (def != data)
1802 				WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL), data);
1803 
1804 		} else {
1805 			/* Disable sdma mem light sleep */
1806 			def = data = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL));
1807 			data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1808 			if (def != data)
1809 				WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL), data);
1810 
1811 		}
1812 	}
1813 }
1814 
1815 static int sdma_v5_2_set_clockgating_state(void *handle,
1816 					   enum amd_clockgating_state state)
1817 {
1818 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1819 
1820 	if (amdgpu_sriov_vf(adev))
1821 		return 0;
1822 
1823 	switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) {
1824 	case IP_VERSION(5, 2, 0):
1825 	case IP_VERSION(5, 2, 2):
1826 	case IP_VERSION(5, 2, 1):
1827 	case IP_VERSION(5, 2, 4):
1828 	case IP_VERSION(5, 2, 5):
1829 	case IP_VERSION(5, 2, 6):
1830 	case IP_VERSION(5, 2, 3):
1831 	case IP_VERSION(5, 2, 7):
1832 		sdma_v5_2_update_medium_grain_clock_gating(adev,
1833 				state == AMD_CG_STATE_GATE);
1834 		sdma_v5_2_update_medium_grain_light_sleep(adev,
1835 				state == AMD_CG_STATE_GATE);
1836 		break;
1837 	default:
1838 		break;
1839 	}
1840 
1841 	return 0;
1842 }
1843 
1844 static int sdma_v5_2_set_powergating_state(void *handle,
1845 					  enum amd_powergating_state state)
1846 {
1847 	return 0;
1848 }
1849 
1850 static void sdma_v5_2_get_clockgating_state(void *handle, u64 *flags)
1851 {
1852 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1853 	int data;
1854 
1855 	if (amdgpu_sriov_vf(adev))
1856 		*flags = 0;
1857 
1858 	/* AMD_CG_SUPPORT_SDMA_MGCG */
1859 	data = RREG32(sdma_v5_2_get_reg_offset(adev, 0, mmSDMA0_CLK_CTRL));
1860 	if (!(data & SDMA0_CLK_CTRL__CGCG_EN_OVERRIDE_MASK))
1861 		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
1862 
1863 	/* AMD_CG_SUPPORT_SDMA_LS */
1864 	data = RREG32_KIQ(sdma_v5_2_get_reg_offset(adev, 0, mmSDMA0_POWER_CNTL));
1865 	if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
1866 		*flags |= AMD_CG_SUPPORT_SDMA_LS;
1867 }
1868 
1869 static void sdma_v5_2_ring_begin_use(struct amdgpu_ring *ring)
1870 {
1871 	struct amdgpu_device *adev = ring->adev;
1872 
1873 	/* SDMA 5.2.3 (RMB) FW doesn't seem to properly
1874 	 * disallow GFXOFF in some cases leading to
1875 	 * hangs in SDMA.  Disallow GFXOFF while SDMA is active.
1876 	 * We can probably just limit this to 5.2.3,
1877 	 * but it shouldn't hurt for other parts since
1878 	 * this GFXOFF will be disallowed anyway when SDMA is
1879 	 * active, this just makes it explicit.
1880 	 * sdma_v5_2_ring_set_wptr() takes advantage of this
1881 	 * to update the wptr because sometimes SDMA seems to miss
1882 	 * doorbells when entering PG.  If you remove this, update
1883 	 * sdma_v5_2_ring_set_wptr() as well!
1884 	 */
1885 	amdgpu_gfx_off_ctrl(adev, false);
1886 }
1887 
1888 static void sdma_v5_2_ring_end_use(struct amdgpu_ring *ring)
1889 {
1890 	struct amdgpu_device *adev = ring->adev;
1891 
1892 	/* SDMA 5.2.3 (RMB) FW doesn't seem to properly
1893 	 * disallow GFXOFF in some cases leading to
1894 	 * hangs in SDMA.  Allow GFXOFF when SDMA is complete.
1895 	 */
1896 	amdgpu_gfx_off_ctrl(adev, true);
1897 }
1898 
1899 static void sdma_v5_2_print_ip_state(struct amdgpu_ip_block *ip_block, struct drm_printer *p)
1900 {
1901 	struct amdgpu_device *adev = ip_block->adev;
1902 	int i, j;
1903 	uint32_t reg_count = ARRAY_SIZE(sdma_reg_list_5_2);
1904 	uint32_t instance_offset;
1905 
1906 	if (!adev->sdma.ip_dump)
1907 		return;
1908 
1909 	drm_printf(p, "num_instances:%d\n", adev->sdma.num_instances);
1910 	for (i = 0; i < adev->sdma.num_instances; i++) {
1911 		instance_offset = i * reg_count;
1912 		drm_printf(p, "\nInstance:%d\n", i);
1913 
1914 		for (j = 0; j < reg_count; j++)
1915 			drm_printf(p, "%-50s \t 0x%08x\n", sdma_reg_list_5_2[j].reg_name,
1916 				   adev->sdma.ip_dump[instance_offset + j]);
1917 	}
1918 }
1919 
1920 static void sdma_v5_2_dump_ip_state(struct amdgpu_ip_block *ip_block)
1921 {
1922 	struct amdgpu_device *adev = ip_block->adev;
1923 	int i, j;
1924 	uint32_t instance_offset;
1925 	uint32_t reg_count = ARRAY_SIZE(sdma_reg_list_5_2);
1926 
1927 	if (!adev->sdma.ip_dump)
1928 		return;
1929 
1930 	amdgpu_gfx_off_ctrl(adev, false);
1931 	for (i = 0; i < adev->sdma.num_instances; i++) {
1932 		instance_offset = i * reg_count;
1933 		for (j = 0; j < reg_count; j++)
1934 			adev->sdma.ip_dump[instance_offset + j] =
1935 				RREG32(sdma_v5_2_get_reg_offset(adev, i,
1936 				       sdma_reg_list_5_2[j].reg_offset));
1937 	}
1938 	amdgpu_gfx_off_ctrl(adev, true);
1939 }
1940 
1941 static const struct amd_ip_funcs sdma_v5_2_ip_funcs = {
1942 	.name = "sdma_v5_2",
1943 	.early_init = sdma_v5_2_early_init,
1944 	.sw_init = sdma_v5_2_sw_init,
1945 	.sw_fini = sdma_v5_2_sw_fini,
1946 	.hw_init = sdma_v5_2_hw_init,
1947 	.hw_fini = sdma_v5_2_hw_fini,
1948 	.suspend = sdma_v5_2_suspend,
1949 	.resume = sdma_v5_2_resume,
1950 	.is_idle = sdma_v5_2_is_idle,
1951 	.wait_for_idle = sdma_v5_2_wait_for_idle,
1952 	.soft_reset = sdma_v5_2_soft_reset,
1953 	.set_clockgating_state = sdma_v5_2_set_clockgating_state,
1954 	.set_powergating_state = sdma_v5_2_set_powergating_state,
1955 	.get_clockgating_state = sdma_v5_2_get_clockgating_state,
1956 	.dump_ip_state = sdma_v5_2_dump_ip_state,
1957 	.print_ip_state = sdma_v5_2_print_ip_state,
1958 };
1959 
1960 static const struct amdgpu_ring_funcs sdma_v5_2_ring_funcs = {
1961 	.type = AMDGPU_RING_TYPE_SDMA,
1962 	.align_mask = 0xf,
1963 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1964 	.support_64bit_ptrs = true,
1965 	.secure_submission_supported = true,
1966 	.get_rptr = sdma_v5_2_ring_get_rptr,
1967 	.get_wptr = sdma_v5_2_ring_get_wptr,
1968 	.set_wptr = sdma_v5_2_ring_set_wptr,
1969 	.emit_frame_size =
1970 		5 + /* sdma_v5_2_ring_init_cond_exec */
1971 		6 + /* sdma_v5_2_ring_emit_hdp_flush */
1972 		3 + /* hdp_invalidate */
1973 		6 + /* sdma_v5_2_ring_emit_pipeline_sync */
1974 		/* sdma_v5_2_ring_emit_vm_flush */
1975 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
1976 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
1977 		10 + 10 + 10, /* sdma_v5_2_ring_emit_fence x3 for user fence, vm fence */
1978 	.emit_ib_size = 7 + 6, /* sdma_v5_2_ring_emit_ib */
1979 	.emit_ib = sdma_v5_2_ring_emit_ib,
1980 	.emit_mem_sync = sdma_v5_2_ring_emit_mem_sync,
1981 	.emit_fence = sdma_v5_2_ring_emit_fence,
1982 	.emit_pipeline_sync = sdma_v5_2_ring_emit_pipeline_sync,
1983 	.emit_vm_flush = sdma_v5_2_ring_emit_vm_flush,
1984 	.emit_hdp_flush = sdma_v5_2_ring_emit_hdp_flush,
1985 	.test_ring = sdma_v5_2_ring_test_ring,
1986 	.test_ib = sdma_v5_2_ring_test_ib,
1987 	.insert_nop = sdma_v5_2_ring_insert_nop,
1988 	.pad_ib = sdma_v5_2_ring_pad_ib,
1989 	.begin_use = sdma_v5_2_ring_begin_use,
1990 	.end_use = sdma_v5_2_ring_end_use,
1991 	.emit_wreg = sdma_v5_2_ring_emit_wreg,
1992 	.emit_reg_wait = sdma_v5_2_ring_emit_reg_wait,
1993 	.emit_reg_write_reg_wait = sdma_v5_2_ring_emit_reg_write_reg_wait,
1994 	.init_cond_exec = sdma_v5_2_ring_init_cond_exec,
1995 	.preempt_ib = sdma_v5_2_ring_preempt_ib,
1996 	.reset = sdma_v5_2_reset_queue,
1997 };
1998 
1999 static void sdma_v5_2_set_ring_funcs(struct amdgpu_device *adev)
2000 {
2001 	int i;
2002 
2003 	for (i = 0; i < adev->sdma.num_instances; i++) {
2004 		adev->sdma.instance[i].ring.funcs = &sdma_v5_2_ring_funcs;
2005 		adev->sdma.instance[i].ring.me = i;
2006 	}
2007 }
2008 
2009 static const struct amdgpu_irq_src_funcs sdma_v5_2_trap_irq_funcs = {
2010 	.set = sdma_v5_2_set_trap_irq_state,
2011 	.process = sdma_v5_2_process_trap_irq,
2012 };
2013 
2014 static const struct amdgpu_irq_src_funcs sdma_v5_2_illegal_inst_irq_funcs = {
2015 	.process = sdma_v5_2_process_illegal_inst_irq,
2016 };
2017 
2018 static void sdma_v5_2_set_irq_funcs(struct amdgpu_device *adev)
2019 {
2020 	adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE0 +
2021 					adev->sdma.num_instances;
2022 	adev->sdma.trap_irq.funcs = &sdma_v5_2_trap_irq_funcs;
2023 	adev->sdma.illegal_inst_irq.funcs = &sdma_v5_2_illegal_inst_irq_funcs;
2024 }
2025 
2026 /**
2027  * sdma_v5_2_emit_copy_buffer - copy buffer using the sDMA engine
2028  *
2029  * @ib: indirect buffer to copy to
2030  * @src_offset: src GPU address
2031  * @dst_offset: dst GPU address
2032  * @byte_count: number of bytes to xfer
2033  * @copy_flags: copy flags for the buffers
2034  *
2035  * Copy GPU buffers using the DMA engine.
2036  * Used by the amdgpu ttm implementation to move pages if
2037  * registered as the asic copy callback.
2038  */
2039 static void sdma_v5_2_emit_copy_buffer(struct amdgpu_ib *ib,
2040 				       uint64_t src_offset,
2041 				       uint64_t dst_offset,
2042 				       uint32_t byte_count,
2043 				       uint32_t copy_flags)
2044 {
2045 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
2046 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) |
2047 		SDMA_PKT_COPY_LINEAR_HEADER_TMZ((copy_flags & AMDGPU_COPY_FLAGS_TMZ) ? 1 : 0);
2048 	ib->ptr[ib->length_dw++] = byte_count - 1;
2049 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
2050 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
2051 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
2052 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2053 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2054 }
2055 
2056 /**
2057  * sdma_v5_2_emit_fill_buffer - fill buffer using the sDMA engine
2058  *
2059  * @ib: indirect buffer to fill
2060  * @src_data: value to write to buffer
2061  * @dst_offset: dst GPU address
2062  * @byte_count: number of bytes to xfer
2063  *
2064  * Fill GPU buffers using the DMA engine.
2065  */
2066 static void sdma_v5_2_emit_fill_buffer(struct amdgpu_ib *ib,
2067 				       uint32_t src_data,
2068 				       uint64_t dst_offset,
2069 				       uint32_t byte_count)
2070 {
2071 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
2072 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2073 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2074 	ib->ptr[ib->length_dw++] = src_data;
2075 	ib->ptr[ib->length_dw++] = byte_count - 1;
2076 }
2077 
2078 static const struct amdgpu_buffer_funcs sdma_v5_2_buffer_funcs = {
2079 	.copy_max_bytes = 0x400000,
2080 	.copy_num_dw = 7,
2081 	.emit_copy_buffer = sdma_v5_2_emit_copy_buffer,
2082 
2083 	.fill_max_bytes = 0x400000,
2084 	.fill_num_dw = 5,
2085 	.emit_fill_buffer = sdma_v5_2_emit_fill_buffer,
2086 };
2087 
2088 static void sdma_v5_2_set_buffer_funcs(struct amdgpu_device *adev)
2089 {
2090 	if (adev->mman.buffer_funcs == NULL) {
2091 		adev->mman.buffer_funcs = &sdma_v5_2_buffer_funcs;
2092 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
2093 	}
2094 }
2095 
2096 static const struct amdgpu_vm_pte_funcs sdma_v5_2_vm_pte_funcs = {
2097 	.copy_pte_num_dw = 7,
2098 	.copy_pte = sdma_v5_2_vm_copy_pte,
2099 	.write_pte = sdma_v5_2_vm_write_pte,
2100 	.set_pte_pde = sdma_v5_2_vm_set_pte_pde,
2101 };
2102 
2103 static void sdma_v5_2_set_vm_pte_funcs(struct amdgpu_device *adev)
2104 {
2105 	unsigned i;
2106 
2107 	if (adev->vm_manager.vm_pte_funcs == NULL) {
2108 		adev->vm_manager.vm_pte_funcs = &sdma_v5_2_vm_pte_funcs;
2109 		for (i = 0; i < adev->sdma.num_instances; i++) {
2110 			adev->vm_manager.vm_pte_scheds[i] =
2111 				&adev->sdma.instance[i].ring.sched;
2112 		}
2113 		adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
2114 	}
2115 }
2116 
2117 const struct amdgpu_ip_block_version sdma_v5_2_ip_block = {
2118 	.type = AMD_IP_BLOCK_TYPE_SDMA,
2119 	.major = 5,
2120 	.minor = 2,
2121 	.rev = 0,
2122 	.funcs = &sdma_v5_2_ip_funcs,
2123 };
2124